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Abstract
A reaction-diffusion-advection model is proposed to describe the growth of algae
depending on both nutrients and inorganic carbon in a poorly mixed water column.
Nutrients from the water bottom and inorganic carbon from the water surface form
an asymmetric resource supply mechanism for the algal growth. The existence and
stability of semi-trivial steady state and positive steady state of the model are proved,
and a threshold condition for the regime shift from extinction to survival of algae is
established. The influence of environmental parameters on the vertical distribution of
algae is investigated in the water column. It is shown that the vertical distribution of
algae can exhibit many different profiles under the combined limitation of nutrients
and inorganic carbon.
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1 Introduction

Algae are the basis of the earth’s food web and preserve the balance of the global
aquatic ecosystem. They are adaptable and widely distributed in rivers, lakes and
oceans. By performing photosynthesis, algae consume inorganic carbon to produce
organic matter and release oxygen by using light energy. In this process, inorganic
carbon and light are involved in the energy flow and material cycle of the aquatic
ecosystem. Nutrient elements, such as phosphorus or nitrogen, are key factors for
algal growth and important indicators of water eutrophication. Therefore the growth
of algae is supported and restricted by three essential resources: light, nutrients (e.g.
nitrogen or phosphorus) and inorganic carbon (including dissolved CO2, carbonic
acid and bicarbonate). Understanding algal growth in an aquatic environment is of
fundamental importance to ecosystem studies.

Mathematical models have been constructed to study the growth mechanism of
algae and its dependence on algae and nutrients, or light, or both of them. Three
different situations have been studied and discussed. First, algae compete only for
nutrients in oligotrophic aquatic ecosystems with ample supply of light (Hsu et al.
2013; Nie et al. 2015; Shi et al. 2019; Wang et al. 2015; Zhang et al. 2018); second,
algae compete only for light in eutrophic aquatic ecosystems (Du and Hsu 2010; Du
et al. 2015; Hsu and Lou 2010; Jiang et al. 2019; Mei and Zhang 2012; Peng and Zhao
2016); third, algae compete for both light and nutrients simultaneously in some aquatic
ecosystems (Chen et al. 2015; Du and Hsu 2008a, b; Huisman et al. 2006; Jäger et al.
2010; Klausmeier and Litchman 2001; Ryabov et al. 2010; Vasconcelos et al. 2016;
Yoshiyama et al. 2009; Yoshiyama and Nakajima 2002; Zagaris and Doelman 2011;
Zhang et al. 2021).

The connection between algae and inorganic carbon is more complicated with a
variety of biological mechanisms. Carbon dioxide enters the water by exchange at the
water surface, and reacts with water molecules to form carbonic acid and bicarbonate.
Algae could take up dissolve CO2, carbonic acid and bicarbonate by photosynthesis.
An ODE model was constructed in Van de Waal et al. (2011) to describe supply for
dissolved inorganic carbon in dense algal blooms in a completely well-mixed water
column. In Nie et al. (2016) and Hsu et al. (2017), the authors established PDEmodels
to deal with the interaction between algae and inorganic carbon in a poorly mixed
habitat.

The main purpose of this paper is to establish a mathematical model to describe the
interaction of algae, nutrients and inorganic carbon in a poorly mixed water column
with ample supply of light. The growth of algae only depends on nutrients from the
bottom and inorganic carbon from the surface (see Fig. 1). The increase of the algal
biomass on the water surface inhibits the algal growth on the deep layer since limited
inorganic carbon from the surface decreases its supply to the deep layer. On the other
hand, an increase of the algal biomass on the water bottom also suppresses the algal
growth in the surface layer since limited nutrients from the water bottom decreases its
supply to the surface layer. This forms an asymmetric supply for the algae to gain the
two resources. It is important and of interest to explore the effect of this asymmetric
resource supply for nutrients and inorganic carbon on the algal growth and vertical
distribution.
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Fig. 1 Interactions of algae,
nutrients and inorganic carbon in
a water column

The vertical distribution of algae is highly heterogeneous and exhibits the most
prominent vertical aggregation phenomena. For example, algae usually float on the
water surface during the daytime and sink to the water bottom at night. The spatial het-
erogeneity of algae is generally related to the uneven distribution of essential resources.
Previous studies have shown that algae have complex vertical distribution that is influ-
enced by the supply of light and nutrients in poorly mixed water columns (Du and
Hsu 2008a, b; Klausmeier and Litchman 2001; Ryabov et al. 2010; Yoshiyama et al.
2009; Yoshiyama and Nakajima 2002). Here we consider a controlled water column in
the experiment or an idealized water column, where the whole water column receives
enough light. Therefore, in the present paper, assuming that light is sufficient, we will
reveal that algae also exhibit vertical spatial heterogeneity and vertical aggregation
phenomena under asymmetric resource supply mechanism of nutrients and inorganic
carbon, which has not been considered in previous studies.

The rest of the paper is organized as follows. In Section 2, we derive a reaction-
diffusion-advection PDE model to describe the growth of algae depending on both
nutrients and inorganic carbon in a poorly mixed water column. We then investigate
the basic dynamics of this model including the existence and stability of steady states
in Section 3. In Section 4, we consider the influence of environmental parameters
on the vertical distribution of algae, and explain what mechanisms drive these ver-
tical distributions. Finally, we summarize our findings and state some questions for
future study in Section 5. Throughout the paper, numerical simulations under reason-
able parameter values from literature are presented to illustrate or complement our
mathematical findings.

2 Model construction

In this section, we propose a mathematical model to describe the interactions of algae,
nutrients and inorganic carbon in a poorly mixed water column (see Fig. 1). Nutrients
from the bottom and inorganic carbon from the water surface constitute an asymmetric
resource supply in terms of different spatial niche. This paper mainly considers the
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Table 1 Variables and parameters of model (2.4) with biological meanings

Symbol Meaning Symbol Meaning

t Time z Depth

A Biomass density of algae N Concentration of dissolved nutrients

C Concentration of dissolved inorganic
carbon

Da Vertical turbulent diffusivity of algae

Dn Vertical turbulent diffusivity of
dissolved nutrients

Dc Vertical turbulent diffusivity of
dissolved inorganic carbon

s Sinking or buoyant velocity of algae r Maximum specific production rate of
algae

m Loss rate of algae l Respiration rate of algae

γn Half saturation constant for
nutrient-limited production of algae

γc Half saturation constant for inorganic
carbon-limited production of algae

cn Phosphorus to carbon quota of algae pn Proportion of nutrient in algal losses
that is recycled

pc The proportion of carbon dioxide
released by algae respiration in the
water column

α Nutrient exchange rate at the bottom
of the water column

β CO2 gas exchange rate between air
and water at the surface of the
water column

N0 Concentration of dissolved nutrients
at the bottom of the water column

C0 Concentration of dissolved inorganic
carbon at the surface of the water
column

L Depth of the water column

growth/extinction of algae and their vertical distribution under the framework of asym-
metric supply. In order to obtain the main research objectives of the present paper, we
assume that the poorly mixed water column is an idealized or a controlled one in the
experiment. For example, the water column is in a glass aquarium holding water, and
it receives abundant and even light from the side. Therefore, in the following model-
ing process, the factor of light is not emphasized (assuming that the light is sufficient
and constant for the whole water column), and only the limitation of nutrients and
inorganic carbon on algal growth is considered.

Let z denote the depth coordinate of the water column. We assume that z = 0
is the surface of the water column, and z = L is the bottom of the water column.
Three partial differential equations are established below to describe the dynamics of
biomass density of algae A, concentration of dissolved nutrients N (e.g. nitrogen or
phosphorus), and concentration of dissolved inorganic carbon C (including dissolved
CO2, carbonic acid and bicarbonate). All the variables and parameters of the model
and their biological significance are listed in Table 1.

Let A(z, t) denote the biomass density of algae at depth z ∈ [0, L] and time t .
The growth rate of algae has two limiting factors: concentration of dissolved nutri-
ents N (z, t) and concentration of dissolved inorganic carbonC(z, t). Nutrients mainly
contains trace elements such as phosphorus or nitrogen, and inorganic carbon is nec-
essary for algae photosynthesis, so both of them are irreplaceable resources for algal
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growth. Here we assume the algae growth rate takes a form of multiplication of two
Monod type functions depending on the two resources:

f (N )g(C) = N

γn + N

C

γc + C
,

where γn and γc are half saturation constants. This form of multiplication of two
resource functions has been used in previous studies (see Heggerud et al. 2020; Wang
et al. 2007; Zagaris and Doelman 2011). The other commonly used algebraic form for
modeling two irreplaceable resources is the minimum value of two resource functions
min{ f (N ), g(C)} based on Liebig’s law of the minimum (see Du and Hsu 2008a, b;
Hsu et al. 2016; Klausmeier and Litchman 2001; Klausmeier et al. 2004). The two
functions are qualitatively similar in the sense that f · g ≤ min{ f , g} ≤ √

f · g as
0 ≤ f , g ≤ 1 while the value of the multiplicative function is smaller than the one
of the minimum function. From the biological point of view, the multiplication form
or the minimum form means that nutrients and inorganic carbon are two essential
resources for algal growth, which cannot be substituted by each other Grover (1997).
We use the multiplicative form here as it is a differentiable function which is more
convenient for mathematical analysis.

It is assumed that algae biomass density is lost at a density-independent rate m,
caused by death and grazing, and respiration rate l, caused by the respiration of algae
(Hsu et al. 2017; Nie et al. 2016). On the other hand, algae move up or down by
turbulence with a depth independent diffusion coefficient Da . In addition, algae sink
or buoyant with a velocity s. In most cases, algae sink due to the gravity (s > 0);
in order to obtain better growth opportunities, algae suspend in water by increasing
their own buoyancy (s = 0); and some algae can produce pseudovacuoles, store light
density lipids, and make their buoyancy greater than their body weight, resulting in
buoyancy (s < 0) (Grover 2017; Klausmeier and Litchman 2001). Realistic advective
term would depend on the space and time, here we assume the sink/buoyant velocity
s to be a constant as the mean value over space and time for simplicity (Huisman et al.
2006; Jäger et al. 2010; Ryabov et al. 2010). No-flux boundary conditions are imposed
for algae at both the water surface and the bottom of the water column. Combining
these assumptions gives the following reaction-diffusion-advection equation with no-
flux boundary conditions:

∂A(z, t)

∂t
= turbulent diffusion − sinking(or buoyant) + growth − loss,

= Da
∂2A

∂z2
− s

∂A

∂z
+ r f (N )g(C)A − (m + l) A, 0 < z < L,

Da Az(0, t) − s A(0, t) = 0, Da Az(L, t) − s A(L, t) = 0. (2.1)

The function N (z, t) describes the concentration of dissolved nutrients in the water
column at depth z ∈ [0, L] and time t . We assume a zero-flux boundary condition
for nutrients at the water surface, while nutrients are supplied from the bottom of
the water column with a fixed concentration N 0 and nutrient exchange rate α. The
nutrient transport is also governed by passive movement due to turbulence with a
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diffusion coefficient Dn . Nutrients are consumed by algae with a consumption rate
cnr f (N )g(C)A, and they are generated as a result of recycling from loss of algal
biomass with proportion pn ∈ [0, 1]. The dynamics of N (z, t) is given by

∂N (z, t)

∂t
= turbulent diffusion + recycling − consumption

= Dn
∂2N

∂z2
+ pncnmA − cnr f (N )g(C)A, 0 < z < L,

Nz(0, t) = 0, DnNz(L, t) = α(N 0 − N (L, t)) (nutrients exchange). (2.2)

LetC(z, t) be the concentration of dissolved inorganic carbon in thewater column at
depth z ∈ [0, L] and time t . Inorganic carbon in the water column mainly comes from
the atmosphere, and a very small part comes from the sediment. In order to study the
asymmetry of resource supply in the present paper, we assume that inorganic carbon
is only supplied from the atmosphere at the surface of the water column with a fixed
concentration C0 and CO2 gas exchange rate β. The transport of inorganic carbon
in the water column is also controlled by turbulence with a diffusion coefficient Dc.
The change of dissolved inorganic carbon depends on consumption by algae with a
consumption rate r f (N )g(C)A, recycling from respiration of algae with proportion
pc ∈ [0, 1]. The dynamics of C(z, t) is described as

∂C(z, t)

∂t
= turbulent diffusion + recycling − consumption

= Dc
∂2C

∂z2
+ pcl A − r f (N )g(C)A, 0 < z < L,

DcCz(0, t) = β(C(0, t) − C0) (CO2 exchange), Cz(L, t) = 0. (2.3)

Combining all equations (2.1)-(2.3), we have the following full system of algae-
nutrient-inorganic carbon model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A

∂t
= Da

∂2A

∂z2
− s

∂A

∂z
+ r f (N )g(C)A − (m + l) A, 0 < z < L, t > 0,

∂N

∂t
= Dn

∂2N

∂z2
+ pncnmA − cnr f (N )g(C)A, 0 < z < L, t > 0,

∂C

∂t
= Dc

∂2C

∂z2
+ pcl A − r f (N )g(C)A, 0 < z < L, t > 0,

Da Az(0, t) − s A(0, t) = 0, Da Az(L, t) − s A(L, t) = 0, t > 0,

Nz(0, t) = 0, DnNz(L, t) = α(N 0 − N (L, t)), t > 0,

DcCz(0, t) = β(C(0, t) − C0), Cz(L, t) = 0, t > 0.

(2.4)

In the model (2.4), one of the two resources (nutrients and inorganic carbon) diffuses
in from one side, and the other one diffuses from the other side (also with advective
transport), which resembles a counter-diffusion system. It characterizes the growth of
algae under the asymmetric supply mechanism of nutrients and inorganic carbon.
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Due to the biological meaning of variables in (2.4), we will deal with the solutions
of (2.4) with nonnegative initial values, i.e.

A(z, 0) = A0(z) ≥�≡ 0, N (z, 0) = N0(z) ≥�≡ 0, C(z, 0) = C0(z) ≥�≡ 0.

The symbol≥�≡ 0means that a function is non-negative and at least one point is strictly
positive. We also assume that s ∈ R, pn, pc ∈ [0, 1] and all remaining parameters are
positive constants unless explicitly stated otherwise. In order to describe the growth
and extinction of algae under asymmetric resource supply, we will analyze the steady
state solutions of model (2.4) in the next section.

3 Existence and stability of steady states

In this section, we consider the existence and stability of steady state solutions of (2.4).
A nutrient-inorganic carbon-only trivial steady state E1 : (0, N1(z),C1(z)) satis-

fies
{
N ′′(z) = 0, N ′(0) = 0, DnN ′(L) = α(N 0 − N (L)), 0 < z < L,

C ′′(z) = 0, DcC ′(0) = β(C(0) − C0), C ′(L) = 0, 0 < z < L.
(3.1)

We have the following results regarding the existence, uniqueness and stability of E1.

Theorem 3.1 (i) The system (2.4) has a unique nutrient-inorganic carbon-only steady
state solution E1 ≡ (0, N 0,C0);

(ii) If

m + l > r f (N 0)g(C0), (3.2)

then E1 is locally asymptotically stable with respect to (2.4), and if

m + l < r f (N 0)g(C0), (3.3)

then E1 is unstable;
(iii) If

m + l > r , (3.4)

or pn = pc = 0 and (3.2) hold, then E1 is globally asymptotically stable with
respect to (2.4) for any nonnegative initial value.

Proof It follows from (3.1) that (i) holds. The stability of E1 is determined by the
eigenvalue problem

λϕ(z) = Daϕ
′′(z) − sϕ′(z) +

[
r f (N 0)g(C0) − (m + l)

]
ϕ(z), 0 < z < L, (3.5a)
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λψ(z) = Dnψ
′′(z) + cn(pnm − r f (N 0)g(C0))ϕ(z), 0 < z < L, (3.5b)

λφ(z) = Dcφ
′′(z) + (pcl − r f (N 0)g(C0))ϕ(z), 0 < z < L, (3.5c)

Daϕ
′(0) − sϕ(0) = Daϕ

′(L) − sϕ(L) = 0, (3.5d)

ψ ′(0) = 0, Dnψ
′(L) + αψ(L) = 0, (3.5e)

− Dcφ
′(0) + βφ(0) = 0, φ′(L) = 0. (3.5f)

Let λ be any eigenvalue of (3.5), and let (ϕ, ψ, φ) be the corresponding eigenfunction.
Note that the linearized system (3.5) is partially decoupled. We consider the following
two cases: ϕ �= 0 and ϕ ≡ 0.

Case 1: ϕ �= 0. In this case, the stability of E1 is determined by (3.5a) and its
boundary condition (3.5d). Let ϕ = e(s/Da)zη. Then (3.5a)-(3.5d) translates into

{
λη(z) = Daη

′′(z) + sη′(z) + [
r f (N 0)g(C0) − (m + l)

]
η(z), 0 < z < L,

η′(0) = η′(L) = 0.

(3.6)

It is not difficult to show that the dominant eigenvalue of (3.6) is r f (N 0)g(C0) −
(m + l) and the corresponding eigenfunction is η(z) ≡ 1. This implies that λ =
r f (N 0)g(C0)−(m+l) is also an eigenvalue of (3.5), the corresponding eigenfunction
is ϕ(z) = e(s/Da)z , and (ψ, φ) can be solved from (3.5).

Case 2: ϕ ≡ 0. In this case, (3.5b) and (3.5c) with their boundary conditions (3.5e)
and (3.5f) reduce to

λψ(z) = Dnψ
′′(z), 0 < z < L, ψ ′(0) = 0, Dnψ

′(L) + αψ(L) = 0, (3.7)

and

λφ(z) = Dcφ
′′(z), 0 < z < L, − Dcφ

′(0) + βφ(0) = 0, φ′(L) = 0. (3.8)

The eigenvalues of (3.7) must be negative. In fact, if λ > 0 in (3.7), then we have
ψ(z) = cosh(σ z) for σ = √

λ/Dn since ψ ′(0) = 0. But from Dnψ
′(L) + αψ(L)=0,

we obtain Dn sinh(σ L) = −α cosh(σ L), which is a contradiction. It is also easy to
see λ = 0 cannot be an eigenvalue of (3.7). If λ < 0, then from ψ ′(0) = 0 we have
ψ(z) = cos(σ z) for σ = √−λ/Dn . It follows from Dnψ

′(L) + αψ(L) = 0 that
tan σ L = α/(σDn). Then the dominant eigenvalue of (3.7) is λ = −Dnσ

2
1 , where σ1

is the smallest positive root of tan σ L = α/(σDn). Similarly, the eigenvalues of (3.8)
are also negative.

Summarizing above discussions, we conclude that all eigenvalues of (3.5) are neg-
ative if (3.2) holds, and then E1 is locally asymptotically stable. On the other hand, if
(3.3) holds, then E1 is unstable. Therefore, (ii) holds.

We now prove the global stability in (iii). First we assume that (3.4) holds. From
the first equation of (2.4) and (3.4), we have

∂A

∂t
≤ Da

∂2A

∂z2
− s

∂A

∂z
+ (r − (m + l)) A, 0 < z < L, t > 0, (3.9)
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which implies that A(z, t) converges to 0 uniformly for z ∈ [0, L] as t → ∞ by the
comparison theorem of parabolic equations. It follows from the theory of asymptotic
autonomous systems (see Theorem 1.8 in Mischaikow et al. (1995) or Theorem 4.1
of Thieme (1992)) that the dynamics of (2.4) reduces to the one of limiting system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂N

∂t
= Dn

∂2N

∂z2
, 0 < z < L, t > 0,

∂C

∂t
= Dc

∂2C

∂z2
, 0 < z < L, t > 0,

Nz(0, t) = 0, DnNz(L, t) = α(N 0 − N (L, t)), t > 0,

DcCz(0, t) = β(C(0, t) − C0), Cz(L, t) = 0, t > 0.

(3.10)

To obtain our conclusions, we define the following Lyapunov functional V :
C([0, L]) × C([0, L]) → R by

V (N ,C) = 1

2

∫ L

0
(N (z) − N 0)2dz + 1

2

∫ L

0
(C(z) − C0)2dz.

Let (N (z, t),C(z, t)) be an arbitrary solution of (3.10) with nonnegative initial values.
Then

dV (N (z, t),C(z, t))

dt
=

∫ L

0
(N (z, t) − N 0)

∂N

∂t
dz +

∫ L

0
(C(z, t) − C0)

∂C

∂t
dz

= Dn

∫ L

0
(N (z, t) − N 0)

∂N 2

∂z2
dz

+ Dc

∫ L

0
(C(z, t) − C0)

∂C2

∂z2
dz

= Dn
∂N

∂z
(N (z, t) − N 0)

∣
∣
∣
L

0
− Dn

∫ L

0

(
∂N

∂z

)2

dz

+ Dc
∂C

∂z
(C(z, t) − C0)

∣
∣
∣
L

0
− Dc

∫ L

0

(
∂C

∂z

)2

dz

= −α(N (z, t) − N 0)2 − Dn

∫ L

0

(
∂N

∂z

)2

dz

− β(C(z, t) − C0)2 − Dc

∫ L

0

(
∂C

∂z

)2

dz ≤ 0.

Note that dV (·)/dt = 0 holds if and only if N (z, t) ≡ N 0 and C(z, t) ≡ C0.
From the LaSalle’s Invariance Principle (Henry 1981, Theorem 4.3.4), we conclude
that (N (z, t),C(z, t)) converges to (N 0,C0) uniformly for z ∈ [0, L] as t → ∞.
This means that E1 is globally asymptotically stable with respect to (2.4) for any
nonnegative initial value.
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At last we prove the global stability of E1 when pn = pc = 0 and (3.2) hold. From
(2.4), we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂N

∂t
≤ Dn

∂N 2

∂z2
, 0 < z < L, t > 0,

∂C

∂t
≤ Dc

∂2C

∂z2
, 0 < z < L, t > 0,

Nz(0, t) = 0, DnNz(L, t) = α(N 0 − N (L, t)), t > 0,

DcCz(0, t) = β(C(0, t) − C0), Cz(L, t) = 0, t > 0.

By using the comparison principle of parabolic equations, we get

lim sup
t→∞

N (z, t) ≤ N 0, lim sup
t→∞

C(z, t) ≤ C0, 0 ≤ z ≤ L.

It follows from the first equation of (2.4) that for t large, we have

∂A

∂t
≤ Da

∂2A

∂z2
− s

∂A

∂z
+

(
r f (N 0 + ε)g(C0 + ε) − (m + l)

)
A, 0 < z < L,

where ε > 0 is arbitrarily small. Then A(z, t) converges to 0 uniformly for z ∈ [0, L]
as t → ∞ if (3.2) holds. The rest of the proof is similar to the proof when (3.4) holds.

��
The condition (3.2) shows that a large algal loss rate m or respiration rate l leads to

the extinction of algae population, and such extinction is global for all initial conditions
if m + l is even larger. On the other hand, when m and l are both small, the extinction
state E1 is unstable and it is possible to have positive steady states (see Theorem 3.3).
Another case of global stability of E1 occurs when there is no recycling of nutrients
and carbon dioxide in the system. It is an interesting question whether E1 is also
globally asymptotically stable for pn, pc �= 0 if (3.2) holds, which is indicated by our
numerical simulations.

Next we consider the existence of positive steady states of model (2.4). A positive
steady state solution E2 : (A(z), N (z),C(z)) of model (2.4) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Da A′′(z) − s A′(z) + r f (N (z))g(C(z))A(z) − (m + l) A(z) = 0, 0 < z < L,

DnN ′′(z) + pncnmA(z) − cnr f (N (z))g(C(z))A(z) = 0, 0 < z < L,

DcC ′′(z) + pcl A(z) − r f (N (z))g(C(z))A(z) = 0, 0 < z < L,

Da A′(0) − s A(0) = Da A′(L) − s A(L) = 0,

N ′(0) = 0, DnN ′(L) = α(N 0 − N (L)),

DcC ′(0) = β(C(0) − C0), C ′(L) = 0

(3.11)

and each of A(z), N (z) and C(z) is positive. Assume that

m∗ = r f (N 0)g(C0) − l > 0. (3.12)
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We consider the bifurcation of the positive steady state E2 from nutrients-inorganic
carbon-only trivial steady state E1 atm = m∗ by using bifurcation theory (seeCrandall
and Rabinowitz 1971, Theorem 1.7 and Shi andWang 2009, Theorem 3.3 and Remark
3.4). Let

ϕ̄(z) = e(s/Da)z, ψ̄(z) = c1e
(s/Da)z + c2z + c3,

φ̄(z) = D2
am∗

Dcs2
e(s/Da)z + c4z + c5, 0 < z < L,

(3.13)

where

c1 = D2
a(l + m∗(1 − pn))

Dns2
, c2 = −Da(l + m∗(1 − pn))

Dns
,

c3 = −
(
Da(l + m∗(1 − pn))

Dnsα

) (
(Dns + Daα)e(s/Da)L

s
+ αL + Dn

)

,

c4 = −Da(m∗ + (1 − pc)l))

Dcs
e(s/Da)L ,

c5 = −Da(m∗ + (1 − pc)l)

sβ

(
e(s/Da)L − 1

)
− D2

am∗
Dcs2

.

To obtain our results, we first establish the following a priori estimates for nonneg-
ative solutions of (3.11).

Lemma 3.2 Assume that (A(z), N (z),C(z)) is a nonnegative solution of (3.11) with
A, N ,C �≡ 0. Then

(1) 0 < m < m∗ := r − l;
(2) 0 < N (z) < h1, 0 < C(z) < h2 for any z ∈ [0, L], where

h1 = N 0 + α(r + pnm∗)LN 0

Dnl
, h2 = C0 + α(r + pcl)LN 0

Dccnl
,

(3) There exists a positive constant B such that ‖A‖∞ ≤ B if m ∈ (0,m∗).

Proof (1) Let U = e−(s/Da)z A. Then

− DaU
′′(z) − sU ′(z) + (m + l)U = r f (N )g(C)U ≥ 0, 0 < z < L,

U ′(0) = U ′(L) = 0.

By the strong maximum principle, we get U > 0 on [0, L], and then A > 0 on
[0, L]. From (3.11), we have

{
−Da A′′(z)+s A′(z)−r f (N (z))g(C(z))A(z)=− (m+l) A(z), 0< z<L,

Da A′(0) − s A(0) = Da A(L) − s A(L) = 0.

(3.14)
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Hence the principal eigenvalue of (3.14) is λ1 (−r f (N (·))g(C(·))) = −(m + l)
with eigenfunction A. It follows from the monotonicity of the principal eigenvalue
on the weight functions that

−r = λ1 (−r) < λ1 (−r f (N (·))g(C(·))) = −(m + l).

This means that 0 < m < r − l = m∗.
(2) It follows from (3.11) that

∫ L

0
(r f (N (z))g(C(z)) − (m + l)) A(z)dz = 0,

α(N 0 − N (L)) +
∫ L

0
cn (pnm − r f (N (z))g(C(z))) A(z)dz = 0,

−β(C(0) − C0) +
∫ L

0
(pcl − r f (N (z))g(C(z))) A(z)dz = 0, (3.15)

which imply that N (L) < N 0 and C(0) < C0. Note that

− DnN
′′(z) +

(

cnr Ag(C)

∫ 1

0
f ′(sN )ds

)

N = cn pnmA ≥ 0, 0 < z < L,

− DcC
′′(z) +

(

r A f (N )

∫ 1

0
g′(sC)ds

)

C = pcl A ≥ 0, 0 < z < L,

with the boundary conditions

N ′(0) = 0, DnN
′(L) = α(N 0 − N (L)) > 0,

−DcC
′(0) = β(C0 − C(0)) > 0, C ′(L) = 0.

From the strong maximum principle, we have N > 0 and C > 0 on [0, L].
It follows from (3.15) that

∫ L

0
A(z)dz <

αN 0

cnl
.

For any z ∈ [0, L], we obtain

|DnN
′(z)| =

∣
∣
∣
∣Dn

∫ z

0
N ′′(x)dx

∣
∣
∣
∣ =

∣
∣
∣
∣cn

∫ z

0
(r f (N )g(C) − pnm) A(x)dx

∣
∣
∣
∣

≤ α(r + pnm∗)N 0

l
,

and
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|N (z)| = |N (L) + N (z) − N (L)| ≤ |N (L)| + |N (z) − N (L)|

≤ N 0 +
∣
∣
∣
∣

∫ L

z
N ′(x)dx

∣
∣
∣
∣ ≤ N 0 + α(r + pnm∗)N 0

Dnl
(L − z)

< N 0 + α(r + pnm∗)LN 0

Dnl
= h1.

On the other hand, for any z ∈ [0, L], we get

|DcC
′(z)| =

∣
∣
∣
∣Dc

∫ L

z
C ′′(x)dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ L

z
(r f (N )g(C) − pcl) A(x)dx

∣
∣
∣
∣

≤ α(r + pcl)N 0

cnl
,

and

|C(z)| = |C(0) + C(z) − C(0)| ≤ |C(0)| + |C(z) − C(0)|

≤ C0 +
∣
∣
∣
∣

∫ z

0
C ′(x)dx

∣
∣
∣
∣ ≤ C0 + α(r + pcl)N 0

Dccnl
(z − 0)

< C0 + α(r + pcl)LN 0

Dccnl
= h2.

(3) We now establish the boundedness of A(z) form ∈ (0,m∗). The method used here
is similar to the one used in the proof of Theorem 2.1 in Du and Hsu (2010). If it is
not true, then we assume that there are a sequencemi ∈ (0,m∗) and corresponding
positive solutions (Ai (z), Ni (z),Ci (z)) of (3.11) such that ‖Ai‖∞ → ∞ as i →
∞. Without loss of generality, we may assume that mi → m0 ∈ (0,m∗) as
i → ∞. From part (2), we obtain 0 < f (Ni (z))g(Ci (z)) < f (h1)g(h2) for all i
and z ∈ [0, L], and hence we also may assume f (Ni (z))g(Ci (z)) → ζ(z) weakly
in L2(0, L) for some function ζ(z) as i → ∞. Let ai = Ai/‖Ai‖∞. From the first
equation of (3.11), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−(Daa′
i (z) − sai (z))′ + (mi + l) ai (z) = r f (Ni (z))g(Ci (z))ai (z), 0 < z < L,

Daa′
i (0) − sai (0) = Daa′

i (L) − sai (L) = 0,
∫ L

0
(r f (Ni (z))g(Ci (z)) − (mi + l)) ai (z)dz = 0.

By using L p theory for elliptic operators and the Sobolev embedding theorem, we
may assume (passing to a subsequence if necessary) that ai → ξ in C1([0, L]) as
i → ∞, and ξ satisfies (in the weak sense)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−(Daξ
′(z) − sξ(z))′ + (m0 + l) ξ(z) = rζ(z)ξ(z), 0 < z < L,

Daξ
′(0) − sξ(0) = Daξ

′(L) − sξ(L) = 0,
∫ L

0
(rζ(z) − (m0 + l)) ξ(z)dz = 0.

(3.16)
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It follows from the strong maximum principle that ξ > 0 on [0, L] since ξ ≥ 0
and ‖ξ‖∞ = 1. Note that Ni satisfies

⎧
⎪⎨

⎪⎩

DnN
′′
i (z)

‖Ai‖∞
= cu (r f (Ni (z))g(Ci (z)) − pnmi ) ai (z), 0 < z < L,

N ′
i (0) = 0, DnN ′

i (L) = α(N 0 − N (L)).

(3.17)

Integrating (3.17) from 0 to L , we have

α(N 0 − N (L))

‖Ai‖∞
= cn

∫ L

0
(r f (Ni (z))g(Ci (z)) − pnmi ) ai (z)dz

Letting i → ∞ gives

0 = cn

∫ L

0
(rζ(z) − pnm0) ξ(z)dz = cn

∫ L

0
((1 − pn)m0 + l) ξ(z)dz > 0,

which is a contradiction. Hence (iii) holds.
��

We now state the existence of E2 bifurcating from �0 = {(m, 0, N 0,C0) : m > 0}
at m = m∗ and the global bifurcation of the set of E2 with m as parameter.

Theorem 3.3 Assume that (3.12) holds. Then

(i) The point (m∗, 0, N 0,C0) is a bifurcation point of the positive steady state
solutions of (2.4). Moreover, near (m∗, 0, N 0,C0), there exists a positive
constant δ > 0 such that the bifurcating positive steady state solutions
of (2.4) near (m∗, 0, N 0,C0) are on a smooth curve �1 = {E2(τ ) =
(m(τ ), A(τ, z), N (τ, z),C(τ, z)) : 0 < τ < δ} with

⎧
⎪⎨

⎪⎩

A(τ, z) = τ ϕ̄(z) + o(τ ),

N (τ, z) = N 0 + τ ψ̄(z) + o(τ ),

C(τ, z) = C0 + τ φ̄(z) + o(τ )

(3.18)

and m′(0) < 0;
(ii) m∗ is the unique value for bifurcation of positive steady state solutions of (2.4)

from the line of trivial solutions �0;
(iii) For τ ∈ (0, δ), the bifurcating solution E2(τ ) = (m(τ ), A(τ, z), N (τ, z),C(τ, z))

is locally asymptotically stable with respect to (2.4);
(iv) there exists a connected component ϒ+ of the set ϒ of positive solutions to (3.11)

such that the closure of ϒ+ includes the bifurcation point (m∗, 0, N 0,C0) and
(3.11) has at least one positive solution for any m ∈ (0,m∗).

Proof In order to obtain our results, we define function spaces

X1 := {u ∈ C2[0, L] : Dau
′(0) − su(0) = Dau

′(L) − su(L) = 0},
X2 := {u ∈ C2[0, L] : u′(0) = 0}, X3 := {u ∈ C2[0, L] : u′(L) = 0}, Y := C[0, L],
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and a nonlinear mapping F : R+ × X1 × X2 × X3 → Y × Y × Y × R
2 by

F(m, A(z), N (z),C(z)) =

⎛

⎜
⎜
⎜
⎜
⎝

Da A′′(z) − s A′(z) + r f (N )g(C)A − (m + l)A
DnN ′′(z) + pncnmA − cnr f (N )g(C)A

DcC ′′(z) + pcl A − r f (N )g(C)A
DnN ′(L) − α(N 0 − N (L))

DcC ′(0) − β(C(0) − C0)

⎞

⎟
⎟
⎟
⎟
⎠

.

For any (ϕ, ψ, φ) ∈ X1 × X2 × X3, the Fréchet derivatives of F at (m, A, N ,C) are

F(A,N ,C)(m, A(z), N (z),C(z))[ϕ,ψ, φ] =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Daϕ
′′ − sϕ′ + [r f (N )g(C) − (m + l)]ϕ + rγn Ag(C)

(γn + N )2
ψ + rγc A f (N )

(γc + C)2
φ

Dnψ
′′ + cn(pnm − r f (N )g(C))ϕ − cnrγn Ag(C)

(γn + N )2
ψ − cnrγc A f (N )

(γc + C)2
φ

Dcφ
′′ + (pcl − r f (N )g(C)) ϕ − rγn Ag(C)

(γn + N )2
ψ − rγc A f (N )

(γc + C)2
φ

Dnψ
′(L) + αψ(L)

Dcφ
′(0) − βφ(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.19)

It is easy to see that F(m, 0, N 0,C0) = 0 and

F(A,N ,C)(m∗, 0, N 0,C0)[ϕ,ψ, φ] =

⎛

⎜
⎜
⎜
⎜
⎝

Daϕ
′′(z) − sϕ′(z)

Dnψ
′′(z) + cn((pn − 1)m∗ − l)ϕ

Dcφ
′′(z) − (m∗ + (1 − pc)l)ϕ
Dnψ

′(L) + αψ(L)

Dcφ
′(0) − βφ(0)

⎞

⎟
⎟
⎟
⎟
⎠

.

(3.20)

Let H := F(A,N ,C)(m∗, 0, N 0,C0).
(i) We first show that dim ker H = 1. If (ϕ̄(z), ψ̄(z), φ̄(z)) ∈ ker H , then

Da ϕ̄
′′(z) − sϕ̄′(z) = 0, 0 < z < L, (3.21a)

Dnψ̄
′′(z) + cn((pn − 1)m∗ − l)ϕ̄(z) = 0, 0 < z < L, (3.21b)

Dcφ̄
′′(z) − (m∗ + (1 − pc)l)ϕ̄(z) = 0, 0 < z < L, (3.21c)

Dnψ̄
′(L) + αψ̄(L) = 0, (3.21d)

Dcφ̄
′(0) − βφ̄(0) = 0. (3.21e)

It follows from (3.21a) and ϕ̄ ∈ X1 that ϕ̄(z) = e(s/Da)z . By substituting ϕ̄(z) into
(3.21b) and (3.21c) respectively and combining their boundary conditions (3.21d),
(3.21e), we obtain the expression of ψ̄(z) and φ̄(z) in (3.13). This means that

dim ker H = 1 and ker H = span{(ϕ̄(z), ψ̄(z), φ̄(z))}.
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Next we prove that codim range H = 1. If (ξ1(z), ξ2(z), ξ3(z), ξ4, ξ5)T ∈ range H ,
then there exists (ϕ̂(z), ψ̂(z), φ̂(z)) ∈ X1 × X2 × X3 such that

Da ϕ̂
′′(z) − sϕ̂′(z) = ξ1(z), 0 < z < L,

Dnψ̂
′′(z) + cn((pn − 1)m∗ − l)ϕ̂(z) = ξ2(z), 0 < z < L,

Dcφ̂
′′(z) − (m∗ + (1 − pc)l)ϕ̂(z) = ξ3(z), 0 < z < L,

Dnψ̂
′(L) + αψ̂(L) = ξ4,

Dcφ̂
′(0) − βφ̂(0) = ξ5. (3.22)

Multiplying both sides of (3.21a) and the first equation of (3.22) by ϕ̂e−(s/Da)z and
ϕ̄e−(s/Da)z , respectively, subtracting and integrating on [0, L], we have
∫ L
0 ξ1(z)ϕ̄(z)e−(s/Da)zdz = 0. Then

range H =
{

(ξ1(z), ξ2(z), ξ3(z), ξ4, ξ5) ∈ Y 3 × R
2 :

∫ L

0
ξ1(z)ϕ̄(z)e−(s/Da)zdz = 0

}

.

and codim range H = 1.
We next prove that Fm,(A,N ,C)(m∗, 0, N 0,C0)(ϕ̄, ψ̄, φ̄) /∈ range H . A direct cal-

culation gives

Fm,(A,N ,C)(m∗, 0, N 0,C0)[ϕ̄(z), ψ̄(z), φ̄(z)] = (−ϕ̄(z), cn pn ϕ̄(z), 0, 0, 0)T .

This shows that Fm,(A,N ,C)(m∗, 0, N 0,C0)(ϕ̄, ψ̄, φ̄) /∈ range H since
∫ L
0 ϕ̄2(z)e−(s/Da)zdz �= 0.
By applying the Crandall-Rabinowitz bifurcation theorem (see Crandall and Rabi-

nowitz 1971, Theorem 1.7), we conclude that there exists a positive constant δ > 0
such that all the positive steady state solutions of (2.4) lie on a smooth curve
�1 = {(m(τ ), A(τ, z), N (τ, z),C(τ, z)) : 0 < τ < δ} satisfying (3.18). In addi-
tion, we have

m′(0) = −
〈
l̂, F(A,N ,C)(A,N ,C)

(
m∗, 0, N 0,C0

) [ϕ(z), ψ(z), φ(z)]2
〉

2
〈
l̂, Fm,(A,N ,C)

(
m∗, 0, N 0,C0

) [ϕ(z), ψ(z), φ(z)]
〉

= −

∫ L

0

(
rγng(C0)

(γn + N 0)2
ψ̄(z) + rγc f (N 0)

(γc + C0)2
φ̄(z)

)

ϕ̄(z)e−(s/Da)zdz

−
∫ L

0
ϕ̄2(z)e−(s/Da)zdz

, (3.23)

where l̂ is a linear functional on Y 3 × R
2 defined as

〈l̂, (ξ1(z), ξ2(z), ξ3(z), ξ4, ξ5)〉 =
∫ L

0
ξ1(z)ϕ̄(z)e−(s/Da)zdz.
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It follows from (3.13) that

ψ̄ ′(z) = Da(l + m∗(1 − pn))

Dns
e(s/Da)z − Da(l + m∗(1 − pn))

Dns
≥ 0,

φ̄′(z) = Dam∗
Dcs

e(s/Da)z − Da(m∗ + (1 − pc)l)

Dcs
e(s/Da)L ≤ 0

for z ∈ [0, L]. This implies that ψ̄(z) is nondecreasing and φ̄(z) is nonincreasing in
z. It is clear that ψ̄(L) < 0 and φ̄(0) < 0. Then ψ̄(z) < 0 and φ̄(z) < 0 for any
z ∈ [0, L]. From (3.23) and ϕ̄(z) = e(s/Da)z , we have m′(0) < 0. This completes the
proof of (i).

(ii) In this installment, we will prove the uniqueness of bifurcation value m∗.
Assume that m̂ is another bifurcation value from �0, then there exists a positive
solutions sequence {(mn, An, Nn,Cn)} of (3.11) such that {(mn, An, Nn,Cn)} →
(m̂, 0, N 0,C0) in C([0, L]) as n → ∞. Let κn = An/‖An‖∞. From (3.11), κn
satisfies

{
Daκ

′′
n (z) − sκ ′

n(z) + r f (Nn)g(Cn)κn(z) − (mn + l)κn(z) = 0, 0 < z < L,

Daκ
′
n(0) − sκn(0) = Daκ

′
n(L) − sκn(L) = 0.

It follows from 0 < f (Nn)g(Cn) < 1 for all z ∈ [0, L] that f (Nn)g(Cn) →
f (N 0)g(C0) in C([0, L1]) as n → ∞. Note that {κn}, {mn} are both bounded in
L∞[0, L]. By using L p theory for elliptic operators and the Sobolev embedding theo-
rem, there exists a subsequenceof {κn}, denotedby itself, and a function ζ ∈ C2([0, L])
such that κn → ζ in C1([0, L1]) as n → ∞, and ζ satisfies (in the weak sense)

{
Daζ

′′(z) − sζ ′(z) + r f (N 0)g(C0)ζ(z) − (m̂ + l)ζ(z) = 0, 0 < z < L,

Daζ
′(0) − sζ(0) = Daζ

′(L) − sζ(L) = 0.

(3.24)

It follows from the strong maximum principle that ζ > 0 on [0, L] since ζ ≥ 0 and
‖ζ‖∞ = 1. From (3.12) and (3.24), we have

{
Daζ

′′(z) − sζ ′(z) + (m∗ − m̂)ζ(z) = 0, 0 < z < L,

Daζ
′(0) − sζ(0) = Daζ

′(L) − sζ(L) = 0.
(3.25)

Integrating from 0 to L on the both sides of the first equation of (3.25), we have

(m∗ − m̂)

∫ L

0
ζ(z)dz = 0,

which means that m∗ = m̂.
(iii)We nowconsider the local stability of E2(τ ). By using the principle of exchange

of stability (Corollary 1.13 and Theorem 1.16 in Crandall and Rabinowitz (1973)),
there exist continuously differentiable functions
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ω1 : [m∗,m∗ + δ) → R, [ϕ1, ψ1, φ1] : [m∗,m∗ + δ) → X1 × X2 × X3, ω2 : [0, δ) → R

and [ϕ2, ψ2, φ2] : [0, δ) → X1 × X2 × X3 such that

F(A,N ,C)

(
m, 0, N 0,C0

)
[ϕm

1 (z), ψm
1 (z), φm

1 (z)]
= ω1(m)[ϕm

1 (z), ψm
1 (z), φm

1 (z), 0]T ,

F(A,N ,C) (m(τ ), A(τ, z), N (τ, z),C(τ, z)) [ϕτ
2 (z), ψτ

2 (z), φτ
2 (z)]

= ω2(τ )[ϕτ
2 (z), ψτ

2 (z), φτ
2 (z), 0]T

for z ∈ [0, L] and

lim
τ→0

−τm′(τ )ω′
1(m∗)

ω2(τ )
= 1, (3.26)

where

ω1(m∗) = ω2(0) = 0, (ϕ
m∗
1 (z), ψm∗

1 (z), φm∗
1 (z)) = (ϕ0

2(z), ψ
0
2 (z), φ0

2(z))

= (ϕ̄(z), ψ̄(z), φ̄(z)).

It follows from (3.19) that ω1(m) = m∗ −m, and then ω′
1(m∗) = −1. From (3.20)

and proof of (i), ω1(m∗) = 0 is the principal eigenvalue of F(A,N ,C)

(
m∗, 0, N 0,C0

)
.

By the perturbation theory of linear operators Kato (1966), we know that ω2(τ ) is
also the principal eigenvalue of F(A,N ,C) (m(τ ), A(τ, z), N (τ, z),C(τ, z)) when τ

is sufficiently small. Combining with m′(0) < 0 and (3.26) gives ω2(τ ) < 0 for
τ ∈ [0, δ). This means that E2(τ ) is locally asymptotically stable with respect to
(2.4).

(iv) It is easy to see that the conditions of Theorem 3.3 and Remark 3.4 in Shi and
Wang (2009) hold by using standard ways (see Shi and Wang 2009; Shi et al. 2019;
Wang and Xu 2013). This means that there exists a connected component ϒ+ of ϒ

containing �1 = {(m(τ ), A2(τ, z), N2(τ, z),C2(τ, z)) : 0 < τ < δ}. Moreover, the
closure of ϒ+ includes the bifurcation point (m∗, 0, N 0,C0) and ϒ+ satisfies one of
the following three alternatives:

1. it is not compact in R × X1 × X2 × X3;
2. it contains another bifurcation point (m̂, 0, N 0,C0), where m̂ is another bifurcation

value satisfying (3.21) with m̂ �= m∗;
3. it contains a point (m, Â(z), N 0+N̂ (z),C0+Ĉ(z)),where 0 �= ( Â(z), N̂ (z), Ĉ(z)) ∈

Z , Z is a closed complement of ker L = span{(ϕ̄, ψ̄, φ̄)} in X1 × X2 × X3.

It follows from the uniqueness of bifurcation pointm∗ in part (ii) that case 2 cannot
happen. If case 3 holds, then

∫ L

0
Â(z)ϕ̄(z)dz = 0. (3.27)
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Fig. 2 Numerical bifurcation diagram of steady state algae density in (3.11) for m ∈ (0, 2). Here Da =
Dn = Dc = 0.1 and other parameters exceptm are from Table 2, and the bifurcation values arem∗ = 1.48
and m∗ = 1.29

From Lemma 3.2, we have Â(z) > 0 on [0, L], which is a contradiction to (3.27).
Hence case 1 must occur for ϒ+.

From case 1,ϒ+ is unbounded inR×X1×X2×X3 . ByLemma3.2, ifm ∈ (0,m∗),
then (A2(z), N2(z),C2(z)) is bounded. Therefore, the projection of ϒ+ onto the m-
axis contains the interval (0,m∗) since m∗ < m∗. ��

Theorem 3.3 shows that when 0 < m < m∗, (2.4) always has a positive steady
state solution E2 while the nutrient-inorganic carbon-only trivial steady state E1 is
unstable from Theorem 3.1. This indicates that m∗ is the threshold value for the
survival and extinction of algae. It is not known whether the positive steady state
solution E2 is unique and globally asymptotically stability. It is a question worthy
of further discussion in the future. In Zhang et al. (2018), the uniqueness of positive
steady state was shown theoretically for the case that algae only depends on nutrient.

Next some numerical simulations are shown to illustrate our analysis of steady-
states for system (2.4). Here the set of parameter values we use is derived from
biologically reasonable parameters. The values of all biologically reasonable param-
eters are listed in Table 2.

According to Theorems 3.1 and 3.3, we can divide the parameter regime for m
according to two threshold values: m∗ = r f (N 0)g(C0) − l and m∗ = r − l. E1
always exists for all m > 0, and the stability of E1 has the following three cases: (1)
globally asymptotically stable when m > m∗, (2) locally asymptotically stable when
m∗ < m < m∗, (3) unstable when 0 < m < m∗. The bifurcation point m = m∗ is
a threshold value for the regime shift from extinction to survival of algae, such that
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Fig. 3 Left: the solution converges to the nutrients-inorganic carbon-only trivial steady state E1 in a–c
with m = 1.4; Right: the solution converges to a positive steady state E2 in d–f with m = 0.1. Here
Da = Dn = Dc = 0.1 and other parameters except m are from Table 2, and the initial conditions are
A0(z) = 2 + sin z, N0(z) = 5 + cos z and C0(z) = 1000

the positive steady state solution E2 exists when m < m∗ (see Fig. 2). The numerical
bifurcation diagram in Fig. 2 shows that the positive steady state E2 decreases in m.

In Fig. 3, dynamic numerical simulations of solutions of (2.4) for parameter values
fromTable 2 are shown. For different algal loss ratesm, the solution of (2.4) converges
to different steady states regardless of initial conditions. For the case of m = 1.4 >

m∗, algae becomes extinct and the concentration of dissolved nutrients and dissolved
inorganic carbon reach the concentration of dissolved nutrients at the bottom of the
water column and the concentration of dissolved inorganic carbon at the surface of
the water column respectively (see Theorem 3.1 and Fig. 3a–c). For the case of m =
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Fig. 4 Vertical distribution of the positive steady state A(z) for varying Da , Dn , Dc and s. The horizontal
axis is the biomass density coordinate of algae, and the vertical axis is the depth coordinate of the water
column. Here other parameters are from Table 2

0.1 < m∗, algae, nutrients and inorganic carbon can coexist together at a positive level
(see Theorem 3.3 and Fig. 3d–f), and algae exhibit vertical aggregation phenomena
(see Fig. 3d).

4 The vertical distribution of algae

The vertical distribution of algae in the aquatic ecosystem is highly heterogeneous and
affects thewhole aquatic ecosystem in terms of primary productivity, trophic levels and
cycle of matter. Especially, algae can exhibit the most prominent vertical aggregation
phenomena, where the equivalent of 90% of algal biomass sometimes gathers in a
relatively thin layer (Klausmeier and Litchman 2001; Ryabov et al. 2010; Yoshiyama
et al. 2009; Yoshiyama and Nakajima 2002). In the present section, we will explore
the influence of environmental parameters in (2.4) on the vertical distribution of algae
under the jointly limitation of nutrients and inorganic carbon when the solution of
(2.4) appears to converge to a positive steady state E2. In figures below, we compare
the variation of the vertical distribution of positive steady state A(z) for different
parameter values.
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Fig. 5 Spatial location of local
maxima of the positive steady
state A(z) for varying Peclet
number (abbreviated as Pe). A
red square indicates a local
maximum at the boundary layer,
and a blue circle indicates a local
maximum at the interior. Here
s ∈ [−0.5, 0.5], Da = 0.02 and
other parameters are from Table
2 (colour figure online)
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We first explore the effect of diffusion coefficients Da, Dn, Dc and advection rate
s on the vertical distribution of algae. It has been proved that vertical turbulent dif-
fusivity in lake and oceans has obvious difference when the season changes Wüest
and Lorke (2003). It is generally true that turbulent diffusivity is small in summer,
but large in winter. From Fig. 4a, one can see that the spatial heterogeneity of algal
biomass gradually changes from aggregation to even distribution when Da increases.
This confirms once again that algae are prone to aggregation in summer and not in
winter because of turbulent diffusion. The increase of Dn can cause algae to gradually
accumulate to the water surface, while the increase of Dc is just the opposite (see
Fig. 4b and c). This is because the increase of Da (Dc) leads to the full transfer of
nutrients (organic carbon) in the water column, so that algae congregate on areas rich
in inorganic carbon (nutrients). It is noted that in an aquatic ecosystem, the diffusion
of algae, nutrients and inorganic carbon is a passive movement caused by turbulence
in water, which only changes with turbulence. This indicates that the diffusion rates
of the three are almost the same.

Suspension (s = 0), subsidence (s > 0) and floating upward (s < 0) of algae
are not only important ways to obtain the best growth opportunities, but also greatly
affect the vertical accumulation of algae. From Fig. 4d, one can observe that the
vertical distribution of algae changes greatly with the decrease of s in a poorly mixed
water column. For the case of s = 0.36 and s = −0.33, the algal biomass is mainly
concentrated at the bottom or the surface of the water column due to the larger sinking
or buoyant velocity. When s = 0, the maximum of the algal biomass, also described
as deep chlorophyll maxima (DCMs), arises from the middle of the water column.
This is because the nutrients are concentrated at the bottom, while inorganic carbon is
concentrated at the surface for a lower turbulent diffusion, which leads to the optimal
growth of algae in the middle of the water column. This indicates that the shift from
subsidence to floating upward can cause algal blooms and bring out a large amount of
algae gathering on the water surface.

Here an interesting phenomenon is the possibility of multiple local extrema of
the algae vertical distribution for the smaller sinking or buoyant velocity in Fig. 4d.

123



A model of algal growth depending on nutrients and inorganic carbon… Page 25 of 30    15 

Fig. 6 Vertical distribution of the positive steady state A(z) for varying N0 (left) and C0 (right). Here other
parameters are from Table 2

For s = 0.1, the algal biomass is concentrated in the middle and bottom of the
water column and are mainly divided into two layers: 2m-3m and 3.7m-4m. Similar
phenomena also occurs for s = −0.1, where the algal biomass is concentrated in the
middle and surface of the water column. In both cases, there are two local maximums
of algae biomass density. The phenomenon of double local maxima may depend on
the interplay of diffusion and advection, and the types of boundary conditions such as
Robin or Dirichlet conditions on one end. Here we investigate the effect of the Peclet
number on the algae vertical distribution. The Peclet number (abbreviated as Pe) is
the ratio of advection rate to diffusion rate and is often used in the study of continuous
transport phenomena. Figure 5 shows the locations of local maxima of the positive
steady state A(z) for different Peclet numbers can have five scenarios: (a) a unique
local maximum at the water surface (Pe∈ (−100,−58)); (b) two local maxima at both
the water surface and the interior (Pe ∈ (−58,−10)); (c) a unique local maximum at
the interior (Pe ∈ (−10, 10)); (d) two local maxima at both the bottom and the interior
of water column (Pe ∈ (10, 54)); and (e) a unique local maximum at the bottom of
water column (Pe ∈ (54, 100)). This phenomenon shows that there may be one or
two concentration layers for the algae vertical distribution in a water column, and the
variation of the algae maxima is not continuous with respect to the Peclet number.

In our model (2.4), the algal growth is limited by organic carbon and nutrients.
Nutrients from the water bottom and inorganic carbon from the water surface form an
asymmetric resource supply mechanism on the algal growth. An increasing concen-
tration N 0 of dissolved nutrients at the bottom reduces the dependence of the algal
growth on nutrients in the whole water column, such that the algal biomass gradu-
ally increases and the aggregation location shifts from the bottom to the surface (see
Fig. 6a). When the nutrient level on the water surface is very high, algae accumu-
late on the water surface and algal blooms occur (see N 0 = 400 in Fig. 6a). Hence
eutrophication of water body caused by warm conditions, industrial waste water and
sewage is an important factor of algal blooms. On the other hand, increasing organic
carbon causes the algal biomass vertical aggregation transfering from the surface to
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Fig. 7 Vertical distribution of the positive steady state A(z) for varyingm (left) and pn (right). Here pn = 0
in a, m = 0.7 in b and other parameters are from Table 2

Fig. 8 Vertical distribution of the positive steady state A(z) for varying l (left) and pc (right). Here pc = 0
in a, l = 1.75 × 10−6 in b and other parameters are from Table 2

the bottom (see Fig. 6b). This implies that the input of organic carbon can change the
vertical distribution of algae, thus reduce the risk of algal blooms.

The loss rate m of algae only changes the total biomass of algae, but has no signifi-
cant impact on the vertical distribution of algae (see Fig. 7a). Similarly, the respiration
rate l of algae also has no essential effect on the vertical distribution of algae (see
Fig. 8a). From Figs. 7b and 8b, one can observe that the nutrient recycling proportion
pn and the organic carbon recycling proportion pc can both affect the vertical dis-
tribution of algae. It is known that algae usually carry out photosynthesis during the
daytime and respiration at night. Rapid decomposition of dead algae under high day-
time temperature produces enough nutrients, which leads to the increase of pn value;
on the other hand, at night, the algal respiration releases a large amount of organic
carbon so that pc increases and algae gather at the bottom. Our results in Figs. 7b
and 8b are consistent with daily observation that a large amount of algae float on the
surface during the daytime and sink to the bottom at night. But a full verification of this
phenomenon requires a time-periodic model with night-day fluctuations, as the time
scale of algae congregation dynamics is much slower than the time scale of night-day
fluctuation.

123



A model of algal growth depending on nutrients and inorganic carbon… Page 27 of 30    15 

Table 3 The influence of
environmental parameters on
zmax, A∗ and A∗

Parameters zmax A∗ A∗ Parameters zmax A∗ A∗

Da ↑ — ↑ ↑ Dn ↑ ↓ ↑ ↓
Dc ↑ ↑ ↓ ↑ s ↑ ↑ ↓ ↑
N0 ↑ ↓ ↑ ↓ C0 ↑ ↑ ↓ ↑
m ↑ — ↑ ↑ pn ↑ ↓ ↑ ↓
l ↑ — ↑ ↑ pc ↑ ↑ ↓ ↑
↑: Increasing ↓: Decreasing —: No significant effect

Let zmax be the depth coordinate of the maximum of the algal biomass in the
water column when the vertical aggregation occurs. In view of Figs. 4, 5, 6, 7, 8,
zmax describes the change of algal aggregation layer. The increase of zmax indicates
that algae aggregate to the deep layer, while the decrease of zmax indicates that algae
aggregate to the surface layer. Let A∗ be the algal biomass on the water surface and
A∗ be the algal biomass on the water bottom. Hence A∗ and A∗ are both important
indices to measure algal blooms and the change of water quality. As a summary of the
above discussion (see Figs. 4, 5, 6, 7, 8), the influence of environmental parameters
on zmax, A∗ and A∗ are listed in Table 3.

5 Discussion

We propose a reaction-diffusion-advection model (2.4) to describe the dynamic inter-
actions among algae, nutrients and inorganic carbon in a water column. The algal
growth depends on limited nutrients from the water bottom and limited inorganic
carbon from the water surface, which is an asymmetric supply of resources. The
threshold condition for the regime shift from extinction to existence of algae is rigor-
ously derived.

Our studies suggest that algae can exhibit vertical spatial heterogeneity and vertical
aggregation in the water column under the joint effect of nutrient and inorganic carbon
supply (see Figs. 4, 5, 6, 7, 8 and Table 3). This is a new discovery and rarely noticed
in the existing studies. It shows that the asymmetric resource supply, such as nutrients
and inorganic carbon in the present paper, and nutrients and light in previous studies
(Du and Hsu 2008a, b; Klausmeier and Litchman 2001; Yoshiyama et al. 2009), is an
important factor for the vertical distribution of algae. Another interesting phenomenon
observed from numerical simulation of our model is that there are possibly one or
two local maxima of the vertical distribution of algae, while there is usually a unique
maximumconcentrationpoint for the algaevertical distribution in algae-nutrientmodel
(Hsu et al. 2013; Nie et al. 2015; Shi et al. 2019; Wang et al. 2015; Zhang et al. 2018)
or algae-inorganic carbon model (Hsu et al. 2017; Nie et al. 2016). This indicates
that the possibility of multiple algal accumulation zones in a water column under the
mechanism of asymmetric supply of nutrients and inorganic carbon. These findings
are useful for assessing algal blooms and protecting aquatic ecosystems.

In the theoretical analysis, we establish theoretical results showing that algae
become extinct when the loss rate m exceeds the threshold value m∗, while algae

123



   15 Page 28 of 30 J. Zhang et al.

invade and persist when m is below the threshold value m∗. But there are still some
remaining questions in model (2.4). From Theorems 3.1 and 3.3, together with the
bifurcation diagram (Fig. 2), we conjecture that E1 is globally asymptotically stable if
m > m∗, and E2 is globally asymptotically stable if m < m∗. Figs. 4, 5, 6, 7, 8 show
that the profile of the positive steady state A(z) has a complex pattern for varying envi-
ronmental parameters. Especially, the number of locations of local maxima of algae
distribution at the boundary and interior are related to Peclet number and Damköhler
number. The Damköhler number is used to describe the relative time scale of chemical
reactions in the same system compared with other phenomena. It is usually defined as
the ratio of chemical time scale to mixed time scale. Rigorously proving these results
is an interesting and important question. It may need some new methods and special
techniques.

InHsu et al. (2017), Nie et al. (2016), the authors considered the interaction between
algae and inorganic carbon in a poorly mixed habitat. They divided inorganic carbon
into two parts: CO2 and CARB (bicarbonate and carbonate ions). CO2 and CARB are
two substitutable resources. The two parts can be converted to each other in the water
column. Theirmodels should bemore reasonable in describing the interaction between
algae and inorganic carbon. In model (2.4), we simplify the above relationship and
unify CO2 and CARB into inorganic carbon for the purpose of this study. The main
purpose of the present paper is to investigate the vertical distribution and aggregation
of algae under the mechanism of asymmetric supply of nutrients and inorganic carbon.
Hence we did not consider the more complex mechanism in inorganic carbon. It is
important and of interest to add this complex mechanism in inorganic carbon into
model (2.4), and maybe some new dynamic behaviors will be generated.

Light is one of the essential resources for algal growth (Du and Hsu 2010; Du
et al. 2015; Hsu and Lou 2010; Peng and Zhao 2016). Concentrating on the research
motivation of the current model, we neglect the role of light (assuming sufficient
light) in model (2.4). An important and interesting problem is to study the growth
model and vertical distribution of algae under the combined action of light, nutrients
and inorganic carbon. Based on the present discussion and model (2.4), it will be of
interest to explore more biological questions. For example, two or more algae compete
for nutrients and inorganic carbon; the effect of toxic plankton species, zooplankton
and fishes, stoichiometric algal growth model with nutrients and inorganic carbon.
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