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Abstract. The existence of positive standing wave solutions to a nonlinear
Schrödinger equation on a bridge type unbounded metric graph (a domain
of multiple half-lines with two junctions connected by a line segment with
arbitrary length) is showed, and under certain conditions, the existence of
multiple positive solutions is proved. Similar results also hold for the equation
with bistable nonlinearity.

1. Introduction and main results

The nonlinear Schrödinger equation (NLS)

(1.1) i
∂φ

∂t
+ rΔφ+ χh(|φ|2)φ = 0, t > 0, x ∈ R

N

arises as a canonical model of physics from the studies of continuum mechanics,
condensed matter, nonlinear optics, plasma physics [10,35]. A standing wave solu-
tion of (1.1) is in a form of φ(x, t) = Φ(x)e−λit and Φ satisfies a nonlinear elliptic
equation

(1.2) rΔΦ+ λΦ+ χh(|Φ|2)Φ = 0, x ∈ R
N

which has been extensively considered in the last few decades [6, 7, 34]. Here r
is interpreted as the normalized Planck constant, χ describes the strength of the
attractive interactions, λ is the wavelength and h is a real-valued function. Standing
wave solutions of more general Schrödinger type equation have also been studied
in [9, 11, 14, 16, 28, 31, 36].

While the standard spatial setting for the nonlinear Schrödinger equation is
the Euclidean space R

N for N = 1, 2, 3, there have been recent interests on wave
propagation on thin graph like domains which can be approximated by metric
graphs (or quantum graphs) [2–5, 12, 13, 15, 17, 18, 20–23, 25–27, 32, 33, 37], see also
surveys [1, 24].
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Figure 1. Metric graph with a single bridge

In this paper we consider the standing waves of the nonlinear Schrödinger equa-
tion on an unbounded metric graph with two vertices, namely, a domain of mul-
tiple half-lines with two junctions connected by a line segment. We state the pre-
cise definition of the domain below. The domain Ω consists of a single line seg-
ment I0 = (−d1, d2) with endpoints which have coordinate x = −d1 and x = d2
(d1, d2 > 0), and two families of half-lines {I−i = (−∞,−d1) : i = 1, · · · , l} and
{Ij = (d2,∞) : j = 1, · · · , k} (l, k ≥ 2) such that

Ω = I0
⋃

(

l⋃
i=1

I−i)
⋃

(

k⋃
j=1

Ij), I−i

⋂
Ij = ∅, for i ∈ {1, · · · , l} and j ∈ {1, · · · , k},

I0\{I0} = {−d1, d2},
l⋂

i=1

I−i = {−d1},
k⋂

j=1

Ij = {d2}.

See Figure 1 for an illustration of the domain Ω.
Here assuming d1, d2 > 0 and l, k ≥ 2, we set the local coordinates in the domain

Ω as

(1.3)

⎧⎪⎨
⎪⎩
I0 = {−d1 < x0 < d2},
I−i = {−∞ < xi < −d1}, i ∈ {1, · · · , l},
Ij = {d2 < xj < +∞}, j ∈ {1, · · · , k}.

Since the coordinate domain for I0, I−i and Ij do not overlap, we will also use −∞ <
x < ∞ in the following as a global coordinate for the solution u which is the same for
all the left half-lines and for all the right half-lines. By denoting ui(xi) = u|I−i

(xi),

i = 0, 1, · · · , l, and vj(xj) = u|Ij (xj), j = 1, · · · , k, u = (u0, u1, · · · , ul, v1, · · · , vk)
is a function defined in Ω. We investigate the existence of standing wave solutions
to a nonlinear Schrödinger equation on the unbounded graph Ω with two vertices:

(1.4)

⎧⎪⎨
⎪⎩
−u′′

0 = g(u0), −d1 < x0 < d2,

−u′′
i = g(ui), −∞ < xi < −d1, i ∈ {1, · · · , l},

−v′′j = g(vj), d2 < xj < +∞, j ∈ {1, · · · , k},
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Figure 2. Graphs of functions in Example 1.1. Left: g1(u) with
p = 2 and a = 1/4; Right: g2(u) with a = 1/4

with the compatibility conditions:

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u0(−d1) = ui(−d1), i ∈ {1, · · · , l},
u0(d2) = vj(d2), j ∈ {1, · · · , k},

u′
0(−d1 + 0) =

l∑
i=1

u′
i(−d1 − 0),

u′
0(d2 − 0) =

k∑
j=1

v′j(d2 + 0).

Here w′(d + 0) and w′(d − 0) are defined as the left and right hand side limits of
the function w′(x) at x = d. The first two conditions in (1.5) imply the continuity
of the function u at x = −d1 and x = d2, while the last two conditions indicate the
conservation of the flux at x = −d1 and x = d2 (Kirchhoff condition).

In (1.4) g : [0,∞) → R is a continuous function satisfying the following condition
(G) or (G′) listed as bellow.

(G) For fixed a > 0,
(g1) g(0) = g(a) = 0;
(g2) g(u) < 0 in (0, a) and g(u) > 0 in (a,∞);

(g3) there exists ξ > a such that G(ξ) = 0, where G(t) =
´ t

0
g(s)ds.

(G′) For fix 0 < a < 1,
(g1’) g(0) = g(a) = g(1) = 0;
(g2’) g(u) < 0 in (0, a) ∪ (1,∞) and g(u) > 0 in (a, 1);

(g3’) there exists ξ ∈ (a, 1) such that G(ξ) = 0, where G(t) =
´ t

0
g(s)ds;

(g4) G(1) + 3G(a) ≥ 0.

When (G′) is satisfied, from (g4), we define

(1.6) A :=

√
G(1)

−G(a)
+ 1 ≥ 2.

We note that (g3’) implies that G(1) > G(ξ) = 0, geometrically it means that the
area under the graph of g(u) from a to 1 is larger than the area under the graph of
|g(u)| from 0 to a. That is G(1)−G(a) > |G(a)| = −G(a). And (g4) implies that
G(1)−G(a) ≥ 4|G(a)| = −4G(a), so the area under the graph of g(u) from a to 1
is at least four times of the area under the graph of |g(u)| from 0 to a. Condition
(g4) guarantees the existence of a positive solution of (1.4)–(1.5) with l, k ≥ 2.
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Figure 3. Graphs of functions in Example 1.2. Left: g3(u) with
a = 1/4; Right: g4(u) with b = 1/4

Example 1.1. We list some examples satisfying (G). Here 0 < a < 1. (see Figure
2)

(1) g1(u) = −ap−1u+ up, where p > 1;

(2) g2(u) =

{
−au+ u2 0 ≤ u ≤ a;

a(u− a)/(1 + u− a) u > a.

Example 1.2. We list some examples satisfying (G′). (see Figure 3)

(1) g3(u) = −u(u−a)(u−1) where 0 < a < a0 and a0 ≈ 0.37318 is the smallest
positive root of 3a4 − 6a3 − 2a+ 1 = 0;

(2) g4(u) = −u+ (1 + b)u2/(b+ u2) where b > 0 is small.

Note that a function satisfying (G) could be Schrödinger type like g1(u) which is
asymptotically superlinear, and it can be asymptotically sublinear like g2(u). On
the other hand, a function satisfying (G′) is a bistable nonlinearity with u = 0
and u = 1 both being stable for the corresponding ODE u′ = g(u). The bistable
nonlinearity arises from the studies of neuron propagation (Fitz-Hugh Nagumo
equation) or population ecology (strong Allee effect).

For some l, k ≥ 2, we look for a symmetric positive solution u(x) of (1.4) and
(1.5) in a form of (u1, u2, · · · , ul, u0, v1, v2, · · · , vk) satisfying

u1 = u2 = · · · = ul and v1 = v2 = · · · = vk.

Here a symmetric solution u does not mean u(−x) = u(x) as in many other work,
and it actually represents a solution that is the same on all the left half-lines and
on all the right half-lines. When l = k = 1, the problem (1.4) and (1.5) is reduced
to

(1.7) −u′′ = g(u), x ∈ R, u′(0) = 0, lim
|x|→∞

u(x) = lim
|x|→∞

u′(x) = 0.

Since g satisfies the condition (G) or (G′), (1.7) has a unique positive solution ω(x)
which is symmetric with respect to x = 0, positive, strictly increasing for x < 0,
and decaying exponentially at the infinity [6, 8]. Moreover ω(0) = ξ where ξ > a

satisfies G(ξ) =
´ ξ

0
g(s)ds = 0 as in (g3) or (g3’).
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In the following we consider (1.4) and (1.5) with l ≥ 2 and k ≥ 2. For some
τ > 0, we convert the problems (1.4) and (1.5) with a symmetric solution to{

−u′′
0 = g(u0),−d1 < x0 < 0,

u′
0(0) = 0, u0(0) = τ,

(1.8)

{
−u′′

1 = g(u1),−∞ < x1 < −d1,

u1(−d1) = u0(−d1), u1(−∞) = 0,
(1.9)

with

(1.10) u′
0(−d1 + 0) = lu′

1(−d1 − 0);

and {
−u′′

0 = g(u0), 0 < x0 < d2,

u′
0(0) = 0, u0(0) = τ,

(1.11)

{
−v′′1 = g(v1), d2 < x2 < ∞,

v1(d2) = u0(d2), v1(∞) = 0,
(1.12)

with

(1.13) u′
0(d2 − 0) = kv′1(d2 + 0).

Namely, we look for an appropriate τ ∈ (ξ,∞) which allows a solution (u0, u1)
to (1.8) and (1.9) satisfying (1.10) which is increasing in (−∞, 0), and a solution
(u0, v1) to (1.11) and (1.12) satisfying (1.13) which is decreasing in (0,∞). Then a
desired solution ul,k(x) stated in the following theorems is given by

(1.14) ul,k(x) =

⎧⎪⎨
⎪⎩
u0(x0), −d1 ≤ x0 ≤ d2,

u1(xi), −∞ < xi < −d1, i = 1, · · · , l
v1(xj), d2 < xj < ∞, j = 1, · · · , k.

First we have the following results regarding the existence of a positive solution
of (1.4) and (1.5) on the bridge type graph Ω for Schrödinger type g(u).

Theorem 1.3. Consider the stationary problem (1.4) and (1.5) in Ω with the
coordinates given by (1.3), and d1, d2 > 0 and l, k ≥ 2. Assume the hypothesis (G)
is satisfied and impose the conditions at infinity of the domain as

(1.15) lim
xi→−∞

ui(xi) = lim
xj→∞

vj(xj) = 0, i ∈ {1, · · · , l}, j ∈ {1, · · · , k}.

(1) For l = k ≥ 2 and d1 = d2 = d > 0 given, (1.4) and (1.5) admit at least
one positive solution satisfying u0(−x) = u0(x) and ui(−x) = vj(x);

(2) For l ≥ 2 and d1 > 0 given, (1.8) and (1.9) admit at least one positive
solution ul

L(x) in (−d1, 0) and (−∞,−d1) respectively satisfying (1.10),
and ul

L(0) = τ > ξ where ξ is defined in (g3); there exists 2 ≤ kl ≤ l
such that for each k ≥ kl, there exists dk2 > 0 so that (1.11) and (1.12)
admit at least one positive solution uk

R(x) in (0, dk2) and (dk2 ,∞) respectively
satisfying (1.13) and uk

R(0) = τ = ul
L(0); ul,k(x) = (ul

L(x), u
k
R(x)) is a

positive solution of (1.4) and (1.5) with d1 > 0 and d2 = dk2 > 0.
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Note that for the solution ul,k(x) = (ul
L(x), u

k
R(x)) in Theorem 1.3, ul

L(x) is
defined for x ≤ 0 and uk

R(x) is defined for x ≥ 0, while the solution ul,k(x) in (1.14)
is defined in three distinct sub-intervals (−∞,−d1), [−d1, d2] and (d2,∞). Each
of the two definitions can be easily converted to the other one. Similarly for the
bistable nonlinearity, we have

Theorem 1.4. Consider the stationary problem (1.4) and (1.5) in Ω with the
coordinates given by (1.3), and d1, d2 > 0 and l, k ∈ N satisfying 2 ≤ l, k ≤ [A]
where A is defined in (1.6), and [A] is the greatest integer less than or equal to A.
Assume the hypothesis (G′) is satisfied and impose the conditions at infinity of the
domain as (1.15).

(1) For l = k and d1 = d2 = d > 0 given, (1.4) and (1.5) admit at least one
positive solution satisfying u0(−x) = u0(x) and ui(−x) = vj(x);

(2) For l ≥ 2 and d1 > 0 given, (1.8) and (1.9) admit at least one positive
solution ul

L(x) in (−d1, 0) and (−∞,−d1) respectively satisfying (1.10),
and ul

L(0) = τ > ξ where ξ is defined in (g3’); there exists 2 ≤ kl ≤ l
such that for each k satisfying kl ≤ k ≤ [A], there exists dk2 > 0 so that
(1.11) and (1.12) admit at least one positive solution uk

R(x) in (0, dk2) and
(dk2 ,∞) respectively satisfying (1.13) and uk

R(0) = τ = ul
L(0); ul,k(x) =

(ul
L(x), u

k
R(x)) is a positive solution of (1.4) and (1.5) with d1 > 0 and

d2 = dk2 > 0.

Indeed a more careful analysis of the length d1 and d2 for a solution u in the
above results implies the following existence of a positive solution of (1.4) and (1.5)
for Schrödinger type g on the bridge type graph Ω with any number of “legs” on
the left and right, and any length d = d1 + d2 of the bridge.

Theorem 1.5. For (1.4) and (1.5) in Ω with the coordinates given by (1.3), assume
the hypothesis (G) is satisfied and the conditions at infinity is imposed as (1.15).
Then for any l ≥ 2, k ≥ 2, and d > 0, there exists at least one positive solution

ul,k
1 (x) of (1.4) and (1.5) with |I0| = d1+ d2 = d; and there exists d∗ > 0 such that

when d > d∗ there exists at least two positive solutions ul,k
j (x) (j = 2, 3) of (1.4)

and (1.5) with |I0| = d1+d2 = d and these two solutions are different from ul,k
1 (x);

and when d = d∗ there exists at least one positive solution ul,k
2 (x) of (1.4) and

(1.5) with |I0| = d1 + d2 = d that is different from ul,k
1 (x). Moreover for j = 1, 2, 3,

ul,k
j (x) is strictly increasing for x ∈ (−∞, 0) and ul,k

j (x) is strictly decreasing for

x ∈ (0,∞).

Similar results also hold for bistable type g but the number of “legs” on the left
and right is restricted by the quantity A defined in (1.6).

Theorem 1.6. For (1.4) and (1.5) in Ω with the coordinates given by (1.3), assume
the hypothesis (G′) is satisfied and the conditions at infinity is imposed as (1.15).
Then for any d > 0 and 2 ≤ l, k ≤ [A], where A is defined in (1.6), and [A] is the
greatest integer less than or equal to A, there exists at least one positive solution

ul,k
1 (x) of (1.4) and (1.5) with |I0| = d1+ d2 = d; and there exists d∗ > 0 such that

when d > d∗ there exist at least two positive solutions ul,k
j (x) (j = 2, 3) of (1.4)

and (1.5) with |I0| = d1+d2 = d and these two solutions are different from ul,k
1 (x);

and when d = d∗ there exists at least one positive solution ul,k
2 (x) of (1.4) and
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(1.5) with |I0| = d1 + d2 = d that is different from ul,k
1 (x). Moreover for j = 1, 2, 3,

ul,k
j (x) is strictly increasing for x ∈ (−∞, 0) and ul,k

j (x) is strictly decreasing for

x ∈ (0,∞).

We remark that the results in Theorem 1.6 when l = k have been proved in
[19, Theorem 1.5]. Theorems 1.5 and 1.6 show the effect of different nonlinearities
on the existence of positive solutions on the bridge type metric graphs, which is
different from the case of l = k = 1 (equivalent to Ω = R and (1.7)). It also shows
that (1.4) and (1.5) have at least three distinctive positive solutions when the length
d of the bridge is sufficiently long.

We also have the following results regarding the multiplicity of positive solutions
of (1.4) and (1.5) for a fixed height (maximum value of the solution) τ = u(0). For
Schrödinger type g(u) we have

Theorem 1.7. Consider the stationary problem (1.4) and (1.5) in Ω with the
coordinates given by (1.3). Assume the hypothesis (G) is satisfied and the conditions
at infinity is imposed as (1.15). Then there exists a sequence {wm : m = 1, 2, · · · }
such that

ξ = w1 < w2 < · · · < wm < wm+1 < · · · ,
and for any positive integer m ≥ 2,

(1) when τ ∈ (w1, wm) and any integers l, k ≥ m, (1.4) and (1.5) admit at least
four positive solutions ul,k(x) with ul,k(0) = τ ;

(2) when τ = wm, and either (i) l ≥ m + 1 and k = m, or (ii) l = m and
k ≥ m+1, (1.4) and (1.5) admit at least two positive solutions ul,k(x) with
ul,k(0) = τ ;

(3) when τ = wm and l = k = m, (1.4) and (1.5) admit at least one positive
solution with ul,k(x) with ul,k(0) = τ .

Similarly for bistable type g(u) we have

Theorem 1.8. Consider the stationary problem (1.4) and (1.5) in Ω with the
coordinates given by (1.3). Assume the hypothesis (G′) is satisfied and the conditions
at infinity is imposed as (1.15). Then there exists a finite sequence {wm : m =
1, 2, · · · , [A]} such that

ξ = w1 < w2 < · · · < wm < wm+1 < · · · < w[A−1] < w[A] = 1,

and for any positive integer m ≥ 2,

(1) when τ ∈ (w1, wm) and any integers m ≤ l, k ≤ [A], (1.4) and (1.5) admit
at least four positive solutions ul,k(x) with ul,k(0) = τ ;

(2) when τ = wm, and either (i) m + 1 ≤ l ≤ [A] and k = m, or (ii) l = m
and m+ 1 ≤ k ≤ [A], (1.4) and (1.5) admit at least two positive solutions
ul,k(x) with ul,k(0) = τ ;

(3) when τ = wm and l = k = m, (1.4) and (1.5) admit at least one positive
solution with ul,k(x) with ul,k(0) = τ .

In Theorems 1.7 and 1.8 part (1), if l = k ≥ m (or m ≤ l = k ≤ [A]), then two
of four positive solutions are symmetric in the sense that d1 = d2, u0(−x) = u0(x)
and ui(−x) = vj(x), and the other two are not symmetric with d1 
= d2. The one
positive solution in Theorems 1.7 and 1.8 part (3) is also a symmetric one. For
the Schrödinger type g, the “height” u(0) = τ for a positive solution is unbounded,
while the “height” of a positive for bistable type g is bounded by u = 1 from
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the Maximum Principle. Theorems 1.7 and 1.8 also show an relation between the
“height” τ = u(0) and the number l, k of “legs” on the two ends of the bridge.

The solutions defined in the theorems above are related to the unique positive
solution ω of (1.7). The existence and uniqueness of the solution ω of (1.7) with
g satisfying (G) or (G′) follows from phase portrait analysis in [8] or variational
approach in [6]. Here we show that for a bridge type graph, such a positive solution
still exists but it may not be unique. The exact multiplicity of positive solutions
of a semilinear elliptic equation with bistable nonlinearity on a ball domain was
studied in [29, 30].

We prove the main results stated in the Introduction in Section 2.

2. Ground states for a bridge graph

In this section, we first prove the existence of a solution to (1.8)–(1.10). Suppose
that u is the solution of initial value problem

(2.1)

{
−u′′ = g(u),

u(0) = ũ0, u
′(0) = ω̃0,

where ũ0 > 0 and ω̃0 ∈ R. Let θ(x) = u′(x). Then (u(x), θ(x)) is the solution of
the initial value problem

(2.2)

⎧⎪⎨
⎪⎩
u′ = θ,

θ′ = −g(u),

u(0) = ũ0, θ(0) = ω̃0.

The solution (u, θ) can be extended to x ∈ (−T, T ) which is the maximum interval of
existence of the solution and T ∈ (0,∞]. Note that (2.2) is a first order Hamiltonian
ODE system with the Hamiltonian

(2.3) H(u, θ) = G(u) +
1

2
θ2.

Hence for a solution (u, θ) of (2.2),

d

dx
H(u(x), θ(x)) =

∂H

∂u
u′ +

∂H

∂θ
θ′ = 0.

In particular, H(u(x), θ(x)) = H(u(0), θ(0)) for all x ∈ (−T, T ).
Now, we consider a solution of (2.1) with ω̃0 = 0. Multiplying (2.1) by u′ and

integrating on [x, 0], we obtain that

(2.4) 0 =

ˆ 0

x

[u′′u′ + g(u)u′]dy = −1

2
[u′(x)]2 +G(u(0))−G(u(x)).

We consider a solution u of (2.1) satisfying u′(0) = 0, u′(x) > 0 for x < 0. Then
(2.4) implies that

u′(x) =
√
2
√
G(u(0))−G(u(x)), x < 0

or

(2.5) dx =
du√

2
√
G(ũ0)−G(u(x))

, x < 0.
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SCHRÖDINGER EQUATION 3819

Suppose that α < 0, integrating (2.5) for x ∈ [α, 0], we have

(2.6) α = − 1√
2

ˆ ũ0

u(α)

du√
G(ũ0)−G(u)

.

Let α < 0 and recall that ω is the unique positive solution of (1.7). Let (P,Q) =
(ω(α), ω′(α)). Consider the following system which is equivalent to (1.8) and (1.10):

(2.7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u′ = θ, ρ < x < 0,

θ′ = −g(u), ρ < x < 0,

u(0) = ũ, θ(0) = 0,

u(ρ) = P, θ(ρ) = lQ

for some ũ > 0, l ≥ 2 and ρ < 0. The following lemmas are important for obtaining
a solution to (1.8)–(1.10).

Lemma 2.1.

(i) If (G) holds, for any α < 0 and integer l ≥ 2, there exists a unique ũ =
ũl(α) > ξ and ρ = ρL(α) < 0 such that (2.7) has a solution (u, θ) with
u(x) > 0 and θ(x) > 0 for x ∈ (ρL(α), 0).

(ii) If (G′) holds, for any α < 0 and integer l satisfying 2 ≤ l ≤ [A], there
exists a unique ũ = ũl(α) ∈ (ξ, 1) and ρ = ρL(α) < 0 such that (2.7) has a
solution (u, θ) with u(x) > 0 and θ(x) > 0 for x ∈ (ρL(α), 0).

Proof. Fix α < 0 and let (P,Q) = (ω(α), ω′(α)). Let (u, θ) be the solution of u′ = θ
and θ′ = −g(u) with (u(ρL), θ(ρL)) = (P, lQ) where ρL < 0 is to be determined.
Then the solution orbit of the solution satisfying (u(ρL), θ(ρL)) = (P, lQ) is on the
curve

(2.8) H(u, θ) = H(P, lQ) = G(P ) +
l2

2
Q2.

We claim that the curve H(u, θ) = H(P, lQ) intersects with θ = 0.

(i) If (G) holds, since G(P ) < H(P, lQ) and lim
u→∞

G(u) = +∞ > H(P, lQ),

then there exists ũ ∈ (P,+∞) such that G(ũ) = H(P, lQ), which implies that
H(ũ, 0) = H(P, lQ). We claim that ũ > ξ. Indeed

G(ũ) = H(P, lQ) > H(P,Q) = 0

since l ≥ 2 and H(P,Q) = H(0, 0) as lim
α→∞

ω(α) = limα→∞ ω′(α) = 0. Hence ũ > ξ

as G(u) < 0 for 0 < u < ξ and G(u) > 0 for u > ξ. The monotonicity of G implies
that such ũ = ũl ∈ (ξ,∞) is unique. We may assume u(0) = ũ and θ(0) = 0 then
ρL < 0 is uniquely determined by α < 0. The solution satisfies u′ = θ > 0.

(ii) If (G′) holds, then by using G(P )+Q2/2 = 0 and (g4), for integer l satisfying
2 ≤ l ≤ [A], we have

(2.9) H(P, lQ) = G(P ) +
l2

2
Q2 = G(P )− l2G(P ) ≤ (l2 − 1)(−G(a)) ≤ G(1),

asG(a) = minu∈[0,1] G(u). Then again fromG(P ) < H(P, lQ), there exists a unique
ũ ∈ (P, 1) such that G(ũ) = H(P, lQ), which implies that H(ũ, 0) = H(P, lQ). The
proof of that ũ > ξ is as before and the uniqueness follows with the monotonicity
of G in (ξ, 1). �
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Lemma 2.2. For any α < 0 and integer l ≥ 2 if (G) holds (or 2 ≤ l ≤ [A] if (G′)
holds), let ρL = ρL(α) be defined as in Lemma 2.1, we have

lim
α→0−

ρL(α) = 0 and lim
α→−∞

ρL(α) = −∞.

Proof. From (2.6), we have

(2.10) ρL(α) = − 1√
2

ˆ ũ(α)

ω(α)

du√
G(ũ(α))−G(u)

.

For u ∈ [ω(α), ũ(α)), from the mean-value theorem, there exists η ∈ (u, ũ(α)) such
that

G(ũ(α))−G(u) = g(η)(ũ(α)− u).

Note that ω(0) = ξ > a. Since P = ω(α) → ξ and Q = ω′(α) → 0 as α → 0−, then
ũ(α) → ξ and η → ξ as α → 0−. Hence g(η) > 0 is bounded as α → 0− and

0 ≥ ρL(α) = − 1√
2

ˆ ũ(α)

ω(α)

du√
g(η)

√
ũ(α)− u

≥ −C

ˆ ũ(α)

ω(α)

du√
ũ(α)− u

= −2C
√
ũ(α)− ω(α) → 0, as α → 0−.

On the other hand, P = ω(α) → 0 and Q = ω′(α) → 0 as α → −∞. then ũ(α) → ξ
as α → −∞. Thus (2.10) implies that

lim
α→−∞

ρL(α) = − 1√
2

ˆ ξ

0

du√
G(ξ)−G(u)

= −∞,

since the solution of (2.2) with u(0) = ω(0) and θ(0) = 0 is a homoclinic orbit. �
Now we can prove the existence of a positive solution to (1.8)–(1.10).

Proposition 2.3. For any d > 0 and integer l ≥ 2 if (G) holds (or 2 ≤ l ≤
[A] if (G′) holds), the equations (1.8)–(1.10) admit a positive solution (u0, u1) and
u′
0(x) > 0 in (−d, 0), u′

1(x) > 0 in (−∞,−d).

Proof. For any d > 0, by Lemma 2.2 and the continuity of ρL(α), there exists
α ∈ (−∞, 0) such that d = −ρL(α). By Lemma 2.1, there exists a unique ũ =
ũl(α) > ξ such that (2.7) has a solution (u, θ) with u(0) = ũl(α), u(d) = ω(α) and
θ(−d) = lω′(α) where ω(x) is the unique positive solution of (1.7). Let τ = ũl(α),
then (1.8) admits a solution with u0(0) = τ , u0(−d) = ω(α) and u′

0(−d) = lω′(α).
Finally we take u1(x) = ω(x + α + d) for x ∈ (−∞,−d). Hence (u0, u1) is a
solution to (1.8) and (1.9) satisfying (1.10) and u′

0(x) > 0 in (−d, 0), u′
1(x) > 0 in

(−∞,−d). �
We remark that when (G′) holds, the equations (1.8)–(1.10) have no positive

solution (u0, u1) satisfying u′
0(x) > 0 in (−d, 0), u′

1(x) > 0 in (−∞,−d) for integer
l > [A]. Indeed (2.9) would become

G(P ) +
l2

2
Q2 = (l2 − 1)(−G(P )) > G(P ′),

for any P ′ ∈ (P, 1] and l large enough as G(P ) < 0. Thus, there is not ũ such that
G(ũ) = H(P, lQ) for any P,Q and l > [A] and (2.7) has no solution for such l.

For the function ũl(α) defined in Lemma 2.1, we have the following properties.
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Proposition 2.4. Suppose that l ≥ 2 if (G) holds (or 2 ≤ l ≤ [A] if (G′) holds), the
function ũl(α) defined in Lemma 2.1 satisfies ũl(α) > ξ for α ∈ (−∞, 0), admits
the maximum value at α∗ ∈ (−∞, 0) which satisfies ω(α∗) = a, ũ′

l(α)(α− α∗) < 0
for α 
= α∗, and ũl(α∗) satisfies

(2.11) G(ũl(α∗)) = (1− l2)G(a).

Moreover for l > j ≥ 2, we have ũl(α) > ũj(α) for α ∈ (−∞, 0).

Proof. Indeed, from the fact

G(ũl(α)) = H(P, lQ),

we have

(2.12) G(ũl(α)) = G(ω(α)) +
l2

2
[ω′(α)]2.

Differentiating (2.12) with respect to α, and by using the equation in (1.7), we have

g(ũl(α))ũ
′
l(α) = (1− l2)ω′(α)g(ω(α)).

Since g(ũl(α)) > 0, ω′(α) > 0 and 1− l2 < 0 for l ≥ 2, hence

ũ′
l(α) > 0, if g(ω(α)) < 0

and
ũ′
l(α) < 0, if g(ω(α)) > 0.

Moreover, ũ′
l(α) = 0 if and only if g(ω(α)) = 0. That is only satisfied when α = α∗

such that ω(α∗) = a for some α∗ ∈ (−∞, 0). Hence, for α < α∗, ũl is increasing
and for α > α∗, ũl is decreasing. By the fact ũl(α) → ξ as α → 0− and α → −∞,
have ũl(α) > ξ for α ∈ (−∞, 0). By (2.12),

(2.13) G(ũl(α∗)) = G(a) +
l2

2
[ω′(α∗)]

2.

Multiplying (1.7) by u′ and integrating from α∗ to 0, we have

(2.14)
1

2
[ω′(α∗)]

2 = −G(a).

Combining (2.13) and (2.14), we obtain (2.11). Finally from (2.12), we have

G(ũl(α))−G(ũj(α)) =
l2 − j2

2
[ω′(α)]2 > 0.

This implies that ũl(α) > ũj(α) if l > j ≥ 2 for α ∈ (−∞, 0), as G(u) is strictly
increasing when u > ξ. �

Now we are ready to prove Theorem 1.3, and the proof of Theorem 1.4 is similar
so it is omitted.

Proof of Theorem 1.3. First we assume that l = k ≥ 2. From Propositions 2.3
and 2.4, for any d > 0 given, (1.8) admits at least one solution u1

0(x0) defined in
[−d, 0] with u1

0(0) > ξ, (1.9) admits a solution u1(x1) defined in (−∞,−d), and
the junction condition (1.10) holds. Since l = k, by the same way, we can obtain
a solution u2

0(x0) = u1
0(−x0) defined in (0, d) to (1.11) with u2

0(0) = u1
0(0) > ξ,

a solution v1(x1) = u1(−x1) defined in (d,∞) to (1.12) and (1.13) holds. Then
u∗ = (u0, u1, v1) is a positive solution of (1.8)–(1.13) with d1 = d2 = d where
u0(x0) = u1

0(x0) when x0 ∈ [−d, 0] and u0(x0) = u2
0(x0) when x0 ∈ (0, d]. This

proves the existence of a positive solution to (1.4)–(1.5) when l = k.
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Next we assume that l ≥ 2 with k to be specified. From Propositions 2.3 and
2.4 again, for any d1 > 0 given, (1.8) admits at least one solution u1

0(x0) defined
in [−d1, 0] with u1

0(0) > ξ, (1.9) admits a solution u1(x1) defined in (−∞,−d1),
and the junction condition (1.10) holds. Taking τ = u1

0(0) > ξ, by Proposition
2.4, there exists 2 ≤ kl ≤ l such that for each k ≥ kl, there exists βk ∈ (−∞, 0)
satisfying ũk(βk) = τ . Let dk2 = −ρL(βk) > 0, then applying the arguments in
Proposition 2.3 for x > 0, (1.11) admits a solution u2

0(x0) with u2
0(0) = τ in (0, dk2),

(1.12) admits a solution v1(x1) in (dk2 ,∞) and (1.13) holds. Then u∗ = (u0, u1, v1)
is a positive solution of (1.8)–(1.13) with d1 > 0 arbitrary and d2 determined by
d1, l and k, where u0(x0) = u1

0(x0) when x0 ∈ [−d1, 0] and u0(x0) = u2
0(x0) when

x0 ∈ (0, d2]. This proves the existence of a positive solution to (1.4)–(1.5) when l
and k are not necessarily the same. �

If l = 1, then, H(P,Q) = 0 where P = ω(α) and Q = ω′(α) as defined in Lemma
2.1 and G(ũ) = 0 implies that ũ = ξ. On the other hand,

(2.15) 0 = G(ξ) = G(ω(α)) +
k2

2
[ω′(α)]2 = (1− k2)G(ω(α)).

If k = 1 also holds, then the graph Ω is a line and (1.4)–(1.5) is reduced to (1.7)
which has a unique positive solution. If k 
= 1, we have that G(ω(α)) = 0 in (2.15).
Thus α = 0 and the graph Ω is a star which has a unique vertex and k+1 half-lines
connected to the vertex. The positive solutions of (1.4)–(1.5) on a star graph have
been studied in for example [1–4, 26].

We can analyze βk and dk2 in the above proof more carefully to prove Theorem
1.5, and again the proof of Theorem 1.6 is similar thus omitted.

Proof of Theorem 1.5. Let l ≥ 2 and k ≥ 2. Without loss of generality, we assume
that 2 ≤ l ≤ k. As in the proof of Theorem 1.3, from Propositions 2.3 and 2.4, for
any d1 > 0 given, (1.8) admits at least one solution u1

0(x0) defined in [−d1, 0] with
u1
0(0) > ξ, (1.9) admits a solution u1(x1) defined in (−∞,−d1), and the junction

condition (1.10) holds. Let τ = u1
0(0) > ξ then τ = ũl(α) for some α ∈ (−∞, 0). We

know that when α = α∗, ũl(α) achieves the maximum value ũl(α∗) for α ∈ (−∞, 0).
Then from l ≤ k, we have ũk(α) ≥ ũl(α), and ũ′

k(α)(α − α∗) < 0 and ũk(α) → ξ
as α → −∞ or α → 0+ from Proposition 2.4. This implies that for τ ∈ (ξ, ũl(α∗)),
from Proposition 2.4, there exists two values β1

k and β2
k satisfying

−∞ < β1
k < α∗ < β2

k < 0

such that ũk(β
i
k) = τ for i = 1, 2. Let dk2,1 = −ρL(β

1
k) and dk2,2 = −ρL(β

2
k), then

dk2,1 = −ρL(β
1
k) =

1√
2

ˆ τ

ω(β1
k)

du√
G(τ )−G(u)

>
1√
2

ˆ τ

ω(β2
k)

du√
G(τ )−G(u)

= −ρL(β
2
k) = dk2,2,

(2.16)

as τ > ω(β2
k) > ω(β1

k). Thus (1.11) admits a solution u2
0,i with u2

0,i(0) = τ in

(0, dk2,i), (1.12) admits a solution v1,i in (dk2,i,∞) i = 1, 2 and (1.13) holds. Hence

for a fixed d1 > 0, there are two distinct d2 = dk2,i such that (1.8)–(1.13) has a

positive solution with d1 > 0 arbitrary and d2 = dk2,1 > dk2,2 > 0. Note that

d2 = dk2,i depends on d1 continuously when l, k are fixed.
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Taking d1 > 0 as a varying variable, we have τ → ξ when d1 → 0 or d1 → ∞.
Consequently we have β1

k → 0 and β2
k → ∞, which imply that dk2,1 → ∞ and

dk2,2 → 0 hold when either d1 → 0 or d1 → ∞. Now we define

(2.17) dL = d1 + dk2,2.

Then (1.8)–(1.13) has a positive solution with d1 > 0 arbitrary and d2 = dk2,2 > 0.

When d1 varies from 0 to ∞, dk2,2 > 0 and dk2,2 → 0 as d1 → 0 or d1 → ∞, which
implies that dL varies from 0 to ∞ as well. This proves that for any d = dL > 0,

there exists at least one positive solution ul,k
1 (x) of (1.4) and (1.5) with |I0| =

d1 + dk2,2 = dL. From the construction above, ul,k(x) = (u1(x1), u
1
0(x0)) is strictly

increasing for x ∈ (−∞, 0) and ul,k(x) = (u2
0(x0), v1(x2)) is strictly decreasing for

x ∈ (0,∞).
On the other hand, we define

(2.18) dU = d1 + dk2,1.

Then (1.8)–(1.13) has a positive solution with d1 > 0 arbitrary and d2 = dk2,1 > 0.

When d1 varies from 0 to ∞, dk2,1 > dk2,2 > 0 and dk2,1 → ∞ as d1 → 0 or d1 → ∞,
which implies that dU → ∞ as d1 → 0 or d1 → ∞. Let d∗ = min

d1>0
dU . Then

for d > d∗, there exists at least two positive solutions ul,k
j (x) (j = 2, 3) of (1.4)

and (1.5) with |I0| = d1 + dk2,1 = dU from the continuity of dU with respect to
d1. For d = d∗, there exists at least one positive solution of (1.4) and (1.5) with

|I0| = d1+dk2,1 = dU . These solutions with |I0| = dU are different from ul,k
1 (x) with

|I0| = dL as dU > dL for any d1 > 0. �

The existence of multiple positive solutions of (1.4) and (1.5) can be shown
following the approach in the proof of Theorem 1.5. Now we will prove Theorem
1.7, and the proof of Theorem 1.8 is similar thus omitted.

Proof of Theorem 1.7. Let m ∈ N and let wm+1 = ũm+1(α∗) where ũl and α∗ are
defined in Lemma 2.1 and Proposition 2.4. Then from (2.11), we have

(2.19) G(wm+1) = (1− (m+ 1)2)G(a), m = 1, 2, 3, · · · .
Hence from ũm is increasing in m as in Proposition 2.4 and (2.19), we have ωm+1 >
ωm for m ∈ N as G(u) is an increasing function for u > ξ.

From Lemma 2.1, Lemma 2.2 and Proposition 2.4, for each l ≥ m + 1, the
function ũl(α) is defined for α ∈ (−∞, 0), ũ′

l(α)(α − α∗) < 0 for α 
= α∗, ũl(α)
achieves a local and global maximum value at α = α∗, and

lim
α→−∞

ũl(α) = lim
α→0−

ũl(α) = ξ.

Moreover when l > j ≥ 2, we have ũl(α) > ũj(α) for α ∈ (−∞, 0).
Suppose that τ ∈ (w1, wm+1), then for each l ≥ m + 1, there exists α1

l and α2
l

satisfying −∞ < α1
l < α∗ < α2

l < 0 such that

τ = ũl(α
1
l ) = ũl(α

2
l ).

Let dl1,1 = −ρL(α
1
l ) and dl1,2 = −ρL(α

2
l ), then similar as (2.16), we have dl1,1 >

dl1,2 > 0. Hence the equations (1.8)–(1.10) have two solutions ul
L,i(x) =

(u0,i(x0), u1,i(x1)) for i = 1, 2 such that d1 = dl1,1 for ul
L,1(x) and d1 = dl1,2 for
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ul
L,2(x), and the construction of ul

L,i(x) is similar to the ones in the proof of The-
orems 1.3 and 1.5.

Similarly since k ≥ m+1, by the same argument, there exists β1
k and β2

k satisfying
−∞ < β1

k < α∗ < β2
k < 0 such that

τ = ũk(β
1
k) = ũk(β

2
k).

Let dk2,1 = −ρL(β
1
k) and dk2,2 = −ρL(β

2
k), then from (2.16), we have dk2,1 > dk2,2 > 0.

Hence the equations (1.11)–(1.13) have two solutions uk
R,i(x) = (u0,i(x0), v1,i(x2))

for i = 1, 2 such that d2 = dk2,1 for uk
R,1(x) and d2 = dk2,2 for uk

R,2(x), and the

construction of uk
R,i(x) is similar to the ones in the proof of Theorems 1.3 and 1.5.

Now for τ ∈ (w1, wm+1), given that l ≥ m + 1 and k ≥ m + 1, we have four
positive solutions of (1.8)–(1.13) as

ul,k
11 (x) = (ul

L,1(x), u
k
R,1(x)), ul,k

12 (x) = (ul
L,1(x), u

k
R,2(x)),

ul,k
21 (x) = (ul

L,2(x), u
k
R,1(x)), ul,k

22 (x) = (ul
L,2(x), u

k
R,2(x)).

These give four positive solutions to (1.4) and (1.5). Note that the length of the
bridge d = |I0| = d1 + d2 for the four solutions satisfy

d11 ≡ dl1,1 + dk2,1 > d21 ≡ dl1,2 + dk2,1 > d22 ≡ dl1,2 + dk2,2,

d11 ≡ dl1,1 + dk2,1 > d12 ≡ dl1,1 + dk2,2 > d22 ≡ dl1,2 + dk2,2.

This proves part (1).
For part (2), if τ = wm+1, l ≥ m + 2 and k = m + 1, there exists α1

l and α2
l

satisfying −∞ < α1
l < α∗ < α2

l < 0 and βk = α∗ satisfying ũk(α∗) = wm+1. Then
similar to the case in part (1), (1.4) and (1.5) admit at least two positive solutions

ul,k
11 (x) and ul,k

21 (x). Similarly if τ = wm+1, l = m + 1 and k ≥ m + 2, (1.4) and

(1.5) admit at least two positive solutions ul,k
11 (x) and ul,k

12 (x). Finally for part (3),
if τ = wm+1, l = k = m + 1, then αl = βl = α∗ such that ũl(α∗) = wm+1. Thus

(1.4) and (1.5) admit at least one positive solution ul,l
11(x). �
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