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Abstract

A class of diffusive partial differential equations with strongly coupled time delays and diffusion is con-
sidered. The global boundedness of weak solutions of the equation is proved by an entropy method that was 
initially proposed for studying the global boundedness of reaction-diffusion equations with cross-diffusion. 
The presence of the time delays in the equation prevents the entropy method to be directly applied, and 
here we extend the entropy method to this class of diffusive partial differential equations with time delays 
by proving some key entropy inequalities, which further allows us to obtain the estimates of gradient of the 
solutions. The results can be used to show the global boundedness of solutions of population models with 
memory effect, which were recently proposed for describing the movement of highly-developed animal 
species. In addition, we show that the results are also applicable for the classic partial functional differential 
equations, where the time delays only appear in the reaction terms.
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1. Introduction

The reaction-diffusion equations play an important role in mathematical modeling, and they 
have many applications in modeling spatiotemporal phenomena in physics, chemistry and biol-
ogy [8,23,27]. In recent decades, time delays are often taken into account in the mathematical 
modeling by reaction-diffusion equations, such as species gestation and maturation in popula-
tions [26], memory effect of materials on heat conduction [28], memory effect of animals on its 
movement [10] and so on. In this paper, we consider the following diffusive partial differential 
equations with time delays:

{︄
∂u
∂t = ∇(A(u)∇u) + ∇ · (B(u)∇uτ ) + f (u,uσ ), x ∈ Ω, t > 0,
∂u 
∂n = 0, x ∈ ∂Ω, t > 0.

(1.1)

Here, Ω is a bounded domain with C2 boundary ∂Ω in Rd with d ∈ N; u(x, t) ∈ Rn is 
the vector-valued densities of individuals of n species with n ∈ N at location x and time t ; 
uτ = u(x, t − τ) where τ is called memory-induced time-delay in the context of population 
models, and uσ = u(x, t −σ) where σ represents a time-delay in the growth process due to matu-
ration; A(u) = (aij (u)) ∈Rn×n and B(u) = (bij (u)) ∈ Rn×n are the density-dependent diffusion 
tensor matrices, and the second term on the right hand side of the equation in (1.1) describes the 
impact of the density of individuals at a past time on their current movement; f :Rn ×Rn → Rn

describes the birth, death, growth and interaction between species and f may depend on a time-
delay term uσ . Note that for τ = σ = 0, (1.1) is reduced to a classical reaction-diffusion system 
with possible self-diffusion and/or cross-diffusion model that has been extensively studied in the 
literature, see [18,20,22,34,38]; for B = 0 and σ ≠ 0, (1.1) is a reaction-diffusion system with 
delay effect in the growth and interaction [2,12,24,36]; and when σ = 0 and τ ≠ 0, (1.1) becomes 
the memory-induced diffusion models which were recently proposed in [32,33].

The global boundedness of solutions of differential equations is an important issue, as it is 
closely related to much qualitative behavior of solutions, such as the asymptotic stability of 
steady states, the existence of global attractor, the precompactness of solutions and so on, see [5, 
11,13,17,30,35,43] and references therein. However, the cross-diffusion or time delays may cause 
the solution to blow up in finite or infinite time. For example, it is well known that some solutions 
of many chemotaxes (as a special case of cross-diffusion) models may tend to infinite at some 
finite time for large diffusion rates or in high dimensional spatial domain [6,7,15,16,37,42]. In 
[12,24], for diffusive Hutchinson’s equation, it was proved that the solution is always bounded for 
Ω = [0,L] or small time delay in the case of dim(Ω) ≥ 2, while the equation loses its dissipativity 
property for small diffusion rate and large time delay, even if the negative feedback is imposed 
in the models. Moreover, the author in [12] showed that there exists a large set of trajectories 
with their mass going to infinity along periodic path in space. If the diffusion and time delay are 
strongly coupled, such as the models in [32,33], little is known for the global boundedness of the 
solution, except [39] where the uniform boundedness of solutions was proved for a predator-prey 
model with memory-induced diffusion in some special case, i.e., the self-diffusions are absent.

For (1.1), it is noticed that the time delay is not only involved in the reaction term but also 
appears in the diffusive terms. Therefore, the comparison theorems for parabolic equations do 
not hold for (1.1), and hence it is not possible to prove the global boundedness of the solution 
to (1.1) by using the method of upper and lower solutions. On the other hand, if we rewrite 
(1.1) in an abstract integral form, it is also not easy to obtain the estimation of ∥∇uτ∥ when 
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the self-diffusion is not absent, by applying semigroup theory. If we treat the equation as a non-
autonomous parabolic equation without delay on the time intervals [(i − 1)τ, iτ ] step by step 
for i ∈ N , then it is difficult to obtain the estimation of the gradient of solution in adjacent time 
intervals. Accordingly, typical existing methods for proving global boundedness of solutions of 
parabolic type equations cannot be directly applied to (1.1).

In this paper, we will prove the global boundedness of solutions to (1.1) by employing a mod-
ified entropy method which was first introduced in [19]. The entropy method has been already 
successfully applied to (1.1) for the case of τ = σ = 0, see [3,4,20,21,44]. Since this method uses 
implicit Euler method to discretize model (1.1) with respect to time, it reduces the influence of 
time delays on the estimation of the gradient of solutions to a certain extent. Firstly, we prove the 
existence of globally bounded weak solutions of model (1.1) for n = 1 and σ = 0, which remains 
an open problem so far because the self-diffusion term with time delay τ is involved. As men-
tioned above, the techniques for the global boundedness of solutions in [39] are not applicable 
in this case. By proving some key entropy inequalities, we show that the entropy method can be 
applied to this case under some suitable assumptions on B(u), showing the uniform boundedness 
of solutions. Secondly, for n ≥ 2 and σ = 0, the global boundedness of solution is also estab-
lished for a wider selection of B(u). Here, all the entries in memory-based diffusion tensor matrix 
B(u) can be nonzero, meaning that both self-diffusion and cross-diffusion with time delay τ are 
allowed. However, the proof of entropy inequalities for the case of n = 1 cannot be extended 
directly to n ≥ 2, and if the method of proving entropy inequalities for n ≥ 2 is applied to the 
case of n = 1, more restricted assumptions have to be made on B(u). Thirdly, it is illustrated that 
the entropy method can be also employed for proving the global boundedness of solutions for the 
case of B(u) ≡ 0 and σ ≠ 0. Compared to existing results, even if more restricted conditions are 
needed on the reaction term f , the structure of diffusion tensor matrix A(u) is allowed to take a 
more general form, which is usually assumed to be a diagonal constant matrix in the literatures 
such as [11–13,24,30,35]. We finally remark that our approach is also applicable for the case 
τ ≠ 0 and σ ≠ 0 for both the cases n = 1 and n ≥ 2.

The rest of this paper is organized as follows. In Section 2, the global boundedness of solutions 
of (1.1) is proved for the above three cases. A brief discussion is given in Section 3, and the 
proofs of some entropy inequalities are presented in Appendix A. Throughout the paper, we use 
N0 to represent N ∪ {0}. The notation ⌈x⌉ represents the smallest integer that exceeds x and the 
notation ⌊x⌋ represents the largest integer not exceeding x.

2. Global existence and boundedness

2.1. The case of a scalar equation

Let n = 1, A(u) = d1 > 0, B(u) = d2g(u) with d2 ∈ R, and σ = 0 in (1.1). Then, the model 
(1.1) becomes a scalar reaction-diffusion equation with memory-based diffusion:

⎧⎪⎨
⎪⎩

∂u
∂t = d1Δu + d2∇ · (g(u)∇uτ ) + f (u), x ∈ Ω, t > 0,
∂u 
∂n = 0, x ∈ ∂Ω, t > 0,

u(x, t) = φ(x, t), x ∈ Ω, −τ ≤ t ≤ 0.

(2.1)

In particular, if g(u) = u, then (2.1) is the scalar reaction-diffusion population model with 
memory-based diffusion proposed in [33]. Here, d2∇ · (g(u)∇uτ ) describes the spatial move-
ment depending on the spatial gradient at a particular past time. For model (2.1) with g(u) = u, 
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the principle of linearized stability is established in [33], showing that the local stability of a 
constant steady state u = u∗ only depends on the ratio of d1 and |d2u∗|. However, the global 
boundedness of solutions for (2.1) is still left open, which will be considered in this subsection. 
Here we assume that

(H0) For a > 0, f,g ∈ C0[0, a], and there exists a nonnegative bounded convex C2 function 
h(u) : (0, a) →R+ such that its derivative h′(u) is invertible, and

h′′(u) ≥ 1 
u

, ∀ u ∈ (0, a); (2.2)

Moreover, there exist constants Cf ,Cg > 0 such that

f (u)h′(u) ≤ Cf (1 + h(u)), |g(u)h′′(u)| ≤ Cg, ∀ u ∈ (0, a); (2.3)

(H1) The initial function φ(x, t) satisfies 0 < φ(x, t) < a, and

φ(x, t) ∈ C1,0(Ω × [−τ,0]), ∂φ

∂n 
(x, t) = 0 , (x, t) ∈ ∂Ω × [−τ,0].

Remark 2.1. The function h(u) in the assumption (H0) is called an entropy function, and it is 
usually chosen as

h(u) = u(lnu − 1) + (a − u)(ln(a − u) − 1) + H, (2.4)

where H is a positive constant that makes h(u) > 0 for 0 < u < a, see [19]. Note that

h′(u) = ln
u 

a − u
, h′′(u) = a

u(a − u)
.

Therefore h′(u) is invertible and (2.2) is satisfied for this h(u). (2.3) is the technical assumption 
for a prior estimates of the solutions, and it is also satisfied for some typical choice of f and g
with h given by (2.4), such as f (u) = g(u) = u(a − u). In this case, (2.1) turns into

⎧⎪⎨
⎪⎩

∂u
∂t = d1Δu + d2∇ · (u(a − u)∇uτ ) + u(a − u), x ∈ Ω, t > 0,
∂u 
∂n = 0, x ∈ ∂Ω, t > 0,

u(x, t) = φ(x, t), x ∈ Ω, −τ ≤ t ≤ 0.

(2.5)

In the context of population dynamics, the second term in (2.5) represents the directional move-
ment of the population, influenced by the volume filling effect [1,14,25,29,40,41] and the gradi-
ent of its past density [33]. For (2.5), it is easy to verify that

f (u)h′(u) ≤ Cf (1 + h(u)), g(u)h′′(u) = a = Cg, ∀ u ∈ [0, a],
with Cf = sup0<u<a f (u)h′(u) and Cg = a. The assumption (H1) requires less regularity on 
initial functions than the ones in [33], since we focus on the weak solution for (2.1).

Definition 2.2. We call u(x, t) a weak solution to (2.1) if for T > 0,
4 
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(1) u(t, ·) ∈ L2((0, T );H 1(Ω;R)) and ∂tu(t, ·) ∈ L2((0, T );H 1(Ω;R)′);
(2) for any ϕ ∈ L2((0, T );H 1(Ω;R)),

T∫︂
0 

⟨∂tu,ϕ⟩dt + d1

T∫︂
0 

∫︂
Ω 

∇ϕ · ∇udxdt + d2

T∫︂
0 

∫︂
Ω 

∇ϕ · g(u)∇uτ dxdt =
T∫︂

0 

∫︂
Ω 

f (u) · ϕdxdt;

(3) u(x, t) = φ(x, t) , a.e. on Ω × [−τ,0].

Here, ⟨·, ·⟩ denotes the dual product between H 1(Ω;R)′ and H 1(Ω;R).

Our main result for (2.1) is as follows.

Theorem 2.3. Assume d1 > 0, d2 ∈ R, τ > 0 and (H0)-(H1) hold. Then (2.1) possesses a 
bounded weak solution u(x, t) such that u(x, t) ∈ [0, a], for x ∈ Ω and t > 0.

Proof. Step 1. We construct an approximated discrete problem of (2.1). Let w = h′(u). Then, 
u(w) = (h′)−1(w) and (2.1) can be rewritten as

∂tu(w) = d1∇([h′′(u(w))]−1∇w) + d2∇(g(u(w))∇u(wτ )) + f (u(w)). (2.6)

Given any T > 0, choose N ∈ N and let δ = τ/N , N1 = ⌈T/δ⌉ and T1 = N1δ ≥ T . Applying the 
implicit Euler discretization for the time variable to (2.6), we obtain

1

δ
(u(wk) − u(wk−1))

=d1∇([h′′(u(wk))]−1∇wk) + d2∇(g(u(wk))∇u(wk−N)) + f (u(wk)),

(2.7)

for k ∈ N and 1 ≤ k ≤ N1, where wk(x) = h′(φ(x, kδ)) for k ∈ Z and −N ≤ k ≤ 0. For suffi-
ciently small ε > 0, we construct a weak version of the approximated problem (2.7) as follows

1

δ

∫︂
Ω 

(u(wk) − u(wk−1))ϕdx + d1

∫︂
Ω 

∇ϕ · [h′′(u(wk))]−1∇wkdx

+ ε

∫︂
Ω 

(
∑︂
|α|=m

DαwkDαϕ + wkϕ)dx + d2

∫︂
Ω 

∇ϕ · g(u(wk))∇u(wk−N)dx

=
∫︂
Ω 

f (u(wk))ϕdx, ∀ϕ ∈ Hm(Ω;R),

(2.8)

where m ∈ N with m > d/2, α = (α1, α2, · · · , αd) ∈ Nd
0 with |α| = α1 + · · · + αd = m and 

Dα = ∂m

∂x
α1
1 ···∂x

αd
d

. Note that if m > d/2, then Hm(Ω;R) →ʿ L∞(Ω;R) where →ʿ represents a 

compact embedding. From (H0), we know wk(x) ∈ L∞(Ω;R) ∩ H 1(Ω;R) for −N ≤ k ≤ 0. 
Suppose wk−1, · · · ,wk−N ∈ L∞(Ω;R) ∩ H 1(Ω;R) are given for some k ≥ 1, our aim is to find 
wk ∈ Hm(Ω;R) satisfying (2.8), which will be accomplished in the following two steps.
5 
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Step 2. We prove the existence of the solution w = wk ∈ Hm(Ω;R) of the following auxiliary 
equation:

a(w,ϕ) = F(ϕ), ∀ ϕ ∈ Hm(Ω;R) (2.9)

where

a(w,ϕ) = d1

∫︂
Ω 

∇ϕ · [h′′(u(y))]−1∇wdx + ε

∫︂
Ω 

(
∑︂
|α|=m

DαwDαϕ + wϕ)dx,

F (ϕ) = −β

δ

∫︂
Ω 

(u(y) − u(wk−1))ϕdx − βd2

∫︂
Ω 

∇ϕ · g(u(y))∇u(wk−N)dx + β

∫︂
Ω 

f (u(y))ϕdx,

for y ∈ L∞(Ω;R) and β ∈ [0,1]. Note that (2.9) is equivalent to (2.8) when β = 1.
Given y ∈ L∞(Ω;R), by the Hölder inequality, we know that a(·, ·) and F(·) are bounded 

bilinear and linear operators on Hm(Ω;Rn) respectively. From the nonnegativity of h and the 
Poincaré inequality, we have

a(w,w) ≥ ε

∫︂
Ω 

(
∑︂
|α|=m

(Dαw)2 + w2)dx ≥ εC||w||2Hm(Ω;R), (2.10)

for all w ∈ Hm(Ω;R), where C > 0 is a constant depending on Ω. This implies the bilinear form 
a(·, ·) is coercive. It then follows from the Lax-Milgram Lemma (see Theorem 1 in Section 6.2
of [9]) that there exists a unique solution w ∈ Hm(Ω;R) to (2.9) for any y ∈ L∞(Ω;R) and 
β ∈ [0,1], such that

∥w∥Hm(Ω;R) ≤ 1 
εC

∥F∥Hm(Ω;R)′ . (2.11)

This allows us to define an operator S : L∞(Ω;R) × [0,1] → L∞(Ω;R) by

S(y,β) = w,

where w uniquely solves (2.9). Note that if the operator S(·,1) has a fixed point w in L∞(Ω;R), 
then w is the solution of (2.8).

Step 3. We show that the operator S(·,1) has a fixed point in L∞(Ω;R). Firstly, we will prove 
the continuity and compactness of S(·, ·). Choose yn → y in L∞(Ω;R) and βn → β in [0,1] as 
n → ∞. Set wn = S(yn,βn). By the continuity of h, f and g, we have, as n → ∞,

u(yn) → u(y), g(u(yn)) → g(u(y)),

f (u(yn)) → f (u(y)), [h′′(u(yn))]−1 → [h′′(u(y))]−1.
(2.12)

Thus Fn is bounded in Hm(Ω;R)′, where
6 
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Fn(ϕ) = −βn

δ

∫︂
Ω 

(u(yn) − u(wk−1))ϕdx − βnd2

∫︂
Ω 

∇ϕ · g(u(yn))∇u(wk−N)dx

+ βn

∫︂
Ω 

f (u(yn))ϕdx.

From (2.11), we further have that {wn} is bounded in Hm(Ω;R). Since Hm(Ω;R) is reflexive, 
there exists a subsequence of {wn}, still denoted by {wn}, such that wn ⇀ w in Hm(Ω;R). 
Here ⇀ represents the weak convergence. This, together with (2.12), allows us taking the limit 
on both sides of

an(wn,ϕ) = Fn(ϕ),

where

an(wn,ϕ) = d1

∫︂
Ω 

∇ϕ · [h′′(u(yn))]−1∇wndx + ε

∫︂
Ω 

(
∑︂
|α|=m

DαwnD
αϕ + wnϕ)dx,

to obtain that wn = S(yn,βn) ⇀ S(y,β) = w in Hm(Ω;R). Recall that Hm(Ω;R) →ʿ
L∞(Ω;R). Therefore, there exists a subsequence of {wn} satisfying wn = S(yn,βn), still de-
noted by itself, such that wn = S(yn,βn) → S(y,β) = w in L∞(Ω;R). This proves the conti-
nuity of S(·, ·), and the compactness of S(·, ·) follows directly from the compact embedding of 
Hm(Ω;R) into L∞(Ω;R).

Let

S1 = {w ∈ Hm(Ω;R) : S(w,β) = w, β ∈ [0,1]}.

Next, we prove that S1 is bounded in L∞(Ω;R), that is, all fixed points of the operator S are 
uniformly bounded with respect to β . Let

S2 = {w ∈ Hm(Ω;R) : a(w,w) = F(w) with y = w, β ∈ [0,1]}.

Obviously, S1 ⊆ S2. Thus, it suffices to show that S2 is bounded in L∞(Ω;R). Substituting 
y = w and ϕ = w into (2.9), we have

β

δ

∫︂
Ω 

(u(w) − u(wk−1))wdx + d1

∫︂
Ω 

∇w · [h′′(u(w))]−1∇wdx

+ ε

∫︂
Ω 

(
∑︂

|α|=m

(Dαw)2 + w2)dx + βd2

∫︂
Ω 

∇w · g(u(w))∇u(wk−N)dx

=β

∫︂
Ω 

f (u(w))wdx.

(2.13)

By the convexity of h, i.e., h(u1) − h(u2) ≤ h′(u1)(u1 − u2) for all u1, u2 ∈ (0, a) and the fact 
that h′(u(w)) = w, we have
7 
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β

δ

∫︂
Ω 

(u(w) − u(wk−1))wdx ≥ β

δ

∫︂
Ω 

[h(u(w)) − h(u(wk−1))]dx. (2.14)

Combining (2.3), (2.13) and (2.14), we obtain

β

∫︂
Ω 

h(u(w))dx + δd1

∫︂
Ω 

∇w · [h′′(u(w))]−1∇wdx

+ δε

∫︂
Ω 

(
∑︂

|α|=m

(Dαw)2 + w2)dx + δβd2

∫︂
Ω 

∇w · g(u(w))∇u(wk−N)dx

≤Cf δβ

∫︂
Ω 

(1 + h(u(w)))dx + β

∫︂
Ω 

h(u(wk−1))dx.

(2.15)

Choose δ < 1/Cf . Then, (2.15) implies

δε

∫︂
Ω 

(
∑︂

|α|=m

(Dαw)2 + w2)dx + δβd2

∫︂
Ω 

∇w · g(u(w))∇u(wk−N)dx

≤β|Ω| + β

∫︂
Ω 

h(u(wk−1))dx.

(2.16)

If δβd2
∫︁
Ω

∇w · g(u(w))∇u(wk−N)dx > 0 for all β ∈ [0,1], then from (2.10) and (2.16), we 
have

δεC||w||2Hm(Ω;R) ≤ δε

∫︂
Ω 

(
∑︂

|α|=m

(Dαw)2 + w2)dx ≤ β|Ω| + β

∫︂
Ω 

h(u(wk−1))dx,

which implies that S2 is bounded in L∞(Ω;R), because of the positivity and boundedness of 
h(u).

Next we prove the boundedness of S2 in the case that δβd2
∫︁
Ω

∇w · g(u(w))∇u(wk−N)dx is 
not always positive for some β ∈ [0,1]. By the Hölder inequality and (H1), there exists η > 0, 
independent of β , such that

|δβd2

∫︂
Ω 

∇w · g(u(w))∇u(wk−N)dx|

≤|δβd2|∥∇w∥L2(Ω;Rd )∥g(u(w))∇u(wk−N)∥L2(Ω;Rd ) ≤ η∥∇w∥L2(Ω;Rd ).

(2.17)

Using (2.10) and (2.17), we have

δε

∫︂
Ω 

(
∑︂

|α|=m

(Dαw)2 + w2)dx −
⃓⃓⃓
⃓⃓⃓δβd2

∫︂
Ω 

∇w · g(u(w))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓

≥δεC∥w∥2
m − η∥∇w∥ 2 d .

(2.18)
H (Ω;R) L (Ω;R )

8 
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Suppose that ∥w∥Hm(Ω,R) is sufficiently large. It then follows from (2.18) that

δε

∫︂
Ω 

(
∑︂

|α|=m

(Dαw)2 + w2)dx −
⃓⃓⃓
⃓⃓⃓δβd2

∫︂
Ω 

∇w · g(u(w))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓

≫β|Ω| + β

∫︂
Ω 

h(u(wk−1))dx,

which contradicts with (2.16). This also yields the boundedness of S2 in L∞(Ω;R) for this 
case, which further implies that S1 is bounded in L∞(Ω;R). Therefore, from Leray-Schauder 
Theorem (see Theorem A.4 in [20]), there exists a solution w = wk ∈ Hm(Ω;R) such that 
S(w,1) = w which solves (2.8), where 1 ≤ k ≤ N1.

We remark that wk (hence also the bound of wk) depends on ε and δ. For later steps, we need 
a boundedness result for wk with the bound independent of ε and δ. Given j ∈ N , 1 ≤ j ≤ N1, 
summing (2.15) with w = wk and β = 1 over k = 1, · · · , j , and using (2.10), we find that

(1 − Cf δ)

∫︂
Ω 

h(u(wj ))dx + δd1

j∑︂
k=1 

∫︂
Ω 

∇wk · [h′′(u(wk))]−1∇wkdx

+ εCδ

j∑︂
k=1 

∥wk∥2
Hm(Ω;R) + δd2

j∑︂
k=1 

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx

≤Cf δj |Ω| + Cf δ

j−1 ∑︂
k=1 

∫︂
Ω 

h(u(wk))dx +
∫︂
Ω 

h(u(w0))dx.

(2.19)

Equation (2.19) implies that there exists a constant C1 > 0, independent of δ and ε, such that

δd1

j∑︂
k=1 

∫︂
Ω 

∇wk · [h′′(u(wk))]−1∇wkdx + εCδ

j∑︂
k=1 

∥wk∥2
Hm(Ω;R) ≤ C1. (2.20)

The proof of (2.20) is postponed to the Appendix.
Step 4. We now use the time-discrete approximate solution wk to define an approximate 

solution uδ defined on a continuous time interval [−τ, T1], and we also show a related uniform 
boundedness result for the approximate solution uδ.

For m ∈N0 and 0 ≤ m ≤ N , we define

(σmwδ)(x, t) =
{︃

wk−m(x), t ∈ ((k − 1)δ, kδ], k = 1,2, · · · ,N1,

h′(φ(x,−mδ)), t = 0,

and (σmuδ)(x, t) = u((σmwδ)(x, t)). We also define uδ(x, t) = (σ0u
δ)(x, t). Integrating (2.8) on 

(0, T1), we have
9 
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1

δ

T1∫︂
0 

∫︂
Ω 

(uδ − σ1u
δ)ψdxdt + d1

T1∫︂
0 

∫︂
Ω 

∇ψ · ∇uδdxdt

+ ε

T1∫︂
0 

∫︂
Ω 

(
∑︂
|α|=m

DαwδDαψ + wδψ)dxdt + d2

T1∫︂
0 

∫︂
Ω 

∇ψ · g(uδ)∇(σNuδ)dxdt

=
T1∫︂

0 

∫︂
Ω 

f (uδ)ψdxdt,

(2.21)

where ψ : (0, T1) → Hm(Ω;R) is any piecewise constant function, which is contained in a dense 
subset of L2((0, T1);Hm(Ω;R)) (see Proposition 1.36 in [31]). Applying the Hölder inequality 
to (2.21), we have

1

δ

⃓⃓⃓
⃓⃓⃓ T1∫︂

0 

∫︂
Ω 

(uδ − σ1u
δ)ψdxdt

⃓⃓⃓
⃓⃓⃓

≤d1∥∇ψ∥L2((0,T1);L2(Ω;Rd ))∥∇uδ∥L2((0,T1);L2(Ω;Rd ))

+ ε∥wδ∥L2((0,T1);Hm(Ω;R))∥ψ∥L2((0,T1);Hm(Ω;R))

+ |d2|∥∇ψ∥L2((0,T1);L2(Ω;Rd ))∥g(uδ)∇(σNuδ)∥L2((0,T1);L2(Ω;Rd ))

+ ∥f (uδ)∥L2((0,T1);L2(Ω;R))∥ψ∥L2((0,T1);L2(Ω;R)).

(2.22)

Applying (2.20) with j = N1 and (A.5) with N = N1, we obtain that

∥uδ∥2
L2((0,T1);H 1(Ω;R))

+ ε∥wδ∥2
L2((0,T1);Hm(Ω;R))

=δ

N1∑︂
k=1 

∥u(wk)∥2
H 1(Ω;R)

+ εδ

N1∑︂
k=1 

∥wk∥2
Hm(Ω;R) ≤ C3,

(2.23)

where C3 > 0 is a constant independent of δ and ε. Taking into account the assumptions (H0)-
(H1), it follows from (2.22) and (2.23) that

δ−1∥uδ − σ1u
δ∥L2((0,T1);Hm(Ω;R)′) ≤ C4, (2.24)

where C4 is a constant independent of δ and ε.
Step 5. We complete the proof by showing the approximate solution uδ converges to a limit as 

δ → 0 and ε → 0. The uniform estimates (2.23) and (2.24) allow us to apply the nonlinear Aubin-
Lions Lemma (see Theorem A.5 in [20]) to obtain that there exists u ∈ L2((0, T1);L2(Ω;R))

such that as (δ, ε) → (0,0),

uδ → u in L2((0, T1);L2(Ω;R)) and a.e. in Ω × (0, T1).
10 
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Recall that, when t ≤ 0, uδ(x, t) = φ(x, kδ) for t ∈ ((k − 1)δ, kδ] for k ∈ Z and −N ≤ k ≤ 0, 
and uδ(x,−τ) = φ(x,−τ). Hence it follows from (H1) that uδ → φ in L∞([−τ,0];L∞(Ω;R))

as δ → 0. Therefore, if we define u(x, t) = φ(x, t) for t ∈ [−τ,0] and x ∈ Ω, then we have

uδ → u in L2((−τ, T1);L2(Ω;R)).

In particular, σNuδ → uτ in L2((0, T1);L2(Ω;R)). Furthermore, by (2.23), (2.24) and an argu-
ment of weak compactness, we have

∇uδ ⇀ ∇u in L2((0, T1);L2(Ω;Rd)),

εwδ → 0 in L2((0, T1);Hm(Ω;R)),

δ−1(uδ − σδu
δ) ⇀ ∂tu in L2((0, T1);Hm(Ω;R)′),

∇(σNuδ) ⇀ ∇uτ in L2((0, T1);L2(Ω;Rd)).

(2.25)

According to the dominated convergence theorem, we also have

g(uδ) → g(u) in L2((0, T1);L2(Ω;Rd)),

f (uδ) → f (u) in L2((0, T1);L2(Ω;Rd)).
(2.26)

Therefore, we can pass to the limit (δ, ε) → (0,0) in (2.21) to obtain

T1∫︂
0 

⟨∂tu,ψ⟩dt + d1

T1∫︂
0 

∫︂
Ω 

∇ψ · ∇udxdt + d2

T1∫︂
0 

∫︂
Ω 

∇ψ · (g(u)∇uτ )dxdt =
T1∫︂

0 

∫︂
Ω 

f (u)ψdxdt,

for all ψ ∈ L2((0, T1);Hm(Ω;R)), which is also valid for ψ ∈ L2((0, T1);H 1(Ω;R)) by the 
density of L2((0, T1);Hm(Ω;R)) in L2((0, T1);H 1(Ω;R)) (see Theorem 4.1 in [20]). Thus u
is a weak solution to (2.1) on (0, T1). Since T1 and T are arbitrary, then the weak solution exists 
for any t > 0, and 0 ≤ u(x, t) ≤ a for x ∈ Ω and t > 0. �
Corollary 2.4. Assume d1 > 0, d2 ∈ R, τ > 0 and a > 0. Then (2.5) possesses a bounded weak 
solution u(x, t) such that u(x, t) ∈ [0, a], for x ∈ Ω and t > 0.

Remark 2.5. We remark that Theorem 2.3 remains valid, when the time delay τ in (2.1) is a 
distributed one. For example, if uτ in (2.1) is replaced by 

∫︁ t

t−τ
u(s, x)ds, then (2.19) now reads

(1 − Cf δ)

∫︂
Ω 

h(u(wj ))dx + δd1

j∑︂
k=1 

∫︂
Ω 

∇wk · [h′′(u(wk))]−1∇wkdx

+ εCδ

j∑︂
k=1 

∥wk∥2
Hm(Ω;R) + δ2d2

j∑︂
k=1 

N∑︂
i=1 

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−i )dx

≤Cf δj |Ω| + Cf δ

j−1 ∑︂
k=1 

∫︂
h(u(wk))dx +

∫︂
h(u(w0))dx,
Ω Ω 

11 



X. Liu, J. Shi, C. Wang et al. Journal of Differential Equations 435 (2025) 113232 
which still allows us to get the inequality (2.20). The remaining part of the proof of Theorem 2.3
can be accomplished by similar arguments. According to [33], it is known if φ ∈ C2+α,α(Ω ×
[−τ,0]) for some α ∈ (0,1), (2.1) has a unique classic solution for t ∈ (0,∞). It then can be 
concluded from Theorem 2.3 that the classic solution of (2.1) is also L∞-bounded, by further 
assuming φ ∈ C2+α,α(Ω × [−τ,0]).

2.2. The case of a system of equations

In this section, we consider (1.1) with σ = 0 and n ≥ 2, that is,

⎧⎪⎨
⎪⎩

∂u
∂t = ∇ · (A(u)∇u) + ∇ · (B(u)∇uτ ) + f (u), x ∈ Ω, t > 0,
∂u 
∂n = 0, x ∈ ∂Ω, t > 0,

u(x, t) = φ(x, t), x ∈ Ω, −τ ≤ t ≤ 0.

(2.27)

Here u ∈ Rn, A(u),B(u) ∈ Rn×n are vector and matrices as described in the Introduction. It 
should be mentioned that in [39], the global boundedness of solutions to (2.27) was proved for a 
2 × 2 diagonal constant matrix A and a specific choice of matrix B (a 2 × 2 matrix with only one 
nonzero off-diagonal element). In this subsection we show the global boundedness of solutions 
to (2.27) for more general matrices A and B . Given ai > 0 (i = 1, · · · , n), let D be an open 
subset of the cube (0, a1) × (0, a2) × · · · × (0, an) in Rn. Assume

(A0) f (u) ∈ C0(D;Rn); and there exists a nonnegative bounded convex C2 function h : D →
R+, such that its gradient ∇h : D → Rn is invertible. Furthermore, there exists Cf > 0, 
such that

f (u) · ∇h(u) ≤ Cf (1 + h(u)), ∀ u ∈ D; (2.28)

(A1) A(u) and B(u) ∈ C0(D;Rn×n). For any z = (z1, · · · , zn) ∈ Rn, u = (u1, · · · , un) ∈ D, it 
holds

z · D2h(u)A(u)z ≥
n ∑︂

i=1 

z2
i

ui

, (2.29)

and there exists eij > 0, i, j = 1, · · · , n, with 
n ∑︂

j=1 
|eij | ≤ 1 

2ai

and 
n ∑︂

i=1 
|eij | ≤ 1 

2aj

, i, j =
1, · · · , n, such that for any b = (b1, · · · , bn) ∈Rn, c = (c1, · · · , cn) ∈Rn,

|b · D2h(u)B(u)c| ≤
n ∑︂

i,j=1

|eij bicj |; (2.30)

(A2) The initial functions φ(x, t) ∈ D, and

φi(x, t) ∈ C1,0(Ω × [−τ,0]), ∂φi
(x, t) = 0 , (x, t) ∈ ∂Ω × [−τ,0], i = 1,2, · · · , n.
∂n 

12 



X. Liu, J. Shi, C. Wang et al. Journal of Differential Equations 435 (2025) 113232 
Remark 2.6. When n = 2, if we choose f (u) = (u1(a1 − u1 − m1u2), u2(a2 − u2 − m2u1)) and

A(u) =
(︃

d3 0
0 d4

)︃
, B(u) =

(︃
0 d5u1(a1 − u1)

d6u2(a2 − u2) 0

)︃
,

where a1, a2,m1,m2 > 0, d3, d4 > 0 and d5, d6 ∈ R are constants, then (2.27) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u1
∂t = d3Δu1 + d5∇ · (u1(a1 − u1)∇u2τ ) + u1(a1 − u1 − m1u2), x ∈ Ω, t > 0,
∂u2
∂t = d4Δu2 + d6∇ · (u2(a2 − u2)∇u1τ ) + u2(a2 − u2 − m2u1), x ∈ Ω, t > 0,
∂u1
∂n = ∂u2

∂n = 0, x ∈ ∂Ω, t > 0,

u1(x,0) = φ1(x, t), u2(x, t) = φ2(x, t), x ∈ Ω, −τ ≤ t ≤ 0.

(2.31)
In particular, when τ = 0, (2.31) can be regarded as a diffusive Lotka-Volterra competition model 
with a volume filling chemotactic effect. Choose h(u) as

h(u) = 1 
d3

[u1(lnu1 − 1) + (a1 − u1)(ln(a1 − u1) − 1)]+
1 
d4

[u2(lnu2 − 1) + (a2 − u2)(ln(a2 − u2) − 1)] + H1,

(2.32)

where H1 is a positive constant that makes h(u) > 0 for u ∈ (0, a1) × (0, a2). From (2.32), we 
know

∇h(u) =
(︃

1 
d3

ln
u1

a1 − u1
,

1 
d4

ln
u2

a2 − u2

)︃
, D2h(u) =

(︃ a1
d3u1(a1−u1)

0
0 a2

d4u2(a2−u2)

)︃
.

Define F1(u1, u2) = 1 
d3

u1(a1 − u1 − m1u2) ln u1
a1−u1

. Then, F1(u1, u2) > 0 when 0 < u1 <

a1/2 and a1 − u1 < m1u2 < m1a2, or a1/2 < u1 < a1 and 0 < m1u2 < a1 − u1, otherwise 
F(u1, u2) ≤ 0. We also have lim 

u1→a1,u2→0
F(u1, u2) = 0 = lim 

u1→0,u2→a2
F(u1, u2). By the conti-

nuity of F1(u1, u2), we know that there exists Cf,1 > 0 such that F1(u1, u2) ≤ Cf,1 for h(u) > 0
for u ∈ (0, a1)× (0, a2). Using the similar argument, we can also show that there exists Cf,2 > 0
such that F2(u1, u2) := 1 

d4
u2(a2 − u2 − m2u1) ln u2

a2−u2
≤ Cf,2 for u ∈ (0, a1) × (0, a2), which 

implies (2.28) holds. For z = (z1, z2) ∈ R2, b = (b1, b2) ∈ R2 and c = (c1, c2) ∈R2, if

|d5| ≤ d3

2a1ā
, |d6| ≤ d4

2a2ā
,

where ā = max{a1, a2}, then we have

z · D2h(u)A(u)z ≥ z2
1

u1
+ z2

2

u2
, |b · D2h(u)B(u)c| ≤

⃓⃓⃓
⃓ 1 
2ā

b1c2

⃓⃓⃓
⃓ +

⃓⃓⃓
⃓ 1 
2ā

b2c1

⃓⃓⃓
⃓ .

Therefore, (A0) and (A1) are satisfied for (2.31).

Definition 2.7. We call u(x, t) a weak solution to (2.27) if for T > 0,
13 
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(1) u(t, ·) ∈ L2((0, T );H 1(Ω;Rn)) and ∂tu(t, ·) ∈ L2((0, T );H 1(Ω;Rn)′);
(2) for all ϕ ∈ L2((0, T );H 1(Ω;Rn)),

T∫︂
0 

⟨∂tu,ϕ⟩dt +
T∫︂

0 

∫︂
Ω 

∇ϕ · A(u)∇udxdt +
T∫︂

0 

∫︂
Ω 

∇ϕ · B(u)∇uτ dxdt =
T∫︂

0 

∫︂
Ω 

f (u) · ϕdxdt;

(3) u(x, t) = φ(x, t), a.e. on (x, t) ∈ Ω × [−τ,0].

Here ⟨·, ·⟩ denotes the dual product between H 1(Ω;Rn)′ and H 1(Ω;Rn).

Theorem 2.8. Assume (A0)-(A2) hold. Then (2.27) has a bounded weak solution u(x, t) such 
that u(x, t) ∈ D for x ∈ Ω, t > 0.

Proof. The proof is analogous to the one of Theorem 2.3, so we only outline the proof here. 
Define w = ∇h(u), then u(w) = (∇h)−1u. We could formulate similar equations as (2.6) and 
(2.7). Then a weak version of the approximated discrete problem for (2.27) can be formulated as

1

δ

∫︂
Ω 

(u(wk) − u(wk−1)) · ϕdx +
∫︂
Ω 

∇ϕ · A(u(wk))[D2h(u(wk))]−1∇wkdx

+ ε

∫︂
Ω 

(
∑︂
|α|=m

Dαwk · Dαϕ + wk · ϕ)dx +
∫︂
Ω 

∇ϕ · B(u(wk))∇u(wk−N)dx

=
∫︂
Ω 

f (u(wk)) · ϕdx, ∀ϕ ∈ Hm(Ω;Rn).

(2.33)

Next we show the existence of the solution wk ∈ Hm(Ω;Rn) of (2.33) by considering

a(w,ϕ) = F(ϕ), ∀ ϕ ∈ Hm(Ω;Rn) (2.34)

where

a(w,ϕ) =
∫︂
Ω 

∇ϕ · A(u(y))[D2h(u(y))]−1∇wdx + ε

∫︂
Ω 

(
∑︂
|α|=m

Dαw · Dαϕ + w · ϕ)dx,

F (ϕ) = −β

δ

∫︂
Ω 

(u(y) − u(wk−1)) · ϕdx − β

∫︂
Ω 

∇ϕ · B(u(wk))∇u(wk−N)dx

+ β

∫︂
Ω 

f (u(y)) · ϕdx,

for y ∈ L∞(Ω;Rn) and β ∈ [0,1]. Again, from (A0)-(A1), we know that a(·, ·) and F(·) are 
bounded bilinear and linear operators on Hm(Ω;Rn) respectively. From (A1), we have
14 
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∇w · A(u(w))[D2h(u(w))]−1∇w

=([D2h(u(w))]−1∇w) · D2h(u(w))A(u(w))[D2h(u(w))]−1∇w ≥ 0,
(2.35)

which implies a vector version of (2.10) also holds for w ∈ Hm(Ω;Rn), that is, a(·, ·) is coercive. 
So by the Lax-Milgram Lemma, we know that there exists a unique solution w ∈ Hm(Ω;Rn)

to (2.34) for any y ∈ L∞(Ω;Rn) and β ∈ [0,1]. This allows us to define an operator S :
L∞(Ω;Rn) × [0,1] → L∞(Ω;Rn) by

S(y,β) = w,

where w solves (2.34). The continuity of S(·, ·) can be shown along the same lines as in Step3 
of the proof of Theorem 2.3. From (A0) and (2.34), we have

β

∫︂
Ω 

h(u(w))dx + δ

∫︂
Ω 

∇w · A(u(w))[D2h(u(w))]−1∇wdx

+ δε

∫︂
Ω 

(
∑︂
|α|=m

|Dαw|2 + |w|2)dx + δ

∫︂
Ω 

∇w · B(u(w))∇u(wk−N)dx

≤Cf δβ

∫︂
Ω 

(1 + h(u(w)))dx + β

∫︂
Ω 

h(u(wk−1))dx,

(2.36)

by setting y = w and ϕ = w. Taking into account of (A1), we can get⃓⃓⃓
⃓⃓⃓∫︂
Ω 

∇w · B(u(w))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓ ≤ ∥∇w∥L2(Ω;Rn)∥B(u(w))∇u(wk−N)∥L2(Ω;Rn)

≤∥∇w∥L2(Ω;Rn)

n ∑︂
i=1 

n ∑︂
j=1 

∥bij (u(w))∥L∞(Ω;R)∥∇uj (w
k−N)∥L2(Ω;Rd )

≤μ∥∇w∥L2(Ω;Rn),

(2.37)

where μ is a constant independent of β . So the boundedness of w with respect to β follows 
directly by combining (2.10), (2.35), (2.36), (2.37) and (A0). Applying Leray-Schauder Theorem 
again, it can be concluded that the operator S(·,1) has a fixed point w = wk , which is a solution 
of (2.33). Moreover, wk is uniformly bounded with respect to β , and wk (hence also the bound 
of wk) depends on ε and δ.

Now we give a boundedness result for wk with the bound independent of ε and δ. Summing 
(2.36) with β = 1 and w = wk and using (2.10), we find

(1 − Cf δ)

∫︂
Ω 

h(u(wj ))dx + δ

j∑︂
k=1 

∫︂
Ω 

∇wk · A(u(wk))[D2h(u(wk))]−1∇wkdx

+ εδC

j∑︂
k=1 

∥wk∥2
Hm(Ω;Rn) + δ

j∑︂
k=1 

∫︂
∇wk · B(u(wk))∇u(wk−N)dx (2.38)
Ω 

15 
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≤Cf δj |Ω| + Cf δ

j−1 ∑︂
k=1 

∫︂
Ω 

h(u(wk))dx +
∫︂
Ω 

h(u(w0))dx.

Same as (2.20) in the proof of Theorem 2.3, we need to show there exists E1 > 0 independent of 
δ and ε, such that

δ

j∑︂
k=1 

∫︂
Ω 

∇wk · A(u(wk))[D2h(u(wk))]−1∇wkdx + εδ

j∑︂
k=1 

∥wk∥2
Hm(Ω;Rn) ≤ E1. (2.39)

The proof of (2.39) is different from (2.20), and is also presented in Appendix.
Next we show a related uniform boundedness result for the approximate solution uδ. Integrat-

ing (2.33) on (0, T1), we get

1

δ

T1∫︂
0 

∫︂
Ω 

(uδ − σ1u
δ) · ϕdxdt +

T1∫︂
0 

∫︂
Ω 

∇ϕ · A(uδ)∇uδdxdt

+ ε

T1∫︂
0 

∫︂
Ω 

(
∑︂
|α|=m

Dαwδ · Dαϕ + wδ · ϕ)dxdt +
T1∫︂

0 

∫︂
Ω 

∇ϕ · B(uδ)∇(σNuδ)dxdt

=
T1∫︂

0 

∫︂
Ω 

f (uδ) · ϕdxdt.

(2.40)

Here, uδ , wδ , σ1 and σN are defined as in the proof of Theorem 2.3 by replacing R with Rn. 
From (2.40), we have

1

δ

⃓⃓⃓
⃓⃓⃓ T1∫︂
δ

∫︂
Ω 

(uδ − σ1u
δ) · ϕdxdt

⃓⃓⃓
⃓⃓⃓

≤∥∇ϕ∥L2((0,T1);L2(Ω;Rn))∥A(uδ)∇uδ∥L2((0,T1);L2(Ω;Rn))

+ ε∥wδ∥L2((0,T1);Hm(Ω;Rn))∥ϕ∥L2((0,T1);Hm(Ω;Rn))

+ ∥∇ϕ∥L2((0,T1);L2(Ω;Rn))∥B(uδ)∇(σNuδ)∥L2((0,T1);L2(Ω;Rn))

+ ∥f (uδ)∥L2((0,T1);L2(Ω;Rn))∥ϕ∥L2((0,T1);L2(Ω;Rn)).

(2.41)

On the other hand, we can also obtain a similar estimate as (2.23) from (2.39), which further 
implies by (A1) and (A2) that

∥(A(uδ)∇uδ)i∥L2((0,T1);L2(Ω;R))

≤
n ∑︂

∥aij (u
δ)∥L∞((0,T1);L∞(Ω;R))∥∇uδ

j∥L2((0,T1);L2(Ω;Rd )) ≤ E5, (2.42)

j=1 

16 
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∥(B(uδ)∇σNuδ)i∥L2((0,T1);L2(Ω;R)) ≤ E6, i = 1, · · · , n,

for some constants E5,E6 > 0 independent δ and ε. Combining (2.39), (2.41) and (2.42), we 
conclude that there exists a constant E7 > 0 independent of δ and ε such that

δ−1∥uδ − σ1u
δ∥L2((0,T1);Hm(Ω;Rn)′) ≤ E7. (2.43)

Finally, by taking the limit (δ, ε) → 0 and using (2.23) and (2.43), we know (2.25) also holds. 
Since A(uδ) and B(uδ) ∈ C0(D;Rn×n), we have aij (u

δ) → aij (u) and bij (u
δ) → bij (u) in 

L2((0, T1);Lp(Ω;Rn)). This implies

(B(uδ)∇(σNuδ))i =
n ∑︂

j=1 
bij (u

δ)∇(σNuδ
j ) ⇀

n ∑︂
j=1 

bij (u)(∇uτ )j = (B(u)∇uτ )i i = 1, · · · , n,

(A(uδ)∇uδ)i =
n ∑︂

j=1 
aij (u

δ)∇uδ ⇀

n ∑︂
j=1 

aij (u)∇uj = (A(u)∇u)i i = 1, · · · , n,

in L2((0, T1);L2(Ω;R)). Therefore we have

T1∫︂
0 

⟨∂tu,ϕ⟩dt +
T1∫︂

0 

∫︂
Ω 

∇ϕ · A(u)∇udxdt +
T1∫︂

0 

∫︂
Ω 

∇ϕ · (B(u)∇uτ )dxdt

=
T1∫︂

0 

∫︂
Ω 

f (u) · ϕdxdt,

for all ϕ ∈ L2((0, T1);H 1(Ω;Rn)). �
Corollary 2.9. Assume τ > 0, d3, d4 > 0, ai,mi > 0, i = 1,2, |d5| ≤ d3

2a1ā
and |d6| ≤ d4

2a2ā
, 

where ā = max{a1, a2}. Then (2.31) possesses a bounded weak solution u(x, t) such that 
u(x, t) ∈ [0, a1] × [0, a2], for x ∈ Ω and t > 0.

2.3. The case of partial functional differential equations

In this part, we show that the method of entropy can be also used to prove the global bound-
edness of the following system

⎧⎪⎨
⎪⎩

∂u
∂t = ∇(A(u)∇u) + f (u,uσ ), x ∈ Ω, t > 0,
∂u 
∂n = 0, x ∈ ∂Ω, t > 0,

u(x, t) = φ(x, t), x ∈ Ω, −τ ≤ t ≤ 0.

(2.44)

Compared to the classic partial functional differential equations considered in [11–13,24,30,35], 
the diffusion matrix A(u) in (2.44) may take a more general form than a constant diagonal matrix. 
Given any a > 0 and let D ⊆ (0, a)n. Assume
17 
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(P0) f (u, v) ∈ C0(D × D;Rn). There exists a nonnegative bounded convex C2 function h :
D → R+ such that its gradient ∇h : D → Rn is invertible. In addition, there exists Cf > 0, 
such that

f (u, v) · ∇h(u) ≤ Cf (1 + h(u)), ∀ u,v ∈D. (2.45)

(P1) A(u) ∈ C0(D;Rn×n), and for z = (z1, · · · , zn) ∈ Rn, u = (u1, · · · , un) ∈D, it holds

z · D2h(u)A(u)z ≥
n ∑︂

i=1 
αiu

2
i z

2
i ,

for either αi(ui) = βiu
mi−1
i or αi(ui) = βi(a − ui)

mi−1 with some βi > 0 and mi > 0, 
i = 1, · · · , n. Furthermore, ∃γ > 0 such that |Aij (u)| ≤ γ |αj (uj )| for i, j = 1, · · · , n;

(P2) The initial functions φ(x, t) ∈D, and

φi(x, t) ∈ C0,0(Ω × [−τ,0]), i = 1,2, · · · , n.

The hypotheses (P0) and (P1) on h(u) and A(u) are exactly the same as (H1), (H2′) and (H2′′) 
in [19], except that the estimation of f (u) · ∇h(u) is now replaced by (2.45). The assumption 
on f (u, v) in (2.45) is about the condition on the delayed term in f . It can be verified that the 
functions f (u) = u(a − u − uσ ) in [30] and f (u) = u(a − u − ∫︁ 0

−1 u(t + r(s), x)dη(s)) in [17] 
all satisfy (2.45) with h given by (2.4). The weak solution of (2.27) can be similarly defined as 
in Definition 2.7 by letting B = 0.

Theorem 2.10. Assume (P0)-(P2) hold. Then (2.44) has a bounded weak solution u(x, t) such 
that u(x, t) ∈ D for x ∈ Ω, t > 0.

Proof. From (P0), we know that the analogous version of (2.36) reads as

β

∫︂
Ω 

h(u(wk))dx + δ

∫︂
Ω 

∇wk · A(u(wk))[D2h(u(wk))]−1∇wkdx+

δε

∫︂
Ω 

(
∑︂
|α|=m

|Dαwk|2 + |wk|2)dx ≤ Cf δβ

∫︂
Ω 

(1 + h(u(wk)))dx + β

∫︂
Ω 

h(u(wk−1))dx.

The rest of the proof are the same as the one of Theorem 2.8. �
3. Discussion

In this paper, we studied a general partial differential equations involving time delays, i.e. 
(1.1), and proved the global boundedness of weak solutions in three different cases, namely 
(2.1), (2.27) and (2.44), using the entropy method proposed in [19]. This seems to be the first 
attempt to apply the entropy method to partial differential equation with time delay, particularly 
for the case that diffusions and time delays are strongly coupled (due to the term ∇ · (B(u)∇uτ )).

In the first two cases, σ = 0 is assumed, but it can be easily seen that the proofs are also 
valid when 0 ≠ σ = τ , as long as the assumptions of f in (2.3) and (2.28) are replaced by 
18 
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(2.45). If σ ≠ τ ≠ 0, without loss of generality, assume that τ > σ . Let δ = τ
N

. Then, the term 
uσ usually not lies on the meshed points, when we apply implicit Euler discretization to (1.1). 
For this reason, one can use the linear interpolation hu(wk−⌈ σ

δ
⌉) + (1 − h)u(wk−⌊ σ

δ
⌋) for any 

h ∈ (0,1) to approximate uσ , which makes the proof remain valid. In addition, all the results in 
Section 2 for the interval (0, ai) can be extended to any bounded interval (pi, qi) with pi, qi > 0
(i = 1, · · · , n). For instance, Theorem 2.8 also holds if in (A1) it is assumed that there exists some 

constant αi > 0 (i = 1, · · · , n) such that z · D2h(u)A(u)z ≥ ∑︁n
i=1

αiz
2
i

qi−ui
or z · D2h(u)A(u)z ≥∑︁n

i=1
αiz

2
i

ui−pi
, and 

∑︁n
j=1 |eij | ≤ αi

2(qi−pi)
, i = 1, · · · , n, 

∑︁n
i=1 |eij | ≤ αj

2(qj −pj )
, j = 1, · · · , n.

For now, only the global boundedness of weak solution of (1.1) can be shown, as we know 
that even for the case of B(u) ≡ 0, the global boundedness of strong solution is obtained for 
some special cases of A(u) [11–13,24,30,35]. Moreover, conditions on B(u) imposed here also 
need to be improved, since they are not satisfied for the models with g(u) = u in [33]. These will 
be considered in the future work.

Appendix A

Proof of (2.20). Denote ∥ · ∥L2(Ω) = ∥ · ∥L2(Ω;Rd ) for ease of notation, and suppose δ < 1 
Cf

in 
the proof. By (H0) and the boundedness of domain Ω, we can infer that δj < T1 and

Cf δj |Ω| + Cf δ

j−1 ∑︂
k=1 

∫︂
Ω 

h(u(wk))dx +
∫︂
Ω 

h(u(w0))dx ≤ C2, (A.1)

for some C2 > 0 which is independent of δ and ε. If d2δ
∑︁j

k=1

∫︁
Ω

∇wk · g(u(wk))∇u(wk−N)dx

> 0 for all small δ and ε, then (2.20) is obviously true by (2.19).
If d2δ

∑︁j

k=1

∫︁
Ω

∇wk · g(u(wk))∇u(wk−N)dx is negative for some small δ and ε, we will 
show that this term cannot go to negative infinity by an argument of contradiction. Suppose

d2δ

N∑︂
k=1 

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx → −∞, (A.2)

as δ and ε tend to 0. For k ≤ N , by (H1), we have ∥∇u(wk−N)∥L2(Ω) = ∥∇φ(x, (k −
N)δ)∥L2(Ω) < D for some D > 0 independent of δ and ε. Using (2.3), the fourth term in (2.19)
can be estimated as: ⃓⃓⃓

⃓⃓⃓d2δ

N∑︂
k=1 

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓

≤ d2Cgδ

N∑︂
k=1 

∥∇u(wk)∥L2(Ω)∥∇u(wk−N)∥L2(Ω)

≤ d2CgDδ

N∑︂
∥∇u(wk)∥L2(Ω).

(A.3)
k=1 
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This, together with (A.2), implies there exists a sufficiently large G > D such that

∥∇u(wk)∥L2(Ω) > G, (A.4)

for some k ≤ N . According to (2.2), the second term in (2.19) can be estimated as follows:

δd1

N∑︂
k=1 

∫︂
Ω 

∇wk · [h′′(u(wk))]−1∇wkdx = δd1

N∑︂
k=1 

∫︂
Ω 

∇u(wk) · h′′(u(wk))∇u(wk)dx

≥δd1

N∑︂
k=1 

∫︂
Ω 

|∇u(wk)|2
u(wk) 

dx ≥ δd1

N∑︂
k=1 

∫︂
Ω 

|∇u(wk)|2
a

dx = δd1

a

N∑︂
k=1 

∥∇u(wk)∥2
L2(Ω)

.

(A.5)

Subtracting the right hand side of (A.5) and (A.3), and then using (A.4), we have

∑︂
{k:∥∇u(wk)∥≥G}

(︃
δd1

a
∥∇u(wk)∥2

L2(Ω)
− d2CgδD∥∇u(wk)∥L2(Ω)

)︃

>
∑︂

{k:∥∇u(wk)∥<G}

⃓⃓⃓
⃓δd1

a
∥∇u(wk)∥2

L2(Ω)
− d2CgδD∥∇u(wk)∥L2(Ω)

⃓⃓⃓
⃓ + C2,

(A.6)

for some small δ and ε. Combining (A.3), (A.5) and (A.6), we get

d1δ

N∑︂
k=1 

∫︂
Ω 

∇wk · [h′′(u(wk))]−1∇wkdx + d2δ

N∑︂
k=1 

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx

≥d1δ

a

N∑︂
k=1 

∥∇u(wk)∥2
L2(Ω)

− d2CgδD

N∑︂
k=1 

∥∇u(wk)∥L2(Ω) > C2,

(A.7)

which contradicts with (2.19) and (A.1) with j = N . Therefore, there exists D1 > 0, independent 
of δ and ε, such that

⃓⃓⃓
⃓⃓⃓d2δ

N∑︂
k=1 

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓ ≤ D1.

This, together with (2.19), (A.1) and (A.5), will further imply

δ

N∑︂
k=1 

∥∇u(wk)∥2
L2(Ω)

≤ D2, (A.8)

for some large D2 > 0, which is also independent of δ and ε.
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For N < k ≤ 2N , from (2.3), (A.8), Hölder and Schwarz inequalities, we can infer that

⃓⃓⃓
⃓⃓⃓d2δ

2N ∑︂
k=N+1

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓

≤d2Cgδ

2N ∑︂
k=N+1

∫︂
Ω 

|∇u(wk) · ∇u(wk−N)|dx

≤d2Cgδ

(︄
2N ∑︂

k=N+1

∥∇u(wk)∥2
L2(Ω)

2N ∑︂
k=N+1

∥∇u(wk−N)∥2
L2(Ω)

)︄1/2

≤d2Cg

(︄
D2δ

2N ∑︂
k=N+1

∥∇u(wk)∥2
L2(Ω)

)︄1/2

.

(A.9)

Similarly, from (A.5), we know

d1δ

2N ∑︂
k=N+1

∫︂
Ω 

∇wk · [h′′(u(wk))]−1∇wkdx ≥ δd1

a

2N ∑︂
k=N+1

∥∇u(wk)∥2
L2(Ω)

. (A.10)

So, if

d2δ

2N ∑︂
k=N+1

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx → −∞,

then, by a similar argument as above, we can also deduce from (2.19), (A.9) and (A.10) that

d1δ

2N ∑︂
k=N+1

∫︂
Ω 

∇wk · [h′′(u(wk))]−1∇wkdx + d2δ

2N ∑︂
k=N+1

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx

≥d1δ

2N ∑︂
k=N+1

∫︂
Ω 

|∇u(wk)|2
a

dx − d2Cg

(︄
D2δ

2N ∑︂
k=N+1

∥∇u(wk)∥2
L2(Ω)

)︄1/2

> C2,

which is also a contradiction to (2.19) and (A.1) with j = 2N . Thus, there exists D3 > 0, inde-
pendent of δ and ε, such that

⃓⃓⃓
⃓⃓⃓d2δ

2N ∑︂
k=N+1

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓ ≤ D3.

Repeating the above process for k > 2N , one can show that, for any l ∈ N with 2 ≤ l and 
(l + 1)N ≤ N1,
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⃓⃓⃓
⃓⃓⃓d2δ

(l+1)N ∑︂
k=lN+1

∫︂
Ω 

∇wk · g(u(wk))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓ ≤ Dl,

for some Dl > 0. Hence, d2δ
∑︁j

k=1

∫︁
Ω

∇wk · g(u(wk))∇u(wk−N)dx is bounded from below for 
any δ and ε, and therefore (2.20) also follows directly from (2.19). �
Proof of (2.39). Note that jδ ≤ N1δ = T1 and Ω is bounded. Then, from assumption (A0), there 
exists a constant E2 > 0, independent of δ and ε, such that

Cf δj |Ω| + Cf δ

j−1 ∑︂
k=1 

∫︂
Ω 

h(u(wk))dx +
∫︂
Ω 

h(u(w0))dx ≤ E2. (A.11)

If δ
∑︁j

k=1

∫︁
Ω

∇wk ·B(u(wk))∇u(wk−N)dx > 0 for all small δ > 0 and ε > 0, then (2.39) is obvi-

ously true by (2.38). If δ
∑︁j

k=1

∫︁
Ω

∇wk · B(u(wk))∇u(wk−N)dx is negative for some δ > 0 and 
ε > 0, we will show that this term cannot go to negative infinity by an argument of contradiction.

Suppose

δ

j∑︂
k=1 

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx → −∞, (A.12)

as δ and ε vary. From (A1) and (A2), the second and fourth terms with j = N in (2.38) can be 
estimated as:

δ

N∑︂
k=1 

∫︂
Ω 

∇wk · A(u(wk))[D2h(u(wk))]−1∇wkdx

=δ

N∑︂
k=1 

∫︂
Ω 

∇u(wk) · D2h(u(wk))A(u(wk))∇u(wk)dx

≥δ

N∑︂
k=1 

n ∑︂
i=1 

∫︂
Ω 

|∇ui(w
k)|2

ui(wk) 
dx ≥ δ

ai

N∑︂
k=1 

n ∑︂
i=1 

∫︂
Ω 

|∇ui(w
k)|2dx,

(A.13)

and

|δ
N∑︂

k=1 

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx|

≤δ

N∑︂
k=1 

n ∑︂
i,l=1

|eil |
∫︂

|∇ui(w
k)||∇ul(w

k−N)|dx (A.14)
Ω 
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≤δ

N∑︂
k=1 

n ∑︂
i,l=1

D|eil |
∫︂
Ω 

|∇ui(w
k)|dx ≤ δ

N∑︂
k=1 

n ∑︂
i=1 

D

2ai

∫︂
Ω 

|∇ui(w
k)|dx,

where D = sup 
x∈Ω,t∈[−τ,0]

[|∇φ1(x, t)|, ..., |∇φn(x, t)|] is a constant. By a similar argument as the 

proof of (A.7), we can conclude that if δ
∑︁N

k=1

∫︁
Ω

∇wk ·B(u(wk))∇u(wk−N)dx → −∞, it then 
follows from (A.13) and (A.14) that

δ

N∑︂
k=1 

∫︂
Ω 

∇wk · A(u(wk))[D2h(u(wk))]−1∇wkdx

+ δ

N∑︂
k=1 

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx

≥ δ

2ai

N∑︂
k=1 

n ∑︂
i=1 

∫︂
Ω 

(|∇ui(w
k)|2 − D|∇ui(w

k)|)dx > E2,

(A.15)

which contradicts with (2.38) with j = N and (A.11). Therefore, by (A.12), we must have

δ

j∑︂
k=N+1

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx → −∞. (A.16)

Furthermore, combining (2.38) with j = N and (A.13), we have

δ

2ai

N∑︂
k=1 

n ∑︂
i=1 

∫︂
Ω 

|∇ui(w
k)|2dx + δ

N∑︂
k=1 

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx ≥ E3, (A.17)

for some constant E3, independent of δ and ε.
Using (A1) again, we obtain

2

⃓⃓⃓
⃓⃓⃓δ j∑︂

k=N+1

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓

≤ 2δ

j∑︂
k=N+1

⃓⃓⃓
⃓⃓⃓∫︂
Ω 

∇u(wk) · D2h(u(wk))B(u(wk))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓

≤ 2δ

j∑︂
k=N+1

n ∑︂
i,l=1

|eil |
∫︂
Ω 

|∇ui(w
k)||∇ul(w

k−N)|dx

≤ δ

2ai

⎛
⎝ j∑︂

k=N+1

n ∑︂
i=1 

∫︂
|∇ui(w

k)|2dx +
j−N∑︂
k=1 

n ∑︂
i=1 

∫︂
|∇ui(w

k)|2dx

⎞
⎠ ,

(A.18)
Ω Ω 
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for N < j ≤ N1. This, together with (A.16), further implies that

δ

2ai

⎛
⎝ j∑︂

k=N+1

n ∑︂
i=1 

∫︂
Ω 

|∇ui(w
k)|2dx +

j−N∑︂
k=1 

n ∑︂
i=1 

∫︂
Ω 

|∇ui(w
k)|2dx

⎞
⎠

−
⃓⃓⃓
⃓⃓⃓δ j∑︂

k=N+1

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx 

⃓⃓⃓
⃓⃓⃓ ≫ E2.

(A.19)

On the other hand, from (A.13) with N = j , we have

δ

j∑︂
k=1 

∫︂
Ω 

∇wk · A(u(wk))[D2h(u(wk))]−1∇wkdx ≥ δ

2ai

N∑︂
k=1 

n ∑︂
i=1 

∫︂
Ω 

|∇ui(w
k)|2dx

+ δ

2ai

⎛
⎝ j∑︂

k=N+1

n ∑︂
i=1 

∫︂
Ω 

|∇ui(w
k)|2dx +

j−N∑︂
k=1 

n ∑︂
i=1 

∫︂
Ω 

|∇ui(w
k)|2dx

⎞
⎠ .

(A.20)

Thus, from (A.17), (A.19) and (A.20), we get

δ

j∑︂
k=1 

∫︂
Ω 

∇wk · A(u(wk))[D2h(u(wk))]−1∇wkdx

+ δ

j∑︂
k=1 

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx > E2,

(A.21)

which also contradicts with (2.38) and (A.11). So, (A.12) is not valid, and therefore,

⃓⃓⃓
⃓⃓⃓δ j∑︂

k=1 

∫︂
Ω 

∇wk · B(u(wk))∇u(wk−N)dx

⃓⃓⃓
⃓⃓⃓ ≤ E4, (A.22)

for some E4 > 0, independent of δ and ε. As a consequence of (2.38), (A.11) and (A.22), the 
inequality (2.39) follows. �
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