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 A B S T R A C T

We investigate a nonlocal reaction–diffusion–advection model of a population of organisms that integrates 
spatial memory of previously visited locations and nonlocal detection in space, resulting in a coupled PDE–
ODE system reflective of several models found in spatial ecology. Our study advances the mathematical 
understanding of such models by proving the existence and uniqueness of a global weak solution in one 
spatial dimension using an iterative approach. This result includes potentially discontinuous detection kernels, 
explicitly emphasizing the so-called ‘top-hat’ detection function, and does not place any restriction on the 
rate of advection, thereby addressing some analytical voids in the mathematical discourse on such models. A 
comprehensive spectral and stability analysis is also performed, providing analytical expressions for bifurcation 
values contingent on various model parameters, such as species advection rate, diffusion rate, memory uptake 
and decay rates. Unlike classical reaction–diffusion systems, the point spectrum may now include elements 
that have an infinite-dimensional kernel. We show the existence of such a point and that it remains negative, 
ensuring that it does not influence the stability of the constant steady state. Linear stability analysis then 
provides critical values for destabilizing the constant steady state. We explicitly describe the form of the 
non-constant steady state near these critical values and classify the nature of the pitchfork bifurcation as 
forward/backward and stable/unstable. To complement our analytical insights, we explore a targeted case 
study of three particular instances with the top-hat detection function. Using a pseudo-spectral method, we 
depict a numerical bifurcation diagram showing cases with sub or supercritical behaviour.
 

 

1. Introduction

1.1. Background and model formulation

Spatial memory is a key feature driving the movement of mobile 
organisms [1]. As organisms move, they gather information about 
where they have been, building a map that informs future move-
ment decisions. This process generates a feedback mechanism whereby 
previous visitations of favourable locations can cause repeated visits, 
resulting in the organism confining itself to certain specific areas of the 
landscape. In animal ecology, such memory processes are considered 
foundational in the construction of home ranges [2–4], small areas 
where an animal decides to perform its daily activities instead of 
roaming more widely. Conversely, memory of unfavourable locations 
can cause animals to relocate. For example, memory has been shown to 
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play a key role in migratory movements [5,6] and avoiding conspecifics 
to form territories or home ranges [7,8].

Understanding how memory processes help to shape the space use 
of animals is thus becoming a question of increasing interest in both 
empirical ecology [1,9–11] and mathematical modelling [7,12–15].
From a modelling perspective, a key tool for modelling movement in 
response to remembered space use is via an advection term in a partial 
differential equation (PDE). This advection term is typically nonlocal in 
space, for both biological and mathematical reasons. From a biological 
perspective, nonlocality is important because organisms will generally 
sense their surrounding environment – for example, through sight, 
smell, or touch – and make movement decisions accordingly [16,17].
Moreover, this nonlocality occurs not only in animals but also in 
cells [18,19]. Mathematically, nonlocal advection is often crucial for 
well-posedness and avoiding blow-up of PDEs [20,21].
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Alongside advection, mathematical models of organism movement 
typically have a diffusive term, accounting for the aspects of movement 
that we are not explicitly modelling (such as foraging), and may also 
have a reaction term representing the births and deaths of organisms. 
This leads to the formalism of reaction–diffusion–advection equations 
(RDAs). In a one-dimensional spatial domain 𝛺, such an RDA might 
have the following general form 
𝑢𝑡 = 𝑑𝑢𝑥𝑥 + 𝛼(𝑢𝑎𝑥)𝑥 + 𝑓 (𝑢), 𝑥 ∈ 𝛺, 𝑡 > 0. (1.1)

Here, 𝑑 > 0 denotes the rate of diffusion (exploratory movement), 
𝛼 ∈ R denotes the rate of advection towards (𝛼 < 0) or away from
(𝛼 > 0) the environmental covariates described by the function 𝑎(𝑥, 𝑡),
and 𝑓 (𝑢) describes population changes through birth/death processes. 
When paired with an appropriate initial/boundary condition, we seek 
to analyse dynamical behaviours of the solution 𝑢(𝑥, 𝑡) as it depends on
parameters appearing in the equation.

The aspect of memory then appears in the advection term 𝑎(𝑥, 𝑡).
A recent review paper by Wang and Salmaniw [13] covers in detail
the development of equations to model memory, as well as the related 
concept of learning, along with a large collection of open problems and
directions in this area. The central idea is to model spatial memory as
a map, 𝑘(𝑥, 𝑡), which evolves over time as the organism learns about its 
environment [1,7,22]. This map may represent something in the mind
of a specific animal, sometimes called a ‘cognitive map’ [23,24], or 
it could represent the memory of past animal locations embedded in 
the environment, e.g. due to animals depositing scent marks or forging 
trails.

Here, we seek to explore the influence of such a map on the space-
use patterns of a single population, 𝑢. To this end, we describe the 
evolution of 𝑘(𝑥, 𝑡) through the ordinary differential equation for each 
𝑥 ∈ 𝛺, following [7] 
𝑘𝑡 = 𝑔(𝑢) − (𝜇 + 𝛽𝑢)𝑘, 𝑡 > 0. (1.2)

Here, the function 𝑔(⋅) describes the uptake rate of the map 𝑘 as it 
depends on the population 𝑢(𝑥, 𝑡); 𝜇 ≥ 0 describes the rate at which 
memories fade over time; and 𝛽 ≥ 0 describes a rate at which organisms 
remove a location from their memory map on revisitation (e.g. if
animals want to avoid overuse of a location [25]).

Note that, for simplicity, we have assumed that all organisms in a
population share a common memory map. This makes it perhaps more 
amenable to modelling the distribution of cues left on the environment, 
e.g. scent marks or visual cues [26,27], rather than memory contained 
in the minds of animals. Alternatively, if the population modelled by
𝑢(𝑥, 𝑡) has some process of relatively rapid information sharing, then we 
can view 𝑘(𝑥, 𝑡) as a shared memory amongst the population (e.g. for 
social insects, this may be valid). As another example, if 𝑢(𝑥, 𝑡) is the 
probability distribution of a single animal (in which case 𝑓 (𝑢) = 0
per force), then 𝑘(𝑥, 𝑡) can be used to model a map in the mind of an
individual [7].

Prototypical examples of the function 𝑔(𝑢) might be 𝑔(𝑢) = 𝜌𝑢,
denoting memory accruing in proportion to animal visitations, or 𝑔(𝑢) =
𝜌𝑢2, denoting uptake of memory when members of 𝑢 encounter one 
another (here, 𝜌 is a constant). However, these can, in principle, lead to
unbounded memory. Therefore, we can either take another functional 
form, such as 𝑔(𝑢) = 𝜌𝑢2∕(1 + 𝑐𝑢) (cf. the Holling type II functional 
response [28]), or modify Eq. (1.2) to the following as in [7]: 
𝑘𝑡 = 𝑔(𝑢)(𝜅 − 𝑘) − (𝜇 + 𝛽𝑢)𝑘, 𝑡 > 0, (1.3)

where 𝜅 > 0 denotes a theoretical maximal memory capacity.
To combine this mechanism of spatial memory with nonlocal per-

ception, we model nonlocal effects through a spatial convolution: 

𝑘(𝑥, 𝑡) = (𝐺 ∗ 𝑘)(𝑥, 𝑡) = 1
|𝛺|

∫𝛺
𝐺(𝑥 − 𝑦)𝑘(𝑦, 𝑡)d𝑦. (1.4)

Here, the function 𝐺(⋅) is referred to as a perceptual kernel or detection
unction, which describes how an animals’ ability to perceive land-
cape information varies with distance [13,29]. Common forms of the 
2 
detection function 𝐺(⋅) include the Gaussian detection function, the
xponential detection function, or the top-hat detection function, each 
aking the respective forms in 𝛺 = R:

𝐺(𝑥) ∶= 1
√

2𝜋𝑅
𝑒−𝑥

2∕2𝑅2
, (1.5)

𝐺(𝑥) ∶= 1
2𝑅

𝑒−|𝑥|∕𝑅, (1.6)

𝐺(𝑥) ∶=

{

1
2𝑅 , −𝑅 ≤ 𝑥 ≤ 𝑅,
0,  otherwise.

(1.7)

Here, 𝑅 ≥ 0 is referred to as the perceptual radius [13] (also referred 
to as the detection scale [29]) which is meant to model the perceptual
range of the organism: the distance from which a particular landscape 
element can be perceived as such (or detected) by a given animal [30]. In
the context of detecting animals in an environment, the function 𝐺(𝑥)
is meant to describe the probability of detecting an organism given a
distance from the point of observation [31, Fig. 3.15]. The parameter 
𝑅 then modulates this probability of detection. The Gaussian detection 
function provides the most information far away from the location of 
observation, whereas the top-hat detection function places an absolute 
limit on how far the organism can detect information. Even within the 
same organism, it is known that different detection mechanisms may 
yield different perceptual ranges. For example, bats use echolocation
for short-range detection (of, e.g., insects) while they use vision to 
detect larger landscape elements (e.g., forest edges) [32].

In general, it is reasonable to assume the detection function satisfies

(i.) 𝐺(𝑥) is even (symmetric about the origin);
(ii.) ∫R

𝐺(𝑥)d𝑥 = 1;

(iii.) lim
𝑅→0+

𝐺(𝑥) = 𝛿(𝑥);

(iv.) 𝐺(𝑥) is non-increasing from the origin.

Here, 𝛿(𝑥) denotes the Dirac-delta distribution. Each of the Gaussian, 
exponential, and top-hat kernels satisfy these properties over R; ap-
propriate modification is sometimes required in a bounded domain.
Readers are encouraged to review [13,29] for further discussion on
detection kernels and some of the challenges in defining nonlocal 
kernels near a boundary region.

Taking the advective potential 𝑎(𝑥, 𝑡) = 𝑘(𝑥, 𝑡), where 𝑘 solves either 
(1.2) or (1.3), we combine the equation describing movement (1.1)
with a dynamic spatial map in 𝛺 = (−𝐿,𝐿), 𝐿 > 0, to arrive at
the following two systems of equations subject to periodic boundary 
conditions: 
{

𝑢𝑡 = 𝑑𝑢𝑥𝑥 + 𝛼(𝑢𝑘𝑥)𝑥 + 𝑓 (𝑢), 𝑥 ∈ (−𝐿,𝐿), 𝑡 > 0,
𝑘𝑡 = 𝑔(𝑢) − (𝜇 + 𝛽𝑢)𝑘, 𝑥 ∈ (−𝐿,𝐿), 𝑡 > 0,

(1.8.a)

and 
{

𝑢𝑡 = 𝑑𝑢𝑥𝑥 + 𝛼(𝑢𝑘𝑥)𝑥 + 𝑓 (𝑢), 𝑥 ∈ (−𝐿,𝐿), 𝑡 > 0,
𝑘𝑡 = 𝑔(𝑢)(𝜅 − 𝑘) − (𝜇 + 𝛽𝑢)𝑘, 𝑥 ∈ (−𝐿,𝐿), 𝑡 > 0.

(1.8.b)

In either case, we denote by 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑘(𝑥, 0) = 𝑘0(𝑥) the initial 
data, chosen to be 2𝐿-periodic in 𝛺. Both models can be viewed as 
a single-species analogue of the various multi-species models studied 
in, for example [22,33,34], for their broad applications to ecology and
cell biology [19]. Due to the challenging nature of these multi-species 
PDE–ODE models, the novelty of the present work is in the rigorous 
treatment of the well-posedness of the problem for a single species and
the detailed description of the rich bifurcation structure found in such 
problems.

As discussed in [13], boundary conditions in a nonlocal setting in 
a bounded domain are highly non-trivial in general. It is not clear 
how to appropriately define the spatial convolution (1.4) near the 
boundary of the domain (in a biological sense) while remaining ana-
lytically tractable. For this reason, we appeal to a periodic boundary 
condition, which requires no further modification of (1.4) near the 
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boundary points {−𝐿,𝐿}. While problems (1.8.a) and (1.8.b) appear
similar in form, it is of interest to understand exactly when and how 
these two formulations differ in their solution behaviours: should they 
be identical, it seems reasonable to choose the more tractable model
depending on the goals; should they differ significantly, it is reasonable 
to determine when and how they differ, which gives insights into the 
validity of either case in a given context.

There exist a number of works that consider a multi-species model
of the form taken in either (1.8.a) or (1.8.b), see, e.g., [7,22]. In these 
works, a linear stability analysis is performed to determine conditions 
sufficient for pattern formation to occur. These models are comparable
in that they include a cognitive map through an additional, dynamic
equation, and they also incorporate nonlocal perception. Other models 
with nonlocal advective operators have been studied by [35–37], where 
some global existence results are obtained. In [35], fractional Sobolev 
spaces are utilized in a one-dimensional torus to establish a global exis-
tence result which includes the possibility of a top-hat kernel; however, 
the model does not incorporate a dynamic cognitive map. In [36],
a global existence result is established using a contraction mapping
argument, but the regularity requirements of the nonlocal kernel do not 
include the top-hat detection function. In [37], a global existence result 
is obtained for a special case of the 𝑛-species cross-diffusion system 
considered in [36], but the kernels are assumed to be positive-definite
and in detailed balance. A positive-definite condition means that the 
Fourier coefficients are all non-negative, which rules out the top-hat 
detection function; a detailed balance condition rules out run-and-chase 
scenarios, for example, somewhat limiting biological application. Other 
memory-based movement models have been investigated in [38,39],
where the cognitive map is now given by a nonlocal integral operator in
time. In such cases, the problem is a delay partial differential equation. 
The stability of coupled PDE–ODE models has also been studied in 
works such as [40,41].

With our models at hand, the major goals of this paper are as
follows. First, we seek to prove the well-posedness of models (1.8.a) and
(1.8.b). In particular, in Section 2 we prove the existence of a unique, 
global weak solution when the detection function 𝐺(⋅) satisfies an 𝐿𝑝-
embedding type condition (see Hypotheses (H3)), which includes the 
discontinuous top-hat detection function. This provides an answer to
Open Problems 10 and 12 found in [13], at least for the single species 
case. We then shift our attention to the solution behaviour and the 
potential for pattern formation at a steady state. In Section 3–4, we 
perform a robust stability and bifurcation analysis to understand the 
long-term behaviour of the solution as it depends on parameters 𝑑, 
𝛼, the uptake rate 𝑔(⋅) and the kernel 𝐺(⋅). While an intuitive under-
standing of the relevant factors influencing pattern formation can be 
gleaned from a less scrupulous linear stability analysis (see Section 3.2),
further care is needed for nonlocal advective operators. There may exist 
elements belonging to the point spectrum with an infinite-dimensional 
kernel, and such elements are not detectable by classical linear stability 
analysis. If such an element has a nonnegative real part, then perturba-
tions may grow, leading to instability even if all eigenvalues from the 
linear stability analysis suggest (local) stability. This is different from
standard reaction–diffusion systems, for example, where all elements 
of the point spectrum correspond to a finite-dimensional kernel. In our 
case, we find that these values are indeed entirely negative and so 
have no impact on the stability of the homogeneous state. Section 5
is then dedicated to a detailed case study with the top-hat detection 
function. To explore the subtle differences in our formulations, we 
focus on three particular forms of uptake 𝑔(⋅) to better understand 
differences in fundamental assumptions for the function 𝑔(⋅). Numerical 
simulations using a pseudo-spectral method [13,36] with third-order 
strong-stability preserving Runge–Kutta (SSPRK3) time-stepping algo-
rithm are presented in Section 5 to highlight these differences through 
numerical bifurcation diagrams depicting subcritical bifurcations for 
sublinear uptake rates 𝑔(⋅) (see Figs.  2–3) and supercritical bifurcations 
for linear uptake rates 𝑔(⋅) (see Figs.  5–6).
3 
1.2. Preliminaries & hypotheses

Denote N0 = N∪ {0}. Recall that the following eigenvalue problem 
{

−𝜙′′(𝑥) = 𝑙𝜙(𝑥), 𝑥 ∈ (−𝐿,𝐿),
𝜙(−𝐿) = 𝜙(𝐿), 𝜙′(−𝐿) = 𝜙′(𝐿),

(1.8)

with eigenvalues and eigenfunctions 

𝑙±𝑛 =
𝑛2𝜋2

𝐿2
, 𝜙±𝑛(𝑥) = 𝑒

±𝑖𝑛𝜋
𝐿 𝑥 = cos

( 𝑛𝜋
𝐿
𝑥
)

± 𝑖 sin
( 𝑛𝜋
𝐿
𝑥
)

, 𝑛 ∈ N0.

(1.9)

We define the linear spaces

2
𝑝𝑒𝑟(−𝐿,𝐿) =

{

ℎ ∈ 𝐿2(−𝐿,𝐿) ∶ ℎ =
∞
∑

𝑛=−∞
𝑐𝑛𝜙𝑛 with 

∞
∑

𝑛=−∞
|𝑐𝑛|

2 <∞

}

,

nd
2
𝑝𝑒𝑟(−𝐿,𝐿) = {ℎ ∈ 𝐿2

𝑝𝑒𝑟(−𝐿,𝐿) ∶ ℎ
′′ ∈ 𝐿2

𝑝𝑒𝑟(−𝐿,𝐿)},

here

𝑐𝑛 = ⟨ℎ, 𝜙𝑛⟩ =
1
2𝐿 ∫

𝐿

−𝐿
ℎ(𝑥)𝜙−𝑛(𝑥)d𝑥.

Note that 𝐿2
𝑝𝑒𝑟 contains the periodic functions. We then denote by 𝑋

and 𝑌  the spaces 𝐻2
𝑝𝑒𝑟(−𝐿,𝐿)×𝐿

2
𝑝𝑒𝑟(−𝐿,𝐿) and 𝐿2

𝑝𝑒𝑟(−𝐿,𝐿)×𝐿
2
𝑝𝑒𝑟(−𝐿,𝐿), 

respectively. We always assume the following for the spatial kernel 𝐺:

(H0)
⎧

⎪

⎨

⎪

⎩

𝐺(𝑥) ∈ 𝐿1
𝑝𝑒𝑟(−𝐿,𝐿), 𝐺(−𝑥) = 𝐺(𝑥) for all 𝑥 ∈ (−𝐿,𝐿),

∫ 𝐿−𝐿 𝐺(𝑦)d𝑦 = 1,
0 < 𝑅 < 𝐿,

where 2𝐿 is the length of the domain. The restriction on 𝑅 ensures that 
the convolution of 𝐺 with a nonconstant function over (−𝐿,𝐿) is itself 
nonconstant.

The Gaussian and exponential detection functions  each satisfy 
(H0) in (−𝐿,𝐿) when the following additional prefactors are included: 
𝑅−2 erf(𝐿𝑅√

2
) and 1−𝑒−𝐿∕𝑅;  however, it should be noted that these func-

tional forms are most appropriately applied on the whole space. The 
top-hat detection function satisfies (H0) without further modification. 
For the stability and bifurcation analysis performed in Section 3–4, we
assume that the growth rates 𝑓 and 𝑔 satisfy

(H1) 𝑓 (𝑢) ∈ 𝐶3([0,∞)), 𝑓 (0) = 𝑓 (1) = 0, 𝑓 ′(0) > 0, 𝑓 ′(1) < 0, 𝑓 (𝑢) > 0
for 𝑢 ∈ (0, 1) and 𝑓 (𝑢) < 0 for 𝑢 > 1.

(H2) 𝑔(𝑢) ∈ 𝐶3([0,∞)), 𝑔(𝑢) > 0 on (0,∞), 𝑔(0) = 0, and 𝑔(1) = 𝜌 > 0. 
In addition, we assume the non-degeneracy condition 𝑔′(1) ≠
𝛽𝜌∕(𝜇 + 𝛽).

The non-degeneracy condition in (H2) ensures that key quantities 
remain well-defined; see, for example, Eq. (1.13). In fact, the sign of 
𝑔′(1)− 𝛽𝜌∕(𝜇+ 𝛽) determines whether the bifurcating solution 𝑢 is in or 
out of phase with the spatial map 𝑘, see Theorems  1.5–1.6.

To establish the well-posedness of the problem, we also assume in 
addition to (H0) that the kernel 𝐺(⋅) satisfies the following 𝐿𝑝-type 
estimate for any 𝑅 > 0 fixed:

(H3) ‖

‖

𝑧𝑥‖‖𝐿𝑝(𝛺) ≤ 𝐶 ‖𝑧‖𝐿𝑝(𝛺)  for all 𝑧 ∈ 𝐿𝑝(𝛺), 1 ≤ 𝑝 ≤ ∞.

Hypothesis (H3) is appropriately generalizable as in [42, Hypothesis 
(H2)] for problems in higher dimensions.

A prototypical example of 𝑓 (𝑢) is the logistic function 𝑓 (𝑢) = 𝑢(1−𝑢), 
foundational in models of population growth. Biologically-motivated 
examples of 𝑔(𝑢) include 𝑔(𝑢) = 𝜌𝑢, 𝑔(𝑢) = 𝜌𝑢2, and 𝑔(𝑢) = 𝜌𝑢2∕(1 + 𝑐𝑢), 
which were discussed in the paragraph prior to Eq.  (1.3). Note that the 
hypotheses required in the bifurcation analysis are generally stronger 
than those required for well-posedness; for this reason, we state the 
sufficient hypotheses for the existence of a solution directly in the 
statement of Theorem  1.1.
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Throughout this paper, we denote the null space of a linear operator 
𝐿 by  (𝐿), the domain of 𝐿 by (𝐿), the range of 𝐿 by (𝐿), the 
resolvent set of 𝐿 by 𝜌(𝐿), and the spectrum of 𝐿 by 𝜎(𝐿). We always
denote by 𝑄𝑇 ∶= 𝛺 × (0, 𝑇 ) = (−𝐿,𝐿) × (0, 𝑇 ).

1.3. Statement of main results

Our first result establishes the existence of a unique, nontrivial 
olution (𝑢, 𝑘). Due to the weak regularity assumption (H0) on the 
kernel 𝐺(⋅), we do not expect solutions to be classical necessarily. 
enote by ℎ(𝑢, 𝑘) the right-hand side of the equation for the map 𝑘 in 
ither (1.8.a) or (1.8.b). We call (𝑢, 𝑘) a weak solution to either (1.8.a)
or (1.8.b) if, given any test function 𝜙𝑖 ∈ 𝐿2(0, 𝑇 ;𝐻1(𝛺)), 𝑖 = 1, 2, there 
holds

∬𝑄𝑇
𝑢𝑡𝜙1d𝑥d𝑡 +∬𝑄𝑇

(𝑑𝑢𝑥 + 𝛼𝑢𝑘𝑥)(𝜙1)𝑥d𝑥d𝑡 = ∬𝑄𝑇
𝑓 (𝑢)𝜙1d𝑥d𝑡, (1.10)

∬𝑄𝑇
𝑘𝑡𝜙2d𝑥d𝑡 = ∬𝑄𝑇

ℎ(𝑢, 𝑘)𝜙2d𝑥d𝑡, (1.11)

and the initial data is satisfied in the sense of 𝐻1(𝛺) (in fact, the initial 
data will be satisfied in the sense of 𝐶(𝛺) by the Sobolev embedding).
We call a weak solution a global weak solution if (1.10)–(1.11) holds for 
any 𝑇 > 0.

We have the following well-posedness result for problems (1.8.a)
and (1.8.b). 

Theorem 1.1.  Fix 𝑇 > 0, 𝛼 ∈ R ⧵ {0}, 𝑑,𝑅 > 0, 𝜇, 𝛽, 𝜅 ≥ 0, and
assume that the kernel 𝐺(⋅) satisfies (H0) and (H3). Suppose that for some
𝜎 ∈ (0, 1), 𝑓, 𝑔 ∈ 𝐶2+𝜎(R+) with 𝑓 (0) = 𝑔(0) = 0. Assume that 𝑓 satisfies
the bound
𝑓 (𝑧) ≤ 𝑓 ′(0)𝑧  for all 𝑧 ≥ 0,

while 𝑔 satisfies the bounds
𝑔(𝑧) ≤ 𝑁(1 + 𝑧𝑞)  for all 𝑧 ≥ 0,

|

|

𝑔′(𝑧)|
|

≤ 𝑁̃(1 + 𝑧𝑞)  for all 𝑧 ≥ 0,

or some constants 𝑁, 𝑁̃ > 0, 𝑞 ≥ 1 and 𝑞 ≥ 0. Finally, assume that the
initial data 𝑢0, 𝑘0 satisfy
0 < 𝑢0(𝑥), 𝑘0(𝑥) ∈ 𝑊 1,2(𝛺) are periodic in 𝛺.
Then, there exists a unique, global weak solution (𝑢, 𝑘) solving problem
(1.8.a) in the sense of (1.10)–(1.11) satisfying 𝑢 ≥ 0, 𝑘 ≥ 0 so long as
there exists 𝑀 > 0 so that
𝑔(𝑧) ≤𝑀(𝜇 + 𝛽𝑧)  for all 𝑧 ≥ 0.

For problem (1.8.b), there exists a unique, global weak solution in the sense
of (1.10)–(1.11) satisfying 𝑢 ≥ 0, 𝑘 ≥ 0 with no further restriction on 𝑔(⋅)
other than (H2). Moreover, in either case there holds
𝑢 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑝(𝛺)) ∩ 𝐶𝜎,𝜎∕2(𝑄𝑇 ), 𝑢𝑥, 𝑢𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)),

𝑘 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑝(𝛺)) ∩ 𝐶𝜎,𝜎∕2(𝑄𝑇 ), 𝑘𝑥, 𝑘𝑡 ∈ 𝐿∞(0, 𝑇 ;𝐿2(𝛺)),

for any 1 < 𝑝 ≤ ∞, for some 𝜎 ∈ (0, 1∕2), and the initial data is satisfied in
the sense of 𝐶(𝛺).

Remark 1.2.  In the theorem above, we generally require some 
global polynomial growth control over the memory uptake function 
𝑔(⋅). From this result, we see that problem (1.8.a) is significantly more 
restrictive than problem (1.8.b) in terms of further growth conditions 
on 𝑔(⋅). Indeed, the first case requires that the memory uptake behaves 
roughly linearly, particularly for large arguments, while the second case 
requires no further growth condition. From our previous discussion of 
biologically-motivated forms of 𝑔(⋅), we see that the forms 𝑔(𝑢) = 𝜌𝑢 and
𝑔(𝑢) = 𝜌𝑢2∕(1 + 𝑐𝑢) satisfy the necessary conditions for either system.
On the other hand, quadratic growth 𝑔(𝑢) = 𝜌𝑢2 as described in [7]
satisfies the conditions for system (1.8.b) but not (1.8.a). This highlights 
an essential key difference between these two problems regarding their 
well-posedness.
4 
For the detection function 𝐺 satisfying (H0), the Fourier coefficient 
𝐶𝑛(𝐺) is defined for any 𝑛 ∈ N as follows: 

𝐶𝑛(𝐺) =
1
2𝐿 ∫

𝐿

−𝐿
𝑒−

𝑖𝑛𝜋
𝐿 𝑦𝐺(𝑦)d𝑦 = 1

2𝐿 ∫

𝐿

−𝐿
cos

( 𝑛𝜋
𝐿
𝑦
)

𝐺(𝑦)d𝑦, (1.12)

For 𝑛 ∈ N, if 𝐶𝑛(𝐺) ≠ 0, define 

𝛼𝑛 =
−(𝜇 + 𝛽)2

[𝑔′(1)(𝜇 + 𝛽) − 𝛽𝜌]𝐶𝑛(𝐺)

(

𝑑 −
𝑓 ′(1)
𝑙𝑛

)

. (1.13)

 Notice that 𝛼𝑛 is well-defined under hypothesis (H3). Note also that 
𝐶𝑛(𝐺) could be positive or negative. Define 
𝛴+ ∶ = {𝑛 ∈ N ∶ 𝛼𝑛 > 0}, 𝛴− ∶= {𝑛 ∈ N ∶ 𝛼𝑛 < 0},

𝛼𝑟 ∶ =

⎧

⎪

⎨

⎪

⎩

+∞  whenever 𝛴+ = ∅,
min
𝑛∈𝛴+

𝛼𝑛  otherwise,

𝛼𝑙 ∶=

⎧

⎪

⎨

⎪

⎩

−∞  whenever 𝛴− = ∅,
max
𝑛∈𝛴−

𝛼𝑛 otherwise.

(1.14)

Note that 𝛼𝑟, 𝛼𝑙 are well-defined as 
∑∞

−∞ |𝐶𝑛(𝐺)|
2 < ∞.  Given a fixed,

even kernel 𝐺 that is non-increasing from the origin, 𝛼𝑙 corresponds to 
the (first) critical value at which the homogeneous state is destabilized 
by attractive forces. On the other hand, 𝛼𝑟 for 𝐺 is equivalent to 𝛼𝑙 for 
−𝐺, a non-decreasing kernel. 𝛼𝑟 is thus the (first) critical value at which 
the homogeneous state becomes destabilized by repulsive forces. As 
observed in [43], if 𝛴+ is empty (𝛴− is empty), then no value of 𝛼 can 
destabilize the homogeneous state due to repulsive (attractive) forces. 
Note finally that these conventions are flipped if we instead assume that 
𝐺 is non-decreasing from the origin.

Then, we have the following theorem regarding the stability of the 
unique constant positive steady state 𝑈∗ = (1, 𝜌∕(𝜇+ 𝛽)) with respect to 
(1.8.a). 

Theorem 1.3.  Assume that assumptions (H0)-(H2) are satisfied, and let 
𝛴+, 𝛴−, 𝛼𝑙 , 𝛼𝑟 be defined as in (1.14). Then

(i) The constant steady state solution 𝑈∗ is locally asymptotically stable 
with respect to (1.8.a) if 𝛼𝑙 < 𝛼 < 𝛼𝑟.

(ii) The constant steady state solution 𝑈∗ is unstable with respect to
(1.8.a) if 𝛼 < 𝛼𝑙 or 𝛼 > 𝛼𝑟.

Similarly, we define 

𝛼𝑛 =
−(𝜌 + 𝜇 + 𝛽)2

𝜅[𝑔′(1)(𝜇 + 𝛽) − 𝛽𝜌]𝐶𝑛(𝐺)

(

𝑑 −
𝑓 ′(1)
𝑙𝑛

)

, (1.15)

and 
̂+ ∶ = {𝑛 ∈ N ∶ 𝛼𝑛 > 0}, 𝛴− ∶= {𝑛 ∈ N ∶ 𝛼𝑛 < 0},

𝛼𝑟 ∶ =

⎧

⎪

⎨

⎪

⎩

+∞  whenever 𝛴+ = ∅
min
𝑛∈𝛴+

𝛼𝑛  otherwise

𝛼𝑙 ∶=

⎧

⎪

⎨

⎪

⎩

−∞  whenever 𝛴− = ∅,
max
𝑛∈𝛴−

𝛼𝑛 otherwise.

(1.16)

Then we have the stability results for the unique constant positive 
steady state 𝑈∗ = (1, 𝜌𝜅∕(𝜌 + 𝜇 + 𝛽)) with respect to (1.8.b). 

Theorem 1.4.  Assume that assumptions (H0)-(H2) are satisfied, and let 
̂+, 𝛴−, 𝛼𝑙 , 𝛼𝑟 be defined as in (1.16). Then
(i) The constant steady state solution 𝑈∗ is locally asymptotically stable 

with respect to (1.8.b) if ̂𝛼𝑙 < 𝛼 < 𝛼𝑟.
(ii) The constant steady state solution 𝑈∗ is unstable with respect to

(1.8.b) if 𝛼 < 𝛼  or 𝛼 > 𝛼 .
𝑙 𝑟
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The quantities 𝛼𝑛 (𝛼𝑛) defined in (1.13) ((1.15)) are the critical 
parameter values such that the stability of the spatially-constant steady 
state changes, and they are also bifurcation points for (1.8.a) ((1.8.b))
where spatially non-homogeneous steady-state solutions bifurcate from
the constant ones as found in the following Theorems. 

Theorem 1.5.  Assume that assumptions (H0)-(H2) are satisfied, and
𝑛 ∈ N such that 𝐶𝑛(𝐺) ≠ 0. Then near (𝛼, 𝑈 ) = (𝛼𝑛, 𝑈∗), Eq. (1.8.a) has 
a line of homogeneous solutions 𝛤0 ∶= {(𝛼, 𝑈∗) ∶ 𝛼 ∈ R} and a family of
non-constant steady state solutions bifurcating from 𝛤0 at 𝛼 = 𝛼𝑛 in a form
of 
𝛤𝑛 ∶= {(𝛼𝑛(𝑠), 𝑢𝑛(𝑠, ⋅), 𝑘𝑛(𝑠, ⋅)) ∶ −𝛿 < 𝑠 < 𝛿} (1.17)

with 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼𝑛(𝑠) = 𝛼𝑛 + 𝛼′𝑛(0)𝑠 + 𝑜(𝑠),

𝑢𝑛(𝑠, 𝑥) = 1 + 𝑠 cos
( 𝑛𝜋
𝐿
𝑥
)

+ 𝑠2𝑧1𝑛(𝑠, 𝑥),

𝑘𝑛(𝑠, 𝑥) =
𝜌

𝜇 + 𝛽
+ 𝑠

𝑔′(1)(𝜇 + 𝛽) − 𝛽𝜌
(𝜇 + 𝛽)2

cos
( 𝑛𝜋
𝐿
𝑥
)

+ 𝑠2𝑧2𝑛(𝑠, 𝑥),

(1.18)

where 𝑧𝑛(𝑠) = (𝑧1𝑛(𝑠, ⋅), 𝑧2𝑛(𝑠, ⋅)) satisfies lim𝑠→0
‖𝑧𝑛(𝑠)‖ = 0. Moreover the set 

of steady state solutions of (1.8.a) near (𝛼𝑛, 𝑈∗) consists precisely of the
curves 𝛤0 and 𝛤𝑛.

Theorem 1.6.  Assume that assumptions (H0)-(H2) are satisfied, and
𝑛 ∈ N such that 𝐶𝑛(𝐺) ≠ 0. Then near (𝛼, 𝑈 ) = (𝛼𝑛, 𝑈∗), Eq. (1.8.b) has 
a line of homogeneous solutions 𝛤0 ∶= {(𝛼, 𝑈∗) ∶ 𝛼 ∈ R} and a family of
non-constant steady state solutions bifurcating from 𝛤0 at 𝛼 = 𝛼𝑛 in a form
of 
𝛤𝑛 ∶= {(𝛼𝑛(𝑠), 𝑢̂𝑛(𝑠, ⋅), 𝑘̂𝑛(𝑠, ⋅)) ∶ −𝛿 < 𝑠 < 𝛿} (1.19)

with 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼𝑛(𝑠) = 𝛼𝑛 + 𝛼′𝑛(0)𝑠 + 𝑜(𝑠),

𝑢̂𝑛(𝑠, 𝑥) = 1 + 𝑠 cos
( 𝑛𝜋
𝐿
𝑥
)

+ 𝑠2𝑧1𝑛(𝑠, 𝑥),

𝑘̂𝑛(𝑠, 𝑥) =
𝜌

𝜌 + 𝜇 + 𝛽
+ 𝜅𝑠

𝑔′(1)(𝜇 + 𝛽) − 𝛽𝜌
(𝜇 + 𝛽 + 𝜌)2

cos
( 𝑛𝜋
𝐿
𝑥
)

+ 𝑠2𝑧2𝑛(𝑠, 𝑥),

(1.20)

where 𝑧𝑛(𝑠) = (𝑧1𝑛(𝑠, ⋅), 𝑧2𝑛(𝑠, ⋅)) satisfies lim𝑠→0
‖𝑧𝑛(𝑠)‖ = 0. Moreover the set 

of steady state solutions of (1.8.b) near (𝛼𝑛, 𝑈∗) consists precisely of the
curves 𝛤0 and 𝛤𝑛.

We also classify the nature of the bifurcation at these critical values, 
see Theorems  4.4 and 4.5. Together, these results show that the central 
quantity governing spontaneous pattern formation is the advective 
strength towards or away from memorized areas, encapsulated in 𝛼.
As 𝛼𝑙 < 0 < 𝛼𝑟 holds necessarily from the assumptions made, the key 
driver of pattern formation is that 𝛼 is of sufficient magnitude. If 𝛼
is negative  and 𝐺 non-increasing from the origin, then we have an
attraction towards remembered areas, similar to many nonlocal models 
of biological aggregation (e.g. [44]). Some examples are found in Figs. 
2, 5, where patterns appear due to attractive forces. On the flip-side,
positive 𝛼 indicates repulsion from remembered areas and leads to
patterns such as in Figs.  3, 6, where they emerge due to repulsive forces. 
Interestingly, there is a lack of symmetry in the sense that −𝛼𝑙 ≠ 𝛼𝑟 in 
general. In fact, |

|

𝛼𝑙|| and 𝛼𝑟 do not even remain ordered! This can be 
seen in Figs.  1 and 4.

Moreover, Theorems  1.5 and 1.6 show the steady state consists of 
a single cosine wave near the bifurcation point, and Theorems  4.4
and 4.5 give conditions on the stability of the emergent branches. An
example of subcritical bifurcations is shown in Figs.  2–3, whereas an
example of supercritical bifurcations is shown in Figs.  5–6. For the first 
(unstable) case, we do not see the low-amplitude cosine wave emerge 
as a stable solution; instead, we observe an immediate jump to a high-
amplitude solution. For the second (stable) case, we observe a stable, 
low-amplitude solution emerge smoothly from the homogeneous state.
5 
2. Well-posedness

In this section, we prove the existence of a unique global solution 
to a problem more general than system (1.8.a) or (1.8.b) for detection 
functions 𝐺(⋅) satisfying (H0) and (H3), which includes the top-hat 
kernel. The restrictions on the growth terms 𝑓 (⋅) and 𝑔(⋅) are compatible 
with the choices made in Section 5. The challenge is in treating the (po-
tentially) discontinuous kernel appearing inside the nonlocal advection 
term. To overcome these difficulties, we abuse a useful ‘embedding’
property of the top-hat kernel in one spatial dimension. This allows one 
to obtain a priori estimates on the solution 𝑘(𝑥, 𝑡) from which we obtain 
appropriate uniform bounds on 𝑢(𝑥, 𝑡) and higher derivatives. We begin
with some preliminary estimates.

2.1. Preliminary estimates

In general, we assume 𝐺(⋅) satisfies (H3); we first show this holds 
for the top-hat kernel. 

Lemma 2.1.  Let 1 ≤ 𝑝 ≤ ∞ and fix 𝑇 > 0. Suppose 𝑧(⋅, 𝑡) ∈ 𝐿𝑝(𝛺)
is periodic in 𝛺 for almost every 𝑡 ∈ [0, 𝑇 ]. Denote by 𝑧𝑥(⋅, 𝑡) the spatial 
convolution (1.4) of 𝑧𝑥 with the top-hat detection function . Then, for almost
every 𝑡 ∈ [0, 𝑇 ] there holds 
‖

‖

𝑧𝑥(⋅, 𝑡)‖‖𝐿𝑝(𝛺) ≤
1

2𝑅𝐿
‖𝑧(⋅, 𝑡)‖𝐿𝑝(𝛺) . (2.1)

In particular, we have that 
ess sup
𝑡∈(0,𝑇 )

‖

‖

𝑧𝑥(⋅, 𝑡)‖‖𝐿𝑝(𝛺) ≤ (2𝑅𝐿)−1 ess sup
𝑡∈(0,𝑇 )

‖𝑧(⋅, 𝑡)‖𝐿𝑝(𝛺) , (2.2)

for any 𝑇 > 0 fixed.

Remark 2.2.  If 𝑧(⋅, 𝑡) is continuous, we may replace ‘‘almost ev-
ery’’ with ‘‘every’’ and ess sup with sup. This will be the case in the 
forthcoming results.

Proof.  First, we drop the dependence on 𝑡 for notational brevity. The 
result essentially follows from an elementary inequality and the fact 
that

𝑧𝑥 =
𝑧(𝑥 + 𝑅) − 𝑧(𝑥 − 𝑅)

4𝑅𝐿
when 𝐺(⋅) is the top hat detection function. Consequently,
‖

‖

𝑧𝑥‖‖
𝑝
𝐿𝑝(𝛺) =

1
(4𝑅𝐿)𝑝 ∫𝛺

|𝑧(𝑥 + 𝑅) − 𝑧(𝑥 − 𝑅)|𝑝 d𝑥

≤ 2𝑝−1
(4𝑅𝐿)𝑝 ∫𝛺

(

|𝑧(𝑥 + 𝑅)|𝑝 + |𝑧(𝑥 − 𝑅)|𝑝
)

d𝑥 ≤ 1
(2𝑅𝐿)𝑝

‖𝑧‖𝑝𝐿𝑝(𝛺) ,

(2.3)

where we have used the periodicity of 𝑧 in 𝛺 to deduce that the 
contribution from the terms centred at 𝑥 + 𝑅 and 𝑥 − 𝑅 are identical. 
This proves (2.1). Taking the 𝑝th roots of both sides followed by the 
supremum over 𝑡 ∈ (0, 𝑇 ) yields (2.2). □

Remark 2.3.  The same 𝐿𝑝-type estimate holds for the Gaussian and ex-
ponential detection functions (1.5)–(1.6). These cases are more straight-
forward since the kernels themselves are appropriately differentiable 
and bounded. In fact, such a condition holds for kernels of Bounded 
Variation, see [42, Hypothesis (H2)] and the subsequent discussion. We
omit further details here.

Next, we obtain 𝐿𝑝(𝛺) bounds on a function 𝑘(𝑥, 𝑡) when 𝑘 solves a
linear, first-order differential equation for each 𝑥 ∈ 𝛺. 

Lemma 2.4.  Let 0 ≨ 𝑤(𝑥, 𝑡) ∈ 𝐶1,1(𝑄𝑇 ) ∩ 𝐿1,1(𝑄𝑇 ) be periodic in 𝛺 for
all 𝑡 ∈ (0, 𝑇 ) and assume 1 < 𝑝 ≤ ∞. For each 𝑥 ∈ 𝛺, let 𝑘(𝑥, ⋅) solve the 
ordinary differential equation 
𝑑𝑘 = 𝑔 (𝑤) − 𝑔 (𝑤)𝑘 (2.4)

𝑑𝑡 1 2
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where 𝑔1, 𝑔2 ∈ 𝐶1(R+) are nonnegative and 𝑘(𝑥, 0) = 𝑘0(𝑥) ∈ 𝑊 1,2(𝛺).
Then, if there exists 𝑀 > 0 such that 

𝑔1(𝑧) ≤𝑀𝑔2(𝑧)  for all 𝑧 ≥ 0, (2.5)

there holds 

sup
𝑡∈[0,𝑇 ]

‖𝑘(⋅, 𝑡)‖𝐿∞(𝛺) ≤𝑀 + ‖

‖

𝑘0‖‖𝐿∞(𝛺) (2.6)

Proof.  First, note that by solving the differential equation directly, 
𝑘(𝑥, ⋅) ∈ 𝐶1([0, 𝑇 ]). By the smoothness of 𝑔𝑖(⋅), 𝑖 = 1, 2 and the 
boundedness of 𝑤(𝑥, 𝑡) in 𝑄𝑇 , 𝑘(⋅, 𝑡) ∈ 𝐿𝑝(𝛺) for any 𝑝 > 1, for all
𝑡 ∈ (0, 𝑇 ). Taking the time derivative of 1𝑝 ‖𝑘(⋅, 𝑡)‖

𝑝
𝐿𝑝(𝛺) gives 

1
𝑝
𝑑
𝑑𝑡 ∫𝛺

𝑘𝑝d𝑥 = ∫𝛺
𝑘𝑝−1𝑔1(𝑤)d𝑥 − ∫𝛺

𝑘𝑝𝑔2(𝑤)d𝑥. (2.7)

We now apply Young’s inequality. To this end, we carefully rewrite it 
as

𝑘𝑝−1𝑔1(𝑤) = 𝑘𝑝−1𝑔2(𝑤)(𝑝−1)∕𝑝 ⋅
𝑔1(𝑤)

𝑔2(𝑤)(𝑝−1)∕𝑝

≤ 1
𝑝1

(

𝑘𝑝−1𝑔2(𝑤)(𝑝−1)∕𝑝
)𝑝1 + 1

𝑞1

(

𝑔1(𝑤)
𝑔2(𝑤)(𝑝−1)∕𝑝

)𝑞1
, (2.8)

where 𝑝1, 𝑞1 > 1 satisfy 𝑝−11 +𝑞−11 = 1. Choosing 𝑝1 = 𝑝∕(𝑝−1) and 𝑞1 = 𝑝,
Eq. (2.7) then becomes 
𝑑
𝑑𝑡 ∫𝛺

𝑘𝑝d𝑥 ≤ ∫𝛺

(

𝑔1(𝑤)
𝑔2(𝑤)

)𝑝
𝑔2(𝑤)d𝑥 (2.9)

Using bound (2.5) we then have 
𝑑
𝑑𝑡 ∫𝛺

𝑘𝑝d𝑥 ≤𝑀𝑝
‖

‖

𝑔2(𝑤(⋅, 𝑡))‖‖𝐿1(𝛺) . (2.10)

Integrating both sides from 0 to 𝑡 yields 

‖𝑘(⋅, 𝑡)‖𝑝𝐿𝑝(𝛺) ≤𝑀𝑝
‖

‖

𝑔2(𝑤)‖‖𝐿1,1(𝑄𝑇 )
+ ‖

‖

𝑘0‖‖
𝑝
𝐿𝑝(𝛺) . (2.11)

Taking 𝑝th roots of both sides and sending 𝑝→ ∞ leaves 

𝑘(⋅, 𝑡)‖𝐿∞(𝛺) ≤𝑀 + ‖

‖

𝑘0‖‖𝐿∞(𝛺) . (2.12)

Taking the supremum over 𝑡 ∈ (0, 𝑇 ) yields (2.6), completing the 
proof. □

We also highlight the following properties of 𝑘(𝑥, 𝑡) inherited by
the function 𝑤(𝑥, 𝑡), a simple consequence of solving the ordinary 
differential equation. 

Proposition 2.5.  Suppose 𝑘(𝑥, ⋅) solves (2.4) with 𝑤 ∈ 𝐶1,1(𝑄𝑇 ) periodic
in 𝛺. Then, 𝑘(𝑥, 𝑡) ∈ 𝐶1,2(𝑄𝑇 ). Moreover, 𝑘(⋅, 𝑡) is periodic in 𝛺 for all
𝑡 > 0.

Finally, we obtain 𝐿𝑝 estimates on the time/space derivatives 𝑘𝑡 and
𝑘𝑥. 

Theorem 2.6.  Assume the same conditions as in Lemma  2.4 hold. Assume
also that there exists 𝑁 > 0 and 𝑞 ≥ 1 fixed so that 

𝑔2(𝑧) ≤ 𝑁(1 + 𝑧𝑞) for all 𝑧 ≥ 0. (2.13)

Assume in addition that 𝑤𝑥 ∈ 𝐿2,2(𝑄𝑇 ) and sup𝑡∈(0,𝑇 ) ‖𝑤(⋅, 𝑡)‖𝐿𝑝(𝛺) < ∞
for all 𝑝 ≥ 1. Then there holds

sup
𝑡∈(0,𝑇 )

‖

‖

𝑘𝑡(⋅, 𝑡)‖‖𝐿𝑝(𝛺) ≤

4𝑁

(

𝑀 + sup
𝑡∈(0,𝑇 )

‖𝑘(⋅, 𝑡)‖𝐿∞(𝛺)

)(

|𝛺|

1∕𝑝 + sup
𝑡∈(0,𝑇 )

‖𝑤(⋅, 𝑡)‖𝑞𝐿𝑝𝑞 (𝛺)

)

(2.14)

for any 𝑝 ∈ (1,∞). Moreover, if for some 𝑁̃ > 0, 𝑞 ≥ 0 fixed we have that 
|𝑔′ (𝑧)| , |𝑔′ (𝑧)| ≤ 𝑁̃(1 + 𝑧𝑞)  for all 𝑧 ≥ 0, (2.15)
|

|

1 |

|

|

|

2 |

|

6 
then there exists a constant 𝐶 > 0 depending only on 𝑇 , 𝑁̃ , and 𝑞 so that
sup
𝑡∈(0,𝑇 )

‖

‖

𝑘𝑥(⋅, 𝑡)‖‖𝐿𝑝(𝛺) ≤ 𝐶 sup
𝑡∈(0,𝑇 )

‖

‖

(1 +𝑤𝑞)(⋅, 𝑡)‖
‖𝐿2𝑝∕(2−𝑝)(𝛺)

‖

‖

𝑤𝑥‖‖𝐿2,2(𝑄𝑇 )

+ ‖

‖

(𝑘0)𝑥‖‖𝐿𝑝(𝛺) , (2.16)

for any 𝑝 ∈ (1, 2) whenever 𝑞 > 0, and any 𝑝 ∈ (1, 2] whenever 𝑞 = 0.

Proof.  Integrating |
|

𝑘𝑡||
𝑝 over 𝛺, applying an elementary inequality, and

using (2.5) yields

∫𝛺
|

|

𝑘𝑡||
𝑝 d𝑥 = ∫𝛺

|

|

𝑔1(𝑤) − 𝑔2(𝑤)𝑘||
𝑝 d𝑥

≤ 2𝑝−1 ∫𝛺

(

|

|

𝑔1(𝑤)||
𝑝 + |

|

𝑔2(𝑤)||
𝑝
|𝑘|𝑝

)

d𝑥.

≤ 2𝑝−1 ∫𝛺

(

𝑀𝑝 + |𝑘|𝑝
)

|

|

𝑔2(𝑤)||
𝑝 d𝑥 (2.17)

Estimating further, we use the bound on 𝑘 along with bound (2.13) and
the same elementary inequality to see that

∫𝛺
|

|

𝑘𝑡||
𝑝 d𝑥 ≤ 2𝑝−1

(

𝑀𝑝 + ‖𝑘(⋅, 𝑡)‖𝑝𝐿∞(𝛺)

)

∫𝛺
|

|

𝑔2(𝑤)||
𝑝 d𝑥

≤ 4𝑝−1𝑁𝑝
(

𝑀𝑝 + ‖𝑘(⋅, 𝑡)‖𝑝𝐿∞(𝛺)

)

∫𝛺
(1 +𝑤𝑝𝑞) d𝑥

≤ 4𝑝𝑁𝑝
(

𝑀𝑝 + ‖𝑘(⋅, 𝑡)‖𝑝𝐿∞(𝛺)

)(

|𝛺| + ‖𝑤(⋅, 𝑡)‖𝑝𝑞𝐿𝑝𝑞 (𝛺)

)

.

hus, we take the 𝑝th roots of both sides followed by the supremum 
over 𝑡 ∈ (0, 𝑇 ) to obtain (2.14). This completes the first part of the 
proof.

Next, we obtain 𝐿𝑝 bounds on 𝑘𝑥 for any 𝑝 ∈ (1, 2). Solving the 
rdinary differential equation, we may compute 𝑘𝑥(𝑥, 𝑡) as follows:

𝑘𝑥(𝑥, 𝑡) =
𝜕
𝜕𝑥

(

∫

𝑡

0
𝑒− ∫ 𝑡𝑠 𝑔2(𝑤)d𝜉𝑔1(𝑤)d𝑠 + 𝑘0(𝑥)

)

= ∫

𝑡

0
𝑒− ∫ 𝑡𝑠 𝑔2(𝑤)d𝜉

(

𝑔′1(𝑤)𝑤𝑥 − ∫

𝑡

𝑠
𝑔′2(𝑤)𝑤𝑥𝑑𝜉

)

d𝑠 + (𝑘0)𝑥. (2.18)

Therefore, estimating crudely and using bound (2.15), there holds

|

|

𝑘𝑥|| ≤ ∫

𝑇

0

(

|

|

|

𝑔′1(𝑤)
|

|

|

|

|

𝑤𝑥|| + ∫

𝑇

0

|

|

|

𝑔′2(𝑤)
|

|

|

|

|

𝑤𝑥|| d𝜉
)

d𝑠 + |

|

(𝑘0)𝑥||

≤ ∫

𝑇

0

(

|

|

|

𝑔′1(𝑤)
|

|

|

+ 𝑇 |

|

|

𝑔′2(𝑤)
|

|

|

)

|

|

𝑤𝑥|| d𝑠 + |

|

(𝑘0)𝑥||

≤ 𝑁̃(1 + 𝑇 )∫

𝑇

0

(

1 +𝑤𝑞
)

|

|

𝑤𝑥|| d𝑠 + |

|

(𝑘0)𝑥|| . (2.19)

Raising both sides to the power 𝑝, integrating over 𝛺 and estimating 
via an elementary application of Hölder’s inequality in the temporal 
domain yields

∫𝛺
|

|

𝑘𝑥||
𝑝 d𝑥 ≤ 𝑁̃𝑝(1 + 𝑇 )𝑝 ∫𝛺

(

∫

𝑇

0
(1 +𝑤𝑞) |

|

𝑤𝑥|| d𝑠
)𝑝

d𝑥 + ‖

‖

(𝑘0)𝑥‖‖
𝑝
𝐿𝑝(𝛺)

≤ 𝑁̃𝑝(1 + 𝑇 )𝑝𝑇 𝑝−1 ∬𝑄𝑇
(1 +𝑤𝑞)𝑝 |

|

𝑤𝑥||
𝑝 d𝑥d𝑠 + ‖

‖

(𝑘0)𝑥‖‖
𝑝
𝐿𝑝(𝛺) .

(2.20)

We now apply Hölder’s inequality in the spatial domain as follows:

∫𝛺
(1 +𝑤𝑞)𝑝 |

|

𝑤𝑥||
𝑝 d𝑥 ≤

(

∫𝛺
|

|

𝑤𝑥||
𝑝𝑝1 d𝑥

)1∕𝑝1 (

∫𝛺
(1 +𝑤𝑞)𝑝𝑞1d𝑥

)1∕𝑞1
,

here we again choose 𝑝1 = 2∕𝑝 > 1 so that 𝑞1 = 2∕(2 − 𝑝) > 1. 
implifying and taking the supremum over 𝑡 ∈ (0, 𝑇 ) for the lower order 
erm, we find

𝛺
(1 +𝑤𝑞)𝑝 |

|

𝑤𝑥||
𝑝 d𝑥 ≤ ‖

‖

𝑤𝑥(⋅, 𝑡)‖‖
𝑝
𝐿2(𝛺)

sup
𝑡∈(0,𝑇 )

‖

‖

(1 +𝑤𝑞)(⋅, 𝑡)‖
‖

𝑝
𝐿2𝑝∕(2−𝑝)(𝛺)

2.20) then becomes

∫𝛺
|

|

𝑘𝑥||
𝑝 d𝑥 ≤ 𝑁̃𝑝(1 + 𝑇 )𝑝𝑇 𝑝−1 sup

𝑡∈(0,𝑇 )
‖

‖

(1 +𝑤𝑞)(⋅, 𝑡)‖
‖

𝑝
𝐿2𝑝∕(2−𝑝)(𝛺)

×
𝑇
‖

‖

𝑤𝑥(⋅, 𝑠)‖‖
𝑝 d𝑠
∫0 𝐿2(𝛺)
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+ ‖

‖

(𝑘0)𝑥‖‖𝐿𝑝(𝛺) . (2.21)

Finally, we apply Hölder’s inequality in the temporal domain once more 
as follows:

∫

𝑇

0
‖

‖

𝑤𝑥(⋅, 𝑠)‖‖
𝑝
𝐿2(𝛺)

d𝑠 ≤ 𝑇 1−𝑝∕2
‖

‖

𝑤𝑥‖‖
𝑝
𝐿2,2(𝑄𝑇 )

,

whence (2.21) becomes

∫𝛺
|

|

𝑘𝑥||
𝑝 d𝑥 ≤ 𝑁̃𝑝(1 + 𝑇 )𝑝𝑇 𝑝∕2 sup

𝑡∈(0,𝑇 )
‖

‖

(1 +𝑤𝑞)(⋅, 𝑡)‖
‖

𝑝
𝐿2𝑝∕(2−𝑝)(𝛺)

‖

‖

𝑤𝑥‖‖
𝑝
𝐿2,2(𝑄𝑇 )

+ ‖

‖

(𝑘0)𝑥‖‖
𝑝
𝐿𝑝(𝛺) . (2.22)

Taking the 𝑝th roots of both sides followed by the supremum over 
𝑡 ∈ (0, 𝑇 ) yields (2.16), valid for any 𝑝 ∈ (1, 2). Finally, if 𝑞 = 0, the 
dependence on 𝑤𝑞 vanishes and the bound holds for 𝑝 = 2, completing 
the proof. □

2.2. Existence & uniqueness

We are now prepared to use these preliminary estimates to prove 
the existence of a weak solution. Much of the heavy lifting is now
complete. What remains is to construct an appropriate sequence of 
approximate solutions and use our previously obtained estimates to
extract a convergent subsequence.

Proof of Theorem  1.1.  We prove the existence of a global weak 
solution to the following general system subject to periodic boundary
conditions: 
{

𝑢𝑡 = 𝑑𝑢𝑥𝑥 + 𝛼(𝑢𝑘𝑥)𝑥 + 𝑓 (𝑢),  in 𝑄𝑇 ,
𝑘𝑡 = 𝑔1(𝑢) − 𝑔2(𝑢)𝑘  in 𝑄𝑇 ,

(2.23)

where systems (1.8.a) and (1.8.b) are obtained by choosing 𝑔1(𝑢) ∶=
𝑔(𝑢), 𝑔2(𝑢) ∶= 𝜇+𝛽𝑢 or 𝑔1(𝑢) ∶= 𝜅𝑔(𝑢), 𝑔2(𝑢) ∶= 𝜇+𝛽𝑢+𝑔(𝑢), respectively.

First, we construct a sequence of approximate solutions via the 
following iteration scheme: 
{

(𝑢𝑛)𝑡 = 𝑑(𝑢𝑛)𝑥𝑥 + 𝛼(𝑢𝑛(𝑘𝑛)𝑥)𝑥 + 𝑓 (𝑢𝑛),  in 𝑄𝑇 ,
(𝑘𝑛)𝑡 = 𝑔1(𝑢𝑛−1) − 𝑔2(𝑢𝑛−1)𝑘𝑛  in 𝑄𝑇 ,

(2.24)

for 𝑛 ≥ 2, where we choose (𝑢𝑛(𝑥, 0), 𝑘𝑛(𝑥, 0)) = (𝑢0(𝑥), 𝑘0(𝑥)) for each 
𝑛. Note carefully that 𝑢𝑛 = 𝑢𝑛(𝑥, 𝑡) is a function defined in 𝑄𝑇  for all
𝑛 ≥ 1, whereas 𝑢0 = 𝑢0(𝑥) denotes the fixed initial data of the original 
problem. The same holds for {𝑘𝑛}𝑛≥2, each of which is defined over 𝑄𝑇 ;
notice also that we do not refer to 𝑘1(𝑥, 𝑡) as we require only 𝑢1(𝑥, 𝑡) to
initiate.

Through this construction, we generate a sequence of solutions 
{(𝑢𝑛, 𝑘𝑛)}𝑛≥2. More precisely, we choose the initial iterate 0 < 𝑢1(𝑥, 𝑡) ∈
𝐶2+𝜎,1+𝜎∕2(𝑄𝑇 ) for some 𝜎 ∈ (0, 1). By solving differential equation for 
𝑘2(𝑥, 𝑡), the dependence of 𝑘2(𝑥, 𝑡) on the sufficiently regular functions 
𝑢1(𝑥, 𝑡) and 𝑔𝑖(⋅), 𝑖 = 1, 2, ensures that 𝑘2 ∈ 𝐶2+𝜎,1+𝜎∕2(𝑄𝑇 ) for some 
(possibly smaller) 𝜎 ∈ (0, 1) as well. Furthermore, the positivity of 𝑢1
and 𝑢1(𝑥, 0) = 𝑢0(𝑥) ensures that 𝑘2 ≩ 0 in 𝑄𝑇 . Then, the existence of a
nonnegative, nontrivial solution 𝑢2(𝑥, 𝑡) ∈ 𝐶2+𝜎,1+𝜎∕2(𝑄𝑇 ) follows from
the classical theory of parabolic equations since it is a second order, 
semi-linear parabolic equation with Hölder continuous coefficients, 
see., e.g., [45, Theorems 5.1-5.3] (note that nonnegativity follows 
from Harnack’s inequality [46, Theorems 8.1.1-8.1.3]). Therefore, there 
exists a nonnegative, nontrivial classical solution pair (𝑢2, 𝑘2) each 
belonging to 𝐶2+𝜎,1+𝜎∕2(𝑄𝑇 ) for some 𝜎 ∈ (0, 1). One may then proceed 
inductively, proving the existence of a nonnegative, nontrivial classical 
solution pair (𝑢𝑛, 𝑘𝑛) for any 𝑛 ≥ 3 using the regularity of the previous 
iterate 𝑢𝑛−1(𝑥, 𝑡). We now seek uniform bounds in a weaker setting.

To this end, fix 𝑛 ≥ 2. It is easy to obtain 𝐿1-bounds on 𝑢𝑛 as follows: 
d 𝑢𝑛d𝑥 = 𝑓 (𝑢𝑛)d𝑥 ≤ 𝑓 ′(0) 𝑢𝑛d𝑥, (2.25)

d𝑡 ∫𝛺 ∫𝛺 ∫𝛺

7 
where we have integrated by parts, applied the boundary conditions, 
and used the assumed bound 𝑓 (𝑧) ≤ 𝑓 ′(0)𝑧 for all 𝑧 ≥ 0. Grönwall’s 
inequality implies that
‖

‖

𝑢𝑛(⋅, 𝑡)‖‖𝐿1(𝛺) ≤ 𝑒𝑓
′(0)𝑇

‖

‖

𝑢0‖‖𝐿1(𝛺) .

Thus, integrating over (0, 𝑇 ) yields 
‖

‖

𝑢𝑛‖‖𝐿1,1(𝑄𝑇 )
≤ 𝑇 𝑒𝑓

′(0)𝑇
‖

‖

𝑢0‖‖𝐿1(𝛺) , (2.26)

and so {𝑢𝑛}𝑛≥1 is uniformly bounded in 𝐿1,1(𝑄𝑇 ) for any 𝑇 > 0 fixed.
Return now to the equation for 𝑘𝑛. The smoothness of the iterates 

𝑢𝑛 allows us to apply Lemma  2.4, giving us 

sup
𝑡∈(0,𝑇 )

‖

‖

𝑘𝑛(⋅, 𝑡)‖‖𝐿∞(𝛺) ≤𝑀 + ‖

‖

𝑘0‖‖𝐿∞(𝛺) . (2.27)

ote that 𝑘0 ∈ 𝑊 1,2(𝛺) ⇒ 𝑘0 ∈ 𝐿∞(𝛺) by the Sobolev embedding. 
hen, Lemma  2.1 paired with estimate (2.27) implies that

sup
𝑡∈(0,𝑇 )

‖

‖

‖

(𝑘𝑛)𝑥(⋅, 𝑡)
‖

‖

‖𝐿∞(𝛺)
≤ (2𝑅𝐿)−1 sup

𝑡∈(0,𝑇 )
‖

‖

𝑘𝑛(⋅, 𝑡)‖‖𝐿∞(𝛺)

≤ (2𝑅𝐿)−1
(

𝑀 + ‖

‖

𝑘0‖‖𝐿∞(𝛺)

)

=∶ 𝐶1 (2.28)

Now we seek 𝐿𝑝-bounds on the iterates 𝑢𝑛. Fix 𝑝 ≥ 2. Taking the time 
derivative of 1𝑝 ‖‖𝑢𝑛(⋅, 𝑡)‖‖

𝑝
𝐿𝑝(𝛺), integrating by parts yields and using the 

bound for 𝑓 (⋅) yields
1
𝑝
𝑑
𝑑𝑡 ∫𝛺

𝑢𝑝𝑛d𝑥 = ∫𝛺
𝑢𝑝−1𝑛 (𝑑(𝑢𝑛)𝑥 + 𝛼𝑢𝑛(𝑘𝑛)𝑥)𝑥d𝑥 + ∫𝛺

𝑢𝑝−1𝑛 𝑓 (𝑢𝑛)d𝑥

≤ 𝑓 ′(0)∫𝛺
𝑢𝑝𝑛d𝑥 − 𝑑(𝑝 − 1)∫𝛺

𝑢𝑝−2𝑛
|

|

(𝑢𝑛)𝑥||
2 d𝑥

+ |𝛼| (𝑝 − 1)∫𝛺
𝑢𝑝−1𝑛

|

|

(𝑢𝑛)𝑥||
|

|

|

(𝑘𝑛)𝑥
|

|

|

d𝑥. (2.29)

We now use (2.28) and Cauchy’s inequality with epsilon to control the 
third term by the second term on the right-hand side of (2.29). To this 
end, we estimate

|𝛼| 𝑢𝑝−1𝑛
|

|

(𝑢𝑛)𝑥||
|

|

|

(𝑘𝑛)𝑥
|

|

|

≤ |𝛼|𝐶1𝑢
(𝑝−2)∕2
𝑛 |

|

(𝑢𝑛)𝑥|| ||𝑢𝑛||
𝑝∕2

≤ |𝛼|𝐶1

( 𝜀
2
𝑢𝑝𝑛 +

1
2𝜀
𝑢𝑝−2𝑛

|

|

(𝑢𝑛)𝑥||
2
)

, (2.30)

where we choose 𝜀 = 𝑑−1 |𝛼|𝐶1. Paired with (2.29), this leaves
1
𝑝
𝑑
𝑑𝑡 ∫𝛺

𝑢𝑝𝑛d𝑥 ≤ −𝑑
2 ∫𝛺

𝑢𝑝−2𝑛
|

|

(𝑢𝑛)𝑥||
2 d𝑥

+ (𝑓 ′(0) + 𝐶2
1𝛼

2𝑑−1(𝑝 − 1))∫𝛺
𝑢𝑝𝑛d𝑥 (2.31)

Therefore, dropping the negative term and applying Grönwall’s inequal-
ity yields
‖

‖

𝑢𝑛(⋅, 𝑡)‖‖
𝑝
𝐿𝑝(𝛺) ≤ 𝑒𝑝(𝑓

′(0)+𝐶2
1 𝛼

2𝑑−1(𝑝−1))𝑇
‖

‖

𝑢0‖‖
𝑝
𝐿𝑝(𝛺) .

Taking 𝑝th roots followed by the supremum over 𝑡 ∈ (0, 𝑇 ) yields the 
estimate

sup
𝑡∈(0,𝑇 )

‖

‖

𝑢𝑛(⋅, 𝑡)‖‖𝐿𝑝(𝛺) ≤ 𝑒(𝑓
′(0)+𝐶2

1 𝛼
2𝑑−1(𝑝−1))𝑇

‖

‖

𝑢0‖‖𝐿𝑝(𝛺)

=∶ 𝐶2, (2.32)

noting that the exponent depends critically on 𝑝. Next, we return to 
(2.31) for the case 𝑝 = 2. Upon rearrangement, we apply estimate (2.32)
to obtain
1
2
𝑑
𝑑𝑡 ∫𝛺

𝑢2𝑛d𝑥 +
𝑑
2 ∫𝛺

|

|

(𝑢𝑛)𝑥||
2 d𝑥 ≤

(

𝑓 ′(0) + 𝐶2
1𝛼

2𝑑−1
)

∫𝛺
𝑢2𝑛d𝑥

≤ 𝐶2
2
(

𝑓 ′(0) + 𝐶2
1𝛼

2𝑑−1
)

=∶ 𝐶3. (2.33)

Integrating both sides from 0 to 𝑇  yields 
1 (

‖𝑢 (⋅, 𝑇 )‖2 − ‖𝑢 ‖

2 + 𝑑 ‖(𝑢 ) ‖

2
)

≤ 𝐶 𝑇 . (2.34)

2 ‖ 𝑛 ‖𝐿2(𝛺) ‖ 0‖𝐿2(𝛺) ‖ 𝑛 𝑥‖𝐿2,2(𝑄𝑇 ) 3
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Ignoring the positive term on the left-hand side, we extract the desired 
estimate for (𝑢𝑛)𝑥: 
‖

‖

(𝑢𝑛)𝑥‖‖
2
𝐿2,2(𝑄𝑇 )

≤ 𝑑−1
(

2𝐶3𝑇 + ‖

‖

𝑢0‖‖𝐿2(𝛺)

)

=∶ 𝐶2
4 . (2.35)

We now immediately have the boundedness of (𝑘𝑛)𝑥 and (𝑘𝑛)𝑡 for 
any 𝑛 ≥ 2 in some 𝐿𝑝 spaces. Indeed, by Theorem  2.6, estimates (2.27),
(2.32) and (2.35) imply the existence of a constant 𝐶5, independent of 
𝑛, such that 
sup
𝑡∈(0,𝑇 )

‖

‖

(𝑘𝑛)𝑡(⋅, 𝑡)‖‖𝐿𝑝(𝛺) , sup
𝑡∈(0,𝑇 )

‖

‖

(𝑘𝑛)𝑥(⋅, 𝑡)‖‖𝐿𝑝(𝛺) ≤ 𝐶5, (2.36)

for any 𝑝 ∈ (1, 2).
We now appeal to standard 𝐿𝑝-estimates for parabolic equations and

he Sobolev embedding to improve our estimates on 𝑢𝑛. If we expand
the equation for 𝑢𝑛 it reads

(𝑢𝑛)𝑡 − 𝑑(𝑢𝑛)𝑥𝑥 = 𝛼
(

(𝑘𝑛)𝑥(𝑢𝑛)𝑥 + 𝑢𝑛(𝑘𝑛)𝑥𝑥
)

+ 𝑓 (𝑢𝑛).

Obviously, 𝑓 (𝑧) ≤ 𝑓 ′(0)𝑧 and 𝑢𝑛 ∈ 𝐿𝑝,𝑝(𝑄𝑇 ) for any 𝑝 ≥ 1 gives us that 
𝑓 (𝑢𝑛) ∈ 𝐿𝑝,𝑝(𝑄𝑇 ) as well. Then, 𝐿𝑝-estimates for strong solutions (see, 
e.g., [47]) ensures that there holds 

‖

‖

𝑢𝑛‖‖𝑊 2,1
𝑟 (𝑄𝑇 )

≤ 𝐶
(

‖

‖

‖

(𝑘𝑛)𝑥(𝑢𝑛)𝑥
‖

‖

‖𝐿𝑟(𝑄𝑇 )
+ ‖

‖

‖

𝑢𝑛(𝑘𝑛)𝑥𝑥
‖

‖

‖𝐿𝑟(𝑄𝑇 )
+ ‖

‖

𝑢𝑛‖‖𝐿𝑟(𝑄𝑇 )

)

,

(2.37)

for some 𝐶 > 0, for any 𝑟 > 1. Choosing 𝑟 ∈ (1, 𝑝), Hölder’s inequality 
gives 
‖

‖

‖

𝑢𝑛(𝑘𝑛)𝑥𝑥
‖

‖

‖𝐿𝑟(𝑄𝑇 )
≤ ‖

‖

𝑢𝑛‖‖𝐿𝑝𝑟∕(𝑝−𝑟)(𝑄𝑇 )
‖

‖

‖

(𝑘𝑛)𝑥𝑥
‖

‖

‖𝐿𝑝(𝑄𝑇 )
. (2.38)

By Lemma 2.1, the bound (2.32) and (2.36), we may further estimate as
‖

‖

𝑢𝑛‖‖𝐿𝑝𝑟∕(𝑝−𝑟)(𝑄𝑇 )
‖

‖

‖

(𝑘𝑛)𝑥𝑥
‖

‖

‖𝐿𝑝(𝑄𝑇 )
≤ (2𝑅𝐿)−1𝐶2 sup

𝑡∈(0,𝑇 )
‖

‖

(𝑘𝑛)𝑥(⋅, 𝑡)‖‖𝐿𝑝(𝛺)

≤ (2𝑅𝐿)−1𝐶2𝐶5 =∶ 𝐶6, (2.39)

for any 𝑟 ∈ (1, 𝑝), where 𝐶6 does not depend on 𝑛. Similarly, there holds
‖

‖

‖

(𝑘𝑛)𝑥(𝑢𝑛)𝑥
‖

‖

‖𝐿𝑟(𝑄𝑇 )
≤ 𝐶7,

where 𝐶7 does not depend on 𝑛. Hence,
‖

‖

𝑢𝑛‖‖𝑊 2,1
𝑟 (𝑄𝑇 )

≤ 𝐶(𝐶2 + 𝐶5 + 𝐶6),

and so {𝑢𝑛}𝑛≥2 is bounded in 𝑊 2,1
𝑟 (𝑄𝑇 ) for any 𝑟 ∈ (1, 𝑝). Since 𝑝 can 

be chosen as close to 2 as we like, we choose 𝑟 ∈ ( 32 , 2) and apply the 
Sobolev embedding to conclude that in fact 
‖

‖

𝑢𝑛‖‖𝐶𝜎,𝜎∕2(𝑄𝑇 ) ≤ 𝐶̃ ‖

‖

𝑢𝑛‖‖𝑊 2,1
𝑟 (𝑄𝑇 )

≤ 𝐶̃𝐶(𝐶2 + 𝐶5 + 𝐶6), (2.40)

for any 𝜎 ∈ (0, 12 ), for some 𝐶̃ > 0. In particular, 𝑢𝑛 is uniformly bounded 
in 𝑄𝑇 , independent of 𝑛.

We are now ready to obtain bounds on the time derivative (𝑢𝑛)𝑡.
While the previous step gives 𝐿𝑝-bounds on the time derivative for 
𝑝 ∈ (1, 2) only, with a bit of extra effort we can show that it also holds 
for 𝑝 = 2. These estimates follow from standard arguments used in the 
development of the 𝐿2-theory of parabolic equations (see, e.g., [48, Ch.
3.3]), using all previous bounds. We show the key details only.

First, note that bound (2.16) in Theorem  2.6 paired with the uni-
form boundedness of the iterates {𝑢𝑛}𝑛≥2 over 𝑄𝑇  obtained in (2.40)
implies that in fact {(𝑘𝑛)𝑥}𝑛≥2 is uniformly bounded in 𝐿2,2(𝑄𝑇 ). Multi-
plying the equation for 𝑢𝑛 by (𝑢𝑛)𝑡 and integrating over 𝛺 gives 

∫𝛺
|

|

(𝑢𝑛)𝑡||
2 d𝑥 = ∫𝛺

(𝑢𝑛)𝑡
(

(𝑑(𝑢𝑛)𝑥 + 𝛼𝑢𝑛(𝑘𝑛)𝑥)𝑥 + 𝑓 (𝑢𝑛)
)

d𝑥 (2.41)

By the regularity of the iterates (𝑢𝑛, 𝑘𝑛) for fixed 𝑛, we may exchange 
the order of differentiation and integrate by parts to obtain

|(𝑢𝑛)𝑡|
2 d𝑥 = −𝑑

(

|(𝑢𝑛)𝑥|
2
)

d𝑥 + (𝑢𝑛)𝑡𝑓 (𝑢𝑛)d𝑥
∫𝛺 | | 2 ∫𝛺 | | 𝑡 ∫𝛺

8 
+ 𝛼 ∫𝛺
(𝑢𝑛)𝑡

(

(𝑢𝑛)𝑥(𝑘𝑛)𝑥 + 𝑢𝑛(𝑘𝑛)𝑥𝑥
)

d𝑥. (2.42)

Integrating from 0 to 𝑇  and dropping the negative term, we are left with

∬𝑄𝑇

|

|

(𝑢𝑛)𝑡||
2 d𝑥d𝑡 ≤ 𝑑

2
‖

‖

(𝑢0)𝑥‖‖
2
𝐿2(𝛺) +∬𝑄𝑇

(𝑢𝑛)𝑡𝑓 (𝑢𝑛)d𝑥

+ 𝛼∬𝑄𝑇
(𝑢𝑛)𝑡

(

(𝑢𝑛)𝑥(𝑘𝑛)𝑥 + 𝑢𝑛(𝑘𝑛)𝑥𝑥
)

d𝑥. (2.43)

We then estimate crudely as follows: since 𝑢𝑛 and (𝑘𝑛)𝑥 are uniformly 
bounded in 𝑄𝑇  by (2.28) and (2.40), and since (𝑢𝑛)𝑥 and (𝑘𝑛)𝑥𝑥 are
uniformly bounded in 𝐿2,2(𝑄𝑇 ) by (2.35) and preceding arguments, 
𝑓 (𝑢𝑛), (𝑢𝑛)𝑥(𝑘𝑛)𝑥 and 𝑢𝑛(𝑘𝑛)𝑥𝑥 are all uniformly bounded in 𝐿2,2(𝑄𝑇 ). 
Hence, a simple application of Cauchy’s inequality with epsilon yields 
the existence of a constant 𝐶̃ ′ > 0, independent of 𝑛, such that 
1
2 ∫𝑄𝑇

|

|

(𝑢𝑛)𝑡||
2 d𝑥d𝑡 ≤ 𝑑

2
‖

‖

(𝑢0)𝑥‖‖
2
𝐿2(𝛺) + 𝐶̃

′. (2.44)

We now summarize the uniform estimates we have obtained and
complete the limiting process.
𝑢𝑛 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑝(𝛺)) ∩ 𝐶𝜎,𝜎∕2(𝑄𝑇 ),

(𝑢𝑛)𝑥 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)), (𝑢𝑛)𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)),

𝑘𝑛 ∈ 𝐿∞(0, 𝑇 ;𝐿∞(𝛺)) ∩ 𝐶𝜎,𝜎∕2(𝑄𝑇 ),

(𝑘𝑛)𝑥 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)), (𝑘𝑛)𝑡 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)). (2.45)

Hence, there exists a limit function (𝑢∞, 𝑘∞) so that for any 1 ≤ 𝑝 ≤ ∞
and any 0 < 𝜎′ < 𝜎 < 1∕2, there holds

𝑢𝑛 → 𝑢∞, 𝑘𝑛 → 𝑘∞  strongly in 𝐿𝑝,𝑝(𝑄𝑇 ) ∩ 𝐶𝜎
′ ,𝜎′∕2(𝑄𝑇 ),

(𝑢𝑛)𝑥 → (𝑢∞)𝑥  strongly in 𝐿2,2(𝑄𝑇 ),

(𝑢𝑛)𝑡 → (𝑢∞)𝑡  weakly in 𝐿2,2(𝑄𝑇 ),

(𝑘𝑛)𝑡 → (𝑘∞)𝑡, (𝑘𝑛)𝑥 → (𝑘∞)𝑥  weakly in 𝐿2,2(𝑄𝑇 ). (2.46)

It is not difficult to verify that (𝑢∞, 𝑘∞) is indeed a weak solution to the 
original problem (2.23) in the sense of (1.10)–(1.11) and satisfies the 
initial data in the classical sense. Since 𝑢𝑛, 𝑘𝑛 are nonnegative for all
𝑛 ≥ 2, we find that 0 ≤ 𝑢∞, 𝑘∞ in 𝑄𝑇 . Furthermore, the solution 𝑢∞ is 
nontrivial since 𝑓 ′(0) > 0, whence 𝑘∞ is also nontrivial. We now write 
(𝑢, 𝑘) for the solution obtained.

Uniqueness given initial data (𝑢0, 𝑘0) follows from standard argu-
ents and using the fact that 𝑢 and 𝑘𝑥 are uniformly bounded over 𝑄𝑇 . 

Indeed, if there were two solution pairs (𝑢, 𝑘) and (𝑢̃, 𝑘̃) satisfying the 
same initial data, an application of Cauchy’s inequality with epsilon 
paired with the uniform boundedness of the solutions over 𝑄𝑇 , the 
smoothness of the functions 𝑔𝑖(⋅), 𝑖 = 1, 2, 𝑓 (⋅) (Lipschitz continuity is 
sufficient), and the linearity of the spatial convolution operation yields
1
2
d
d𝑡 ∫𝛺

(

(𝑢 − 𝑢̃)2 + (𝑘 − 𝑘̃)2
)

d𝑥 ≤ 𝐶 ∫𝛺

(

(𝑢 − 𝑢̃)2 + (𝑘 − 𝑘̃)2
)

d𝑥,

and so Grönwall’s inequality implies that
‖(𝑢 − 𝑢̃)(⋅, 𝑡)‖𝐿2(𝛺) = ‖

‖

(𝑘 − 𝑘̃)(⋅, 𝑡)‖
‖𝐿2(𝛺) = 0 for any 𝑡 ∈ (0, 𝑇 ), and

uniqueness is proved.
Hence, for problem (1.8.a), there exists a unique, global weak 

olution in the sense of (1.10)–(1.11) so long as 𝑔(𝑢) satisfies the bound
𝑔(𝑧) ≤𝑀(𝜇 + 𝛽𝑧) ∀𝑧 ≥ 0,

or 𝜇, 𝛽 ≥ 0 fixed, for some 𝑀 > 0. For problem (1.8.b), 𝑔(𝑧) ≤
𝜇 + 𝛽𝑧 + 𝑔(𝑧) holds trivially, and no further condition on 𝑔 is required, 
concluding the proof. □

3. Stability of spatially-constant steady states

3.1. Spatially-constant steady states

Under assumptions (H0)-(H2), system (1.8.a) has two constant 
steady-states (0, 0) and (1, 𝜌

𝜇 + 𝛽
). For simplicity, denote

ℎ(𝑢, 𝑘) ∶= 𝑔(𝑢) − (𝜇 + 𝛽𝑢)𝑘, 𝑈0 ∶= (0, 0), 𝑈∗ ∶ =(1,
𝜌

).

𝜇 + 𝛽
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The ODE kinetic system corresponding to (1.8.a) is given by 
{

𝑢′ = 𝑓 (𝑢), 𝑡 > 0,
𝑘′ = 𝑔(𝑢) − (𝜇 + 𝛽𝑢)𝑘, 𝑡 > 0.

(3.1)

Then the Jacobian matrices 𝐽0 at 𝑈0 and 𝐽∗ at 𝑈∗ of (3.1) are given by 

𝐽0 =
(

𝑓𝑢0 0
𝑔′(0) −𝜇

)

, 𝐽∗ =
(

𝑓𝑢∗ 0
ℎ𝑢∗ ℎ𝑘∗

)

, (3.2)

where 

𝑓𝑢0 ∶ = 𝑓 ′(0) > 0, ℎ𝑢∗ ∶ =ℎ𝑢(𝑈∗) =
𝑔′(1)(𝜇 + 𝛽) − 𝛽𝜌

𝜇 + 𝛽
,

𝑓𝑢∗ ∶ = 𝑓 ′(1) < 0, ℎ𝑘∗ ∶ =ℎ𝑘(𝑈∗) = −(𝜇 + 𝛽) < 0.
(3.3)

Let Tr(𝐽∗) denotes the trace of 𝐽∗, and let Det(𝐽∗) be the determinant 
of 𝐽∗. Then we have 

Tr(𝐽∗) = 𝑓𝑢∗ + ℎ𝑘∗ < 0, Det(𝐽∗) = 𝑓𝑢∗ℎ𝑘∗ > 0. (3.4)

Hence, 𝑈∗ is a locally asymptotically stable steady state with respect to
(3.1), and 𝑈0 is linearly unstable with (3.1) and also (1.8.a).

3.2. Linear stability analysis

In Section 3.3 we will use spectral analysis to determine rigorously 
the regions of stability for the constant steady state. However, the for-
malism required for spectral analysis can obscure the central message. 
Therefore, it is valuable first to perform linear stability analysis of 𝑈∗
with respect to spatially inhomogeneous perturbations made of basis 
functions of 𝐿2

𝑝𝑒𝑟. This gives a quick route to an answer for the first 
point at which the homogeneous state becomes unstable, which we 
then make rigorous via a more precise spectral analysis.

To this end, we assume that non-constant perturbations of the 
constant steady state have the following form at arbitrarily small times 

𝑢̃ = 𝑢0ei𝑞𝑛𝑥+𝜆𝑡, 𝑘̃ = 𝑘0ei𝑞𝑛𝑥+𝜆𝑡, 𝑢 ≈ 𝑢̃ + 1, 𝑘 ≈ 𝑘̃ +
𝜌

𝜇 + 𝛽
, (3.5)

where 𝑢0, 𝑘0, 𝜆 ∈ R are constants and 𝑞𝑛 =
√

𝑙𝑛 = 𝑛𝜋∕𝐿 for 𝑛 ∈ N. These 
particular wavenumbers, 𝑞𝑛, are chosen as they satisfy the periodic 
boundary conditions. Then, neglecting nonlinear terms and applying
Fourier theory, the PDEs in system (1.8.a) become 
(

𝑢̃
𝑘̃

)

=𝑀𝑛

(

𝑢̃
𝑘̃

)

, (3.6)

where 

𝑀𝑛 =

(

−𝑙𝑛𝑑 + 𝑓 ′(1) −𝑙𝑛𝛼𝐶𝑛(𝐺)
𝑔′(1) − 𝛽𝜌

𝜇+𝛽 −𝜇 − 𝛽

)

, (3.7)

and 𝐶𝑛(𝐺) (the Fourier coefficient of 𝐺) is defined in (1.12). Stability 
requires that the trace of 𝑀𝑛 is negative and the determinant positive. 
For the determinant to be positive, we require 

𝛼𝐶𝑛(𝐺)[𝑔′(1)(𝜇 + 𝛽) − 𝛽𝜌] + (𝜇 + 𝛽)2
(

𝑑 −
𝑓 ′(1)
𝑙𝑛

)

> 0. (3.8)

(3.8) holds when 𝛼𝐶𝑛(𝐺) is small or zero as 𝑓 ′(1) < 0 by (H0), and (3.8)
is true for all 𝑛 if 𝛼 (positive or negative) is sufficiently close to 0. For 
the trace to be negative, we require 
′(1) < 𝑙𝑛𝑑 + 𝜇 + 𝛽, (3.9)

which is always true as the right-hand side is positive and 𝑓 ′(1) < 0
by (H0). As long as Eqs. (3.8)–(3.9) are satisfied, system (1.8.a) will be 
stable to perturbations of the exponential functional form given in Eq.
(3.5) at wavenumber 𝑞𝑛. A similar process gives the analogous result for 
system (1.8.b), which we leave as an exercise for the reader. In the next
section, we generalize this result to arbitrary perturbations for systems 
(1.8.a) and (1.8.b) (see Theorems  1.3 and 1.4).
9 
3.3. Spectral analysis

We now provide a detailed spectral analysis to confirm that the 
insights in Section 3.2 hold. Eq. (3.6) is the eigenvalue problem to 
be examined here but requires further justification, which is done in 
Lemmas  3.3 and 3.4. This ensures that the Fourier analysis utilized is 
robust. Of note is the symmetry of the kernel 𝐺(⋅) about the origin, 
which guarantees that the coefficients 𝐶𝑛(𝐺) are real-valued. If 𝐺 were 
not even, then 𝐶𝑛(𝐺) could be complex-valued and may lead to a Hopf
bifurcation. We do not explore this direction any further in the present 
work. Finally, Theorem  3.6 shows other than the eigenvalues from
(3.6), there exists an element belonging to the point spectrum with an
infinite-dimensional kernel. In this case, it is found to be negative, and
so will not affect stability. In classical reaction–diffusion systems, this 
does not occur, but for such coupled PDE–ODE systems, it may, and so 
we rule out the possibility.

The linearized equation of system (1.8.a) at a constant steady state 
𝑈∗ = (𝑢∗, 𝑘∗) is given by 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢̃𝑡 = 𝑑𝑢̃𝑥𝑥 + 𝑓𝑢∗𝑢̃ + 𝛼𝑢∗(𝐺 ∗ 𝑘̃)𝑥𝑥, 𝑥 ∈ (−𝐿,𝐿), 𝑡 > 0,
𝑘̃𝑡 = ℎ𝑢∗𝑢̃ + ℎ𝑘∗𝑘̃, 𝑥 ∈ (−𝐿,𝐿), 𝑡 > 0,
𝑢̃(−𝐿, 𝑡) = 𝑢̃(𝐿, 𝑡) = 0, 𝑡 > 0,
𝑢̃𝑥(−𝐿, 𝑡) = 𝑢̃𝑥(𝐿, 𝑡) = 0, 𝑡 > 0.

(3.10)

Define the linearized operator ∗(𝛼) ∶ 𝑋 → 𝑌  in (3.10) by 

∗(𝛼)
[

𝜙
𝜓

]

=
(

𝑑𝜙𝑥𝑥 + 𝑓𝑢∗𝜙 + 𝛼𝑢∗(𝐺 ∗ 𝜓)𝑥𝑥
ℎ𝑢∗𝜙 + ℎ𝑘∗𝜓

)

. (3.11)

For further spectral analysis, we first recall the following definitions 
and give some lemmas. 

Definition 3.1 ([49, Definition 2.2.1]). Let 𝐴 ∶ (𝐿) ⊂ 𝑋 → 𝑋 be a
linear operator on a K-Banach space 𝑋 with K = R or C. The resolvent 
set 𝜌(𝐴) of 𝐴 is the set of all points 𝜆 ∈ K such that (𝜆𝐼 − 𝐴)−1 is 
a bijection from (𝐴) into 𝑋 and the inverse (𝜆𝐼 − 𝐴)−1, called the 
resolvent of 𝐴, is a bounded linear operator from 𝑋 into itself.

Definition 3.2 ([49, Definition 4.2.1]). Let 𝐴 ∶ (𝐿) ⊂ 𝑋 → 𝑋 be 
a linear operator on a complex Banach space 𝑋. The spectrum of the 
operator 𝐴 is defined as the complement of the resolvent set 𝜎(𝐴) =
C ⧵ 𝜌(𝐴). Consider the following three conditions:
(1) (𝜆𝐼 − 𝐴)−1 exists;
(2) (𝜆𝐼 − 𝐴)−1 is bounded;
(3) the domain of (𝜆𝐼 − 𝐴)−1 is dense in 𝑋.

The spectrum 𝜎(𝐴) can be further decomposed into three disjoint 
subsets.

(a) The point spectrum is the set
𝜎𝑝(𝐴) ∶= {𝜆 ∈ 𝜎(𝐴) ∶  (𝜆𝐼 − 𝐴) ≠ {0}}.

Elements of the point spectrum 𝜎𝑝(𝐴) are called eigenvalues. If 𝜆 ∈
𝜎𝑝(𝐴), elements 𝑥 ∈  (𝜆𝐼 − 𝐴) are called eigenvectors or eigen-
functions. The dimension of  (𝜆𝐼 − 𝐴) is the multiplicity of 𝜆.

(b) The continuous spectrum is the set
𝜎𝑐 (𝐴) ∶= {𝜆 ∈ 𝜎(𝐴) ∶ (1) and (3) hold but (2) does not}.

(c) The residual spectrum is the set
𝜎𝑟(𝐴) ∶= {𝜆 ∈ 𝜎(𝐴) ∶ (𝜆𝐼 − 𝐴)−1 exists but (𝜆𝐼 − 𝐴) ≠ 𝑋}.

Furthermore, we have the following spectrum decomposition:
𝜎(𝐴) = 𝜎𝑝(𝐴) ∪ 𝜎𝑐 (𝐴) ∪ 𝜎𝑟(𝐴).

Lemma 3.3.  Assume 𝐺 satisfies (H0), and 𝜙 ∈ 𝐻2
𝑝𝑒𝑟(−𝐿,𝐿). Then 

(𝐺 ∗ 𝜙)𝑥𝑥 = 𝐺 ∗ (𝜙𝑥𝑥). (3.12)
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Proof.  Assume first that 𝐺 is smooth. We compute as follows:

(𝐺 ∗ 𝜙)𝑥𝑥 =
1
2𝐿 ∫

𝐿

−𝐿
𝐺𝑥𝑥(𝑥 − 𝑦)𝜙(𝑦)d𝑦 =

1
2𝐿 ∫

𝐿

−𝐿
𝐺𝑦𝑦(𝑥 − 𝑦)𝜙(𝑦)d𝑦

= 1
2𝐿

(𝐺𝑦(𝑥 + 𝐿)𝜙(−𝐿) − 𝐺𝑦(𝑥 − 𝐿)𝜙(𝐿) − ∫

𝐿

−𝐿
𝐺𝑦(𝑥 − 𝑦)𝜙′(𝑦)d𝑦)

= 1
2𝐿

(𝐺𝑦(𝑥 + 𝐿)𝜙(−𝐿) − 𝐺𝑦(𝑥 − 𝐿)𝜙(𝐿) − 𝐺(𝑥 − 𝐿)𝜙′(𝐿)

+ 𝐺(𝑥 + 𝐿)𝜙′(−𝐿) + ∫

𝐿

−𝐿
𝐺(𝑥 − 𝑦)𝜙′′(𝑦)d𝑦)

= 1
2𝐿

(𝐺′(𝑥 + 𝐿)𝜙(−𝐿) − 𝐺′(𝑥 − 𝐿)𝜙(𝐿) − 𝐺(𝑥 − 𝐿)𝜙′(𝐿)

+ 𝐺(𝑥 + 𝐿)𝜙′(−𝐿)) + 𝐺 ∗ (𝜙𝑥𝑥)

= 𝐺 ∗ (𝜙𝑥𝑥).

We use symmetry of 𝐺 to obtain the first line after integrating by
parts so that 𝐺𝑦𝑦(𝑥 − 𝑦) = 𝐺𝑦𝑦(𝑦 − 𝑥); periodicity ensures the boundary
terms vanish in the second line. These steps are repeated in lines 3-4 to
obtain the desired result. To remove the smoothness assumption on 𝐺,
approximate 𝐺 by 𝐺𝜀 through a standard mollification procedure and
use Young’s convolution inequality paired with the regularity of 𝜙 to
pass the limit 𝜀→ 0+. □

Lemma 3.4.  Assume 𝐺 satisfies (H0). Then 
𝐺 ∗ 𝜙𝑛 = 𝐶𝑛(𝐺)𝜙𝑛, 𝐺 ∗ 𝜙−𝑛 = 𝐶−𝑛(𝐺)𝜙−𝑛 = 𝐶𝑛(𝐺)𝜙−𝑛 (3.13)

where 𝐶𝑛(𝐺) is defined in (1.12) and 𝜙𝑛, 𝜙−𝑛 are defined in (1.9).

Proof.  We show the first equality only, the second being similar and
sing the evenness of 𝐺. For 𝑥 ∈ [−𝐿,𝐿],

𝐺 ∗ 𝜙𝑛(𝑥) =𝜙𝑛 ∗ 𝐺(𝑥) =
1
2𝐿 ∫

𝐿

−𝐿
𝜙𝑛(𝑥 − 𝑦)𝐺(𝑦)d𝑦 =

1
2𝐿 ∫

𝐿

−𝐿
𝑒
𝑖𝑛𝜋
𝐿
(𝑥−𝑦)𝐺(𝑦)d𝑦

= 1
2𝐿 ∫

𝐿

−𝐿
𝑒−

𝑖𝑛𝜋
𝐿
𝑦𝐺(𝑦)d𝑦 𝑒

𝑖𝑛𝜋
𝐿
𝑥 = 𝑒

𝑖𝑛𝜋
𝐿
𝑥

2𝐿 ∫

𝐿

−𝐿
cos

( 𝑛𝜋
𝐿
𝑦
)

𝐺(𝑦)d𝑦

= 𝐶𝑛(𝐺)𝜙𝑛(𝑥).

Note that 𝐶𝑛 ∈ R as 𝐺 is an even function from (H0). Thus the 
eigenspace corresponding to the eigenvalue 𝜆 = 𝐶𝑛(𝐺) is 
𝑉𝑛 ∶= span

{

cos
( 𝑛𝜋
𝐿
𝑥
)

, sin
( 𝑛𝜋
𝐿
𝑥
)}

. □ (3.14)

Following a similar approach to the proof of [35, Proposition 2.1],
we obtain the following lemma. 

Lemma 3.5.  The spectrum of the linear operator  ∶ 𝐷() ⊂
2
𝑝𝑒𝑟(−𝐿,𝐿) → 𝐿2

𝑝𝑒𝑟(−𝐿,𝐿) defined as

𝐷() = 𝐻2
𝑝𝑒𝑟(−𝐿,𝐿),

𝜙 = 𝑎𝜙′′ + 𝑏(𝐺 ∗ 𝜙′′),

s

() = {𝜇𝑛 = 𝜇−𝑛 ∶= −𝑙𝑛(𝑎 + 𝑏𝐶𝑛(𝐺)), 𝑛 ∈ N0},

nd the corresponding eigenfunctions are 𝜙𝑛(𝑥) and 𝜙−𝑛(𝑥) for 𝑛 ∈ N0, 
where 𝑎, 𝑏 are constants, and 𝑙𝑛, 𝜙𝑛, 𝜙−𝑛 are defined in (1.9).

Now we can determine the spectral set of the linearized operator
∗(𝛼). 

Theorem 3.6.  Assume that assumptions (H0)-(H2) are satisfied. Let 𝑙𝑛
and 𝜙𝑛 be the eigenvalues and eigenfunctions of problem (1.8). Then 
𝜎(∗(𝛼)) = 𝜎𝑝(∗(𝛼)) = {𝜆±𝑛 }𝑛∈Z

⋃

{ℎ𝑘∗}, (3.15)

where 

𝜆±𝑛 = 𝜆±−𝑛 =
𝐵𝑛 ±

√

𝐵2
𝑛 − 4𝐶𝑛

2
, (3.16)
𝐵𝑛 = Tr(𝐽∗) − 𝑑𝑙𝑛, 𝐶𝑛 = Det(𝐽∗) + (𝛼𝑢∗ℎ𝑢∗𝐶𝑛(𝐺) − 𝑑ℎ𝑘∗)𝑙𝑛,

10 
for 𝑛 ∈ N0, and 
(

𝜙𝑛,±, 𝜓𝑛,±
)

=
(

𝜙𝑛(𝑥),−
ℎ𝑢∗

ℎ𝑘∗ − 𝜆
±
𝑛
𝜙𝑛(𝑥)

)

,

(

𝜙−𝑛,±, 𝜓−𝑛,±
)

=
(

𝜙−𝑛(𝑥),−
ℎ𝑢∗

ℎ𝑘∗ − 𝜆
±
𝑛
𝜙−𝑛(𝑥)

) (3.17)

are the eigenfunctions corresponding to 𝜆±𝑛  and 𝜆±−𝑛, where 𝜙𝑛, 𝜙−𝑛, ℎ𝑢∗, 
ℎ𝑘∗, Tr(𝐽∗), Det(𝐽∗) and 𝐶𝑛(𝐺) are defined in (1.9), (3.3), (1.12) and 
(3.4), respectively. Furthermore, 𝜆±𝑛  and 𝜆±−𝑛 are eigenvalues of ∗(𝛼) of
finite multiplicity, and ℎ𝑘∗ is an eigenvalue of infinite multiplicity.

Remark 3.7.  Notice that the eigenvalues obtained from (3.16) are
precisely those obtained via a linear stability analysis; different, how-
ever, is the presence of the eigenvalue ℎ𝑘∗  having infinite multiplicity. 
Without fully considering the entire spectrum of the operator, we 
cannot detect ℎ𝑘∗ .

Proof.  For 𝜆 ∈ C and (𝜉, 𝜂) ∈ 𝑌 , we consider the resolvent equation of 
∗(𝛼), which is 
⎧

⎪

⎨

⎪

⎩

𝑑𝜙𝑥𝑥 + 𝑓𝑢∗𝜙 + 𝛼𝑢∗(𝐺 ∗ 𝜓)𝑥𝑥 = 𝜆𝜙 + 𝜉,
ℎ𝑢∗𝜙 + ℎ𝑘∗𝜓 = 𝜆𝜓 + 𝜂,
𝜙(−𝐿) = 𝜙(𝐿), 𝜙′(−𝐿) = 𝜙′(𝐿).

(3.18)

If 𝜆 ≠ ℎ𝑘∗, from the second equation of (3.18), we have 

𝜓 =
𝜂 − ℎ𝑢∗𝜙
ℎ𝑘∗ − 𝜆

, (3.19)

Substituting (3.19) into the first equation of (3.18) and combining with 
(3.12) and (3.13), we get 

(𝑓𝑢∗ − 𝜆)𝜙 +
(

𝑑𝜙𝑥𝑥 − 𝛼𝑢∗
ℎ𝑢∗

ℎ𝑘∗ − 𝜆
(𝐺 ∗ 𝜙′′)

)

= 𝜉. (3.20)

Eq. (3.20) has unique solutions if and only if 
(𝑓𝑢∗ − 𝜆) ∉ 𝜎() (3.21)

holds, where  is the operator defined in Lemma  3.5 with 𝑎 = 𝑑 and
𝑏 = −𝛼𝑢∗

ℎ𝑢∗
ℎ𝑘∗ − 𝜆

. Then from Lemma  3.5, (3.21) is equivalent to 

(𝑓𝑢∗ − 𝜆)(ℎ𝑘∗ − 𝜆)
𝑑(ℎ𝑘∗ − 𝜆) − 𝛼𝑢∗ℎ𝑢∗𝐶𝑛(𝐺)

∉ {𝑙𝑛}𝑛∈N0
. (3.22)

It follows that ∗(𝛼) − 𝜆𝐼 has a bounded inverse (∗(𝛼) − 𝜆𝐼)−1 when 
(3.22) is satisfied. Otherwise, 𝜆 satisfies the following characteristic 
equation: 
𝜆2 − (Tr(𝐽∗) − 𝑑𝑙𝑛)𝜆 + Det(𝐽∗) + (𝛼𝑢∗ℎ𝑢∗𝐶𝑛(𝐺) − 𝑑ℎ𝑘∗)𝑙𝑛 = 0. (3.23)

Therefore, 𝜆±±𝑛 in (3.16) are the roots of (3.23) with 𝑒𝜆−±𝑛 ≤ 𝑒𝜆+±𝑛,
and (3.17) are eigenfunctions corresponding to 𝜆±±𝑛.

If 𝜆 = ℎ𝑘∗, we consider 

∗(𝛼) − ℎ𝑘∗𝐼)
(

𝜙
𝜓

)

=
(

0
0

)

, (3.24)

hat is 
𝑑𝜙𝑥𝑥 + 𝑓𝑢∗𝜙 + 𝛼𝑢∗(𝐺 ∗ 𝜓)𝑥𝑥 = ℎ𝑘∗𝜙,
ℎ𝑢∗𝜙 = 0,
𝜙(−𝐿) = 𝜙(𝐿), 𝜙′(−𝐿) = 𝜙′(𝐿).

(3.25)

learly, 𝜙 = 0 and (𝐺 ∗ 𝜓)𝑥𝑥 = 0, which imply that there exist non-
zero solutions to (3.24). Then ℎ𝑘∗ is also an eigenvalue of ∗(𝛼), and
dim ker(∗(𝛼) − ℎ𝑘∗𝐼) = ∞. □

Note that Tr(𝐽∗) < 0, Det(𝐽∗) > 0 from the stability of 𝑈∗, and 𝑙𝑛 ≥ 0, 
which yields 𝑒𝜆−±𝑛 < 0. In other words, eigenvalues ℎ𝑘∗ and {𝜆−±𝑛}𝑛∈N
of ∗ all have negative real parts, and for 𝑛 = 0, we also have

𝜆 =
Tr(𝐽∗) +

√

Tr(𝐽∗)2 − 4Det(𝐽∗) < 0.
0 2
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On the other hand, the sign of 𝜆+±𝑛 depends on the magnitude of 
𝛼. Recall 𝛼𝑛 defined in (1.13), we immediately have the following 
proposition.

Proposition 3.8.  Assume that assumptions (H0)-(H2) are satisfied, and
𝑛 ∈ N such that 𝐶𝑛(𝐺) ≠ 0. Let ∗(𝛼) and 𝛼𝑛 be defined in (1.13) and 
(3.11), respectively. Then 0 is an eigenvalue of ∗(𝛼) when 𝛼 = 𝛼𝑛 with 
multiplicity of two for 𝑛 ∈ N, while other eigenvalues have non-zero real 
parts. Furthermore, 

 (∗(𝛼𝑛)) = span
{(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

𝜙𝑛(𝑥),
(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

𝜙−𝑛(𝑥)
}

. (3.26)

Proof.  From Lemma  3.4, 𝐶𝑛(𝐺) is real-valued. Substituting (1.13) into 
(3.16) yields 𝜆+±𝑛 = 0 for 𝑛 ∈ N. The conclusion of eigenfunctions 
follows from Lemma  3.5. □

We can now prove Theorems  1.3 and 1.4.

Proof of Theorem  1.3.  From the assumptions, ℎ𝑘∗ < 0. We also know 
that 𝑒𝜆−±𝑛 < 0. Finally for 𝛼𝑙 < 𝛼 < 𝛼𝑟, all 𝜆+±𝑛 are negative. Hence, 𝑈∗
is locally asymptotically stable with respect to (1.8.a). And when 𝛼 < 𝛼𝑙
or 𝛼 > 𝛼𝑟, at least one of 𝜆+±𝑛 is positive, thus 𝑈∗ is unstable. □

The proof of Theorem  1.4 is similar by repeating the same analysis. 
Eq. (1.8.b) has two constant steady states 𝑈0 = (0, 0) and 𝑈∗ = (𝑢̂∗, 𝑘̂∗) =
(1, 𝜌𝜅

𝜇+𝛽+𝜌 ). Let ̂ℎ(𝑢, 𝑘) ∶ =𝑔(𝑢)(𝜅 − 𝑘) − (𝜇 + 𝛽𝑢)𝑘, we have 

ℎ𝑢∗ =
𝜅[𝑔′(1)(𝜇 + 𝛽) − 𝛽𝜌]

𝜇 + 𝛽 + 𝜌
, ℎ̂𝑘∗ = −(𝜇 + 𝛽 + 𝜌). (3.27)

Other parts are similar to the ones for the proof of Theorem  1.3.

4. Bifurcation analysis

In this section, we prove the existence of non-constant steady-state 
solutions of (1.8.a) through the Bifurcation from Simple Eigenvalue 
Theorem [50]. From (3.26), the multiplicity of the zero eigenvalue is 
two, so we will restrict the solutions to even functions only to apply
the bifurcation theorem.

For completeness, we first recall the abstract bifurcation theorem, 
the definition of 𝐾-simple eigenvalue and a perturbation result. Con-
sider an abstract equation 𝐹 (𝜆, 𝑢) = 0, where 𝐹 ∶ R × 𝑋 → 𝑌  is a
nonlinear differentiable mapping, and 𝑋, 𝑌  are Banach spaces. Crandall
and Rabinowitz [50] obtained the following classical Bifurcation from
Simple Eigenvalue Theorem.

Theorem 4.1 ([50, Theorem 1.17]). Suppose that 𝜆0 ∈ R and 𝐹 ∶ R×𝑋 →

𝑌  is a twice continuously differentiable mapping and that
(i) 𝐹 (𝜆, 0) = 0 for 𝜆 ∈ R,
(ii) dim( (𝐹𝑢(𝜆0, 0))) = codim((𝐹𝑢(𝜆0, 0))) = 1,
(iii) 𝐹𝜆𝑢(𝜆0, 0)[𝜙0] ∉ (𝐹𝑢(𝜆0, 0)) where  (𝐹𝑢(𝜆0, 0)) = span{𝜙0} ∈ 𝑋.

Let 𝑍 be any complement of span{𝜙0} in 𝑋, then there exist an open interval 
𝐼 containing 0 and continuous functions 𝜆 ∶ 𝐼 → R, 𝑧 ∶ 𝐼 → 𝑍, such that 
𝜆(0) = 𝜆0, 𝑧(0) = 0, and 𝑢(𝑠) = 𝑠𝜙0 + 𝑠𝑧(𝑠) satisfies 𝐹 (𝜆(𝑠), 𝑢(𝑠)) = 0. 
Moreover, 𝐹−1({0}) near (𝜆0, 0) consists precisely of the curves 𝑢 = 0 and
the curves {(𝜆(𝑠), 𝑢(𝑠)) ∶ 𝑠 ∈ 𝐼}.

Definition 4.2 ([51, Definition 1.2]). Let 𝐵(𝑋, 𝑌 ) denote the set of 
ounded linear maps of 𝑋 into 𝑌 , and let 𝑇 ,𝐾 ∈ 𝐵(𝑋, 𝑌 ). Then 𝜇 ∈ R
s a 𝐾-simple eigenvalue of 𝑇  if

im (𝑇 − 𝜇𝐾) = codim(𝑇 − 𝜇𝐾) = 1,

nd if  (𝑇 − 𝜇𝐾) = span{𝜙 }, 𝐾𝑥 ∉ (𝑇 − 𝜇𝐾).
0 0

11 
Theorem 4.3 ([51, Theorem 1.16]).  Let {(𝜆(𝑠), 𝑢(𝑠)) ∶ 𝑠 ∈ 𝐼} be the curve
of inhomogeneous solutions in Theorem  4.1. Then there exist continuously 
differentiable functions 𝑟 ∶ (𝜆0 − 𝜀, 𝜆0 + 𝜀) → R, 𝑧 ∶ (𝜆0 − 𝜀, 𝜆0 + 𝜀) → 𝑋, 
𝜇 ∶ (−𝛿, 𝛿) → R, 𝑤 ∶ (−𝛿, 𝛿) → 𝑋, such that 
𝐹𝑢(𝜆, 0)𝑧(𝜆) = 𝑟(𝜆)𝐾𝑧(𝜆), 𝜆 ∈ (𝜆0 − 𝜀, 𝜆0 + 𝜀),

𝐹𝑢(𝜆(𝑠), 𝑢(𝑠, ⋅))𝑤(𝑠) = 𝜇(𝑠)𝐾𝑤(𝑠), 𝑠 ∈ (−𝛿, 𝛿),
(4.1)

where 𝑟(𝜆0) = 𝜇(0) = 0, 𝑧(𝜆0) = 𝑤(0) = (𝜙0), 𝐾 ∶ 𝑋 → 𝑌  is the 
inclusion map with 𝐾(𝑢) = 𝑢. Moreover, near 𝑠 = 0 the functions 𝜇(𝑠) and
−𝑠𝜆′(𝑠)𝑟′(𝜆0) have the same zeros and, whenever 𝜇(𝑠) ≠ 0 the same sign
and satisfy 

lim
𝑠→0

−𝑠𝜆′(𝑠)𝑟′(𝜆0)
𝜇(𝑠)

= 1. (4.2)

To apply the bifurcation theorems, we define a nonlinear mapping 
𝐹 ∶ R ×𝑋 → 𝑌  by 

𝐹 (𝛼, 𝑈 ) =
(

𝑑𝑢𝑥𝑥 + 𝛼(𝑢(𝐺 ∗ 𝑘)𝑥)𝑥 + 𝑓 (𝑢)
𝑔(𝑢) − (𝜇 + 𝛽𝑢)𝑘

)

, (4.3)

here 𝑈 = (𝑢, 𝑘), then the Frechét derivative of 𝐹  at (𝛼, 𝑈 ) = (𝛼𝑛, 𝑈∗) is

𝜕𝑈𝐹 (𝛼𝑛, 𝑈∗)
(

𝜙
𝜓

)

=
(

𝑑𝜙𝑥𝑥 + 𝑓𝑢∗𝜙 + 𝛼𝑛𝑢∗(𝐺 ∗ 𝜓)𝑥𝑥
ℎ𝑢∗𝜙 + ℎ𝑘∗𝜓

)

= ∗(𝛼𝑛)
(

𝜙
𝜓

)

. (4.4)

For simplicity, we denote ∗(𝛼𝑛) as 𝑛 in the following. Let
𝑋𝑠 = {ℎ ∈ 𝑋 ∶ ℎ(−𝑥) = ℎ(𝑥), 𝑥 ∈ (−𝐿,𝐿)},

𝑌 𝑠 = {ℎ ∈ 𝑌 ∶ ℎ(−𝑥) = ℎ(𝑥), 𝑥 ∈ (−𝐿,𝐿)}.

We consider the restriction of 𝐹 ∶ R × 𝑋𝑠 → 𝑌 𝑠, and the restriction of 
𝑛 ∶ 𝑋𝑠 → 𝑌 𝑠. Denote  𝑠(𝑛) to be the kernel space of the operator 
𝑛 in 𝑋𝑠, and  𝑠(∗

𝑛) to be the kernel space of the adjoint operator ∗
𝑛

n 𝑋𝑠. Also denote 𝑠(𝑛) and 𝑠(∗
𝑛) to be the corresponding range 

paces in 𝑌 𝑠. Then 𝑋𝑠 and 𝑌 𝑠 have the following decompositions:
𝑠 =  𝑠(𝑛)⊕𝑋𝑠

1 , 𝑌
𝑠 =  𝑠(𝑛)⊕ 𝑌 𝑠1 ,

here 

 𝑠(𝑛) = span
{(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

}

,

 𝑠(∗
𝑛) = span

{

(1, 𝑟𝑛) cos
( 𝑛𝜋
𝐿
𝑥
)}

with 𝑟𝑛 =
𝑑𝑙𝑛 − 𝑓𝑢∗
ℎ𝑢∗

,

𝑋𝑠
1 =

{

(ℎ1, ℎ2) ∈ 𝑋𝑠 ∶ ∫

𝐿

−𝐿

(

ℎ1 −
ℎ𝑢∗
ℎ𝑘∗

ℎ2

)

cos
( 𝑛𝜋
𝐿

)

d𝑥 = 0
}

,

𝑌 𝑠1 = 𝑠(𝑛) =
{

(ℎ1, ℎ2) ∈ 𝑌 𝑠 ∶ ∫

𝐿

−𝐿
(ℎ1 + 𝑟𝑛ℎ2) cos

( 𝑛𝜋
𝐿
𝑥
)

d𝑥 = 0
}

.

(4.5)

Hence, dim( 𝑠(𝑛)) = codim(𝑠(𝑛)) = 1. We also have

𝛼𝑈𝐹 (𝛼𝑛, 𝑈∗)
(

𝜙
𝜓

)

=
(

𝑢∗(𝐺 ∗ 𝜓)𝑥𝑥
0

)

,

hus

𝜕𝛼𝑈𝐹 (𝛼𝑛, 𝑈∗)
[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]T

=
(

−𝑢∗
ℎ𝑢∗
ℎ𝑘∗

𝜕2

𝜕𝑥2
(

𝐺 ∗ cos
( 𝑛𝜋
𝐿
𝑥
))

, 0
)T

∉ 𝑠 (𝑛
)

as

𝑢∗
ℎ𝑢∗
ℎ𝑘∗

𝑙𝑛𝐶𝑛(𝐺)∫

𝐿

−𝐿
cos2

( 𝑛𝜋
𝐿
𝑥
)

d𝑥 ≠ 0,

as long as 𝐶𝑛(𝐺) ≠ 0. Now by applying Theorem  4.1, we obtain the 
existence of non-constant steady-state solutions of (1.8.a) (Theorem 
1.5) and (1.8.b) (Theorem  1.6).
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Near a bifurcation point 𝛼 = 𝛼𝑛, it follows from [52] that the sign 
f 𝛼′𝑛(0) or the one of 𝛼′′𝑛 (0) when 𝛼′𝑛(0) = 0 determine the bifurcation 
irection. If 𝛼′𝑛(0) ≠ 0, then a transcritical bifurcation occurs, and an
nhomogeneous solution exists when 𝛼(≠ 𝛼𝑛) is close to the bifurcation 
oint 𝛼𝑛. If 𝛼′𝑛(0) = 0 and 𝛼′′𝑛 (0) ≠ 0, then a pitchfork bifurcation occurs 
t 𝛼 = 𝛼𝑛. The pitchfork bifurcation is forward if 𝛼′′𝑛 (0) > 0 and there 
re two (zero) inhomogeneous solutions for 𝛼 > 𝛼𝑛 (𝛼 < 𝛼𝑛), and it is 
ackward if 𝛼′′𝑛 (0) < 0. Since

⟨𝜁, 𝜕𝑈𝑈𝐹 (𝛼𝑛, 𝑈∗)
[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]2
⟩

=∫

𝐿

−𝐿

[

(

𝑓𝑢𝑢∗ + 𝑟𝑛

(

ℎ𝑢𝑢∗ − 2ℎ𝑢𝑘∗
ℎ𝑢∗
ℎ𝑘∗

)) 1 + cos
( 2𝑛𝜋
𝐿
𝑥
)

2

+ 2𝛼𝑛𝑙𝑛𝐶𝑛(𝐺)
ℎ𝑢∗
ℎ𝑘∗

cos
( 2𝑛𝜋
𝐿
𝑥
)

]

cos
( 𝑛𝜋
𝐿
𝑥
)

d𝑥 = 0,

where 𝑓𝑢𝑢∗
△
= 𝑓𝑢𝑢(𝑈∗), ℎ𝑢𝑢∗

△
= ℎ𝑢𝑢(𝑈∗), ℎ𝑢𝑘∗

△
= ℎ𝑢𝑘(𝑈∗) = −𝛽, and

𝜁 ∈ (𝑌 𝑠)∗ satisfying 𝑁(𝜁 ) = 𝑠(𝑛), then we have 

𝛼′𝑛(0) = −

⟨

𝜁, 𝜕𝑈𝑈𝐹 (𝛼𝑛, 𝑈∗)
[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]2
⟩

2
⟨

𝜁, 𝜕𝛼𝑈𝐹 (𝛼𝑛, 𝑈∗)
[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]⟩ = 0. (4.6)

We further calculate 𝛼′′𝑛 (0) as in [52], 

𝛼′′𝑛 (0) = −

⟨

𝜁, 𝜕𝑈𝑈𝑈𝐹
(

𝛼𝑛, 𝑈∗
)

[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]3
⟩

3
⟨

𝜁, 𝜕𝛼𝑈𝐹
(

𝛼𝑛, 𝑈∗
)

[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]⟩

−

⟨

𝜁, 𝜕𝑈𝑈𝐹 (𝛼𝑛, 𝑈∗)
[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

, 𝛩
]⟩

⟨

𝜁, 𝜕𝛼𝑈𝐹
(

𝛼𝑛, 𝑈∗
)

[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]⟩ ,

(4.7)

where 𝛩 =
(

𝛩1, 𝛩2
) is the unique solution of 

𝜕𝑈𝑈𝐹
(

𝛼𝑛, 𝑈∗
)

[

(1,−
ℎ𝑢∗
ℎ𝑘∗

) cos
( 𝑛𝜋
𝐿
𝑥
)

]2
+ 𝜕𝑈𝐹

(

𝛼𝑛, 𝑈∗
)

[𝛩] = 0, (4.8)

 and

𝜕𝑈𝑈𝐹
(

𝛼𝑛, 𝑈∗
)

[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]2

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑓𝑢𝑢∗ cos2
( 𝑛𝜋
𝐿
𝑥
)

+ 2𝛼𝑛𝑙𝑛𝐶𝑛(𝐺)
(

ℎ𝑢∗
ℎ𝑘∗

)

(

cos2
( 𝑛𝜋
𝐿
𝑥
)

− sin2
( 𝑛𝜋
𝐿
𝑥
))

(

ℎ𝑢𝑢∗ + ℎ𝑘𝑘∗

(

ℎ𝑢∗
ℎ𝑘∗

)2

− 2ℎ𝑢𝑘∗

(

ℎ𝑢∗
ℎ𝑘∗

)

)

cos2
( 𝑛𝜋
𝐿
𝑥
)

⎞

⎟

⎟

⎟

⎟

⎠

,

𝜕𝑈𝐹
(

𝛼𝑛, 𝑈∗
)

[𝛩]

=

⎛

⎜

⎜

⎜

⎝

𝑓𝑢∗
(

𝛩1
1 + 𝛩

2
1 cos

( 2𝑛𝜋
𝐿
𝑥
))

− 4𝑙𝑛 cos
( 2𝑛𝜋
𝐿
𝑥
)

(

𝑑𝛩2
1 + 𝛼𝑛𝑢∗𝐶𝑛(𝐺)𝛩

2
2

)

ℎ𝑢∗
(

𝛩1
1 + 𝛩

2
1 cos

( 2𝑛𝜋
𝐿
𝑥
))

+ ℎ𝑘∗
(

𝛩1
2 + 𝛩

2
2 cos

( 2𝑛𝜋
𝐿
𝑥
))

⎞

⎟

⎟

⎟

⎠

.

From [12] and 4.3, we assume 𝛩 =
(

𝛩1, 𝛩2
) has the following form

𝛩1 = 𝛩1
1 + 𝛩

2
1 cos

( 2𝑛𝜋
𝐿
𝑥
)

, 𝛩2 = 𝛩1
2 + 𝛩

2
2 cos

( 2𝑛𝜋
𝐿
𝑥
)

. (4.9)

Combining (4.8) and (4.9), after calculation, we have 

𝛩1
1 = −

𝑓𝑢𝑢∗
2𝑓𝑢∗

, 𝛩1
2 =

−(−𝑓𝑢𝑢∗ℎ2𝑘∗ℎ𝑢∗ + 𝑓𝑢∗ℎ𝑢𝑢∗ℎ
2
𝑘∗ − 2𝑓𝑢∗ℎ𝑢𝑘∗ℎ𝑘∗ℎ𝑢∗ + 𝑓𝑢∗ℎ𝑘𝑘∗ℎ2𝑢∗)

2𝑓𝑢∗ℎ3𝑘∗
,

𝛩2
1 =

−(𝑓𝑢𝑢∗ℎ3𝑘∗ + 4𝐶𝑛(𝐺)𝛼𝑛𝑙𝑛(ℎ2𝑘∗ℎ𝑢∗ + 𝑢∗ℎ𝑢𝑢∗ℎ
2
𝑘∗ − 2𝑢∗ℎ𝑢𝑘∗ℎ𝑢∗ℎ𝑘∗ + 𝑢∗ℎ𝑘𝑘∗ℎ2𝑢∗))

2ℎ2𝑘∗(𝑓𝑢∗ℎ𝑘∗ − 4𝑑ℎ𝑘∗𝑙𝑛 + 4𝐶𝑛(𝐺)𝛼𝑛𝑢∗ℎ𝑢∗𝑙𝑛)
,

𝛩2
2 =

𝑓𝑢𝑢∗ℎ2𝑘∗ℎ𝑢∗ − (𝑓𝑢∗ − 4𝑑𝑙𝑛)(ℎ𝑢𝑢∗ℎ2𝑘∗ + ℎ𝑘𝑘∗ℎ
2
𝑢∗ − 2ℎ𝑢∗ℎ𝑘∗ℎ𝑢𝑘∗) + 4𝐶𝑛(𝐺)𝑙𝑛𝛼𝑛ℎ2𝑢∗ℎ𝑘∗

2ℎ2𝑘∗(𝑓𝑢∗ℎ𝑘∗ − 4𝑑ℎ𝑘∗𝑙𝑛 + 4𝐶𝑛(𝐺)𝛼𝑛𝑢∗ℎ𝑢∗𝑙𝑛)
,

(4.10)
12 
 Moreover, we can calculate 

𝜕𝑈𝑈𝑈𝐹
(

𝛼𝑛, 𝑈∗
)

[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]3

=

⎛

⎜

⎜

⎜

⎝

𝑓𝑢𝑢𝑢∗ cos3
( 𝑛𝜋
𝐿
𝑥
)

(

ℎ𝑢𝑢𝑢∗ − ℎ𝑘𝑘𝑘∗

(

ℎ𝑢∗
ℎ𝑘∗

)3

+ 3ℎ𝑢𝑘𝑘∗

(

ℎ𝑢∗
ℎ𝑘∗

)2

− 3ℎ𝑢𝑢𝑘∗

(

ℎ𝑢∗
ℎ𝑘∗

)

)

cos3
( 𝑛𝜋
𝐿
𝑥
)

⎞

⎟

⎟

⎟

⎠

,

𝜕𝑈𝑈𝐹 (𝛼𝑛, 𝑈∗)
[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

, 𝛩
]

=

(

𝐹𝑈𝑈1
𝐹𝑈𝑈2

)

,

𝐹𝛼𝑈 (𝛼𝑛, 𝑈∗)
[(

1,−
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)

]

=
⎛

⎜

⎜

⎝

𝑢∗𝑙𝑛𝐶𝑛(𝐺)
ℎ𝑢∗
ℎ𝑘∗

cos
( 𝑛𝜋
𝐿
𝑥
)

0

⎞

⎟

⎟

⎠

,

(4.11)

where

𝐹𝑈𝑈1 =
(

𝑓𝑢𝑢∗ + 𝛼𝑛𝑙𝑛𝐶𝑛(𝐺)
ℎ𝑢∗
ℎ𝑘∗

)

cos
( 𝑛𝜋
𝐿
𝑥
)(

𝛩1
1 + 𝛩

2
1 cos

( 2𝑛𝜋
𝐿
𝑥
))

+ 2𝛼𝑛𝑙𝑛𝐶𝑛(𝐺) sin
( 𝑛𝜋
𝐿
𝑥
)

sin
( 2𝑛𝜋
𝐿
𝑥
)

(

−
ℎ𝑢∗
ℎ𝑘∗

𝛩2
1 + 𝛩

2
2

)

− 4𝛼𝑛𝑙𝑛𝐶𝑛(𝐺) cos
( 𝑛𝜋
𝐿
𝑥
)

cos
( 2𝑛𝜋
𝐿
𝑥
)

𝛩2
2 ,

𝐹𝑈𝑈2 =
(

ℎ𝑢𝑢∗ − ℎ𝑢𝑘∗

(

ℎ𝑢∗
ℎ𝑘∗

))

cos
( 𝑛𝜋
𝐿
𝑥
)(

𝛩1
1 + 𝛩

2
1 cos

( 2𝑛𝜋
𝐿
𝑥
))

+
(

ℎ𝑢𝑘∗ − ℎ𝑘𝑘∗

(

ℎ𝑢∗
ℎ𝑘∗

))

cos
( 𝑛𝜋
𝐿
𝑥
)(

𝛩1
2 + 𝛩

2
2 cos

( 2𝑛𝜋
𝐿
𝑥
))

.

Substituting (4.10) and (4.11) into (4.7), we can calculate 𝛼′′(0). If
𝛼′′𝑛 (0) > 0, then a forward pitchfork bifurcation occurs; and If 𝛼′′𝑛 (0) < 0, 
then a backward pitchfork bifurcation occurs.

From Theorem  4.3, we obtain the stability of the nonconstant 
steady-state solution of problem (1.8.a) and (1.8.b) obtained in The-
orems  1.5 and 1.6, respectively.

Theorem 4.4.  Suppose the conditions of Theorem  1.5 are satisfied, 
and let (𝛼𝑛(𝑠), 𝑈 (𝑠, ⋅)) (|𝑠| < 𝛿) be the non-constant steady state solutions
bifurcating from the constant ones at 𝛼 = 𝛼𝑛. Then a pitchfork bifurcation
occurs at 𝛼 = 𝛼𝑛 if 𝛼′′𝑛 (0) ≠ 0.

(i) At 𝛼 = 𝛼𝑟 > 0, suppose that 𝛼𝑟 = 𝛼𝑁  for 𝑁 ∈ N, then the 
pitchfork bifurcation is forward and the bifurcating solutions are 
locally asymptotically stable with respect to (1.8.a) if 𝛼′′𝑁 (0) > 0, and
it is backward and the bifurcating solutions are unstable if 𝛼′′𝑁 (0) < 0. 
The other bifurcating solutions near 𝛼𝑛 > 0 for 𝑛 ≠ 𝑁 are all 
unstable.

(ii) At 𝛼 = 𝛼𝑙 < 0, suppose that 𝛼𝑙 = 𝛼𝑀  for 𝑀 ∈ N, then the 
pitchfork bifurcation is backward and the bifurcating solutions are 
locally asymptotically stable with respect to (1.8.a) if 𝛼′′𝑀 (0) < 0, and
it is forward and the bifurcating solutions are unstable if 𝛼′′𝑀 (0) > 0. 
The other bifurcating solutions near 𝛼𝑛 < 0 for 𝑛 ≠ 𝑀 are all 
unstable.

Proof.  Let 𝑟(𝛼) be the eigenvalue of the corresponding linearization 
operator for the constant solution 𝑈∗ such that 𝑟(𝛼𝑛) = 0. From (4.1), 

𝐹𝑈
(

𝛼, 𝑈∗
)

[𝜙(𝛼), 𝜓(𝛼)]𝑇 = 𝑟(𝛼)𝐾 [𝜙(𝛼), 𝜓(𝛼)]𝑇 , 𝛼 ∈ (𝛼𝑛−𝜖, 𝛼𝑛+𝜖). (4.12)

ere 𝐾 ∶ 𝑋 → 𝑌  is the inclusion map 𝐾(𝑈 ) = 𝑈 . From Theorem  3.6,
e thus get

𝑟(𝛼) =
𝐵𝑛 +

√

𝐵2
𝑛 − 4𝐶𝑛

2
,

where 𝐵𝑛 and 𝐶𝑛 are defined in (3.16). Moreover, from the definition 
of 𝐵𝑛 and 𝐶𝑛, we obtain 

𝑟′(𝛼𝑛) =
𝑢∗ℎ𝑢∗𝐶𝑛(𝐺)𝑙𝑛 . (4.13)
𝐵𝑛
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In particular, we have sign(𝑟′(𝛼𝑛)) = sign(𝛼𝑛) from (1.13) and (4.13).
From (4.6), we have 𝛼′𝑛(0) = 0 for any 𝑛 ∈ N, and 𝛼′′𝑛 (0) can be calculated 
as in (4.7). Thus a pitchfork bifurcation occurs at 𝛼 = 𝛼𝑛 if 𝛼′′𝑛 (0) ≠ 0.

Suppose that 𝛼𝑟 = 𝛼𝑁 > 0 for some 𝑁 ∈ N, then 𝑟′(𝛼𝑁 ) > 0.
If 𝛼′′𝑁 (0) > 0, then 𝛼′𝑁 (𝑠) > 0 for 𝑠 ∈ (0, 𝛿), and 𝛼′𝑁 (𝑠) < 0 for 
𝑠 ∈ (−𝛿, 0). From Theorem  4.3, sign(−𝑠𝛼′𝑁 (𝑠)𝑟′(𝛼𝑁 )) = sign(𝜇(𝑠)), where 
𝜇(𝑠) is the eigenvalue of the corresponding linearization operator for 
the bifurcating solution at 𝛼 = 𝛼(𝑠). Thus 𝜇(𝑠) < 0 for 0 < |𝑠| < 𝛿.
Since all other eigenvalues of linearized equation at (𝛼𝑛(𝑠), 𝑈 (𝑠, ⋅)) are
negative near 𝛼 = 𝛼𝑟, then (𝛼𝑛(𝑠), 𝑈 (𝑠, ⋅)) is locally asymptotically stable. 
Similarly if 𝛼′′𝑁 (0) < 0, then 𝜇(𝑠) > 0 for 0 < |𝑠| < 𝛿 hence (𝛼𝑛(𝑠), 𝑈 (𝑠, ⋅))
is unstable. The cases for bifurcation point 𝛼 = 𝛼𝑙 < 0 or 𝛼 ≠ 𝛼𝑙 , 𝛼𝑟 can 
be proved similarly. □

Theorem 4.5.  Suppose the conditions of Theorem  1.6 are satisfied. Then
the same results as in Theorem  4.4 hold for Eq.  (1.8.b), with 𝑈∗ and 𝛼𝑛
replaced by 𝑈∗ and ̂𝛼𝑛.

When the bifurcating solutions near 𝛼 = 𝛼𝑙 or 𝛼𝑟 are locally asymp-
totically stable, one can observe a small amplitude non-constant steady 
state solution of (1.8.a) with a prescribed wave pattern (corresponding 
to 𝑁 or 𝑀 in Theorem  4.4). When the bifurcating solutions near 𝛼 = 𝛼𝑙
or 𝛼𝑟 are unstable, the corresponding bifurcating branch will bend back
through a saddle–node bifurcation and likely to a large amplitude non-
constant steady state solution of (1.8.a) with the same prescribed wave 
pattern.

5. Analysis of the model with a top-hat detection function

In this section, we study some specific cases to demonstrate some of 
our analytical results corresponding to different growth functions 𝑔(⋅).
Depending on the functional form of memory uptake 𝑔(⋅), we establish 
a number of monotone/nonmonotone properties of the bifurcation 
values 𝛼𝑛(𝑅). For the first two examples (sublinear and linear growth, 
respectively), we plot the local stability curves 𝛼𝑙(𝑅), 𝛼𝑟(𝑅) as they 
depend on the perceptual radius 𝑅, a bifurcation curve demonstrating 
the direction and stability of the branch obtained, and a sample so-
lution profile just beyond the critical values 𝛼𝑙(𝑅) and 𝛼𝑟(𝑅). For the 
numerical simulations we use a pseudo-spectral method with a  third 
order, strong stability-preserving Runge–Kutta (SSPRK3) time-stepping 
algorithm. Trajectories are run until the approximate time derivative 
𝑢𝑡 is small in sup-norm, i.e., once ‖‖𝑢𝑡(⋅, 𝑇 )‖‖𝐿∞ ≤ 10−15. Note that our 
computational domain chosen is (0, 2𝜋), equivalent to choosing 𝛺 =
(−𝜋, 𝜋) due to translation invariance.

To this end, let 𝐿 = 𝜋 and 𝑓 (𝑢) = 𝑢(1 − 𝑢). In all examples, we fix
𝑑 = 𝜇 = 𝛽 = 1.0  and 𝜌 = 5.

We then choose the following three cases of 𝑔(𝑢) to analyse Eq. (1.8.a)
and Eq.  (1.8.b) with the top-hat detection function defined in :

(i) 𝑔(𝑢) = 2𝜌𝑢2

1 + 𝑢2
;  (ii) 𝑔(𝑢) = 2𝜌𝑢2

1 + 𝑢
;  (iii) 𝑔(𝑢) = 𝜌𝑢2.

It is interesting to note that for all functional forms of 𝑔(𝑢) consid-
ered above, we always find that 𝑔′(1)(𝜇 + 𝛽) − 𝜌𝛽 > 0, and so from
Theorems  1.5–1.6, we only expect to observe solution profiles that are
in phase in the sense that the peaks and troughs of the population den-
sity and the spatial map are aligned. However, out-of-phase solutions 
are possible in principle if 𝑔(𝑢) is such that 𝑔′(1)(𝜇 + 𝛽) − 𝜌𝛽 < 0.

As previously noted in Remark  1.2, Cases (i) and (ii) have a global 
weak solution for either problem (1.8.a) or (1.8.b). In Case (iii), a global 
weak solution is only guaranteed by Theorem  1.1 for problem (1.8.b).

5.1. Case (i) in Eq.  (1.8.a)

We consider 𝑔(𝑢) = 2𝜌𝑢2

1 + 𝑢2
; 𝑓 and 𝑔 satisfy assumptions (H1)-(H2).

One can calculate that (𝑢∗, 𝑘∗) =
(

1,
𝜌

)

 and

𝜇 + 𝛽

13 
Fig. 1. The stability curves for Example (i) in Section 5.1. We display the first critical 
values |

|

𝛼𝑙|| and 𝛼𝑟 as a function of the perceptual radius 𝑅 using (5.7). Under the 
convention of  for the top-hat kernel (non-increasing from the origin), 𝛼𝑙 corresponds 
to the critical attractive strength (solid blue curve) while 𝛼𝑟 corresponds to the critical 
repulsive strength (solid red curve). The dashed lines represent the wavenumber at 
which the homogeneous state destabilizes. In the subsequent Figs.  2–3, we fix 𝑅 = 1.5
so that the expected frequency of the bifurcating solution is 𝑛 = 1 for attraction and
𝑛 = 3 for repulsion.

𝑓𝑢∗ = −1, 𝑓𝑢𝑢∗ = −2, 𝑓𝑢𝑢𝑢∗ = 0, 𝑔𝑢∗ = 𝜌, ℎ𝑢∗ =
𝜌𝜇
𝜇 + 𝛽

,

ℎ𝑘∗ = −(𝜇 + 𝛽), ℎ𝑢𝑢∗ = 𝑔𝑢𝑢∗ = −𝜌, ℎ𝑢𝑘∗ = −𝛽, ℎ𝑘𝑘∗ = 0,

ℎ𝑢𝑢𝑢∗ = 𝑔𝑢𝑢𝑢∗ = ℎ𝑢𝑢𝑘∗ = ℎ𝑢𝑘𝑘∗ = ℎ𝑘𝑘𝑘∗ = 0.

(5.1)

We consider the following model with the top-hat detection func-
tion: 
⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝑑𝑢𝑥𝑥 + 𝛼(𝑢𝑘𝑥)𝑥 + 𝑢(1 − 𝑢), 𝑥 ∈ (−𝜋, 𝜋), 𝑡 > 0,

𝑘𝑡 =
2𝜌𝑢2

1 + 𝑢2
− (𝜇 + 𝛽𝑢)𝑘, 𝑥 ∈ (−𝜋, 𝜋), 𝑡 > 0,

(5.2)

subject to periodic boundary conditions, where 𝐺(𝑥) is defined as in 
such that 0 < 𝑅 < 𝜋. From (1.4), we have 

𝑘(𝑥) = 1
2𝜋 ∫

𝑥+𝑅

𝑥−𝑅

1
2𝑅

𝑘(𝑦)d𝑦, −𝜋 ⩽ 𝑥 ⩽ 𝜋, (5.3)

and for 𝐺 in , we have 

𝐶𝑛(𝐺) =
sin(𝑛𝑅)
2𝜋𝑛𝑅

. (5.4)

As in (3.11), the linearized operator at (𝛼, 𝑈∗) is 

∗(𝛼)
(

𝜙
𝜓

)

= 𝜕𝑈𝐹 (𝛼, 𝑈∗)
(

𝜙
𝜓

)

=

(

𝑑𝜙𝑥𝑥 − 𝜙 + 𝛼
4𝑅𝐿

(

𝜓𝑥(𝑥 + 𝑅) − 𝜓𝑥(𝑥 − 𝑅)
)

𝜌𝜇
𝜇+𝛽 𝜙 − (𝜇 + 𝛽)𝜓

)

.
(5.5)

From Theorem  3.6, the spectrum of ∗(𝛼) is consisted of ℎ𝑘∗ = −(𝜇+𝛽) <
0 and eigenvalues 𝜆±𝑛  which satisfy the characteristic equation 

𝜆2+(1+𝜇+𝛽+𝑑𝑛2)𝜆+(𝜇+𝛽)+
(

𝛼
𝜌𝜇
𝜇 + 𝛽

sin(𝑛𝑅)
2𝜋𝑛𝑅

+ 𝑑(𝜇 + 𝛽)
)

𝑛2 = 0, (5.6)

where 𝑙𝑛 is defined in (1.9), 𝑛 ∈ Z. When 𝑛 = 0, from (3.4), all roots of 
(5.6) have negative real parts, hence the constant solution 𝑈  is locally 
∗
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Fig. 2. The bifurcation diagram corresponding to |
|

𝛼𝑙|| for Example (i) of Section 5 (left panel) and a sample solution profile ∼ 0.1 units beyond the critical threshold 𝛼 = 𝛼𝑙(1.5)
(right panel). (𝑢, 𝑘) denotes a inhomogeneous stationary state, while (𝑢∗ , 𝑘∗) denotes the homogeneous state. In the left panel, the blue and red curves are obtained by first locating a
spatially inhomogeneous state beyond the critical threshold 𝛼𝑙 , and then tracing the branch forwards and backwards. As predicted by our analytical results, we observe a subcritical 
bifurcation with an unstable branch (not depicted) which connects with the 𝛼-axis. The yellow curves are the solution profile obtained from a small uniform perturbation (of order 
10−3) of the homogeneous state, demonstrating the local stability of the homogeneous state prior to the critical threshold. In the right panel, we display a solution profile of the 
stationary state versus the homogeneous state just beyond the critical threshold; as predicted by our analytical insights, we observe a solution profile of frequency 𝑛 = 1; the key
insight is that, since the bifurcation is subcritical, the solution profile has high-amplitude, while the low-amplitude solution is the unstable one undetectable by our time-dependent 
solver.
Fig. 3. The bifurcation diagram corresponding to 𝛼𝑟 for Example (i) of Section 5 (left panel) and a sample solution profile ∼ 0.1 units beyond the critical threshold 𝛼 = 𝛼𝑟(1.5)
(right panel). The figure is almost identical to Fig.  2; the notable difference is the wavenumber at which the homogeneous state is destabilized: as predicted by our analytical 
results and from Fig.  1, we now have a solution profile of frequency 𝑛 = 3, also with high amplitude.
 

 

 

 
 
 

asymptotically stable with respect to non-spatial dynamics. Note that 
(5.6) is an even function of 𝑛, so we consider 𝑛 ∈ N below.

From (1.13), (1.14) and (5.4), we obtain 

𝛼𝑅𝑛 =
Det(𝐽∗) − 𝑑ℎ𝑘∗𝑛2

𝑢∗ℎ𝑢∗𝑛2
sin(𝑛𝑅)
2𝜋𝑛𝑅

=
−2𝜋𝑛𝑅(𝜇 + 𝛽)2

𝜌𝜇 sin(𝑛𝑅)

(

𝑑 + 1
𝑛2

)

,

𝛴+ =
{

𝑛 ∈ N ∶ 𝑛𝑅 ∈ ∪∞
𝑗=0(2𝑗𝜋, (2𝑗 + 1)𝜋)

}

,

𝛴− =
{

𝑛 ∈ N ∶ 𝑛𝑅 ∈ ∪∞
𝑗=0((2𝑗 + 1)𝜋, (2𝑗 + 2)𝜋)

}

,

𝛼𝑙 = −
2𝜋(𝜇 + 𝛽)2

𝜌𝜇
min
𝑛∈𝛴+

𝑛𝑅
sin(𝑛𝑅)

(

𝑑 + 1
𝑛2

)

,

𝛼𝑟 = −
2𝜋(𝜇 + 𝛽)2

𝜌𝜇
max
𝑛∈𝛴−

𝑛𝑅
sin(𝑛𝑅)

(

𝑑 + 1
𝑛2

)

,

(5.7)

In Fig.  1 we numerically compute the values |
|

𝛼𝑙|| and 𝛼𝑟 and plot 
them with respect to the perceptual radius 𝑅. We also display the 
14 
wavenumber at which the critical value is achieved. Now we can apply
Theorems  1.3 and 1.5 to (5.2) to have the following results. 

Theorem 5.1.  Let 𝛼𝑅𝑛 , 𝛴+, 𝛴−, 𝛼𝑙 , 𝛼𝑟 be defined in (5.7). Then the constant
steady state solution 𝑈∗ = (1, 𝜌∕(𝜇+𝛽)) is locally asymptotically stable with 
respect to (5.2) when 𝛼𝑙 < 𝛼 < 𝛼𝑟 and is unstable when 𝛼 < 𝛼𝑙 or 𝛼 > 𝛼𝑟. 
Moreover non-constant steady state solutions of (5.2) bifurcate from the 
branch of constant solutions 𝛤0 = {(𝛼, 𝑈∗) ∶ 𝛼 ∈ R} near 𝛼 = 𝛼𝑅𝑛 , and these
solutions are on a curve 𝛤𝑛 = {(𝛼𝑛(𝑠), 𝑢𝑛(𝑠, ⋅), 𝑘𝑛(𝑠, ⋅)) ∶ |𝑠| < 𝛿} such that 
𝛼𝑛(0) = 𝛼𝑅𝑛  and 𝛼′𝑛(0) = 0. Moreover, the following monotonicity properties 
hold.

(i) Suppose 𝑛 ∈ 𝛴+ so that sin(𝑛𝑅)
𝑛𝑅

> 0. Then 𝛼𝑛(𝑅) < 0, and
𝛼𝑛(𝑅) (in particular, 𝛼𝑙) is monotonically increasing with respect to
𝜌, is monotonically decreasing with respect to 𝑑 and 𝛽, and is not
monotone with respect to 𝜇.
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Fig. 4. The stability curves for Example (ii) in Section 5.2, obtained as in Fig.  1. We
again display the first critical values |

|

𝛼𝑙|| and 𝛼𝑟 as a function of the perceptual radius 
𝑅 using (5.7). Qualitatively similar to Example (i), this case has a significantly different 
scale of magnitude to destabilize the homogeneous state.

(ii) Suppose 𝑛 ∈ 𝛴− so that sin(𝑛𝑅)
𝑛𝑅

< 0. Then 𝛼𝑛(𝑅) > 0, and 𝛼𝑛(𝑅) (in 
particular, 𝛼𝑟) is monotonically increasing with respect to 𝑑 and 𝛽,
is monotonically decreasing with respect to 𝜌, and is not monotone
with respect to 𝜇.

Using (4.7), after several calculations we find that 

𝛼′′𝑛 (0) =

(

504𝑛4 + 645𝑛2 + 541
)

150𝐶𝑛(𝐺)𝑛2

 Since the numerator of the above quantity is strictly positive for 
all 𝑛 ≥ 1, the sign of 𝛼′′𝑛 (0) depends only on the sign of the Fourier 
coefficients of the kernel 𝐺. At 𝛼𝑙, we look at wavenumbers from 𝛴+

and so sign(𝛼′′(0)) > 0; by Theorem  4.4 the pitchfork bifurcation is 
forward, and the bifurcating solution is unstable. Similarly, at 𝛼𝑟 we 
look at wavenumbers from 𝛴− and so sign(𝛼′′(0)) < 0; by Theorem  4.4
the pitchfork bifurcation is backward and the bifurcating solution is 
unstable. This is precisely what is observed in Figs.  2–3, where both 
cases feature a high amplitude solution curve appearing before the 
critical thresholds |𝛼𝑙| and 𝛼𝑟. 

The monotonicity properties described above can be understood 
intuitively. In Case (i)  of Theorem  5.1, we consider cases of aggregation 
(𝛼 < 0), and so a decreasing behaviour requires higher rates of advection 
to destabilize the constant steady state, while an increasing behaviour 
allows for destabilization of the constant steady state at lower advection 
rates. As is generally understood for diffusion–advection models, diffu-
sion has a stabilizing effect, and higher rates of diffusion, therefore, 
require comparably high magnitudes of advection to destabilize the 
constant steady state. Similarly, an increased value of 𝛽, a ‘rate of safe
return’, also requires an increased magnitude of advection to destabilize 
the constant steady state. This suggests that the population cannot 
return to previously visited locations too quickly if patterns are to
persist. In Case (ii)  of Theorem  5.1, we flip the sign of the advection 
rate and consider the segregation case (𝛼 > 0), in which case the 
direction of the monotonicities also switch, but the understanding of 
this behaviour is identical to Case (i). More interestingly, perhaps, is 
15 
the non-monotone behaviour with respect to the memory decay rate 
𝜇. In fact, in this case, 𝛼𝑙 (𝛼𝑟) is concave down (up), and so there is a
critical value 𝜇∗ > 0 so that the rate of advection required to destabilize 
the constant steady state is minimal. This is in contrast to Theorem  5.2
in Case (ii), where monotonicity with respect to 𝛽 is lost.

Of particular note is that in classifying the sup/supercriticality of the 
bifurcation, the sign of 𝛼′′𝑛 (0) is independent of 𝑛 in the sense that every 
bifurcation point leads to a subcritical bifurcation; this is different from
Example (ii) below, where the bifurcation will be shown to always be 
supercritical (see the discussion for Case (ii) below and Figs.  5–6).

Fig.  1 then demonstrates the more complex relationship between 
the perceptual radius 𝑅 and the sizes of 𝛼𝑟(𝑅) and 𝛼𝑙(𝑅). Of note is 
the non-monotone behaviour, particularly for smaller perceptual radii.
This wavelike behaviour is most pronounced for 𝛼𝑟(𝑅). It is also easy 
to see that |𝛼𝑙(𝑅)| < 𝛼𝑟(𝑅) when 0 < 𝑅 < 𝜋∕2 (indeed this holds for 
𝑅 < 2.2 from Fig.  1). But when 𝑅 is larger than 2.2, either |𝛼𝑙(𝑅)|
or 𝛼𝑟(𝑅) could be the larger one. This, in general, shows that the 
advection rate needed to destabilize the positive equilibrium is larger 
when the perceptual radius is larger. When the perceptual radius is less 
than half of the domain size, the attractive advection rate needed to 
destabilize the positive equilibrium is larger than the repulsive one. In
Figs.  2–3, we depict the numerical bifurcation diagrams corresponding 
to aggregation (Fig.  2) and segregation (Fig.  3), as well as the solution 
profiles just beyond the critical parameter values.

5.2. Case (ii) in Eq.  (1.8.a)

Let 𝑔(𝑢) = 2𝜌𝑢2

1 + 𝑢
 in Eq.  (1.8.a). Similar to Case (i), we have 

(𝑢∗, 𝑘∗) =
(

1,
𝜌

𝜇 + 𝛽

)

, 𝑓𝑢∗ = −1, 𝑓𝑢𝑢∗ = −2, 𝑓𝑢𝑢𝑢∗ = 0, 𝑔𝑢∗ =
3𝜌
2
,

ℎ𝑢∗ =
3𝜌𝜇 + 𝜌𝛽
2(𝜇 + 𝛽)

, ℎ𝑘∗ = −(𝜇 + 𝛽), ℎ𝑢𝑢∗ = 𝑔𝑢𝑢∗ =
𝜌
2
, ℎ𝑢𝑘∗ = −𝛽,

ℎ𝑘𝑘∗ = 0, ℎ𝑢𝑢𝑢∗ = 𝑔𝑢𝑢𝑢∗ = −
3𝜌
4
, ℎ𝑢𝑢𝑘∗ = ℎ𝑢𝑘𝑘∗ = ℎ𝑘𝑘𝑘∗ = 0.

(5.8)

and 

𝛼𝑛(𝑅) =
Det(𝐽∗) − 𝑑ℎ𝑘∗𝑛2

𝑢∗ℎ𝑢∗𝑛2
sin(𝑛𝑅)
2𝜋𝑛𝑅

=
−2(𝜇 + 𝛽)2

𝜌(3𝜇 + 𝛽) sin(𝑛𝑅)2𝜋𝑛𝑅

(

𝑑 + 1
𝑛2

)

. (5.9)

After several computations, we find 

𝛼′′𝑛 (0) =
−(632𝑛4 + 1360𝑛2 − 72)

1200𝐶𝑛(𝐺)𝑛2
.

 In contrast to Case (i), we now find that the numerator of the above 
expression is negative for all 𝑛 ≥ 1. Therefore, the sign of 𝛼′′𝑛 (0) is 
again determined by the sign of the Fourier coefficients of 𝐺, but the 
conclusions are reversed. At 𝛼𝑙, we check wavenumbers 𝑛 ∈ 𝛴+ to 
find that sign(𝛼′′(0)) < 0; by Theorem  4.4 the pitchfork bifurcation is 
backward and the bifurcating solution is stable. Similarly, at 𝛼𝑟, we 
check wavenumbers 𝑛 ∈ 𝛴− so that sign(𝛼′′(0)) > 0; by Theorem  4.4, the 
pitchfork bifurcation is forward, and the bifurcating solution is stable. 
This is precisely what is observed in Figs.  5–6, where a stable small
amplitude emerges smoothly from the homogeneous state at precisely 
the critical values |𝛼𝑙| and 𝛼𝑟. 

The monotonicity of 𝛼𝑛(𝑅) with respect to parameters for Case (ii)
is slightly different, so we state the following theorem. 

Theorem 5.2.  Let 𝛼𝑛(𝑅) be defined in (5.9).

(i) Suppose 𝑛 ∈ 𝛴+ so that sin(𝑛𝑅)
𝑛𝑅

> 0. Then 𝛼𝑛(𝑅) < 0, and
𝛼𝑛(𝑅) (in particular, 𝛼𝑙) is monotonically increasing with respect to
𝜌, monotonically decreasing with respect to 𝑑, and is not monotone
with with respect to either 𝜇 or 𝛽.

(ii) Suppose 𝑛 ∈ 𝛴− so that sin(𝑛𝑅)
𝑛𝑅

< 0. Then 𝛼𝑛(𝑅) > 0, and 𝛼𝑛(𝑅)
(in particular, 𝛼 ) is monotonically increasing with respect to 𝑑, 
𝑟
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Fig. 5. The bifurcation diagram corresponding to 𝛼𝑙 for Example (ii) of Section 5 (left panel) and a sample solution profile ∼ 0.1 units beyond the critical threshold 𝛼 = 𝛼𝑙(1.5)
(right panel). Different from Case (i), we now observe a supercritical bifurcation with a low-amplitude solution emerging from the homogeneous state at the critical threshold. 
The solution profile is similar to Fig.  2, with the notable difference being its amplitude.
 

Fig. 6. The bifurcation diagram corresponding to 𝛼𝑟 for Example (ii) of Section 5 (left panel) and a sample solution profile ∼ 0.1 units beyond the critical threshold 𝛼 = 𝛼𝑟(1.5)
(right panel). The solution profile is similar to Fig.  3, with the same difference noted in Fig.  5: we observe patterns at the same wavenumber as in 𝛼𝑟 of Case (i), but now we are
able to observe the low-amplitude solution emerging smoothly from the homogeneous state at the critical threshold.
 

 

 

 
 
 

monotonically decreasing with respect to 𝜌, and is not monotone with 
respect to either 𝜇 or 𝛽.

This Theorem, similar to Theorem  5.1 for Case (i), retains the 
expected monotonicity properties with respect to 𝜌 and 𝑑, while we lose 
monotonicity with respect to 𝛽. Indeed, the curves 𝛼𝑙 and 𝛼𝑟 are concave 
with respect to each parameter, suggesting the existence of critical 
values 𝜇∗ > 0 and 𝛽∗ > 0 so that the magnitude of advection required to
destabilize the constant steady state is minimal. This highlights a key 
difference caused by the choice of memory uptake 𝑔(⋅).

5.3. Case (iii) in Eq.  (1.8.b)

In this case, we choose 𝑔(𝑢) = 𝜌𝑢2 in Eq.  (1.8.b). From (1.15) and
(3.27), bifurcation point ̂𝛼𝑛(𝑅) has the following expression 

𝛼𝑛(𝑅) =
−(𝜌 + 𝜇 + 𝛽)2

𝜅𝜌(2𝜇 + 𝛽) sin(𝑛𝑅)2𝜋𝑛𝑅

(

𝑑 −
𝑓 ′(1)
𝑙𝑛

)

. (5.10)

We again find that bifurcating solutions can only occur in phase with 
each other.

Similar to Theorem  5.1, we have the following. 
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Theorem 5.3.  Let 𝛼𝑛(𝑅), 𝛴+, 𝛴−, 𝛼𝑙 , 𝛼𝑟 be defined in (1.16) and (5.10).
Then there are non-constant steady-state solutions that bifurcation from the 
constant solution (1, 𝜌𝜅

𝜌+𝜇+𝛽 ) near 𝛼𝑛(𝑅) of system (1.8.b). Moreover, the 
constant solution (1, 𝜌𝜅

𝜌+𝜇+𝛽 ) is locally asymptotically stable when 𝛼𝑙 < 𝛼 <
𝛼𝑟 and unstable when ̂𝛼 < 𝛼𝑙 or ̂𝛼 > 𝛼𝑟.

Theorem 5.4.  Let ̂𝛼𝑛(𝑅) be defined in (5.10).

(i) Suppose 𝑛 ∈ 𝛴+ so that sin(𝑛𝑅)
𝑛𝑅

> 0. Then 𝛼𝑛(𝑅) < 0, and
𝛼𝑛(𝑅) (in particular, 𝛼𝑙) is monotonically increasing with respect to
𝜅, monotonically decreasing with respect to 𝑑, and is not monotone
with respect to any of 𝜌, 𝜇 or 𝛽;

(ii) Suppose 𝑛 ∈ 𝛴− so that sin(𝑛𝑅)
𝑛𝑅

< 0. Then 𝛼𝑛(𝑅) > 0, and 𝛼𝑛(𝑅)
(in particular, 𝛼𝑟) is monotonically increasing with respect to 𝑑, 
monotonically decreasing with respect to 𝜅, and is not monotone with 
respect to any of 𝜌, 𝜇 or 𝛽.

We again compare to Theorem’s 5.1–5.2: the monotonicity with 
respect to 𝑑 remains, while a quadratic growth for the memory up-
take function causes all other previously monotone cases to be non-
monotone! In Case (iii), we also have a new parameter 𝜅, which is the 
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theoretical maximal memory capacity of the organism. It is biologically 
reasonable, therefore, for an increase in this memory capacity to de-
crease the magnitude of advection required to destabilize the constant 
steady state.

6. Discussion

The role of spatial memory in driving the movement of animals has 
long been of interest to both empirical ecologists [1] and mathemat-
ical modellers [13]. In this work, we consider the incorporation of a
nonlocal advection term in the PDE to model movement in response to
remembered space use, where the memory map is described dynam-
ically by an additional ODE. The nonlocal advection term is crucial 
from both biological and mathematical standpoints [19]. Biologically,
it more accurately captures the essence of how organisms sense their 
surrounding environment and make movement decisions based on that 
information [17]. This is a useful step forward in our mathematical 
representation of animal movement ecology, making the modelling 
formulation more applicable to what is observed in the natural world.
Mathematically, however, nonlocality introduces technical difficulties 
which deserve a careful and robust study.

One of the significant contributions of this paper is the establish-
ment of a well-posedness result, proving the existence and uniqueness 
of a global solution, ruling out the possibility of a finite-time blowup. 
In particular, we showed the existence and uniqueness of a solution 
even when considering the discontinuous top-hat detection function. 
This result broadens the existing literature in a crucial way, providing 
answers to some open questions found in [13]. Prior to this work, the 
existence of solutions for this specific class of models remained an open 
question. Our result not only bridges this gap but also opens doors 
for more complex models incorporating different types of detection 
functions.

Another significant contribution lies in our robust bifurcation and
spectral analyses. Previous efforts, motivated more directly by the 
ecological application, have often relied solely on a linear stability 
analysis [2,33], which can be insufficient in scenarios where the point 
spectrum consists of elements with infinite-dimensional kernel. This 
does not occur in classical reaction–diffusion systems but may occur 
when nonlocal advection is introduced. Moreover, the comprehensive 
approach used here reveals a more nuanced understanding of the 
system’s stability, describing more quantitative features of the solution 
profile near these critical bifurcation points.

From this bifurcation analysis, we establish a number of monotonic-
ity and non-monotonicity results for the critical bifurcation parameters, 
with the monotonic properties depending on the functional form given 
chosen for the memory uptake rate 𝑔(⋅). In the special cases considered 
here, a bounded functional form has the most monotonicity properties, 
while a roughly linear or quadratic functional form appears to remove 
most of the monotonicity properties. This suggests the existence of 
critical values so that the magnitude of advection required to desta-
bilize is minimized, an interesting feature that deserves future study. 
For example, is the critical value dependent on whether the population 
aggregates or segregates?

Our numerical simulations using a pseudo-spectral method fur-
ther complement our analytical results. These numerical methods are
particularly well-suited for dealing with nonlocal advection–diffusion 
problems, demonstrating some of the interesting bifurcation structures 
of these problems.

While this work provides new insights and fills existing gaps in the 
literature, further studies are needed to explore more general functional 
forms, higher-dimensional space, and for domains with a physical 
boundary. From a biological perspective, there are various aspects of 
memory at play that are not modelled here [1]. In reality, animals’
advective tendencies will not simply be towards (or away from) areas 
they have previously visited. Rather they will assess the quality of those 
places – e.g. whether they contain access to food or shelter, if they 
17 
have had aggressive or favourable encounters there – and adjust their 
advective tendencies accordingly [11]. Our work paves the way for 
analysing these more detailed and realistic memory effects.

One tricky yet important feature will be the inclusion of hetero-
geneous landscapes, for example, where some areas are better than 
others for foraging or hiding from predators [4,9]. Analysis of nonlinear 
PDEs often occurs in a homogeneous environment, but to connect 
better to the ecological community, theory on pattern formation in 
heterogeneous environments will be of fundamental importance [53].
Additionally, it will be important to account for between-population 
interactions via multi-species models with explicit inclusion of mem-
ory processes [22]. A possible way into this would be to analyse 
existing models on territory, some of which are simply multi-species 
extensions of the model analysed here [7,33], by placing these on
solid mathematical foundations through developing existence theory, 
and gaining greater insights into territorial pattern formation through 
rigorous spectral and bifurcation analyses.
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