
This article was downloaded by: [Hong Kong Polytechnic University]
On: 20 May 2014, At: 20:25
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applicable Analysis: An International
Journal
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gapa20

Bifurcation analysis of the
Gierer–Meinhardt system with a
saturation in the activator production
Shanshan Chena, Junping Shib & Junjie Weia
a Department of Mathematics, Harbin Institute of Technology,
Weihai, 264209, Shandong, P.R. China.
b Department of Mathematics, College of William and Mary,
Williamsburg, Virginia, 23187-8795, USA.
Published online: 09 Jul 2013.

To cite this article: Shanshan Chen, Junping Shi & Junjie Wei (2014) Bifurcation analysis of the
Gierer–Meinhardt system with a saturation in the activator production, Applicable Analysis: An
International Journal, 93:6, 1115-1134, DOI: 10.1080/00036811.2013.817559

To link to this article:  http://dx.doi.org/10.1080/00036811.2013.817559

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/gapa20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00036811.2013.817559
http://dx.doi.org/10.1080/00036811.2013.817559


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

H
on

g 
K

on
g 

Po
ly

te
ch

ni
c 

U
ni

ve
rs

ity
] 

at
 2

0:
25

 2
0 

M
ay

 2
01

4 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Applicable Analysis, 2014
Vol. 93, No. 6, 1115–1134, http://dx.doi.org/10.1080/00036811.2013.817559

Bifurcation analysis of the Gierer–Meinhardt system with a saturation
in the activator production

Shanshan Chena∗, Junping Shib and Junjie Weia

aDepartment of Mathematics, Harbin Institute of Technology, Weihai, Shandong 264209,
P.R. China; bDepartment of Mathematics, College of William and Mary, Williamsburg, Virginia

23187-8795, USA

Communicated by Y. Xu

(Received 15 January 2013; final version received 17 June 2013)

The reaction–diffusion Gierer–Meinhardt system with a saturation in the activator
production is considered. Stability of the unique positive constant steady state
solution is analysed, and associated Hopf bifurcations and steady state
bifurcations are obtained. A global bifurcation diagram of non-trivial periodic
orbits and steady state solutions with respect to key system parameters is obtained,
which improves the understanding of dynamics of Gierer–Meinhardt system with
a saturation in different parameter regimes.
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1. Introduction

In the pioneer work [1], Gierer and Meinhardt considered the following reaction–diffusion
system of activator–inhibitor type with a saturation of activator production: (see [1]
Equation (16)) ⎧⎪⎪⎨⎪⎪⎩

∂a

∂t
= ρ0ρ + cρ

a2

(1 + κa2)h
− μa + Da

∂2a

∂x2
,

∂h

∂t
= c′ρ′a2 − νh + Dh

∂2h

∂x2
.

(1.1)

Here, a(x, t) and h(x, t) are the concentration functions of the activator and inhibitor,
respectively. In (1.1), the activator concentration is limited to a maximum value so that the
activated area forms an approximately constant proportion of the total structure size. When
κ = 0, (1.1) is reduced to the classical Gierer–Meinhardt system. Numerical simulations
of concentration patterns of (1.1) were obtained in [1–3] for one- and two-dimensional
spatial domains. In the last 40 years, the Gierer–Meindardt system was considered as one of
most important spatiotemporal morphogenesis pattern formation reaction–diffusion model
([4,5]). There have been many research results on the non-homogeneous steady state
solutions (such as multi-peak steady state solutions etc.) of the Gierer-Meindardt system
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1116 S. Chen et al.

(1.1) with κ = 0, (see [6–13]) and the Gierer–Meindardt system with saturation (1.1) with
κ > 0, (see references [14–17]). There are also many results on the steady state solutions
of other similar models, (see references [18–23]).

In this paper, we analyse the Gierer–Meinhardt system with saturation in the following
form (see [16,24]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1�u + σ − u + u2

(1 + κu2)v
, x ∈ �, t > 0,

τ
∂v

∂t
= d2�v − v + u2, x ∈ �, t > 0,

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ �,

(1.2)

where � is a bounded connected open subset of R
n (n ≥ 1), with a smooth boundary ∂�

(if n ≥ 2), and the Laplace operator �w(x, t) =
∑n

i=1

∂2w(x, t)

∂x2
i

for w = u, v models

the diffusion effect;
∂w(x, t)

∂ν
is the outer normal derivative of w = u, v at x ∈ ∂�, and a

no-flux boundary condition is imposed for each of u and v; the parameters d1, d2, τ and σ are
positive constants, whereas κ is a nonnegative constant. Morimoto [16] showed that system
(1.2) admits a radially symmetric steady state solution when κ is small and � = (−1, 1) is
one dimensional, and in [24] we obtained that when κ is large, the unique positive constant
steady state solution of system (1.2) is globally asymptotically stable and hence (1.2) cannot
have nontrivial steady state solution.

The existence of non-trivial steady state solution whenκ is small and the non-existence of
non-trivial steady state solution when κ is large make us to wonder the dynamical behaviour
when κ is neither large nor small. In the first part of this paper, we follow the approach in
[25–27] to consider the sequence of Hopf bifurcations and steady state bifurcations from
the unique constant steady state solution for (1.2). While our techniques are similar to the
ones in these previous work, here we face the difficulty that the constant steady state is
not easily solvable as it is the root of a cubic polynomial. To overcome that, we use a new
parameter λ (the u-coordinate of the constant steady state) as an equivalent parameter to κ
to perform the bifurcation analysis for the case that the spatial domain � = (0, �π), with
� ∈ R

+. We discover that there are four different bifurcation scenarios with respect to λ or
κ if the other four parameters d1, d2, τ and σ are in different regimes. To be more precise,
our analysis shows that for two constants defined in terms of d1, d2, τ and σ :

M1 = τ − 1

τ + 1
, and M2 = d2 − d1 − 2

√
d1d2

d2 + d1 + 2
√

d1d2
,

(1) If σ > max {M1,M2}, then the constant steady state solution is locally asymptot-
ically stable for all κ ≥ 0; thus, there are not any bifurcations occurring from the
constant steady state solution;

(2) If M1 ≥ σ > M2, then the constant steady state solution is locally asymptotically
stable for large κ > 0, and it loses stability via Hopf bifurcations for smaller κ (but,
there are no steady state bifurcations);
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Applicable Analysis 1117

(3) If M2 > σ > M1, then the constant steady state solution is locally asymptotically
stable for large κ > 0, and it loses stability via steady state bifurcations for smaller
κ (but, there are no Hopf bifurcations);

(4) If 0 < σ < min {M1,M2}, then the constant steady state solution is locally
asymptotically stable for large κ > 0, and both Hopf bifurcations and steady state
bifurcations occur for smaller κ .

Temporally oscillatory patterns and non-constant stationary patterns have appeared in many
reaction–diffusion pattern formation systems since the pioneer work [28], in which
Turing identified six kinds of spatiotemporal patterns. Our classification of patterns in (1.2)
according to two quantities M1 and M2 above demonstrates the importance of parameter
values in non-linear pattern formation mechanism. Notice that M1 depends on τ (time
scale); M2 depends on d1 and d2 (diffusion coefficients); and σ is the source term. Hence,
the relative order of the three quantities M1,M2 and σ determines the occurrence (or non-
occurrence) of patterns and also the types of patterns. It is also interesting to compare the
role of activator source term σ in (1.2) to the one in CIMA reaction discussed in [25] (see
also [29,30]). Here, for (1.2), a larger σ results in non-existence of patterns, while for CIMA
reaction in [25], more patterns are possible for larger source term.

All pattern formation mentioned above is given by assuming a constant source σ . In
the second part of this paper, we consider (1.2) with a non-constant source function σ(x).
Notice that in this case, there is no constant steady state solution. We prove the existence
of a non-constant steady state solution as a “primary pattern”, and this primary pattern
is globally asymptotically stable for a large κ or a large σ . The research in this direction
is still preliminary, and it is desirable to know the effect of feeding function σ(x) on the
primary and other patterns. In recent years, the effect of spatial heterogenous environment
on diffusive competition and predator–prey models have been considered in for example,
[31–38]).

The remaining part of the paper is organised as follows. In Section 2, stability and Hopf
bifurcation analyses for system (1.2) are conducted. In Section 3, steady state bifurcations
and the interaction between Hopf and steady state bifurcations are studied. In Section 4, we
consider the case when the source function σ is spatially heterogeneous. Some numerical
simulations and bifurcation diagrams are shown in Section 5. Throughout the paper, we
denote by N the set of all the positive integers, N0 = N ∪ {0}, and R

+ the set of all the
positive real numbers.

2. Stability and Hopf bifurcations

In this section, we analyse the stability of the constant steady state solution of (1.2), and
consider the related Hopf bifurcations for (1.2) with the spatial domain � = (0, �π),
� ∈ R

+, and a constant source term σ > 0, which is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx + σ − u + u2

(1 + κu2)v
, x ∈ (0, �π), t > 0,

vt = 1

τ
(d2vxx − v + u2), x ∈ (0, �π), t > 0,

ux (0, t) = vx (0, t) = 0, ux (�π, t) = vx (�π, t) = 0, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ (0, �π).

(2.1)
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1118 S. Chen et al.

System (2.1) has a unique positive constant steady state solution (λ, λ2), and λ is the unique
positive root of

1

1 + κλ2
= λ− σ. (2.2)

From elementary calculus, for any fixed κ , there exists a unique λ = λ(κ) > 0 satisfying
Equation (2.2). Differentiating Equation (2.2) with respect to κ , we see that

2λkλ′(κ) = − 1

(λ− σ)2
− λ2,

and henceλ(κ) is a strictly decreasing function in κ for κ ≥ 0, with limκ→0 λ(κ) = σ+1 and
limκ→∞ λ(κ) = σ . Hence, throughout the paper, we always assume λ ∈ (σ, σ + 1],
and use λ as a bifurcation parameter which is equivalent to κ .

As in [25,27], we define the real-valued Sobolev space

X :=
{
(u, v)T ∈ H2(0, �π)× H2(0, �π) : (ux , vx )|x=0, �π = 0

}
, (2.3)

and also define the complexification of X to be XC := X ⊕ i X = {x1 + i x2| x1, x2 ∈ X}.
The linearised operator of the steady state system of (2.1) at (λ, λ2) is,

L(λ) :=

⎛⎜⎜⎝ d1
∂2

∂x2
+ 2(λ− σ)2

λ
− 1 −λ− σ

λ2

2λ

τ

d2

τ

∂2

∂x2
− 1

τ

⎞⎟⎟⎠ , (2.4)

with the domain DL(λ) = XC. It is known that the eigenvalue problem

−ϕ′′ = μϕ, x ∈ (0, �π), ϕ′(0) = ϕ′(�π) = 0,

has eigenvalues μn = n2

�2
(n = 0, 1, 2, . . .), with corresponding eigenfunctions ϕn(x) =

cos
n

�
x (n = 0, 1, 2, . . .). Let

(
φ

ψ

)
=

∞∑
n=0

cos
n

�
x

(
an

bn

)
(2.5)

be an eigenfunction for L(λ) with eigenvalue β(λ), that is, L(λ)(φ,ψ)T = β(λ)(φ,ψ)T .
Then, we can obtain that (see [27])

Ln(λ)

(
an

bn

)
= β(λ)

(
an

bn

)
, n = 0, 1, 2, . . . , (2.6)

where

Ln(λ) :=

⎛⎜⎜⎝ −d1n2

�2
+ 2(λ− σ)2

λ
− 1 −λ− σ

λ2

2λ

τ
−d2n2

τ�2
− 1

τ

⎞⎟⎟⎠ . (2.7)

Then, the characteristic equation of L(λ) is

β2 − Tn(λ)β + Dn(λ) = 0, n = 0, 1, 2, . . . , (2.8)
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Applicable Analysis 1119

where⎧⎪⎪⎨⎪⎪⎩
Tn(λ) = −

(
d1 + d2

τ

)
n2

�2
− 1

τ
− 1 + 2(λ− σ)2

λ
,

Dn(λ)= 1

τ

[
1− 2(λ−σ)2

λ
+ 2(λ− σ)

λ
+

[
d1+d2

(
1− 2(λ− σ)2

λ

)]
n2

�2
+ d1d2n4

�4

]
.

(2.9)

If the constant steady state (λ, λ2) is locally asymptotically stable, then for each n ∈ N0, we
have Tn(λ) < 0 and Dn(λ) > 0. Moreover, we identify Hopf bifurcation values λ0 which
satisfy the following Hopf bifurcation condition (see [25,27]):
(H1): There exists n ∈ N0 such that

Tn(λ0) = 0, Dn(λ0) > 0, and Tj (λ0) �= 0, D j (λ0) �= 0 for j �= n, (2.10)

and a unique pair of complex eigenvalues near the imaginary axis α(λ)± iω(λ) satisfying

α′(λ0) �= 0. (2.11)

From (2.9), we have

Tn(λ) = −
(

d1 + d2

τ

)
n2

�2
− 1

τ
− 1 − 4σ + 2

(
λ+ σ 2

λ

)
, (2.12)

and hence Tn(λ) is a strictly increasing function with respect to λ for λ ∈ (σ, σ + 1]. So
for a possible Hopf bifurcation value λ0, we have α′(λ0) = T ′

n(λ0)/2 > 0. Moreover, the
real part of one pair of complex eigenvalues of L(λ) becomes positive when λ crosses λ0
increasingly.

For the simplicity of notation, in the following, we denote

m = 2

σ + 1
− 1, and d = d1

d2
. (2.13)

We consider the stability condition and the Hopf bifurcation condition of the positive

constant steady state solution (λ, λ2). Clearly, T0(λ) < 0 for λ near σ . If m ≥ 1

τ
, then

T0(σ + 1) ≥ 0. Since T0(λ) is a strictly increasing function with respect to λ, then there
exists a unique λ∗ (σ < λ∗ ≤ σ + 1), such that T0(λ) > 0 for λ > λ∗, T0(λ) < 0 for

λ < λ∗, and T0(λ∗) = 0. Apparently, if m = 1

τ
, then λ∗ = σ + 1 satisfies the Hopf

bifurcation condition (H1) and is the unique Hopf bifurcation value at which spatially
homogeneous periodic orbits bifurcate out for any � > 0. In the following, we look for

spatially non-homogeneous periodic orbits. So, we assume m >
1

τ
, and define

�n = n

√
d1τ + d2

τT0(σ + 1)
= n

√
(τd1 + d2)(σ + 1)

(−1 − τ)(σ + 1)+ 2τ
, n ∈ N. (2.14)

Then, for �n ≤ � < �n+1, (n ∈ N), we define λH
j to be the unique root of Tj (λ) = 0 for

0 ≤ j ≤ n. These points satisfy

λ∗ ≡ λH
0 < λH

1 < λH
2 < · · · < λH

n ≤ σ + 1.
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1120 S. Chen et al.

Clearly, Tj (λ
H
j ) = 0 and Ti (λ

H
j ) �= 0 for i �= j . For � ∈ [0, �1), λ∗ satisfies the Hopf

bifurcation condition (H1) and is the unique Hopf bifurcation value at which spatially
homogeneous periodic orbits bifurcate.

Now, we need to check whether D j (λ
H
j ) > 0 is satisfied. Define p = n2

�2
, then

Dn(λ) = D(λ, p)= 1

τ

[
1− 2(λ− σ)2

λ
+ 2(λ− σ)

λ
+

[
d1 + d2

(
1 − 2(λ− σ)2

λ

)]
p + d1d2 p2

]
.

(2.15)

Solving λ from equation D(λ, p) = 0 and choosing the one larger than σ , we have

λ(p) = σ + d1d2 p2 + (d1 + d2)p + 3

4(d2 p + 1)

+
√
(d1d2 p2 + (d1 + d2)p + 3)2 + 8σ(d2 p + 1)(d1d2 p2 + (d1 + d2)p + 1)

4(d2 p + 1)
.

(2.16)

The following lemma asserts that D(λ, p) > 0 for any possible (λ, p), hence D j (λ
H
j ) > 0

for any j .

Lemma 2.1 Let m and d be defined as in (2.13), and let D(λ, p) be defined as in (2.15).
If the parameters m and d satisfy

m < 2
√

d + d, (2.17)

then D(λ, p) > 0 for all λ ∈ (σ, σ + 1] and p ∈ [0,∞).

Proof If m ≤ d , then

d1 + d2

(
1 − 2(λ− σ)2

λ

)
≥ 0

for all the λ ∈ (σ, σ + 1], and hence D(λ, p) > 0 for all λ ∈ (σ, σ + 1] and p ∈ [0,∞).
If m and d satisfy d < m < 2

√
d +d , then (d −m)2 −4d < 0. In this case, D(λ, p) = 0

has no positive roots with respect to p when λ = σ + 1. From

λ(0) = σ + 3 + √
9 + 8σ

4
> σ + 1, and lim

p→∞ λ(p) = ∞, (2.18)

we know that there exists p̃ ∈ [0,∞) such that λ( p̃) = min p∈[0,∞) λ(p). Then, we have
that λ( p̃) > σ + 1. If not, then there exist p1 ∈ [0, p̃] and p2 ∈ [ p̃,∞) such that
λ(p1) = λ(p2) = σ + 1, which is a contradiction. Using the fact that the other root
λ(p) of D(λ, p) = 0 is less than σ , then we have that D(λ, p) > 0 for all λ ∈ (σ, σ + 1]
and p ∈ [0,∞).

From the two cases discussed above, we conclude that D(λ, p) > 0 for allλ ∈ (σ, σ+1]
and p ∈ [0,∞) if (2.17) is satisfied. �

Summarizing the above analysis, we have the following two results about the stability and
Hopf bifurcation of the positive constant steady state solution.
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Applicable Analysis 1121

Theorem 2.2 Suppose that the parameters σ , τ , d1 and d2 satisfy

m ≡ 2

σ + 1
− 1 < min

{
d1

d2
+ 2

√
d1

d2
,

1

τ

}
. (2.19)

Then, the positive constant steady state solution (λ, λ2) of system (2.1) is locally asymptot-
ically stable for any λ ∈ (σ, σ + 1].

Proof From m < 1/τ and Tn(λ) is a strictly increasing function with respect to λ, we
have Tn(λ) < 0 for all λ ∈ (σ, σ + 1] and n ∈ N0. Since m < 2

√
d + d , then from Lemma

2.1, Dn(λ) > 0 for all λ ∈ (σ, σ + 1] and n ∈ N0. So, the positive constant steady state
solution (λ, λ2) is locally asymptotically stable. �

Theorem 2.3 Suppose that the parameters σ , τ , d1 and d2 satisfy

1

τ
≤ m ≡ 2

σ + 1
− 1 <

d1

d2
+ 2

√
d1

d2
, (2.20)

and �n is defined as in Equation (2.14). We define for each 0 ≤ j ≤ n,

λH
j = 1

4

[
R j + 4σ +

√
R j (R j + 8σ)

]
, (2.21)

where

R j =
(

d1 + d2

τ

)
j2

�2
+ 1

τ
+ 1.

(1) For any m satisfying (2.20) and any � > 0, λ = λH
0 (defined in (2.21)) is the Hopf

bifurcation point where spatially homogenous periodic orbits bifurcate from the
curve {(λ, u, v) = (λ, λ, λ2) : σ < λ ≤ σ + 1}. For m = 1/τ , λH

0 = σ + 1, and
for m > 1/τ , σ < λH

0 < σ + 1.
(2) If m > 1/τ , and � ∈ [�n, �n+1) for some n ∈ N, there exist exactly n points λH

j
(defined in (2.21)), 1 ≤ j ≤ n, which satisfy

σ < λH
0 < λH

1 < λH
2 < · · · < λH

n ≤ σ + 1, (2.22)

such that system (2.1) undergoes a Hopf bifurcation at λ = λH
j , and the bifurcating

periodic orbits are spatially non-homogenous; the bifurcating periodic orbits near(
λH

j , λ
H
j , (λ

H
j )

2
)

can be parameterised as (λ(s), u(s), v(s)) so that λ(s) ∈ C∞ in

the form λ(s) = λH
j + o(s) for s ∈ (0, δ) for some small δ > 0, and,⎧⎨⎩ u(s)(x, t) = λH

j + s
(
ane2π i t/T (s) + ane−2π i t/T (s)

)
cos

n

�
x + o(s),

v(s)(x, t) = (λH
j )

2 + s
(
bne2π i t/T (s) + bne−2π i t/T (s)

)
cos

n

�
x + o(s),

(2.23)
where (an, bn) is the corresponding eigenvector of Equation (2.6) with respect to

eigenvalue i
√

D j (λ
H
j ), T (s) = 2π/

√
D j (λ

H
j ), and D j is defined in Equation (2.9).

The proof of Theorem 2.3 is based on discussion above and arguments in [27], and we
omit the details.
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1122 S. Chen et al.

Remark 2.4

(1) The condition on parameter m in (2.19) is equivalent to

σ > max

{
τ − 1

τ + 1
,

d2 − d1 − 2
√

d1d2

d2 + d1 + 2
√

d1d2

}
, (2.24)

and similarly the condition on parameter m in (2.20) is equivalent to

τ − 1

τ + 1
≥ σ >

d2 − d1 − 2
√

d1d2

d2 + d1 + 2
√

d1d2
. (2.25)

Hence, the unique constant steady state solution (λ, λ2) is locally asymptotically
stable for any κ > 0 and σ, τ, d1, d2 satisfying (2.24). These two conditions
are two of the four mentioned in the introduction, and the other two appear in
Section 3.

(2) If (2.19) or (2.20) (or equivalently (2.24) or (2.25)) is satisfied, then there is no
steady state solution bifurcation occurring from the constant steady state (λ, λ2) for
any λ ∈ (σ, σ + 1] (or equivalently κ ∈ [0,∞)). However, it is not known whether
non-trivial steady state solutions (not bifurcating from trivial solutions) exist for
these parameter ranges.

3. Steady state bifurcations

In Theorems 2.2 and 2.3, we have identified the ranges for parameter m in which the
constant steady state solution (λ, λ2) is locally asymptotically stable for any κ or λ (see
Equation (2.19)), or it could lose stability to a limit cycle for small κ ( see Equations (2.20)
and (2.22)). In this section, we consider possible steady state bifurcations, and the steady
state bifurcation values λ0 satisfy the following condition (see [27]):
(H2): There exists n ∈ N0 such that

Tn(λ0) �= 0, Dn(λ0) = 0, and Tj (λ0) �= 0, D j (λ0) �= 0 for j �= n; (3.1)

and

D′
n(λ0) �= 0. (3.2)

From Theorems 2.2 and 2.3, we know that if a steady state bifurcation occurs, then the
parameters d and m must satisfy

m ≥ 2
√

d + d. (3.3)

Clearly (3.3) can be satisfied if d1/d2 is sufficiently small. Indeed, we have the following
conclusion for the possible steady state bifurcation points.

Lemma 3.1 If the parameters d and m satisfy Equation (3.3), and let λ(p) be the function
defined as in (2.16), then there exists a unique p∗ > 0, which is the global minimum of
λ(p), such that λ(p) is strictly decreasing when p ∈ [0, p∗) and is strictly increasing when
p ∈ [p∗,∞). Moreover, if m = 2

√
d + d, then λ(p∗) = σ + 1, and if m > 2

√
d + d, then

σ < λ(p∗) < σ + 1.
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Applicable Analysis 1123

Proof From Equation (2.15), we see that for any fixed λ, D(λ, p) = 0 has at most two
positive roots. Hence, from (2.18), we have that the monotonic behaviour of λ(p) must
belong to one of the following two cases:

(1) λ(p) is a strictly increasing function for p > 0; or
(2) there exists a unique p∗ > 0, which is the global minimum of λ(p), such that λ(p)

is strictly decreasing when p ∈ [0, p∗) and is strictly increasing when p ∈ [p∗,∞).

Since d and m satisfy Equation (3.3), then D(σ + 1, p) = 0 has positive real roots while
D(σ, p) = 0 does not. Using the fact that λ(0) > σ+1, we obtain that when d and m satisfy
Equation (3.3), the second alternate for λ(p) above occurs, which implies the conclusion
of the lemma. �

In the case that m > 2
√

d + d , the equation D(σ + 1, p) = 0 has two positive roots,
denoted by p+ and p− where p− < p+. Denote λ∗ = λ(p∗), where λ∗ is the global
minimum of λ(p) as in Lemma 3.1. Then, for each λ ∈ (λ∗, σ + 1], D(λ, p) = 0 has two
positive roots p+(λ) and p−(λ) with respect to p, where p+(λ) is strictly increasing for
λ ∈ (λ∗, σ + 1] with p+(λ∗) = p∗ and p+(σ + 1) = p+, and p−(λ) is strictly decreasing
for λ ∈ (λ∗, σ + 1] with p−(λ∗) = p∗ and p−(σ + 1) = p−. Hence, if for some n ∈ N, we
have p− ≤ n2/�2 ≤ p+, then the value λS

n = λ(n2/�2) ∈ [λ∗, σ +1] satisfies Dn(λ
S
n ) = 0.

Define

�̃n,± = n√
p±
, (3.4)

then for any � ∈ [
�̃n,+, �̃n,−

]
, there exists a λS

n such that Dn(λ
S
n ) = 0.

These points λS
n are potential steady state bifurcation points. We define

L E = {
� > 0 : Di (λ, �) = D j (λ, �) = 0, for some λ ∈ [λ∗, σ + 1], i �= j

}⋃{
� > 0 : Di (λ, �) = Tj (λ, �) = 0, for some λ ∈ [λ∗, σ + 1], i, j ∈ N0

}
,

(3.5)

and for any fixed i, j (i �= j), if Di (λ, �) = D j (λ, �) = 0, then λ = λ(p)

∣∣∣∣p= i2

�2
=

λ(p)

∣∣∣∣p= j2

�2

, where λ(p) is defined as in Equation (2.16). Hence, there is at most countable

many points (�, λ) satisfying Di (λ, �) = D j (λ, �) for any fixed i, j (i �= j). Similarly, for
any fixed i, j , there is at most countable many points (�, λ) satisfying Di (λ, �) = Tj (λ, �).
Hence, L E has at most countably many points, (also see [25,27]). So, for a bifurcation
from simple eigenvalue, we assume that � ∈ R

+\L E , and we consider the corresponding
possible bifurcation points λS

n . To satisfy the bifurcation conditions, we only need to verify
whether D′

n(λ
S
n ) �= 0, which is proved in the following lemma:

Lemma 3.2 Let λS
n and λ∗ be defined as above. If λS

n �= λ∗, then D′
n(λ

S
n ) �= 0.

Proof From Equation (2.15), we have

D(λ, p) = 1

τ

[
F(λ)+ [d1 + d2 E(λ))] p + d1d2 p2

]
, (3.6)
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1124 S. Chen et al.

where F(λ) = 1 − 2(λ− σ)2

λ
+ 2(λ− σ)

λ
and E(λ) = 1 − 2(λ− σ)2

λ
. By differentiating

D(λ(p), p) = 0 with respect to p, we have

∂D

∂λ

dλ

dp
+ ∂D

∂p
= 0. (3.7)

If we assume that D′
n(λ

S
n ) = 0, then

∂D

∂λ

(
λS

n ,
n2

�2

)
= 0.

From λS
n �= λ∗, it follows that

dλ

dp

(
n2

�2

)
�= 0. Hence, we have

∂D

∂p

(
λS

n ,
n2

�2

)
= 0,

that is,
n2

�2
= −d1 + d2 E(λS

n )

2d1d2
.

Thus, λS
n = λ∗, which is a contradiction. �

Summarizing above analysis, we are ready to state a global bifurcation result of non-trivial
steady state solutions of (2.1).

Theorem 3.3 Suppose that parameters d and m satisfy

m > 2
√

d + d. (3.8)

Let λ(p) be defined as in Equation (2.16) and let �̃n± be defined as in Equation (3.4). If for
some n ∈ N, � ∈ [�̃n,+, �̃n,−]\ L E , then there exists exactly one point λS

n ∈ (λ∗, σ + 1]
such that λ(n2/�2) = λS

n and λ = λS
n is a bifurcation point where non-trivial steady

state solutions with mode cos(nx/�) bifurcate from the trivial branch. To be more precise,
there is a smooth curve �n of positive steady state solutions of (2.1) bifurcating from
{(λ, u, v) = (λS

n , λ
S
n , (λ

S
n )

2) : σ < λ ≤ σ + 1}, with �n contained in a global branch Cn of
the positive steady state solutions of (2.1). Moreover,

(1) Near (λ, u, v) = (λS
n , λ

S
n , (λ

S
n )

2), �n = {(λ(s), u(s), v(s)) : s ∈ (−ε, ε)}, where

u(s) = λS
n + san cos(nx/�)+ sψ1(s),

v(s) = (λS
n )

2 + sbn cos(nx/�)+ sψ2(s),

for some C∞ smooth functions λ, ψ1, ψ2 such that λ(0) = λS
n and ψ1(0) =

ψ2(0) = 0. Here an and bn satisfy Ln(λ0)(an, bn)
T = (0, 0)T .

(2) either Cn contains another (λS
j , λ

S
j , (λ

S
j )

2), or the projection of Cn onto λ-axis
contains the interval (λS

j , σ + 1].

The proof of Theorem 3.3 is again similar to the ones in [25,27], hence we omit here.
We note that to obtain the results in Theorem 3.3, we need to prove that there exist two
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Applicable Analysis 1125

positive constants C, C > 0 such that any positive steady state solution (u(x), v(x)) of
system (2.1) satisfies C ≤ u(x), v(x) ≤ C . We do not give a proof of that fact here as a
more general result for the heterogeneous case will be given in the next section.

Remark 3.4

(1) From [24], we know that when κ is sufficiently large (or equivalently λ is near σ ),
then the positive steady state solution (λ, λ2) is globally asymptotically stable.
Hence in Theorem 3.3, there exists a λ̂ > σ such that the projection of the
global branch Cn does not contain the interval (σ, λ̂). On the other hand, by using
the calculations in [25], the bifurcation direction and stability of the bifurcating
solutions can be calculated but very lengthy, hence we omit it.

(2) It is possible that the global branch Cn reaches λ = σ + 1 which corresponds to
κ = 0, the classical Gierer–Meinhardt case.

(3) Similar to Remark 2.4.1, the condition (3.8) is equivalent to

0 < σ <
d2 − d1 − 2

√
d1d2

d2 + d1 + 2
√

d1d2
. (3.9)

However, when the condition (3.8) (or equivalently (3.9)) is satisfied, Hopf bifur-
cation is still possible despite occurrence of steady state solution bifurcations, see
the following proposition.

Here we describe the Hopf bifurcations when (3.8) (or equivalently (3.9)) is satisfied,
which complements Theorem 2.3.

Proposition 3.5 Suppose that parameters d and m satisfy Equation (3.8).

(1) If m < 1/τ , then for system (2.1), there is no λ ∈ (σ, σ + 1] satisfying the Hopf
bifurcation condition (H1), and there is no Hopf bifurcations from the constant
steady state solution (λ, λ2).

(2) If m ≥ 1/τ , then system (2.1) undergoes a Hopf bifurcation at λ = λH
j with λH

j
defined in (2.21), and λH

j �∈ [λ∗, σ + 1], where λ∗ = λ(p∗) and p∗ is defined in
Lemma 3.1.

The condition (3.9) and whether m < 1/τ together give the two other scenarios of
bifurcations mentioned in the introduction. To be more precise, if

d2 − d1 − 2
√

d1d2

d2 + d1 + 2
√

d1d2
> σ >

τ − 1

τ + 1
, (3.10)

then steady state bifurcations can occur for λ ∈ (σ, σ + 1] but not Hopf bifurcations; and if

σ < min

{
d2 − d1 − 2

√
d1d2

d2 + d1 + 2
√

d1d2
,
τ − 1

τ + 1

}
, (3.11)

then both steady state bifurcations and Hopf bifurcations occur for λ ∈ (σ, σ + 1] from the
constant steady state solution (λ, λ2).
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1126 S. Chen et al.

4. The heterogeneous source case

In this section, we suppose that the source function σ(x) in (1.2) is heterogenous, that is,
σ(x) is a continuous non-negative function over �, but it is not necessarily a constant (as
assumed in Sections 2 and 3). Then, system (1.2) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1�u + σ(x)− u + u2

(1 + κu2)v
, x ∈ �, t > 0,

τ
∂v

∂t
= d2�v − v + u2, x ∈ �, t > 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ �.

(4.1)

In this section, we focus on the steady state solutions of system (4.1), which satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−d1�u = σ(x)− u + u2

(1 + κu2)v
, x ∈ �,

−d2�v = −v + u2, x ∈ �,
∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�.

(4.2)

Since σ(x) is not a constant, there is no constant steady state solution of (4.2). Our main
result in this section is on the existence of a non-trivial steady state solution, which mainly
follows the method in [35].

Theorem 4.1 Suppose that d1, d2 > 0 are fixed, κ > 0, and σ(x) is a continuous non-
negative function defined on� and not identically zero. Then, system (4.2) has at least one
positive solution. Moreover, for a sufficiently large κ , system (4.2) has a unique positive
solution and this solution is linearly stable.

Proof With a parameter a ∈ [0, 1], we consider the following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−d1�u = σ(x)− u + au2

(1 + κu2)v
, x ∈ �,

−d2�v = −v + u2, x ∈ �,
∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�,

(4.3)

Clearly when a = 1, system (4.3) reduces to (4.2).
Let (ua(x), va(x)) be a positive solution of (4.3) with a ∈ [0, 1]. From the comparison

principal of elliptic equations, we have that

ua(x) ≥ u(x), and va(x) ≥ min
y∈�

u2(y),

where u(x) is the unique positive solution of⎧⎨⎩ −d1�u = σ(x)− u, x ∈ �,
∂u

∂ν
= 0, x ∈ ∂�. (4.4)
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Applicable Analysis 1127

Similarly, we also have

ua(x) ≤ u(x), and va(x) ≤ max
y∈�

u2(y),

where u(x) is the unique positive solution of⎧⎪⎪⎨⎪⎪⎩
−d1�u = σ(x)− u + 1

κ miny∈� u2(y)
, x ∈ �,

∂u

∂ν
= 0, x ∈ ∂�.

We define

O = {(u(x), v(x)) ∈ C(�)× C(�) : C < u(x), v(x) < C, x ∈ �},
where

C = 1

2
min

{
min
x∈�

u(x),min
x∈�

u2(x)

}
, and C = 2 max

{
max
x∈�

u(x),max
x∈�

u2(x)

}
.

(4.5)
Then, for any a ∈ [0, 1], system (4.3) has no solution on ∂O . When a = 0 system (4.3) has
a unique positive solution (u0, v0) ∈ O, which is given by u0 = u, and v0 is the unique
positive solution of ⎧⎨⎩ −d2�v = −v + u2, x ∈ �,

∂v

∂ν
= 0, x ∈ ∂�.

As in [35], we define an operator

A(a, u, v) = (L1 f (a, u, v), L2g(u, v)),

where L1 = (−d1�+ I )−1, L2 = (−d2�+ I )−1, and

f (t, u, v) = σ(x)+ tu2

(1 + κu2)v
, g(u, v) = u2.

Then, A is completely continuous from [0, 1]×O to C(�)×C(�), and (ua, va) is a solution
of system (4.3) if and only if (ua, va) = A(a, ua, va). From the analysis above, we also
have that (u, v) �= A(a, u, v) when (u, v) ∈ ∂O and a ∈ [0, 1]. So, we have that

deg(I − A(0, u, v),O, 0) = deg(I − A(1, u, v),O, 0).

When a = 0, system (4.3) has a unique positive solution (u0, v0) ∈ O, and the linearised
operator of system (4.3) at (u0, v0) for is

L̃(λ) :=
( −d1�+ 1 0

−2u0 −d2�+ 1

)
.

So, it is clear that (u0, v0) is non-degenerate and linearly stable. Then, we have that

deg(I − A(0, u, v),O, 0) = 1,

and hence deg(I − A(1, u, v),O, 0) = 1. So, system (4.2) has a positive solution for any
d1, d2, κ > 0.
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1128 S. Chen et al.

If (u∗, v∗) is a positive solution of system (4.2), then the eigenvalue problem associated
with (u∗, v∗) is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−d1�φ + φ − 2u∗
(1 + κu2∗)2v∗

φ + u2∗
(1 + κu2∗)v2∗

ψ = λφ, x ∈ �,
−d2�ψ − 2u∗φ + ψ = λψ, x ∈ �,
∂φ

∂ν
= ∂ψ

∂ν
= 0, x ∈ ∂�,

(4.6)

where λ is an eigenvalue and (φ, ψ) is an associated eigenfunction satisfying ‖φ‖L2 =
‖ψ‖L2 = 1. Multiplying φ̄ to the first equation of (4.6) and integrating, we have

d1‖∇φ‖2
L2 + 1 −

∫
�

2u∗
(1 + κu2∗)2v∗

|φ|2dx +
∫
�

u2∗
(1 + κu2∗)v2∗

ψφ̄dx = λ.

From Equation (4.5), we see that C depends on u(x), which is the unique positive solution
of Equation (4.4), and hence C is independent of κ . Since C < u∗(x), v∗(x) < C , and C
is independent of κ , it follows that

lim sup
κ→∞

∣∣∣∣∫
�

2u∗
(1 + κu2∗)2v∗

|φ|2dx

∣∣∣∣ + lim sup
κ→∞

∣∣∣∣∫
�

u2∗
(1 + κu2∗)v2∗

ψφ̄dx

∣∣∣∣
≤ lim
κ→∞

2

(
max
x∈�

σ(x)+ 1/(κC)

)
(1 + κC2)2C

+ lim
κ→∞

(
max
x∈�

σ(x)+ 1/(κC)

)2

(1 + κC2)C2
= 0.

Thus, we conclude that for sufficient large κ , Re(λ) is positive. So, (u∗, v∗) is linearly stable
and index(A(1, ·), (u∗, v∗)) = 1. Hence, for sufficiently large κ , system (4.2) has a unique
positive solution and this solution is linearly stable. �

With a similar proof, we can also prove the following existence and stability result:

Proposition 4.2 Suppose that d1, d2 > 0 are fixed, κ > 0, and σ(x) is a continuous
positive function defined on�. Then, there exists σ0 > 0 such that system (4.2) has a unique
positive solution which is linearly stable, if

min
x∈�

σ(x) ≥ σ0.

We also remark that by using the methods in [24], under the conditions in Theorem 4.1
or Proposition 4.2, that is, either κ is large, or σ is large, then the unique positive steady state
solution is not only linearly stable, but globally asymptotically stable if σ(x) is a positive
constant. We conjecture that if σ(x) is not a constant, the global stability still holds when
either κ is large, or σ is large.

5. Simulation examples

In this section, we use several sets of specific parameter values to illustrate our analytical
results for (2.1). The parameters are chosen so that they belong to three regimes where three
different non-trivial spatiotemporal patterns are predicted.
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Applicable Analysis 1129

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

λ

p

(0,λ0
H)

λ=σ+1

p=0.25

λHP(p)

(0.25,λ1
H)

(1,λ2
H)

Figure 1. Hopf bifurcation points for parameters satisfying (5.1). Here the horizonal axis is p and

the vertical axis is λ; the Hopf bifurcation curve λH P (p) = 1

4

[
R + 4σ + √

R(R + 8σ)
]

with

R =
(

d1 + d2

τ

)
p + 1

τ
+ 1. That is, λH P (p) satisfies T (λH P (p), p) = 0, where T (λ, p) = Tn(λ),

with p = n2/�2 for n = 0, 1, 2.

Example 5.1 To visualize the results in Theorem 2.3, we choose

σ = 0.1, τ = 8, d1 = 0.5, d2 = 1, � = 2. (5.1)

Since this set of parameters satisfies Equation (2.20), then there is no λ satisfying the steady
state bifurcation condition (H2) from Remark 2.4.2. We can also compute that in this case
�n ≈ 0.9495n for n ∈ N. So � = 2 ∈ [�2, �3), and there exist three Hopf bifurcation points,
(see Figure 1):

λH
0 < λH

1 < λH
2 ,

where

λH
0 = λH P (0) ≈ 0.7492, λH

1 = λH P (0.25) ≈ 0.8286, λH
2 = λH P (1) ≈ 1.0656.

It is easy to see that if � is larger, then there are more Hopf bifurcation points. The periodic
orbits bifurcating from λ = λH

0 are spatially homogenous, hence they are also the periodic
orbits of the ODE system corresponding to (2.1). Figure 2 shows the numerical bifurcation
diagram of the periodic orbits from λ = λH

0 using κ as a parameter. Indeed, for this set
of parameters, the direction of the Hopf bifurcation is forward. Since the equilibrium is
unstable when κ is larger than the Hopf bifurcation point, the bifurcating periodic orbits
are unstable, and hence the Hopf bifurcation is subcritical, (see Ref. [39]). But, the branch
of cycles turns back at a fold bifurcation point λ̃0 < λH

0 . Finally, we give two numerical
simulations for the occurrence of the Hopf bifurcation at λ = λH

0 (see Figures 3 and 4).
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0.8 0.85 0.9 0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

κ

u

HH

LPCLPC

Figure 2. Bifurcation diagram of ODE system corresponding to (2.1). The horizontal axis is κ , and
the vertical axis is u. A family of limit cycles bifurcates from the Hopf point H and LPC is a fold
bifurcation of the cycles.

Figure 3. Convergence to the constant steady state solution. The parameters satisfy (5.1), κ = 2 and
initial values: u(x, 0) = 1 + 0.1 cos(x/2), x ∈ [0, 2π ], v(x, 0) = 1 + 0.1 cos(x/2), x ∈ [0, 2π ].
Here λ ≈ 0.645473 < λH

0 .

Example 5.2 To visualize the results in Theorem 3.3, we choose

σ = 0.2, τ = 1, d1 = 0.03, d2 = 1, � = 0.5. (5.2)

Then, the parameters satisfy Equation (3.8) and 2/(σ + 1) − 1 < 1/τ , and Tn(λ) > 0 for
λ ∈ (σ, σ +1] and n ∈ N0. So, there is no λ satisfying the Hopf bifurcation condition (H1).
We can also compute that in this case p+ ≈ 19.5141 and p− ≈ 1.7082, and �̃n,+ ≈ 0.2264n
and �̃n,− ≈ 0.7651n. So, �n,± satisfy

0 < �̃1,+ < �̃2,+ < �̃3,+ < �̃1,− < �̃4,+ < �̃5,+ < �̃6,+ < �̃2,− < . . . .
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Applicable Analysis 1131

Figure 4. The constant steady state solution loses its stability through a Hopf bifurcation. The
parameters satisfy (5.1), κ = 0.92, and initial values: u(x, 0) = 1 + 0.1 cos(x/2), x ∈
[0, 2π ], v(x, 0) = 1 + 0.1 cos(x/2), x ∈ [0, 2π ]. Here λ ≈ 0.755617 > λH

0 .
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0.8

1

1.2

1.4

1.6

1.8

λ

(λ=σ+1)

λ(p)

λZE(p)

(p*,λ*)

(p−,1.2)

(p+,1.2)

p=4 p=16

p

(4,λ1
S)

(16,λ2
S)

Figure 5. Steady state bifurcation points for parameters satisfying (5.2). Here, the horizonal axis is
p and the vertical axis is λ; the steady state bifurcation curve λ = λ(p) is given by (2.16), λZ E (p) =
σ+ 1

4d2

[
RZ + √

RZ (RZ + 8σ)
]

where RZ = d1 +d2 +2d1d2 p2 satisfying
∂D(λZ E (p), p)

∂p
= 0;

and p∗ satisfies λ′(p∗) = 0.

Since � = 0.5 satisfies � ∈ [�̃2,+, �̃3,+), then � ∈ [�̃ j,+, �̃ j,−] for j = 1, 2. Then, from
Theorem 3.3, there exists two possible steady state bifurcation points λS

1 and λS
2 satisfying

p− < λS
1 < λS

2 < p+,

where

λS
1 = λ

(
1

�2

)
= λ(4) = 1.0864, λS

2 = λ

(
4

�2

)
= λ(16) = 1.1540.

From Figure 5, we have that λS
i �= λ∗ for i = 1, 2, and then they are the steady state

bifurcation points.
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λ=σ+1

λ

p
p=4 p=16

(p−,1.2)

(p+,1.2)
λ(p)

λZE(p)
λHP(p)

(0,λ0
H)

(4,λ1
H)

(p*,λ*)(4,λ1
S)

(16,λ2
S)(pHS,λHS)

Figure 6. Steady state bifurcation points and Hopf bifurcation points for parameters satisfying (5.3).
Here, the horizonal axis is p and the vertical axis is λ; the Hopf bifurcation curve λH P (p) =
1

4

[
R + 4σ + √

R(R + 8σ)
]

with R =
(

d1 + d2

τ

)
p+ 1

τ
+1; the steady state bifurcation curve λ =

λ(p) is given by (2.16),λZ E (p) = σ+ 1

4d2

[
RZ + √

RZ (RZ + 8σ)
]

where RZ = d1+d2+2d1d2 p2

satisfying
∂D(λZ E (p), p)

∂p
= 0; and p∗ satisfies λ′(p∗) = 0.

Example 5.3 In this example, there exist both Hopf bifurcation points and steady state
bifurcation points, (see Figure 6). we choose

σ = 0.2, τ = 50, d1 = 0.03, d2 = 1, � = 0.5. (5.3)

Then, the parameters satisfy Equation (3.8) and 2/(σ + 1) − 1 > 1/τ . From the results
of Example 5.2, we still have p+ ≈ 19.5141 and p− ≈ 1.7082, and �̃n,+ ≈ 0.2264n and
�̃n,− ≈ 0.7651n for this case. So, �̃n,± satisfy

0 < �̃1,+ < �̃2,+ < �̃3,+ < �̃1,− < �̃4,+ < �̃5,+ < �̃6,+ < �̃2,− < . . . .

Since � = 0.5 satisfies � ∈ [�̃2,+, �̃3), then there exists two steady state bifurcation points
λS

1 and λS
2 satisfying

p− < λS
1 < λS

2 < p+,

where

λS
1 = λ

(
1

�2

)
= λ(4), λS

2 = λ

(
4

�2

)
= λ(16).

Also, in this case, we compute that �n ≈ 0.2781n, then � ∈ [�1, �2) and hence there
may exist two Hopf bifurcation points: λH

0 < λH
1 . From Figure 6, we have λH

0 < λH
1 < λ∗,

and hence λH
1 and λH

0 are the Hopf bifurcation points. So, in this case, there exist both Hopf
bifurcation points and steady state bifurcation points, and

λH
0 < λH

1 < λ∗ < λS
1 < λS

2 .
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We remark that in Figure 6, (PH S, λH S) is the interaction point of curve (p, λH P (p)) and
(p, λ(p)). So, when � = �̌n = n/

√
PH S , then Dn(λ0) = Tn(λ0) = 0, and a codimension-

two bifurcation may occur there. This �̌n ∈ L E where L E is defined as in Equation (3.5).
In general, the explicit value of λH S cannot be explicitly solved, and it may not exist for all
parameter values. Further investigation of dynamics near the Turing-Hopf codimension-two
bifurcation may be an interesting topic for future research.
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