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MORSE INDICES AND EXACT MULTIPLICITY OF SOLUTIONS
TO SEMILINEAR ELLIPTIC PROBLEMS

JUNPING SHI AND JUNPING WANG

(Communicated by David S. Tartakoff)

Abstract. We obtain precise global bifurcation diagrams for both one-sign
and sign-changing solutions of a semilinear elliptic equation, for the nonlin-
earity being asymptotically linear. Our method combines the bifurcation ap-
proach and spectral analysis.

1. Introduction

Consider the nonlinear semilinear problem:{
∆u+ λu − f(u) = 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded smooth domain in Rn, n ≥ 1, and λ is a real parameter.
We assume that f satisfies

(f1) f ∈ C1(R,R), f(0) = 0, f ′(0) > 0;
(f2) lim|u|→∞ f(u)/u = f ′(∞) > 0;
(f3) f(u)/u is increasing in (0,∞) and is decreasing in (−∞, 0).

Bifurcation theory implies that global branches of solutions bifurcate from the
line of trivial solutions (λ, 0) ⊂ R × C2(Ω) at simple eigenvalues. But little is
known about the whole solution set of (1.1). In this paper, under an eigenvalue
separation condition (see (1.5)), we obtain a full description of the first N solution
curves which bifurcate from the line of trivial solutions.

To state our results, we first introduce some notation. We denote by λk the k-th
eigenvalue of {

∆φ+ λφ = 0 in Ω,
φ = 0 on ∂Ω.

(1.2)

Throughout the paper, we assume that all λk’s are simple. We also define

λ0
k = λk + f ′(0), λ∞k = λk + f ′(∞), and λM

k = λk + sup
u∈R

f ′(u).(1.3)

By (f3), f ′(u) ≥ f(u)/u. Therefore, for k ∈ N and f satisfying (f1–3), λ0
k < λ∞k ≤

λM
k . We define the Morse index M(u) of a solution u to (1.1) to be the number of
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Figure 1. Bifurcation diagram for Theorem 1.1

negative eigenvalues of the following problem:{
∆φ + λφ− f ′(u)φ = −µφ in Ω,
φ = 0 on ∂Ω.

(1.4)

If u is a solution to (1.1), and 0 is not an eigenvalue of (1.4), then u is a nondegen-
erate solution, otherwise it is degenerate. Our first main theorem is:

Theorem 1.1. Suppose that f satisfies (f1), (f2) and (f3), and for k = 1, 2, · · · , N ,
we assume that

λM
k ≤ λ0

k+1.(1.5)

Then, for k = 1, 2, · · · , N (see Figure 1)

(1) (1.1) has exactly two nontrivial solutions u+
k (λ, ·) and u−k (λ, ·) for λ ∈ (λ0

k, λ
∞
k ),

and has only the trivial solution for λ ∈ [λ∞k , λ
0
k+1].

(2) For λ ∈ (λ0
k, λ

∞
k ), all nontrivial solutions of (1.1) lie on two smooth curves

Σ±
k = {(λ, u±k (λ, ·)) : λ ∈ (λ0

k, λ
∞
k )}, Σ+

k and Σ−
k join at (λ0

k, 0), and

lim
λ→(λ∞k )−

||u±k (λ, ·)||L2(Ω) = ∞.(1.6)

(3) For a solution (λ, u) ∈ Σ+
k ∪ Σ−

k , u is nondegenerate and the Morse index
M(u) = k − 1.

Remark. • If in addition to (f1–3), we also assume that f is C2 and uf ′′(u) ≥ 0,
then it is easy to see that λM

k = λ∞k , but in general λM
k > λ∞k .

• For (λ, u) ∈ Σ±
1 , u is of one sign, so we can assume that for (λ, u) ∈ Σ+

1 ,
u > 0, and for (λ, u) ∈ Σ−

1 , u < 0.

If we replace (f3) by

(f4) f(u)/u is decreasing in (0,∞) and is increasing in (−∞, 0),

then we have a similar result:

Theorem 1.2. Suppose that f satisfies (f1), (f2) and (f4), and for k = 1, 2, · · · , N ,
we assume that λ0

k ≤ λk+1 +infu∈R f ′(u). Then, for k = 1, 2, · · · , N−1 (see Figure
2)

(1) (1.1) has exactly two nontrivial solutions u+
k (λ, ·) and u−k (λ, ·) for λ ∈ (λ∞k , λ

0
k),

and has only the trivial solution for λ ∈ [λ0
k, λ

∞
k+1].
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Figure 2. Bifurcation diagram for Theorem 1.2

(2) For λ ∈ (λ∞k , λ
0
k), all nontrivial solutions of (1.1) lie on two smooth curves

Σ±
k = {(λ, u±k (λ, ·)) : λ ∈ (λ∞k , λ

0
k)}, Σ+

k and Σ−
k join at (λ0

k, 0), and

lim
λ→(λ∞k )+

||u±k (λ, ·)||L2(Ω) = ∞.(1.7)

(3) For a solution (λ, u) ∈ Σ+
k ∪ Σ−

k , u is nondegenerate and the Morse index
M(u) = k.

We can also consider a similar semilinear problem:{
∆u+ µf(u) = 0 in Ω,
u = 0 on ∂Ω.

(1.8)

The behavior of solution curves of (1.8) is the same as that of (1.1). (Notice the
sign of f(u) is positive in (1.8) instead of negative in (1.1).) In fact, if we define

µ0
k =

λk

f ′(0)
, µ∞k =

λk

f ′(∞)
, µm

k =
λk

infu∈R f ′(u)
, and µM

k =
λk

supu∈R f ′(u)
,(1.9)

then

Theorem 1.3. Suppose that f satisfies (f1), (f2) and (f3), and for k = 1, 2, · · · , N ,
we assume that µ0

k ≤ µM
k+1. Then for (1.8), the conclusions in Theorem 1.2 hold

with λ’s replaced by µ’s. Similarly, if f satisfies (f1), (f2) and (f4), and for k =
1, 2, · · · , N , we assume that µm

k ≤ µ0
k+1, then for (1.8), the conclusions in Theorem

1.1 hold with λ’s replaced by µ’s.

The result that (1.8) has exactly two nontrivial solutions for f satisfying (f1), (f2)
and (f4) was first proved by Castro and Lazer [CL] using saddle-point reduction,
and also by Ambrosetti and Mancini [AM] using Leray-Schauder degree theory.
Our result is more general (does not require f ∈ C2), our proof is different in using
bifurcation technique, and we also consider the asymptotes of the solution curve.

The eigenvalue separation condition (1.5) is important for the exact multiplicity
of the solutions. But for n = 1 or the radial symmetric solutions on balls, even
without the eigenvalue separation conditions, we can prove the same conclusions in
Theorem 1.3 for f satisfying (f4). In this case, we only consider (1.8), since that
will be a generalization of earlier work by Chafee and Infante [CI]. We consider the
semilinear elliptic equation (1.8) with Ω = Bn, where Bn is the unit ball in Rn for
n ≥ 1. The radially symmetric solutions to (1.8) satisfy

u′′ +
n− 1
r

u′ + µf(u) = 0 in (0, 1), u′(0) = u(1) = 0.(1.10)
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Figure 3. Bifurcation diagram for Theorem 1.4(1)

Figure 4. Bifurcation diagram for Theorem 1.4(2)

If u is a solution to (1.10), we define the Radial Morse index Mr(u) of u to be the
number of negative eigenvalues of the eigenvalue problem:

w′′ +
n− 1
r

w′ + µf ′(u)w = −ηw in (0, 1), w′(0) = w(1) = 0.(1.11)

We have

Theorem 1.4. Suppose f satisfies (f1), (f4) and lim|u|→∞ f(u)/u = f ′(∞) exists
(can be −∞). Let µ0

0 = 0, and µ0
k (k > 0) be the k-th eigenvalue of the eigenvalue

problem:

w′′ +
n− 1
r

w′ + µf ′(0)w = 0 in (0, 1), w′(0) = w(1) = 0.(1.12)

(1) If f ′(∞) ≤ 0, then (1.10) has exactly 2k nontrivial solutions

{u+
i (µ, ·), u−i (µ, ·) : i = 1, 2, · · · , k}

for λ ∈ (µ0
k, µ

0
k+1], where k = 0, 1, · · · . Moreover, u+

i (µ, 0) > 0 (resp.
u−i (µ, 0) < 0), and u+

i (µ, ·) (resp u−i (µ, ·)) has exactly i − 1 zeros in (0, 1).
Furthermore, all solutions which have exactly i− 1 zeros and satisfy u(0) > 0
(or u(0) < 0) lie on a curve Σ+

i = {(µ, u+
i (µ, ·)) : µ > µ0

i } (resp. Σ−
i =

{(µ, u−i (µ, ·)) : µ > µ0
i }), Mr(u±i ) = i− 1, and there are no turning points on

Σ+
i (resp. Σ−

i ) (see Figure 3).
(2) If f ′(∞) > 0, then a similar result holds, but Σ±

i exists only for µ ∈ (µ0
i , µ

∞
i ),

where µ∞i is defined in (1.9) (see Figure 4).
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Theorem 1.1 is partially motivated by a recent paper [COW] by Castro, Ouyang
and Wang, in which, the authors studied another semilinear boundary value prob-
lem: {

∆u+ λu− h(x)|u|p−1u = 0 in Ω,
u = 0 on ∂Ω,

(1.13)

where p > 1 and h(x) is a nonnegative smooth function with m({x ∈ Ω : h(x) =
0}) 6= 0. Under eigenvalue separation conditions, they proved similar behavior of
the first N solution curves. Problem (1.13) was first studied by Ouyang [O].

For (1.1) and f satisfying (f1) and (f3), it is well-known that the positive solution
to (1.1) is unique for λ > λ0

1; the same holds for equation (1.8) if f satisfies (f1) and
(f4). For f satisfying (f4) in (1.1) (resp. (f3) in (1.8)), even for the positive solution
branch, the eigenvalue separation condition is still needed. For (1.1) with (f4)
and λ1 + f ′(0) ≤ λ2 + f ′(∞), Hernández [H] proved the uniqueness of the positive
solution for λ ∈ (λ∞1 , λ0

1), and for (1.8) with (f3), f ′′ ≥ 0, and λ1/f
′(0) ≤ λ2/f

′(∞),
the same result was proved by Amann [A2]. We should also mention that for
Theorem 1.4, the special case of n = 1 was proved by Chafee and Infante [CI] using
phase portrait analysis.

We organize our paper in the following way. In Section 2, we give some prelim-
inaries. In particular, some key comparison lemmas are proved. In Section 3, we
prove Theorem 1.1 and we prove Theorem 1.4 in Section 4. The proofs of Theorems
1.2 and 1.3 are similar to that of Theorem 1.1, so we omit them. In the paper, we
denote by ||u||2 the L2 norm for u ∈ L2(Ω), and by m(Ω) the Lebesgue measure of
Ω. Also C stands for a generic positive constant.

2. Preliminaries

Let W (x) ∈ L∞(Ω). Consider the following eigenvalue problem:{
∆φ+W (x)φ = −µi(W )φ in Ω,
φ = 0 on ∂Ω.

(2.1)

It is well-known that, for i = 1, 2, · · · ,

µi(W ) = Mini Maxi

∫
Ω(|∇z|2 −W (x)z2)dx∫

Ω
z2dx

(2.2)

where Maxi is over all z(6= 0) ∈ Ti, and Mini is over all i-dimensinal subspaces Ti

of H1
0 (Ω).

Lemma 2.1. Suppose that W1,W2 ∈ L∞(Ω) satisfy W2(x) ≥ W1(x) a.e.; then
µi(W2) ≤ µi(W1). If in addition m({W2 > W1}) > 0, then µi(W2) < µi(W1).

Proof. From the variational characterization (2.2), we see immediately that µi(W2)
≤ µi(W1). Suppose that m({W2 > W1}) > 0. For i ≥ 1, let ψj(W1) be the
eigenfunctions corresponding to µj(W1), j = 1, 2, · · · , i, and M = span{ψj(W1) :
1 ≤ j ≤ i}. Then

µi(W1) = max
z∈M\{0}

∫
Ω
(|∇z|2 −W1(x)z2)dx∫

Ω
z2dx

> max
z∈M\{0}

∫
Ω
(|∇z|2 −W2(x)z2)dx∫

Ω
z2dx

≥ µi(W2).
(2.3)
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We can achieve strict inequality in the above because, by the unique continuation
property (see [DG]), m({x ∈ Ω : z(x) = 0}) = 0 for any nonzero z ∈ M , thus∫
Ω
W1(x)z2dx <

∫
Ω
W2(x)z2dx.

Lemma 2.2. Suppose that f satisfies (f1), (f2) and (f3), and u is a nontrivial
solution of (1.1). Then

µj(λ− f ′(0)) < µj(λ − f(u)/u) < µj(λ− f ′(u)) < µj(λ − sup
u∈R

f ′(u)),

µj(λ − f(u)/u) < µj(λ− f ′(∞)).
(2.4)

Proof. (2.4) can be obtained by Lemma 2.1 by observing that (f2) and (f3) imply

f ′(0) ≤ f(u(x))
u(x)

≤ f ′(u(x)) ≤ sup
u∈R

f ′(u), and
f(u(x))
u(x)

≤ f ′(∞) a.e.

Note that again by the unique continuation property, m({x ∈ Ω : u(x) = 0}) =
0.

We define Ij = (λ0
j , λ

∞
j ), Ĩj = (λ0

j , λ
M
j ).

Lemma 2.3. Suppose that f satisfies (f1), (f2) and (f3).
(1) If λ 6∈ ⋃

j≥1 Ij , then (1.1) has no nontrivial solution.
(2) If λ ∈ Ij ⊂ Ĩj, λ 6∈ Ĩk for any other k 6= j, and u is a nontrivial solution to

(1.1), then M(u) = j − 1 and µj(λ− f ′(u)) > 0.

Proof. (1) If u is a nontrivial solution of (1.1), then 0 is an eigenvalue of (2.1) with
W (x) = λ − f(u(x))/u(x), i.e., 0 = µj(λ − f(u)/u) for some j ≥ 1. By (2.4),
µj(λ− f ′(0)) < µj(λ− f(u)/u) = 0 < µj(λ− f ′(∞)), thus λ ∈ Ij .

(2) If λ ∈ Ij , and λ 6∈ Ĩk for any other k 6= j, then for any k < j, µk(λ − f ′(0))
and µk(λ − supu∈R f ′(u)) are both negative, and by (2.4), µk(λ − f ′(u)) < 0 and
µk(λ−f(u)/u) < 0. Similarly, for k > j, µk(λ−f ′(u)) > 0 and µk(λ−f(u)/u) > 0.
On the other hand, 0 = µl(λ−f(u)/u) for some l ≥ 1. Hence l = j, and by Lemma
2.2 µj(λ − f ′(u)) > 0. Therefore M(u) = j − 1 and µj(λ− f ′(u)) > 0.

Corollary 2.4. Suppose that f satisfies (f1), (f2), (f3) and (1.5). If λ ∈ [λ∞j , λ
0
j+1],

then (1.1) has only the trivial solution. If λ ∈ (λ0
j , λ

∞
j ) and u is a nontrivial solution

of (1.1), then u is nondegenerete and M(u) = j − 1.

Next we need to identify where the solution curves of (1.1) will blow up. We say
that λ∗ is a point where a bifurcation from infinity occurs for (1.1) if there exists a
sequence λk → λ∗ as k →∞ such that there is a solution uk of (1.1) with λ = λk

and ||uk||2 →∞.

Lemma 2.5. Suppose that f satisfies (f1) and (f2), and λ∗ is a point where bifur-
cation from infinity occurs for (1.1). Then λ∗ − f ′(∞) = λk for some k ∈ N.

Proof. We define φk(x) = ||uk||−1
2 uk(x). Then φk satisfies

∆φk + λkφk − f(uk)
uk

φk = 0.(2.5)

We multiply (2.5) by φk and integrate over Ω to obtain∫
Ω

|∇φk|2dx+
∫

Ω

f(uk)
uk

φ2
kdx = λk

∫
Ω

φ2
kdx = λk ≤ C.(2.6)
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Since f(u)/u is bounded, then there exists φ ∈ H1
0 (Ω) such that φk has a sub-

sequence (which we still denote by {φk}) converging to φ strongly in L2(Ω), and
weakly in H1

0 (Ω). Let Ω+ = {x ∈ Ω : φ(x) > 0} and Ω− = {x ∈ Ω : φ(x) < 0}.
Then uk(x) = ||uk||2φk(x) → ±∞ as k →∞ for x ∈ Ω+ ∪ Ω−, thus

f(uk(x))
uk(x)

→ f ′(∞), x ∈ Ω+ ∪ Ω−.(2.7)

Let ψ ∈ C1
0 (Ω). We multiply (2.5) by ψ and integrate over Ω to obtain∫

Ω

∇φk · ∇ψdx+
∫

Ω

f(uk)
uk

φkψdx− λk

∫
Ω

φkψdx = 0.(2.8)

By the weak convergence of φk and (2.7), we conclude that φ is a weak solution of{
∆φ+ [λ∗ − f ′(∞)]φ = 0 in Ω,
φ = 0 on ∂Ω.

(2.9)

Therefore, λ∗ − f ′(∞) = λk for some k.

At last, let (λ(s), u(s)) with |s| ≤ δ be the solution curve of (1.1) bifurcating
from the trivial solutions at a simple eigenvalue λ∗ = λ0

j (see Theorem 1.7 in [CR1]).
We need to know if λ(s) ≥ λ∗ or λ(s) ≤ λ∗.
Lemma 2.6. Suppose that f satisfies (f1) and
(f3)′ f(u)/u is increasing in (0, δ1) and is decreasing in (−δ1, 0) for some δ1 > 0.
If λ∗ = λ0

j is a point where a bifurcation from the trivial solutions occurs for (1.1),
then λ(s) > λ∗ for 0 < |s| < δ.

Proof. Let µk(s) = µk(λ(s) − f ′(u(s))) and µk(s) = µk(λ(s) − f(u(s))/u(s)) for
k ∈ N. Then by Lemma 2.2, µk(s) > µk(s) for |s| sufficiently small. On the other
hand, 0 = µk(s) for some k. Since µj(0) = 0 and µk(s) is continuous with respect
to s, then µj(s) = 0 for 0 < |s| < δ. Thus µj(s) > 0 and M(u(s)) = j − 1. Now we
can apply Theorem 1.16 in [CR2], and obtain sign(λ′(s)) = sign(s) for 0 < |s| < δ.
In particular, λ(s) > λ∗ for 0 < |s| < δ.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. By Theorem 1.7 in [CR1], for 1 ≤ j ≤ N , (λ0
j , 0) is a bifur-

cation point (recall that λj is simple). Let w be a solution of the linearized equation
(1.4) with u = 0 and λ = λ0

j , and let Z be any complement of span{w} in L2(Ω).
Then there exists δ > 0, and continuously differentiable functions λ : (−δ, δ) → R
and ψ : (−δ, δ) → Z such that λ(0) = λ0

j , ψ(0) = 0, and if u(s) = sw + sψ(s)
for s ∈ (−δ, δ), then (λ(s), u(s)) is a solution to (1.1). Moreover, all the solu-
tions to (1.1) in a neighborhood of (λ0

j , 0) consist precisely of the curves u = 0
and (λ(s), u(s)), s ∈ (−δ, δ). By Lemma 2.6, λ(s) > λ0

j for s ∈ (−δ, δ). There-
fore, there exists δ1 > 0 such that for 0 < λ − λ0

j ≤ δ1, (1.1) has exactly two
nontrivial solutions near 0. We denote by u+

j (λ, ·) the solution with λ = λ(s),
s > 0, and denote by u−j (λ, ·) the solution with λ = λ(s), s < 0. We also define
Σ±

j = {(λ, u±j (λ, ·)) : λ ∈ (λ0
j , λ

0
j + δ1]}.

By Corollary 2.4, u±j (λ, ·) are nondegenerate, thus by the Implicit Function The-
orem, Σ±

j can be extended further beyond λ = λ0
j + δ1. Then we can continue Σ±

j

in the λ direction to the right. Let λ∗ = sup{λ > λ0
j + δ1 : (λ, u+

j (λ, ·)) exists}.
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By Corollary 2.4, λ∗ ≤ λ∞j . If lim λ→(λ∗)− ||u+
j (λ, ·)||2 < ∞, then there exist

K > 0 and a sequence {λk} such that ||u+
j (λk, ·)||2 → K. From equation (1.1),

||u+
j (λk, ·)||H1

0 (Ω) ≤ C||u+
j (λk, ·)||2 ≤ CK. Therefore, there exists v ∈ H1

0 (Ω) such
that u+

j (λk, ·) has a subsequence converging to v strongly in L2(Ω), and weakly in
H1

0 (Ω). Moreover, ||v||2 = K. If K > 0, then v is a weak solution to (1.1), with
λ = λ∗. By the standard regularity theory for elliptic equations, v is a classical
solution, and nondegenerate by Corollary 2.4, so we can extend Σ+

j further beyond
λ = λ∗, which is a contradiction to the definition of λ∗. If K = 0, then λ∗ is a point
where a bifurcation from the zero solutions occurs. But λ0

j < λ∗ ≤ λ∞j ≤ λ0
j+1,

so that is impossible. Therefore limλ→(λ∗)− ||u+
j (λ, ·)||2 = ∞. By Lemma 2.5 and

λ∗ ≤ λ∞j , λ∗ = λ∞j . By Corollary 2.4, M(u) = j − 1 for any solution u on Σ+
j .

All this can also be done for Σ−
j . Therefore, Σ±

j are solution curves which can be
parameterized by λ with λ ∈ (λ0

j , λ
∞
j ).

Finally we exclude the possibility of solutions with λ ∈ Ij which are not on
Σ±

j . Suppose such a solution u(λ) exists for some λ ∈ Ij . Then again, u(λ) is
nondegenerate, so we can extend u(λ) to form a curve (which we still denote by
u(λ)). Let λ∗ = sup{λ : u(λ) is a nontrivial solution to (1.1)}. By Corollary 2.4,
λ∗ ≤ λj

∞. Then as in the last paragraph, we can prove that limλ→(λ∗)− ||u(λ)||2 =
∞, then λ∗ = λ∞j . But all solutions near (λ∞j ,∞) can be parameterized by s for
|s| > δ, thus all these solutions are on Σ±

k . Therefore, there is no other solution to
(1.1) for λ ∈ Ij besides those on Σ±

j . This completes the proof.

4. Proof of Theorem 1.4

Bifurcations from simple eigenvalues still occur for (1.10). But for this case, a
stronger result holds, i.e. we also know about the nodal structure of the solutions
to (1.10). It is well-known that (1.12) possesses a sequence of eigenvalues {µj}
such that µ1 < µ2 < · · · < µj → ∞ as j → ∞, µj is simple, any eigenfunction φj

corresponding to µj has exactly j − 1 zeros in (0, 1) and all zeros of φj in [0, 1] are
simple. (A simple zero of φj is a point r ∈ [0, 1] such that φj(r) = 0 and φ′j(r) 6= 0.)
We define

S+
j ={v : v′(0) = v(1) = 0, v(0) > 0, v has exactly j − 1 zeros in

(0, 1), and all zeros of v in [0, 1] are simple },
S−j =− S+

j , and Sj = S+
j ∪ S−j .

Then Theorem 2.3 of [R1] can be applied to (1.10), and we have the following
lemma:

Lemma 4.1. For any k ∈ N, (1.10) possesses a component of solutions Σk in
R× E with Σk ⊂ (R × Sk) ∪ {(µ0

k, 0)} and Σk is unbounded, where E = C1[0, 1].

On the other hand, the solution set of (1.10) can be parameterized by u(0) in
the following sense (a proof can be found in Castro, Gadam and Shivaji [CGS]):

Lemma 4.2. Given j ∈ N, for each d 6= 0 there exists at most one µ > 0 such
that (1.10) has a solution u(µ, r) which has exactly j−1 zeros in (0, 1) and satisfies
u(µ, 0) = d.
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We prove Theorem 1.4 in a sequence of lemmas. Suppose that u(µ, r) is a solution
of (1.10), and we define w(µ, r) to be the solution of

w′′ +
n− 1
r

w′ + µf ′(u(µ, r))w = 0 in (0, 1), w′(0) = 0, w(0) = 1.(4.1)

Lemma 4.3. Suppose that u(µ, r) is a solution of (1.10), and w(µ, r) is the so-
lution of (4.1). Then M(u(µ, ·)) = k if and only if w(µ, r) has exactly k zeros in
(0, 1).

Proof. Let ϕi be the eigenfunction of (1.11) corresponding to eigenvalue ηi for i ≥ 1.
Then w(r) = w(µ, r) and ϕi(r) satisfy the following equations respectively:

(rn−1w′)′ + µrn−1f ′(u)w = 0,

(rn−1ϕ′i)
′ + µrn−1f ′(u)ϕi = −ηir

n−1ϕi.

We notice that M(u(µ, ·)) = k if and only if then ηk < 0 and ηk+1 ≥ 0. We extend
ϕk, ϕk+1 and w to (−1, 0) evenly; then ϕk has 2k zeros in [−1, 1] and ϕk+1 has
2k + 2 zeros. Therefore, by the Sturm comparison lemma, M(u(µ, ·)) = k if and
only if w has exactly k zeros in (0, 1).

Lemma 4.4. Under the hypothesis of Theorem 1.4, if (µ, u(µ, ·)) ∈ Σk\{(µ0
k, 0)} ,

then M(u(µ, ·)) = k − 1, and w(µ, 1) 6= 0.

Proof. Since u ∈ Sk, then all zeros of u are simple. By the conditions in Theorem
1.4 and the maximal principle, u has no positive local minimum and negative local
maximum. Therefore there exists

0 = a1 < b1 < a2 < b2 < · · · < ak−1 < bk−1 < ak < bk = 1,

such that u′(ai) = 0, u(bi) = 0, i = 1, 2, · · · , k. The functions u(r), w(r) = w(µ, r)
and ur(r) satisfy the following equations respectively:

(rn−1u′)′ + µrn−1[f(u)/u]u = 0,

(rn−1w′)′ + µrn−1f ′(u)w = 0,

(rn−1u′r)
′ + [µrn−1f ′(u)− µ(n− 1)rn−3]ur = 0.

Since f satisfies (f4), then for any r ∈ (0, 1),

f(u)
u

≥ f ′(u) ≥ f ′(u)− n− 1
r2

.

Then by the Sturm comparison lemma, between any two consecutive zeros of ur,
there exists at least one zero of w. Thus w has at least one zero in (ai, ai+1) for
i = 1, 2, · · · , k − 1 and w has at least k − 1 zeros in (0, 1). On the other hand, still
by the Sturm comparison lemma, between any two consecutive zeros of w, there
exists at least one zero of u. Suppose that w has at least k zeros in (0, 1). We can
extend u and w to (−1, 0) evenly. Then w has at least 2k zeros in (−1, 1), and
all zeros of w are also simple by the uniqueness of ordinary differential equations.
Hence u has at least 2k − 1 zeros in (−1, 1), which contradicts that u ∈ Sk and
has only 2k − 2 zeros in (−1, 1). Therefore w has exactly k − 1 zeros in (0, 1), and
by Lemma 4.3, M(u(λ, ·)) = k − 1. The proof above also implies that the k − 1
zeros of w must be in an alternating order with the zeros of u. In particular, there
exists r0 ∈ (bk−1, 0) such that w(r0) = 0. Suppose that w(1) = 0; then there exists
another zero of u in (r0, 1), which is a contradiction. Therefore, w(1) 6= 0.
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Proof of Theorem 1.4. By Lemma 4.1, for k ∈ N, there exists a solution curve Σk

bifurcating from (µ0
k, 0), and the solution u(µ, ·) on Σk has exactly k − 1 zeros in

(0, 1). By Lemma 4.4, M(u(µ, ·)) = k − 1; then the k-th eigenvalue ηk[u(µ, ·)] > 0.
Therefore, by Lemma 2.5, the solution curve Σk bends to the right of µ0

k. We denote
the upper branch (u(0) > 0) of Σk by Σ+

k , and the lower branch (u(0) < 0) by Σ−
k .

By Lemma 4.2, we can parameterize Σk by s = u(0), so letting Σk = (µ(s), u(s)),
we can continue Σ+

k to the right as long as µ′(s) > 0. But by Lemma 4.4, 0 cannot
be an eigenvalue of (1.11) for any solution u(µ, ·) on Σ+

k . Then Σ+
k can be extended

to µ∞ = sup{µ : (µ, u(µ, ·)) ∈ Σ+
k } with µ monotone increasing. If f ′(∞) ≤ 0,

we claim µ∞ = ∞. In fact, it is well-known that for such f , (1.1) has a positive
solution and a negative solution for all µ > µ0

1 (see [A1]), so Σ1 can be extended to
µ = ∞. By Lemma 4.2, Σk can be regarded as curves on R+ ×R = {(µ, u(0))}.
Since Σk is unbounded and Σk ∩Σ1 = ∅ for k > 1, then Σk can also be extended to
µ = ∞. If f ′(∞) > 0, we claim that µ∞ = µ∞k . In fact, by the shooting method,
we can prove that for any d 6= 0, (1.1) has a solution u with exactly k − 1 zeros in
(0, 1) for k ≥ 1. Thus by Lemma 4.2, Σ+

k can be regarded as the graph of a function
d 7→ µ(d) for d ∈ (0,∞). But by the result of [R2], limd→∞ µ(d) = µ∞k , and by
Lemma 4.4, µ(d) has no critical point, thus µ′(d) > 0. Therefore µ∞ = µ∞k .

5. Concluding remark

To conclude our paper, we have a remark on the validity of the eigenvalue sepa-
ration condition (1.5). (Similar analysis is also true for other eigenvalue separation
conditions.) We note that (1.5) is equivalent to supu∈R f

′(u) − f ′(0) ≤ λj+1 − λj

for j = 1, 2, · · · , N . By a formula due to Weyl, we have λj ∼ (j/m(Ω))2/n, where
n is the spatial dimension. Therefore, when n = 1, λj+1−λj →∞ as j →∞, then
supu∈R f

′(u) − f ′(0) ≤ λj+1 − λj is true for all j large enough. But Theorem 1.3
is an even stronger result for n = 1. For n = 2, λj+1 − λj → C > 0 as j → ∞.
Therefore, if we assume supu∈R f ′(u)− f ′(0) ≤ infj∈N(λj+1−λj) for all j, then by
the proof of Theorem 1.1, we can prove not only the first N but all solution curves
are monotone, which is stronger than the conclusion of Theorem 1.1. For n ≥ 3,
λj+1 − λj → 0, then the λ range of solution curves must have overlaps for large j.
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