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Abstract

Many mathematical models in different disciplines involve the formulation of free boundary problems, 
where the domain boundaries are not predefined. These models present unique challenges, notably the non-
linear coupling between the solution and the boundary, which complicates the identification of bifurcation 
types. This paper mainly investigates the structure of symmetry-breaking bifurcations in a two-dimensional 
free boundary problem modeling tumor growth. By expanding the solution to a high order with respect to 
a small parameter and computing the bifurcation direction at each bifurcation point, we demonstrate that 
all the symmetry-breaking bifurcations occurred in the model, as established by the Crandall-Rabinowitz 
Bifurcation From Simple Eigenvalue Theorem, are pitchfork bifurcations. These findings reveal distinct 
behaviors between the two-dimensional and three-dimensional cases of the same model.
© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies. 

1. Introduction

In recent decades, an increasing number of PDE models describing solid tumor growth in 
the form of free boundary problems have been proposed and studied, see [1–11] and reference 
therein. These models, which consider the tumor tissue as a density of proliferating cells, are 
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based on reaction-diffusion equations and mass conservation law for cell density and nutrient 
concentration within the tumor. The influences of different factors on tumor growth are inves-
tigated, such as the effect of angiogenesis [12–15], time delay [16–19], inhibitor [20,21], cell 
cycle [6,22–24], necrotic core [25–27], and so on. A systematic survey of tumor model studies 
was provided in [28].

Let σ and p denote the concentration of nutrients and the pressure, respectively. The basic 
tumor growth model is to find the unknown tumor region Ω(t) (or the tumor boundary ∂Ω(t)) 
and the unknown functions σ(x, t) and p(x, t) satisfying

σt − Δσ + σ = 0 in Ω(t), t > 0, (1.1)

Δp = −μ(σ − σ̃ ) in Ω(t), t > 0, (1.2)

σ = 1 on ∂Ω(t), t > 0, (1.3)

p = κ on ∂Ω(t), (1.4)

where κ is the mean curvature, and

Vn = −∂p

∂n 
on ∂Ω(t), (1.5)

where ∂
∂n

is the derivative along the outward normal �n and Vn is the velocity of the free boundary 
∂Ω(t) in the outward normal direction �n. The initial conditions are

σ(x,0) = σ0(x) in Ω(0), where Ω(0) is given. (1.6)

In the basic model (1.1) – (1.6), it is assumed that the tumor region Ω(t) contains just one type 
of cell, and the cell density is uniform. The tumor will either expand or shrink depending on the 
amount of nutrients within the tumor, and the tumor proliferation rate is assumed to be linear with 
respect to the concentration of nutrients, given by the function μ(σ − σ̃ ). Here, μ is a parameter 
expressing the “intensity” of tumor expansion due to mitosis (if σ > σ̃ ) or tumor shrinkage by 
apoptosis (if σ < σ̃ ), and ̃σ is a threshold concentration. In addition, it is assumed that the tumor 
region is a porous medium, so that Darcy’s law �V = −∇p holds. Combining it with the law of 
conservation of mass div �V = μ(σ − σ̃ ), we derive the equation (1.2). Furthermore, the boundary 
condition for the pressure p, i.e., the equation (1.4), is due to cell-to-cell adhesiveness, and the 
continuity of the velocity field �V · �n = Vn yields the relation (1.5).

It is well-established that under the assumption 0 < σ̃ < 1, the system (1.1) – (1.6) admits 
a unique radially symmetric stationary solution for both the 2-D [11] and 3-D [10] cases. It 
was also proved in [11] for the 2-D case and [5,9] for the 3-D case that there exists a sequence 
of symmetry-breaking bifurcation branches consisting non-symmetric stationary solutions that 
bifurcate from the branch of the unique radially symmetric stationary solution with parameter μ. 
Similar bifurcation results in various tumor growth models have been obtained in [4,19,21,26,27]. 
Yet, the structure of these bifurcations remains largely unexplored. It was demonstrated in [9] 
that the first symmetry-breaking bifurcation of model (1.1) – (1.6) in 3-D case is a transcritical 
bifurcation. In contrast, our findings in this paper reveal a distinct behavior in the 2-D version of 
the same model. We will prove that all symmetry-breaking bifurcations for model (1.1) – (1.6) 
in 2-D are pitchfork bifurcations. The methods in this paper can be applied to analyze tumor 
growth models with different factors proposed in [12–21,25–27]. Although the computations 
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can be more complicated, similar bifurcation results could be obtained. This finding is consistent 
with the numerical simulations in [26,29].

The structure of this paper is as follows: Section 2 presents preliminary results. In Section 3, 
we prove the existence of bifurcation of non-radially symmetric solutions. Section 4 is dedi-
cated to deriving the type of bifurcations and proving that all bifurcation points are pitchfork 
bifurcations. Finally, in Section 5, we provide a discussion of our results.

2. Preliminaries

2.1. Radially symmetric stationary solution

Consider (1.1) – (1.6) in the two-dimensional spatial domain. We denote the radially sym-
metric stationary solution of (1.1) – (1.6) by (σS(r),pS(r), ∂BRS

), where BRS
denotes the disk 

centered at 0 with radius RS . From (1.1) – (1.6), the solution satisfies

−ΔσS + σS = 0 0 < r < RS, (2.1)

ΔpS = −μ(σS − σ̃ ) 0 < r < RS, (2.2)

σS = 1 r = RS, (2.3)

pS = 1 
RS

r = RS, (2.4)

Vn = −∂pS

∂r 
= 0 r = RS. (2.5)

The system has now been reduced to an ODE system, and the explicit solution is given by

σS(r) = I0(r) 
I0(RS)

, (2.6)

pS(r) = 1

4
μσ̃r2 − μ

I0(r) 
I0(RS)

+ 1 
RS

+ μ − 1

4
μσ̃R2

S, (2.7)

where RS is uniquely determined by the equation

σ̃

2 
= I1(RS) 

RSI0(RS)
. (2.8)

In (2.6) – (2.8), the functions In(r), where n are non-negative integers, represent the modified 
Bessel functions of the first kind. For convenience, we collect some properties of these functions 
in Subsection 2.2.

Later on, we will use μ as the bifurcation parameter, which explicitly appears in the formula of 
pS . To avoid the dependence of this particular solution (σS,pS,RS) on the bifurcation parameter 
μ, we decompose pS as

pS(r) = p̃S(r) + μp∗
S(r),

where p̃S and p∗ are defined to satisfy the following boundary value problems, respectively:
S
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⎧⎪⎨⎪⎩
− Δp̃S = 0 0 < r < RS,

p̃S = 1 
RS

r = RS,
(2.9)

{ − Δp∗
S = σS − σ̃ 0 < r < RS,

p∗
S = 0 r = RS.

(2.10)

These equations can be solved to obtain:

p̃S(r) = 1 
RS

, (2.11)

p∗
S(r) = 1

4
σ̃ r2 − I0(r) 

I0(RS)
+ 1 − 1

4
σ̃R2

S. (2.12)

In later computations, we will use the information of ∂σS(RS)
∂r , ∂2σS(RS)

∂r2 , ∂p̃S(RS)
∂r , 

∂p∗
S(RS)

∂r , 
∂2p̃S (RS)

∂r2 , 
∂2p∗

S(RS)

∂r2 , ∂
3p̃S (RS)

∂r3 , and 
∂3p∗

S(RS)

∂r3 . We put them in the following lemma:

Lemma 2.1. For the radially symmetric stationary solution (σS, p̃S,p∗
S, ∂BRS

), we have

∂σS(RS)

∂r 
= I1(RS)

I0(RS)
, (2.13)

∂2σS(RS)

∂r2 = 1 − I1(RS) 
RSI0(RS)

, (2.14)

∂p̃S(RS)

∂r 
= ∂2p̃S(RS)

∂r2 = ∂3p̃S(RS)

∂r3 = 0, (2.15)

and, by (2.7), we also have

∂p∗
S(RS)

∂r 
= σ̃

2 
RS − I1(RS)

I0(RS)
= 0, (2.16)

∂2p∗
S(RS)

∂r2 = σ̃

2 
−

(
1 − I1(RS) 

RSI0(RS)

)
= 2I1(RS) 

RSI0(RS)
− 1, (2.17)

∂3p∗
S(RS)

∂r3 = 1 
RS

− (2 + R2
S)I1(RS)

R2
SI0(RS) 

. (2.18)

2.2. Properties of Bessel functions

Recall that the modified Bessel function of the first kind In(ξ) satisfies the differential equa-
tion

I ′′
n (ξ) + 1 

ξ
I ′
n(ξ) −

(
1 + n2

ξ2

)
In(ξ) = 0 ξ > 0, (2.19)

and is given by
4 
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In(ξ) =
(

ξ

2 

)n ∞ ∑
k=0 

1 
k!Γ(n + k + 1)

(
ξ

2 

)2k

, (2.20)

from which it is easy to derive

In+1(ξ)

In(ξ) 
<

ξ

2n
, for ξ > 0, n ≥ 1. (2.21)

Furthermore, by [5,7,11], In(ξ) satisfies the following properties, which are needed in subsequent 
computations.

I ′
n(ξ) + n

ξ
In(ξ) = In−1(ξ) n ≥ 1, (2.22)

I ′
n(ξ) − n

ξ
In(ξ) = In+1(ξ) n ≥ 0, (2.23)

ξn+1In(ξ) = ∂

∂ξ
(ξn+1In+1(ξ)) n ≥ 0, (2.24)

In−1(ξ) − In+1(ξ) = 2n

ξ
In(ξ) n ≥ 1, (2.25)

In(ξ)

ξ
is increasing in ξ for ξ > 0 n ≥ 1. (2.26)

2.3. Bifurcation theory

In this subsection, we state some abstract bifurcation theorems which are critical in our anal-
ysis:

Theorem 2.2. (Crandall-Rabinowitz Theorem, [30–32]) Let X, Y be real Banach spaces and 
let F(·, ·) be a Cp map, p ≥ 2, of a neighborhood (μ0,0) in R × X into Y . Denote by Fx

and Fμx the first- and second-order Fréchet derivatives, respectively. Assume the following four 
conditions hold:

(I) F(μ,0) = 0 for all μ in a neighborhood of μ0,
(II) KerFx(μ0,0) is one dimensional space, spanned by x0,

(III) ImFx(μ0,0) = Y1 has codimension one,
(IV) Fμx(μ0,0)[x0] / ∈ Y1,

then (μ,x) = (μ0,0) is a bifurcation point of the equation F(μ,x) = 0 in the following sense: 
in a neighborhood of (μ,x) = (μ0,0), the set of solutions to F(μ,x) = 0 consists of two Cp−1

smooth curves, Γ1 and Γ2, which intersect only at the point (μ0, x) = (μ0,0); Γ1 is the curve 
x ≡ 0, and Γ2 can be parameterized as follows:

Γ2 = (μ(ε), x(ε)) : |ε| small, (μ(0), x(0)) = (μ0,0), x′(0) = x0.
5 
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Theorem 2.2 was first proved in [30] for C1 maps with continuous Fμx . The version here with 
Cp (p ≥ 2) maps was stated in [32] with Cp−2 solution curves. Indeed, the solution curves are 
Cp−1 as pointed out in [31] (see Corollary 2.3 and Lemma 2.5).

While the Crandall-Rabinowitz Theorem reveals the locations where bifurcation branches 
occur, it does not provide information on the direction of bifurcation branches, which is important 
in determining the type of bifurcation diagrams. To investigate the type of bifurcation, we need 
the following theorem:

Theorem 2.3. ([31,33]) Suppose the conditions of Theorem 2.2 are satisfied and let (μ0,0) be 
the bifurcation point of F(μ,x) = 0 in Theorem 2.2. Along the bifurcation branch Γ2, we have

μ′(0) = −〈l,Fxx(μ0,0)[x0, x0]〉
2〈l,Fμx(μ0,0)[x0]〉 , (2.27)

where l ∈ Y ∗ satisfying Ker l = ImFx(μ0,0), and 〈·, ·〉 is the duality pair of Y ∗ and Y . If 
μ′(0) �= 0, which indicates Fxx(μ0,0)[x0, x0] / ∈ ImFx(μ0,0), then the bifurcation branch Γ2
exhibit a transcritical bifurcation. On the other hand, if μ′(0) = 0, then Fxx(μ0,0) [x0, x0] ∈
ImFx(μ0,0), and the bifurcation is a pitchfork type. Furthermore, in the case of a pitchfork 
bifurcation and assuming p ≥ 3, the direction of bifurcation at (μ0,0) is determined by

μ′′(0) = −〈l,Fxxx(μ0,0)[x0, x0, x0]〉 + 3〈l,Fxx(μ0,0)[x0, φ]〉
3〈l,Fμx(μ0,0)[x0]〉 , (2.28)

where φ is the solution of

Fxx(μ0,0)[x0, x0] +Fx(μ0,0)[φ] = 0. (2.29)

3. The existence of bifurcation branches

In this section, we give an alternative proof to [11] regarding the existence of symmetry-
breaking bifurcation branches in the stationary problem for system (1.1) – (1.6). This proof 
employs the Crandall-Rabinowitz Theorem and the methodologies are similar to those used in 
[9,14,19,21,34].

In the context of the Crandall-Rabinowitz Theorem, we define the curve Γ1 as the branch of 
radially symmetric stationary solution discussed in Section 2.1. Specifically, Γ1 is given by

Γ1 = {(μ,σS, p̃S,p∗
S, ∂BRS

) : μ > 0}.

Based on this radially symmetric solution branch, we consider a family of domains Ωε with 
perturbed boundaries

∂Ωε : r = RS + R̃(θ),

where R̃(θ) = εS(θ) with |ε|  1. Within the perturbed domain Ωε, we denote (σ,p) by the 
unique solution of the system
6 
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−Δσ + σ = 0 in Ωε, (3.1)

−Δp = μ(σ − σ̃ ) in Ωε, (3.2)

σ = 1 on ∂Ωε, (3.3)

p = κ on ∂Ωε. (3.4)

Similar to the decomposition in Section 2.1, we decompose p as

p = p̃ + μp∗, (3.5)

where p̃ and p∗ satisfy the following boundary value problems:{ − Δp̃ = 0 in Ωε,

p̃ = κ on ∂Ωε,
(3.6)

and { − Δp∗ = σ − σ̃ in Ωε,

p∗ = 0 on ∂Ωε,
(3.7)

respectively. This decomposition allows us to eliminate the dependence of the solution on the 
bifurcation parameter μ. It is clear that the system (3.1) – (3.4) is equivalent to solving for 
(σ, p̃,p∗) from (3.1), (3.3), (3.6), and (3.7). For notation simplicity, we shall refer to this new 
system as System (A).

We define the bifurcation equation F as

F(μ, R̃) = ∂p

∂n 

∣∣∣∣
∂Ωε

. (3.8)

Combining with (3.5), we have

F(μ, R̃) =
(∂p̃

∂n 
+ μ

∂p∗

∂n 

)∣∣∣∣
∂Ωε

(3.9)

By (1.5), F(μ, R̃) represents the negative value of the normal velocity of the free boundary. In 
a stationary solution, the free boundary remains unchanged. Therefore, (σ, p̃,p∗) is a stationary 
solution of System (A) in the perturbed domain Ωε if and only if F(μ, R̃) = 0.

The function S(θ) may be viewed as a function defined on the unit circle

Σ = {x ∈R2 : |x| = 1},

so it is natural to impose 2π -periodic boundary condition on the function S(θ). Furthermore, it 
can be proved that the solution to System (A) is even in variable θ if we assume S(θ) = S(−θ). 
As a result, we introduce the following Banach spaces: for any integer l ≥ 0 and 0 < α < 1,
7 
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Xl+α = {R̃ ∈ Cl+α(Σ) : R̃ is 2π-periodic in θ, and R̃ is even}, (3.10)

Xl+α
2 = closure of the linear subspace spanned by {cos(jθ), j = 0,2,4, · · · } in Xl+α. (3.11)

For System (A), one can apply Schauder theory to establish the following lemma:

Lemma 3.1. If S ∈ C3+α(Σ) and (σ, p̃,p∗) satisfies System (A), then σ ∈ C3+α(Ωε), p̃ ∈
C1+α(Ωε), and p∗ ∈ C3+α(Ωε).

Lemma 3.1 shows that the mapping (μ, R̃) �→ F(μ, R̃) is from R+ × C3+α(Σ) to Cα(Σ). 
Recalling the definitions of Banach spaces Xl+α and Xl+α

2 in (3.10) and (3.11), we can use 
similar arguments to prove F(μ, R̃) maps from Xl+3+α to Xl+α (or from Xl+3+α

2 to Xl+α
2 ) for 

any integer l ≥ 0.
In order to apply the Crandall-Rabinowitz Theorem, we need to compute the Fréchet deriva-

tives of F . To do that, we shall analyze expansions of (σ, p̃,p∗) in ε. For any μ > 0, we formally 
write

σ = σS + εσ1 + O(ε2), (3.12)

p̃ = p̃S + εp̃1 + O(ε2), (3.13)

p∗ = p∗
S + εp∗

1 + O(ε2). (3.14)

Substituting equations (3.12) – (3.14) into System (A), neglecting terms of order O(ε2), and 
also recalling that

κ = (RS + εS)2 + 2S2
θ − (RS + εS) · Sθθ(

(RS + εS)2 + S2
θ

)3/2 = 1 
RS

− ε
1 

R2
S

(
S + Sθθ

)
+ O(ε2), (3.15)

we obtain the linearized systems for σ1, p̃1, and p∗
1 :

⎧⎨⎩
− Δσ1 + σ1 = 0 in BRS

,

σ1(RS, θ) = −∂σS(RS)

∂r 
S(θ) on ∂BRS

,
(3.16)

⎧⎪⎨⎪⎩
− Δp̃1 = 0 in BRS

,

p̃1(RS, θ) = − 1 

R2
S

(S(θ) + Sθθ (θ)) − ∂p̃S(RS)

∂r 
S(θ) on ∂BRS

,
(3.17)

⎧⎨⎩
− Δp∗

1 = σ1 in BRS
,

p∗
1(RS, θ) = −∂p∗

S(RS)

∂r 
S(θ) on ∂BRS

.
(3.18)

In the subsequent Section 4, we will consider the next order of approximation and prove a more 
refined formula for κ .

Following [9,14,19,21], the following lemma can be easily proved.
8 
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Lemma 3.2. If S ∈ C3+α(Σ) and (σ, p̃,p∗) satisfies System (A), then

‖σ − σS‖C3+α(Ωε)
≤ C|ε|‖S‖C3+α(Σ), (3.19)

‖(p̃ + μp∗) − (p̃S + μp∗
S)‖C1+α(Ωε)

≤ C|ε|‖S‖C3+α(Σ), (3.20)

where the constant C is independent of ε.

To further justify equations (3.12) – (3.14), we need to estimate the O(ε2) terms using the 
appropriate norms. It is important to note that (σ, p̃,p∗) is defined only on Ωε , (σS, p̃S,p∗

S) has 
explicit expressions and is defined everywhere on R2, and (σ1, p̃1,p

∗
1) is defined only on BRS

. 
Therefore, we must transform these functions into a common domain before proceeding with our 
analysis. To this end, we introduce the Hanzawa transformation Hε, which is defined by

(r, θ) = Hε(r
′, θ ′) ≡ (r ′ + χ(RS − r ′)εS(θ ′), θ ′), (3.21)

where χ(z) :R→ R is a bounded function satisfying

χ ∈ C∞, χ(z) =
{

0, if |z| ≥ 3δ0/4

1, if |z| < δ0/4
, 

∣∣∣∣∂kχ

∂zk

∣∣∣∣ ≤ C

δk
0

, k = 1,2, · · · ,

and δ0 is a small positive constant. The Hanzawa transformation Hε maps BRS
into Ωε while 

keeping the ball {r < RS − 3
4δ0} fixed to avoid the singularity of the Laplace operator at 0. The 

inverse transformation H−1
ε maps Ωε onto BRS

.
Using the Hanzawa transformation, we let

σ̂1(r, θ) = σ1(H
−1
ε (r, θ)), ̂̃p1(r, θ) = p̃1(H

−1
ε (r, θ)), p̂∗

1(r, θ) = p∗
1(H−1

ε (r, θ)).

(3.22)
Then, (σ, p̃,p∗), (σS, p̃S,p∗

S), and (̂σ1, ̂̃p1, p̂
∗
1) are all defined on the same domain Ωε. This 

allows us to establish another lemma. The proof of the lemma follows methods similar to those 
found in [9,14,19,21]. We introduce additional decompositions for p, pS , and p1 here; however, 
these do not impact the validity of the proof.

Lemma 3.3. If S ∈ C3+α(Σ), (σ, p̃,p∗) satisfies System (A) and (̂σ1, ̂̃p1, p̂
∗
1) is defined in (3.22) 

where (σ1, p̃1,p
∗
1) is the solution to the system (3.16) – (3.18), then

‖σ − σS − εσ̂1‖C3+α(Ωε)
≤ C|ε|2‖S‖C3+α(Σ), (3.23)

‖(p̃ + μp∗) − (p̃S + μp∗
S) − ε(̂̃p1 + μp̂∗

1)‖C1+α(Ωε)
≤ C|ε|‖S‖C3+α(Σ), (3.24)

where the constant C is independent of ε.

Since

F(μ,0) =
(∂p̃S

∂r 
+ μ

∂p∗
S

∂r 

)∣∣∣∣ = 0 + μ

(
σ̃

2 
RS − I1(RS)

I (R )

)
= 0,
r=RS 0 S

9 
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where this last equality is justified by (2.8), we proceed to substitute equations (3.13), (3.14), and 
(3.24) into (3.9) to derive the following:

F(μ, R̃) =
(∂p̃

∂n 
+ μ

∂p∗

∂n 

)∣∣∣∣
r=RS+εS

=
(
∇p̃ · �n + μ∇p∗ · �n

)∣∣∣∣
r=RS+εS

=
(∂p̃

∂r 
�er + 1

r

∂p̃

∂θ 
�eθ

)
· 1 √

1 + (
rθ
r

)2

(
�er − rθ

r
�eθ

)∣∣∣∣
r=RS+εS

+ μ
(∂p∗

∂r 
�er + 1

r

∂p∗

∂θ 
�eθ

)
· 1 √

1 + (
rθ
r

)2

(
�er − rθ

r
�eθ

)∣∣∣∣
r=RS+εS

= ∂p̃

∂r 

∣∣∣∣
r=RS+εS

+ μ
∂p∗

∂r 

∣∣∣∣
r=RS+εS

+ O(|ε|2‖S‖C3+α(Σ))

=
(∂p̃S(RS)

∂r 
+ μ

∂p∗
S(RS)

∂r 

)
+

(∂2p̃S(RS)

∂r2 εS + μ
∂2p∗

S(RS)

∂r2 εS + ∂p̃1(RS, θ)

∂r 
ε

μ
∂p∗

1(RS, θ)

∂r 
ε
)

+ O(|ε|2‖S‖C3+α(Σ)).

Thus,

F(μ, R̃) =F(μ,0) + ε
(∂2p̃S(RS)

∂r2 S + μ
∂2p∗

S(RS)

∂r2 S + ∂p̃1(RS, θ)

∂r 

+ μ
∂p∗

1(RS, θ)

∂r 

)
+ O(|ε|2‖S‖C3+α(Σ))

which formally gives the Fréchet derivative of F in R̃ at (μ,0)

FR̃(μ,0)[S] = ∂2p̃S(RS)

∂r2 S + μ
∂2p∗

S(RS)

∂r2 S + ∂p̃1(RS, θ)

∂r 
+ μ

∂p∗
1(RS, θ)

∂r 
. (3.25)

In what follows, we shall use (3.25) to establish the existence of bifurcation branches by verifying 
the regularity and the four assumptions in Theorem 2.2. The results are stated in the following 
Theorem:

Theorem 3.4. For any ̃σ > 0, there exists a unique RS > 0 such that System (A) has a family of 
radially symmetric stationary solutions in a form of

Γ1 = {(μ,σS(·), p̃S(·),p∗
S(·), ∂BRS

) : μ > 0}.

Then, for every even integer n ≥ 2, the point (μn,0) is a bifurcation point of System (A), where

μn = n(n2 − 1)

R3M
(3.26)
S n

10 
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and Mn is defined in (3.34). Furthermore, in a neighborhood of (μn,0), the set of solutions to 
System (A) consists of exactly Γ1 and

Γ2,n = {(μn(ε), σn(ε, ·), p̃n(ε, ·),p∗
n(ε, ·), ∂Ωε,n) : |ε|  1},

such that σn(ε, ·) = σS(·)+εσ1(·)+O(ε2), p̃n(ε, ·) = p̃S(·)+εp̃1(·)+O(ε2), p∗
n(ε, ·) = p∗

S(·)+
εp∗

1(·) + O(ε2), where σ1, p̃1, and p∗
1 satisfy (3.16) – (3.18) with S(θ) = cos(nθ), respectively, 

and the corresponding free boundary ∂Ωε,n is of the form r = RS + ε cos(nθ) + O(ε2).

Proof. To begin with, for any μ > 0, the radially symmetric stationary solution (σS, p̃S,p∗
S)

exists when R̃(θ) = 0 and remains independent of μ. Consequently, the first assumption of The-
orem 2.2, namely that F(μ,0) = 0, is satisfied.

By (3.24), the operator F maps from R+ ×Xl+3+α to Xl+α (or from R+ ×Xl+3+α
2 to Xl+α

2 ). 
Since the set {cos(nθ)}∞n=0 is an orthonormal basis for Xl+α , we use a Fourier series expression 
for S(θ):

S(θ) =
∞ ∑

n=0 
an cos(nθ). (3.27)

Applying the separation of variables technique to the systems (3.16) – (3.18) and utilizing the 
results from Lemma 2.1, we can solve (σ1, p̃1,p

∗
1) explicitly by

σ1(r, θ) =
∞ ∑

n=0 
anσ1,n(r) cos(nθ) =

∞ ∑
n=0 

an

(
− I1(RS)In(r) 

I0(RS)In(RS)

)
cos(nθ), (3.28)

p̃1(r, θ) =
∞ ∑

n=0 
anp̃1,n(r) cos(nθ) =

∞ ∑
n=0 

an

(n2 − 1)rn

Rn+2
S

cos(nθ), (3.29)

p∗
1(r, θ) =

∞ ∑
n=0 

anp
∗
1,n(r) cos(nθ) =

∞ ∑
n=0 

an

(
− rnI1(RS) 

Rn
SI0(RS)

+ I1(RS)In(r) 
I0(RS)In(RS)

)
cos(nθ). (3.30)

Differentiating (3.28) – (3.30) in r , and using properties of Bessel functions in Section 2.2, we 
obtain

∂σ1(r, θ)

∂r 
=

∞ ∑
n=0 

an

∂σ1,n(r)

∂r 
cos(nθ) =

∞ ∑
n=0 

an

[
− I1(RS) 

I0(RS)In(RS)

(
In+1(r) + n

r
In(r)

)]
cos(nθ),

∂p̃1(r, θ)

∂r 
=

∞ ∑
n=0 

an

∂p̃1,n(r)

∂r 
cos(nθ) =

∞ ∑
n=0 

an

n(n2 − 1)rn−1

Rn+2
S

cos(nθ),

and
11 
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∂p∗
1(r, θ)

∂r 
=

∞ ∑
n=0 

an

∂p∗
1,n(r)

∂r 
cos(nθ)

=
∞ ∑

n=0 
an

[
− nrn−1I1(RS)

Rn
SI0(RS) 

+ I1(RS) 
I0(RS)In(RS)

(
In+1(r) + n

r
In(r)

)]
cos(nθ).

Hence, in (3.25),

∂p̃1(RS, θ)

∂r 
+ μ

∂p∗
1(RS, θ)

∂r 
=

∞ ∑
n=0 

an

[n(n2 − 1)

R3
S

+ μ
I1(RS)In+1(RS)

I0(RS)In(RS) 

]
cos(nθ). (3.31)

Substituting (2.15), (2.17), and (3.31) into (3.25), we have

FR̃(μ,0)[S(θ)]

=μ
( 2I1(RS) 
RSI0(RS)

− 1
) ∞ ∑

n=0 
an cos(nθ) +

∞ ∑
n=0 

an

[n(n2 − 1)

R3
S

+ μ
I1(RS)In+1(RS)

I0(RS)In(RS) 

]
cos(nθ)

=
∞ ∑

n=0 
an

(
μ

2I1(RS) 
RSI0(RS)

− μ + n(n2 − 1)

R3
S

+ μ
I1(RS)In+1(RS)

I0(RS)In(RS) 

)
cos(nθ),

(3.32)

in particular,

FR̃(μ,0)[cos(nθ)] =
(
μ

2I1(RS) 
RSI0(RS)

− μ + n(n2 − 1)

R3
S

+ μ
I1(RS)In+1(RS)

I0(RS)In(RS) 

)
cos(nθ)

≜
(

− μMn + n(n2 − 1)

R3
S

)
cos(nθ),

(3.33)

where

Mn = 1 − 2I1(RS) 
RSI0(RS)

− I1(RS)In+1(RS)

I0(RS)In(RS) 
. (3.34)

It was proved in [18] (Lemma 4.1) and [35] (Lemma 3.3) that

1 − 2I1(x) 
xI0(x)

− I1(x)In+1(x)

I0(x)In(x) 
> 0 for n ≥ 2 and x > 0, (3.35)

thus

Mn > 0 for n ≥ 2. (3.36)

Furthermore, for n = 0 (see Lemma 4.1 in [19]),

FR̃(μ,0)[1] = μ
( 2I1(RS) 
R I (R )

− 1 + I 2
1 (RS)

I 2(R )

)
> 0;
S 0 S 0 S

12 
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and for n = 1,

FR̃(μ,0)[cos(θ)] = μ
( 2I1(RS) 
RSI0(RS)

− 1 + I2(RS)

I0(RS)

)
cos(θ) = 0,

implying that cos(θ) is in the kernel of FR̃(μ,0) for all μ. For n ≥ 2, following (3.36), 
FR̃(μ,0)[cos(nθ)] = 0 if and only if

μ = μn ≜
n(n2 − 1)

R3
SMn

.

It was proved in [15,19] that μn is monotonically increasing in n for n ≥ 2. Therefore,

KerFR̃(μ,0) =
{

Span{cos(θ), cos(nθ)} if μ = μn, n ≥ 2;
Span{cos(θ)} if μ �= μn, n ≥ 2.

To ensure that KerFR̃(μ,0) has a dimension of one, thereby meeting requirement (II) of Theo-
rem 2.2, we must exclude the case n = 1. Consequently, we work with the space X3+α

2 defined 
in (3.11). For any even integer n ≥ 2,

KerFR̃(μn,0) = Span{cos(nθ)},
ImFR̃(μn,0) = Span{1, cos(2θ), cos(4θ), · · · , cos((n − 2)θ), cos((n + 2)θ), · · · }, (3.37)

which meet the requirements (II) and (III) of Theorem 2.2. Finally, by differentiating (3.33) in 
μ, we obtain

FμR̃(μn,0)[1, cos(nθ)] = −Mn cos(nθ) / ∈ Im FR̃(μ0,0), (3.38)

which fulfills the last requirement of Theorem 2.2.
In summary, all the requirements of the Crandall-Rabinowitz Theorem (Theorem 2.2) are 

satisfied at (μn,0) for even integers n ≥ 2. Therefore, for each such n, (μn,0) is a bifurcation 
point of System (A), and the conclusions in Theorem 3.4 hold. □

Remark 3.5. The bifurcation result is actually valid for all integers n ≥ 2 not restricting to even 
n only. For any odd n ≥ 3, we may work with the Banach space

Ml+α = closure of the linear space spanned by {cos(jθ), j = 0,2,3,4,5, · · · } in Xl+α

and apply the Crandall-Rabinowitz theorem in a more delicate manner. The issue here is that 
F does not map Ml+3+α into Ml+α , but we could shift the center of the system to eliminate 
the mode n = 1 and make a modified mapping F̃ which maps Ml+3+α into Ml+α . In [36], the 
authors utilized group-theoretic methods by selecting appropriate isotropy subgroups to demon-
strate that the bifurcation results are also valid for odd integers n ≥ 2. Although the results are 
derived in a 3-D context, similar methods could be applicable to the 2-D case. However, the 
details of the analysis, which involve complex computations, will not be discussed here.
13 
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4. The type of bifurcation points

By Theorem 3.4 and Remark 3.5, we know that, for every integer n ≥ 2, the bifurcating 
solution (μn(ε), R̃n(ε)) satisfies

F(μn(ε), R̃n(ε)) = 0,

(μn(0), R̃n(0)) = (μn,0),

R̃n(ε) = ε cos(nθ) + O(ε2).

In order to determine the type of the bifurcation, we need to compute μ′
n(0) by using (2.27). To 

do that, we need ε2-order expansion, and we formally write (without the subscript n):

σ(r, θ) = σS(r) + εσ1(r, θ) + ε2σ2(r, θ) + O(ε3), (4.1)

p̃(r, θ) = p̃S(r) + εp̃1(r, θ) + ε2p̃2(r, θ) + O(ε3), (4.2)

p∗(r, θ) = p̃S(r) + εp∗
1(r, θ) + ε2p∗

2(r, θ) + O(ε3). (4.3)

We also establish a refined formula for the mean curvature κ on of the free boundary.

Lemma 4.1. If ∂Ωε : r = RS + εS(θ), where S ∈ C2(Σ), then

κ

∣∣∣
r=RS+εS(θ)

= 1 
RS

− ε
S + Sθθ

R2
S

+ ε2 2SSθθ + S2 + 1
2S2

θ

R3
S

+ O(ε3). (4.4)

Proof. Using the mean curvature formula in the two-dimensional case for a curve r = ρ(θ):

κ = ρ2 + 2ρ2
θ − ρ · ρθθ

(ρ2 + ρ2
θ )3/2

= 1 + 2(
ρθ

ρ
)2 − ρθθ

ρ

ρ(1 + (
ρθ

ρ
)2)3/2 = 1 

ρ

(
1 + 2

(ρθ

ρ

)2 − ρθθ

ρ

)(
1 +

(ρθ

ρ

)2
)− 3

2

.

(4.5)

Taking ρ(θ) = RS + εS(θ), we have ρθ = εSθ and ρθθ = εSθθ . Then

1 
ρ

= 1 
RS + εS

= 1 
RS

− ε
S

R2
S

+ ε2 S2

R3
S

− ε3 S3

R4
S

+ O(ε4),

ρθ

ρ
= ε

Sθ

RS

− ε2 SSθ

R2
S

+ ε3 S2Sθ

R3
S

+ O(ε4),

(ρθ

ρ

)2 = ε2 S2
θ

R2
S

− ε3 2SS2
θ

R3
S

+ O(ε4),

ρθθ

ρ
= ε

Sθθ

RS

− ε2 SSθθ

R2
S

+ ε3 S2Sθθ

R3
S

+ O(ε4),

and
14 
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(
1 + 2

(ρθ

ρ

)2 − ρθθ

ρ

)
= 1 − ε

Sθθ

RS

+ ε2 2S2
θ + SSθθ

R2
S

− ε3 4SS2
θ + S2Sθθ

R3
S

+ O(ε4),

(
1 +

(ρθ

ρ

)2
)− 3

2 = 1 − 3

2

(ρθ

ρ

)2 + O(ε4) = 1 − ε2 3

2

S2
θ

R2
S

+ ε3 3SS2
θ

R3
S

+ O(ε4).

Putting these into (4.5), we obtain

κ =
(

1 
RS

− ε
S

R2
S

+ ε2 S2

R3
S

− ε3 S3

R4
S

+ O(ε4)

)(
1 − ε

Sθθ

RS

+ ε2 2S2
θ + SSθθ

R2
S

− ε3 4SS2
θ + S2Sθθ

R3
S

+ O(ε4)

)(
1 − ε2 3

2

S2
θ

R2
S

+ ε3 3SS2
θ

R3
S

+ O(ε4)

)

= 1 
RS

− ε
S + Sθθ

R2
S

+ ε2 2SSθθ + S2 + 1
2S2

θ

R3
S

− ε3 S3 + 3
2SS2

θ + 3S2Sθθ − 3
2S2

θ Sθθ

R4
S

+ O(ε4),

which gives the estimate (4.4). □

Given our focus on the type of bifurcation at a bifurcation point μ = μn, we will henceforth 
consider the special case where S(θ) = cos(nθ) and μ = μn for n ≥ 2, where μn is given in 
Theorem 3.4. Each cos(nθ) corresponds to a bifurcation branch emanating from (μn,0).

Substituting the refined expansion (4.1) into (3.1) and (3.3) and collecting the ε2-order terms, 
we derive the system for σ2:⎧⎪⎨⎪⎩

− Δσ2 + σ2 = 0 in BRS
,

σ2(RS, θ) = −1

2

∂2σS(RS)

∂r2 S2(θ) − ∂σ1(RS, θ)

∂r 
S(θ) on ∂BRS

.
(4.6)

Note that the general solution to the Poisson equation −Δu + u = 0 in a disk is given by

u(r, θ) =
∞ ∑

n=0 
AnIn(r) cos(nθ),

where the coefficients An are determined by the boundary condition. We will next simplify the 
boundary condition as specified in (4.6). Recall that when S(θ) = cos(nθ),

σ1(r, θ) = σ1,n(r) cos(nθ) = − I1(RS)In(r) 
I0(RS)In(RS)

cos(nθ), (4.7)

hence

∂σ1(RS, θ)

∂r 
= −

(I1(RS)In+1(RS)

I0(RS)In(RS) 
+ nI1(RS) 

RSI0(RS)

)
cos(nθ). (4.8)

By combining this with (2.14) and utilizing the formula of Mn in (3.34), we obtain
15 
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σ2(RS, θ) = −1

2

(
1 − I1(RS) 

RSI0(RS)

)
cos2(nθ) +

(I1(RS)In+1(RS)

I0(RS)In(RS) 
+ nI1(RS) 

RSI0(RS)

)
cos2(nθ)

=
(2n + 1

2 
I1(RS) 

RSI0(RS)
− 1

2
+ I1(RS)In+1(RS)

I0(RS)In(RS) 

)
cos2(nθ)

=
(1

2
+ 2n − 3

2 
I1(RS) 

RSI0(RS)
− Mn

)
cos2(nθ) ≜ M̃n cos2(nθ). (4.9)

Using the double-angle formula

cos2(nθ) = 1 + cos(2nθ)

2 
,

we find that the boundary term σ2(RS, θ) is a linear combination of 1 and cos(2nθ). There-
fore, the solution to (4.6) should be a linear combination of I0(r) and I2n(r) cos(2nθ). With this 
insight, we solve (4.6) as

σ2(r, θ) = 
M̃n

2 
I0(r) 

I0(RS)
+ M̃n

2 
I2n(r) 

I2n(RS)
cos(2nθ). (4.10)

To facilitate subsequent calculations, it is necessary to compute the term ∂σ2(RS,θ)
∂r . We proceed 

with this computation as follows:

∂σ2(r, θ)

∂r 
= M̃n

2 
I1(r) 

I0(RS)
+ M̃n

2 

(I2n+1(r)

I2n(RS) 
+ 2nI2n(r) 

rI2n(RS)

)
cos(2nθ), (4.11)

hence

∂σ2(RS, θ)

∂r 
= M̃n

2 
I1(RS)

I0(RS)
+ M̃n

2 

(I2n+1(RS)

I2n(RS) 
+ 2n 

RS

)
cos(2nθ). (4.12)

In a similar manner, by substituting (4.2) and (4.3) into (3.6) and (3.7) and using Lemma 4.1, 
we obtain the following systems for p̃2 and p∗

2 :

⎧⎪⎨⎪⎩
− Δp̃2 = 0 in BRS

,

p̃2(RS, θ) = 2SSθθ + S2 + 1
2S2

θ

R3
S

− 1

2

∂2p̃S(RS)

∂r2 S2 − ∂p̃1(RS, θ)

∂r 
S on ∂BRS

,
(4.13)

⎧⎪⎨⎪⎩
− Δp∗

2 = σ2 in BRS
,

p̃2(RS, θ) = −1

2

∂2p∗
S(RS)

∂r2 S2 − ∂p∗
1(RS, θ)

∂r 
S on ∂BRS

.
(4.14)

When S(θ) = cos(nθ), it follows from Section 3 that
16 
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p̃1(r, θ) = p̃1,n(r) cos(nθ) = (n2 − 1)rn

Rn+2
S

cos(nθ), (4.15)

p∗
1(r, θ) = p∗

1,n(r) cos(nθ) =
(

− I1(RS)rn

Rn
SI0(RS)

+ I1(RS)In(r) 
I0(RS)In(RS)

)
cos(nθ), (4.16)

hence

∂p̃1(RS, θ)

∂r 
= n(n2 − 1)

R3
S

cos(nθ), (4.17)

∂p∗
1(RS, θ)

∂r 
= I1(RS)In+1(RS)

I0(RS)In(RS) 
cos(nθ). (4.18)

We first solve for p̃2. Substituting (2.15) and (4.17) into the boundary condition in the system 
(4.13) and using the following equations,

S2 = cos2(nθ) = 1

2

(
1 + cos(2nθ)

)
,

SSθθ = −n2 cos2(nθ) = −n2

2 

(
1 + cos(2nθ)

)
,

S2
θ = n2 sin2(nθ) = n2

2 

(
1 − cos(2nθ)

)
,

we simplify the boundary condition to:

p̃2(RS, θ) = 1 

R3
S

[(1

2
− 3n2

4 

)
+

(1

2
− 5n

4 

)
cos(2nθ)

]
− n(n2 − 1)

R3
S

1 + cos(2nθ)

2 

= 1 

R3
S

(1

2
− 3n2

4 
− n(n2 − 1)

2 

)
+ 1 

R3
S

(1

2
− 5n

4 
− n(n2 − 1)

2 

)
cos(2nθ).

(4.19)

We observe that the boundary condition is a linear combination of 1 and cos(2nθ). Recalling the 
general solution to the Laplace equation Δu = 0 in a disk is

u(r, θ) =
∞ ∑

n=0 
Bnr

n cos(nθ),

we note that the coefficients Bn are determined by the boundary condition (4.19). As a result, p̃2
is solved as

p̃2(r, θ) = 1 

R3
S

(1

2
− 3n2

4 
− n(n2 − 1)

2 

)
+ r2n

R2n+3
S

(1

2
− 5n

4 
− n(n2 − 1)

2 

)
cos(2nθ). (4.20)

Since the first part of (4.20) is a constant, it vanishes upon taking derivatives. Hence, we have

∂p̃2(RS, θ)

∂r 
= 2n 

R4

(1

2
− 5n

4 
− n(n2 − 1)

2 

)
cos(2nθ). (4.21)
S
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Next, we proceed to solve for p∗
2 from the system (4.14). We observe that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δ(p∗
2 + σ2) = 0 in BRS

,

(p∗
2 + σ2)(RS, θ)

= −1

2

(∂2p∗
S(RS)

∂r2 + ∂2σS(RS)

∂r2

)
S2 −

(∂p∗
1(RS, θ)

∂r 
+ ∂σ1(RS, θ)

∂r 

)
S on ∂BRS

,

(4.22)

where, by (2.14), (2.17), (4.8), and (4.18), the boundary condition can be simplified as

(p∗
2 + σ2)(RS, θ) = −1

2

I1(RS) 
RSI0(RS)

1 + cos(2nθ)

2 
+ nI1(RS) 

RSI0(RS)

1 + cos(2nθ)

2 

= 2n − 1

4 
I1(RS) 

RSI0(RS)
+ 2n − 1

4 
I1(RS) 

RSI0(RS)
cos(2nθ).

Reemploying the general solution of the Laplace equation, we have

p∗
2(r, θ) = 2n − 1

4 
I1(RS) 

RSI0(RS)
+ r2n

R2n
S

2n − 1

4 
I1(RS) 

RSI0(RS)
cos(2nθ) − σ2(r, θ), (4.23)

hence

∂p∗
2(RS, θ)

∂r 
= n(2n − 1)

2 
I1(RS) 

R2
SI0(RS)

cos(2nθ) − ∂σ2(RS, θ)

∂r 
, (4.24)

where ∂σ2(RS,θ)
∂r was computed in (4.12).

At this point, we shall rigorously establish the ε2-order expansion for σ and p in the case 
∂Ωε : r = RS + ε cos(nθ).

Lemma 4.2. Assume that (σ, p̃,p∗) is the solution to System (S) in the domain whose boundary 
is defined by ∂Ωε : r = RS + ε cos(nθ); (σ1, p̃1,p

∗
1) is the solution to the system (3.16) – (3.18), 

and the explicit solutions σ1, p̃1, and p∗
1 are given in (4.7), (4.15), and (4.16), respectively; 

and σ2, p̃2, and p∗
2 are solutions to the systems (4.6), (4.13), and (4.14), respectively, and are 

explicitly given by (4.10), (4.20), and (4.23). Then,

‖σ − (σS + εσ1 + ε2σ2)‖C3+α(Ωε)
≤ C|ε|3, (4.25)∥∥(

p̃ + μp∗) − (
p̃S + μp∗

S + ε(p̃1 + μp∗
1) + ε2(p̃2 + μp∗

2)
)∥∥

C1+α(Ωε)
≤ C|ε|3. (4.26)

Proof. We first prove the estimate for σ . Note that σS , σ1, and σ2 are defined (by their explicit 
formulas) for all r > 0, and they satisfy the same elliptic equations −Δu + u = 0 for all r > 0. 
So, if we denote Ψ1 = σ − (σS + εσ1 + ε2σ2), then we have

−ΔΨ1 − Ψ1 = 0 in Ωε.

We then check the boundary condition, on ∂Ωε,
18 
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Ψ1

∣∣
∂Ωε

= σ − (σS + εσ1 + ε2σ2)
∣∣
r=RS+ε cos(nθ)

=1 − σS(RS) − ∂σS(RS)

∂r 
ε cos(nθ) − ∂2σS(RS)

∂r2 ε2 cos2(nθ) − εσ1(RS, θ)

− ε
σ1(RS, θ)

∂r 
ε cos(nθ) − ε2σ2(RS, θ) + O(ε3).

Using (2.3), (3.16), and (4.6), we find that all the lower-order terms cancel out, and Ψ1|∂Ωε =
O(ε3). Then the inequality (4.25) follows by applying the Schauder estimates on Ψ1.

The proof to (4.26) is similar. Let

Ψ2 = (
p̃ + μp∗) − (

p̃S + μp∗
S + ε(p̃1 + μp∗

1) + ε2(p̃2 + μp∗
2)

)
.

Combining (2.9), (2.10), (3.6), (3.7), (3.17), (3.18), (4.13), and (4.14), we obtain

−ΔΨ2 = μΨ1 in Ωε,

and on the boundary ∂Ωε, after canceling terms that arise from the Taylor series expansions,

Ψ2

∣∣∣
∂Ωε

=κ

∣∣∣
r=RS+ε cos(nθ)

− 1 
RS

− ε
(n2 − 1) cos(nθ)

R2
S

− ε2 (1 − 2n2) cos2(nθ) + n2

2 sin2(nθ)

R3
S

+ O(ε3).

By Lemma 4.1, Ψ2|∂Ωε = O(ε3) and the inequality (4.26) follows immediately from (4.25) and 
the Schauder theory. □

Based on Lemma 4.2, we are now able to compute the second-order Fréchet derivative FR̃R̃

in (2.27). By (3.9), we have

F(μ, ε cos(nθ)) =
(∂p̃

∂n 
+ μ

∂p∗

∂n 

)∣∣∣
r=RS+ε cos(nθ)

=
(
∇p̃ · �n + μ∇p∗ · �n

)∣∣∣
r=RS+ε cos(nθ)

, (4.27)

where, by (4.2),

∇p̃ · �n
∣∣∣
r=RS+ε cos(nθ)

=
(∂p̃

∂r 
�er + �eθ

RS + ε cos(nθ)

∂p̃

∂θ 

)
· 1 √

1 + ( −nε sin(nθ) 
RS+ε cos(nθ)

)2

(
�er − −nε sin(nθ)�eθ

RS + ε cos(nθ)

)

= ∂p̃S(RS)

∂r 
+ ε

(∂2p̃S(RS)

∂r2 cos(nθ) + ∂p̃1(RS, θ)

∂r 

)
+ ε2

(1

2

∂3p̃S(RS)

∂r3 cos2(nθ)

+ ∂2p̃1(RS, θ)

∂r2 cos(nθ) + 1 

R2

∂p̃S(RS, θ)

∂θ 
n sin(nθ)

)
+ ∂p̃2(RS, θ)

∂r 
+ O(ε3),

(4.28)
S
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and, by (4.3),

∇p∗ · �n
∣∣∣
r=RS+ε cos(nθ)

=
(∂p∗

∂r 
�er + �eθ

RS + ε cos(nθ)

∂p∗

∂θ 

)
· 1 √

1 + ( −nε sin(nθ) 
RS+ε cos(nθ)

)2

(
�er − −nε sin(nθ)�eθ

RS + ε cos(nθ)

)

= ∂p∗
S(RS)

∂r 
+ ε

(∂2p∗
S(RS)

∂r2 cos(nθ) + ∂p∗
1(RS, θ)

∂r 

)
+ ε2

(1

2

∂3p∗
S(RS)

∂r3 cos2(nθ)

+ ∂2p∗
1(RS, θ)

∂r2 cos(nθ) + 1 

R2
S

∂p∗
1(RS, θ)

∂θ 
n sin(nθ) + ∂p∗

2(RS, θ)

∂r 

)
+ O(ε3).

(4.29)

Hence,

F(μ, ε cos(nθ))

=
(∂p̃S(RS)

∂r 
+ μ

∂p∗
S(RS)

∂r 

)
+ ε

(∂2p̃S(RS)

∂r2 cos(nθ) + μ
∂2p∗

S(RS)

∂r2 cos(nθ)

+ ∂p̃1(RS, θ)

∂r 
+ μ

∂p∗
1(RS, θ)

∂r 

)
+ ε2

(1

2

∂3p̃S(RS)

∂r3 cos2(nθ) + μ

2 

∂3p∗
S(RS)

∂r3 cos2(nθ)

+ ∂2p̃1(RS, θ)

∂r2 cos(nθ) + μ
∂2p∗

1(RS, θ)

∂r2 cos(nθ) + 1 

R2
S

∂p̃1(RS, θ)

∂θ 
n sin(nθ)

+ μ 

R2
S

∂p∗
1(RS, θ)

∂θ 
n sin(nθ) + ∂p̃2(RS, θ)

∂r 
+ μ

∂p∗
2(RS, θ)

∂r 

)
+ O(ε3). (4.30)

On the other hand, since F(μ,0) = 0, Taylor series expansion gives

F(μ, ε cos(nθ)) = εFR̃(μ,0)[cos(nθ)] + ε2

2 
FR̃R̃(μ,0)[cos(nθ), cos(nθ)] + O(ε3). (4.31)

Comparing the ε2-order terms in (4.30) and (4.31), we obtain

FR̃R̃(μ,0)[cos(nθ), cos(nθ)]

= ∂3p̃S(RS)

∂r3 cos2(nθ) + μ
∂3p∗

S(RS)

∂r3 cos2(nθ) + 2
∂2p̃1(RS, θ)

∂r2 cos(nθ)

+ 2μ
∂2p∗

1(RS, θ)

∂r2 cos(nθ) + 2 

R2
S

∂p̃1(RS, θ)

∂θ 
n sin(nθ)

+ 2μ 

R2
S

∂p∗
1(RS, θ)

∂θ 
n sin(nθ) + 2

∂p̃2(RS, θ)

∂r 
+ 2μ

∂p∗
2(RS, θ)

∂r 
. (4.32)

In (2.27), l ∈ Y ∗ satisfies Ker l = ImFR̃(μn,0), where μn (n ≥ 2) are the bifurcation points 
derived in Section 3. By (3.37) and Remark 3.5, for every integer n ≥ 2,
20 



X.E. Zhao and J. Shi Journal of Differential Equations 436 (2025) 113352 
ImFR̃(μn,0) = Span{1, cos(θ), cos(2θ), · · · , cos((n − 1)θ), cos((n + 1)θ), · · · }.

Therefore, we can take l(s) = ∫ 2π

0 cos(nθ) sdθ which satisfies the requirement. Next, we proceed 
to compute the numerator and the denominator in formula (2.27).

We start by computing the denominator in (2.27). Using (3.38) and recalling the sign of Mn

in (3.36), we have

〈l,FμR̃(μn,0)[cos(nθ)]〉 =
2π ∫

0 

−Mn cos2(nθ) dθ = −Mnπ < 0. (4.33)

For the numerator in (2.27), we first use (4.15) and (4.16) to compute the partial derivatives 
with respect to θ :

∂p̃1(RS, θ)

∂θ 
= p̃1,n(RS)

( − n sin(nθ)
) = −n(n2 − 1)

R2
S

sin(nθ), (4.34)

∂p∗
1(RS, θ)

∂θ 
= p∗

1,n(RS)
( − n sin(nθ)

) =
(

− I1(RS)

I0(RS)
+ I1(RS)

I0(RS)

)( − n sin(nθ)
) = 0; (4.35)

and also the second-order r-derivative of p̃1 and p∗
1 :

∂2p̃1(RS, θ)

∂r2 = ∂2p̃1,n(RS)

∂r2 cos(nθ) = n(n − 1)(n2 − 1)

R4
S

cos(nθ) (4.36)

∂2p∗
1(RS, θ)

∂r2 = ∂2p∗
1,n(RS)

∂r2 cos(nθ) =
(I1(RS)

I0(RS)
− I1(RS)In+1(RS) 

RSI0(RS)In(RS)

)
cos(nθ). (4.37)

Now, substituting (2.15), (2.18), (4.21), (4.24), and (4.34) – (4.37) all into (4.32) and using the 
double-angle formulas, we obtain

FR̃R̃(μ,0)[cos(nθ), cos(nθ)]

= μ
( 1 
RS

− (2 + R2
S)I1(RS)

R2
SI0(RS) 

)1 + cos(2nθ)

2 
+ 2n(n − 1)(n2 − 1)

R4
S

1 + cos(2nθ)

2 

+ 2μ
(I1(RS)

I0(RS)
− I1(RS)In+1(RS) 

RSI0(RS)In(RS)

)1 + cos(2nθ)

2 
− 2n2(n2 − 1)

R4
S

1 − cos(2nθ)

2 

+ 2n − 5n2 − 2n2(n2 − 1)

R4
S

cos(2nθ) + μ
n(2n − 1)I1(RS)

R2
SI0(RS) 

cos(2nθ)

− μM̃n

I1(RS)

I0(RS)
− μM̃n

(I2n+1(RS)

I2n(RS) 
+ 2n 

RS

)
cos(2nθ)

= (
I + μII

) + (
III + μIV

)
cos(2nθ),

(4.38)

where
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I = − n(n2 − 1)

R4
S

, III = −n(n2 − 1)

R4
S

+ 2n − 5n2

R4
S

,

II = 1 
RS

(1

2
− I1(RS) 

RSI0(RS)
− I1(RS)In+1(RS)

I0(RS)In(RS) 

)
+ I1(RS)

I0(RS)

(1

2
− M̃n

)
= 1 

RS

(
Mn − 1

2
+ I1(RS) 

RSI0(RS)

)
+ I1(RS)

I0(RS)

(1

2
− M̃n

)
,

and

IV = 1 
RS

(1

2
− I1(RS) 

RSI0(RS)
− I1(RS)In+1(RS)

I0(RS)In(RS) 

)
+ I1(RS)

I0(RS)

(1

2
+ n(2n − 1)

R2
S

)
− M̃n

(I2n+1(RS)

I2n(RS) 
+ 2n 

RS

)
= 1 

RS

(
Mn − 1

2
+ I1(RS) 

RSI0(RS)

)
+ I1(RS)

I0(RS)

(1

2
+ n(2n − 1)

R2
S

)
− M̃n

(I2n+1(RS)

I2n(RS) 
+ 2n 

RS

)
.

When μ = μn, it follows from (4.9), (3.26), and (2.8) that

μnMn = n(n2 − 1)

R3
S

and

μnM̃n = μn

2 
+ μn

2n − 3

2 
I1(RS) 

RSI0(RS)
− μnMn = μn

2 
+ (2n − 3)μnσ̃

4 
− n(n2 − 1)

R3
S

.

Hence, we obtain

I + μnII = μn

RS

(
− 1

2
+ σ̃

2 

)
+ μn

I1(RS)

I0(RS)

(1

2
− M̃n

)
,

and

III + μnIV = 2n − 5n2

R4
S

+ μn

RS

(
− 1

2
+ σ̃

2 

)
+ μn

I1(RS)

I0(RS)

(1

2
+ n(2n − 1)

R2
S

)
− μnM̃n

(I2n+1(RS)

I2n(RS) 
+ 2n 

RS

)
.

Note that we can express 1 and cos(2nθ) in terms of cos(nθ) and sin(nθ). More specifically, 
Equation (4.38) can be rewritten as
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FR̃R̃(μn,0)[cos(nθ), cos(nθ)]
= (

I + μnII
)(

cos2(nθ) + sin2(nθ)
) + (

III + μnIV
)(

cos2(nθ) − sin2(nθ)
)

= (
I + μnII + III + μnIV

)
cos2(nθ) + (

I + μnII − III − μnIV
)

sin2(nθ)

=
[2n − 5n2

R4
S

+ μn

RS

(
σ̃ − 1

) + μn

I1(RS)

I0(RS)

(
1 − M̃n + n(2n − 1)

R2
S

)
− μnM̃n

(I2n+1(RS)

I2n(RS) 

+ 2n 
RS

)]
cos2(nθ) +

[5n2 − 2n

R4
S

+ μn

I1(RS)

I0(RS)

(
− M̃n − n(2n − 1)

R2
S

)
+ μnM̃n

(I2n+1(RS)

I2n(RS) 

+ 2n 
RS

)] 1 
n2

( d cos(nθ)

dθ 

)2
.

This demonstrates that FR̃R̃(μn,0)[cos(nθ), cos(nθ)] is a bilinear function, which facilitates its 
use in computing FR̃R̃(μn,0)[cos(nθ),φ] in (2.28). However, for computational simplicity, it 
is more practical to directly use Equation (4.38) when calculating the numerator in (2.27). We 
notice that

FR̃R̃(μn,0)[cos(nθ), cos(nθ)]
= (

I + μnII
) + (

III + μnIV
)

cos(2nθ)

=
[μn

RS

(
− 1

2
+ σ̃

2 

)
+ μn

I1(RS)

I0(RS)

(1

2
− M̃n

)]
+

[2n − 5n2

R4
S

+ μn

RS

(
− 1

2
+ σ̃

2 

)
+ μn

I1(RS)

I0(RS)

(1

2
+ n(2n − 1)

R2
S

)
− μnM̃n

(I2n+1(RS)

I2n(RS) 
+ 2n 

RS

)]
cos(2nθ)

= Λ1 + Λ2 cos(2nθ)

(4.39)

is a linear combination of 1 and cos(2nθ). Since cos(nθ) is orthogonal to both 1 and cos(2nθ), 
it yields

〈l,FR̃R̃(μn,0)[cos(nθ), cos(nθ)]〉

=Λ1

2π ∫
0 

cos(nθ) dθ + Λ2

2π ∫
0 

cos(nθ) cos(2nθ) dθ = 0. (4.40)

Therefore, by combining (4.33) and (4.40) and applying Theorem 2.3, we find that μ′
n(0) = 0

for all n ≥ 2. We summarize our findings in the following theorem:

Theorem 4.3. Let Γ2,n = {(μn(ε), σn(ε, ·), p̃n(ε, ·),p∗
n(ε, ·), ∂Ωε,n) : |ε|  1} be the solution 

branch for System (A) obtained in Theorem 3.4, where n ≥ 2 is an integer. Then, μ′
n(0) = 0, and 

the bifurcation at (μn,0) is a pitchfork bifurcation.

5. Discussion

The bifurcation theory has been extensively developed for ODEs and PDEs within fixed do-
mains. However, its application to free boundary problems remains largely unexplored. Although 
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Fig. 1. Contour plots of the boundaries for the two bifurcating solutions near μ = 8.6445 with ε = ±0.1 and RS = 2. 

most studies on free boundary tumor growth models have established the existence of symmetry-
breaking bifurcations, they have not investigated the structure of these bifurcations. One of the 
primary challenges is the nonlinear decoupling of the free boundary, which makes the calculation 
of μ′(0) in (2.27) complicated.

In this paper, we first applied the Crandall-Rabinowitz Theorem to demonstrate the existence 
of bifurcations. It is important to note that, in the first requirement of the Crandall-Rabinowitz 
Theorem, the special solution should be independent of the bifurcation parameter. In our model, 
the radially symmetric stationary solution pS depends on the bifurcation parameter μ. To address 
this dependency, we introduced a decomposition of p as p = p̃ + μp∗ and refined the proof 
methodologies found in [9,14,19,21]. Moreover, we expanded the solution (σ, p̃,p∗) to O(ε2)

order and showed that μ′(0) = 0 at each bifurcation point. It indicates that all symmetry-breaking 
bifurcations established by the Crandall-Rabinowitz Theorem are pitchfork bifurcations.

We employed the numerical method described in [37] to compute bifurcation solutions within 
System (A). The discretization was set up with NR = 20 and Nθ = 32, and we focused on 
computing bifurcation solutions near the bifurcation point μ = μ2 ≈ 8.6445. For small values 
of ε, specifically ε = ±0.1 in the simulation, we observed two distinct bifurcation solutions: 
one corresponding to the positive value ε = 0.1 and the other to the negative value ε = −0.1. 
Fig. 1 exhibits contour plots of the boundaries for these two bifurcation solutions. Pitchfork 
bifurcations typically occur in systems with symmetry and exhibit symmetry in the bifurcation 
diagram. The presence of two bifurcation solutions around the same bifurcation point suggests a 
pitchfork bifurcation, which is consistent with our theoretical findings.

To further determine the direction of the pitchfork bifurcations, it is necessary to proceed to 
the next order, O(ε3), and determine the sign of μ′′(0) using (2.28). This task involves more 
complex and intricate calculations, so we leave it for our future investigation.
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Data availability

Data will be made available on request.
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