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Abstract. A reaction-diffusion-advection glucose metabolism model is proposed to describe the
spatiotemporal behaviors of glucose in the pancreatic islet. The global existence and boundedness
of the solution to the model are proved, and the existence and uniqueness of the positive steady
state are established. Spatiotemporal sensitivity index and correlation index are proposed to identify
high-impact physiological factors and illustrate parameter interdependency. Additionally, different
stages of glucose metabolism such as hyperinsulinemia, hypoglycemia, euglycemia, and diabetes
are simulated to demonstrate the system's dynamics under varying physiological conditions. These
findings provide valuable guidance in the therapeutic process, aiding in the development of effective
interventions.
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1. Introduction. Diabetes mellitus is a chronic disorder characterized by persis-
tent hyperglycemia, necessitating lifelong care to prevent or delay debilitating compli-
cations and premature mortality. According to the International Diabetes Federation
(IDF), the prevalence of diabetes in adults has been steadily rising in recent decades.
It is projected to surge from 415 million cases in 2015 to over 640 million cases by
2040, making diabetes the seventh-leading cause of death [17, 31, 6]. Recent research
indicates that individuals and patients with diabetes are disproportionately suscep-
tible to the impact of COVID-19. Concurrent comorbidities further amplify the risk
of hospitalization and mortality [13]. Consequently, significant attention is directed
towards the effective management of diabetes, as it is closely associated with various
comorbidities, including vision loss, renal failure, retinopathy, and strokes.

The body's glucose-insulin regulation mechanism, known as glucose homeostasis,
maintains glucose and insulin levels within narrow ranges when functioning properly.
The normal glucose range throughout the day is 70  - 130 mg/dL, with a fasting
range of 70 - 100mg/dL. Fasting insulin levels typically fall within 5 - 25 \mu U/mL,
while nonfasting levels has a range of 30 - 230 \mu U/mL. Achieving these ranges relies
on the precise control system of glucose-insulin regulation, with pancreatic \beta -cells
serving as glucose sensors and adjusting insulin secretion accordingly. The field of
artificial/bioartificial pancreas systems recognizes the crucial role of glucose-induced
insulin secretion. As a result, various mathematical models [28, 8, 3, 14, 23, 30, 21, 10]
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712 YIWEN TAO AND JUNPING SHI

have been developed to describe the glucose-insulin regulatory system. These models
are widely used, for example, to estimate glucose effectiveness and insulin sensitivity
through intravenous glucose tolerance tests (IVGTT). Enhancing our quantitative un-
derstanding of glucose-insulin metabolism will contribute to more effective preventive
and therapeutic interventions for diabetes.

Recent advancements have expanded our knowledge of the spatiotemporal dynam-
ics of glucose-insulin metabolism, from insulin secretory granules (SG) that dominate
insulin secretion [19, 18], to the exocytotic machinery involved in secretion, traffick-
ing, and membrane repair of insulin [32, 7]. Ohara-Imaizumi et al. [18] utilized total
internal reflection fluorescence (TIRF) imaging analysis to uncover spatially hetero-
geneous differences in the processes of first- and second-phase insulin exocytosis in
pancreatic \beta cells. Zhu et al. [32] investigated the changes in spatial distribution of
SGs and visualized the spatiotemporal mobilization of SG populations and single SG
fusion dynamics following glucose stimulation using TIRF. Each SG exhibits distinct
behavior based on its position, size, and time, resulting in heterogeneity among SGs
in different states and generating rich dynamics.

Pioneering works on modeling glucose-insulin metabolism have primarily focused
on spatially homogeneous dynamical models, with or without time delays. While
this approach facilitates the derivation of analytical results, it overlooks the spatial
heterogeneity and spatial effect on various indices. Recent studies have detailed the
exocytotic mechanisms of insulin SG, which play a crucial role in insulin secretion and
demonstrate spatial heterogeneity during different phases. Each SG exhibits distinct
behaviors influenced by its position, size, and timing, contributing to the intricate
spatiotemporal dynamics observed in glucose-insulin metabolism. Consequently, em-
ploying a spatial model to describe the spatiotemporal patterns of glucose and insulin
across various times and locations is not only more realistic but also more precise.

The objective of this paper is to develop a reaction-diffusion-advection glucose-
insulin model that (1) focuses on quantitative modeling of local dynamics, incor-
porating detailed spatial distribution of relevant concentrations, (2) calculates spa-
tiotemporal sensitivity and correlation indices to simplify the complexity of glucose
metabolism and identify the significant factors influencing glucose homeostasis at an
average human level, (3) simulates multiple stages of diabetes, including hyperinsu-
linemia, hypoglycemia, and diabetes. These findings will aid in the interpretation of
experimental data, elucidate the metabolic process, and guide therapeutic schedules.

2. Model. Many factors affect a person's blood sugar level. The body's homeo-
static mechanism of blood sugar regulation (known as glucose homeostasis), when
operating normally, restores the blood sugar level to a narrow range [4]. The en-
docrine pancreas plays a key role in the pathogenic process of T2 DM, which is an
elongated and tapered organ and is partitioned into the head, body, and tail [22]. It
is in the endocrine pancreas that insulin is directly secreted into the bloodstream in
response to an elevation in blood glucose, initiating the uptake of glucose by muscle
and adipose tissue.

We aim to construct a partial differential equation model to describe the spatio-
temporal evolution of the spatial concentrations of glucose and insulin in pancreas.
Glucose and peripheral insulin enter the pancreas with the blood flow and are distrib-
uted through capillaries. The elongated shape of the pancreas allows us to assume
that it occupies a one-dimensional spatial domain with length L > 0 in which the
arterial blood flows into the head (x = 0) and flows out of the tail (x = L) of the
hepatic portal vein. Dynamic imaging of pancreatic islet blood flow in [16] shows

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLUCOSE METABOLISM MODEL 713

that there mainly exist two predominant flow patterns: inner-to-outer (diffusion) and
top-to-bottom (convection). Since the blood flux maintains a constant rate in an
individual vein, it is natural to assume that the rates of diffusion and advection of
glucose and insulin, which take the blood flow as a carrier, also keep uniform from
the starting point (x= 0) to the end (x=L).

Glucose dynamics. Let G(x, t) denote the concentration of plasma glucose at
location x and time t. The blood flow carries the glucose with velocity vG in the posi-
tive x direction and with diffusivity dG in the vein. The net hepatic glucose production
is the difference between the rates of glucose production and uptake under zero glu-
cose conditions, which is assumed to be at a constant rate Gin. Glucose uptake is
accomplished via two mechanisms: insulin-mediated glucose uptake, which occurs in
insulin-sensitive tissues (i.e., liver, muscle, and adipocytes), and noninsulin-mediated
glucose uptake, which occurs in both insulin-sensitive and noninsulin-sensitive tissues
(i.e., brain, blood cells, nerve, etc). The insulin-independent uptake is proportional to
glucose concentration G with a parameter of glucose effectiveness \mu G; and the insulin-
dependent glucose uptake is proportional to both glucose concentration G and blood
insulin concentration I with an insulin sensitivity c. Bergman et al. [15] provided
experimental evidence for this relationship using the glucose clamp technique. There-
fore, the rate of change of plasma glucose satisfies the following metabolic relationship:

rate change of glucose = glucose diffusion + glucose advection + production - uptake.

For the boundary conditions, we assume that no blood glucose flow in or out at
x= 0 and all glucose flow out of the vein at x=L. Taking together these assumptions
results in the following reaction-diffusion-advection equation of G with Danckwerts
boundary condition:\left\{     

Gt = dGGxx  - vGGx +Gin  - cIG - \mu GG, 0<x<L, t > 0,

dGGx(0, t) - vGG(0, t) = 0, t > 0,

Gx(L, t) = 0, t > 0.

(2.1)

Insulin dynamics. Insulin kinetics are the intermediate step between the secre-
tion of insulin and its action on glucose fluxes, as for a given insulin secretion response
following a glucose stimulus insulin concentration is determined by insulin distribution
and clearance. Our main concern is the spatio-temporal evolution of fasting insulin
levels in peripheral blood. Let I(x, t) describe the concentration of insulin in the blood
vein at location x and time t. Due to the inner-to-outer movement and top-to-bottom
transport of the blood, there is diffusion (with diffusivity dI) and advection (with ve-
locity vI) of insulin in the vein. When the glucose level is high, insulin is secreted into
the blood; and when the glucose level is low, the secretion of insulin is inhibited. The
intrinsic growth of insulin depends on the concentration of plasma glucose G in the
hepatic portal vein, and it takes a Michaelis--Menten type functional response form

aGn

(m+G)n with n= 1 or 2, where a is the maximum production rate of plasma insulin,
and m is the half-saturation constant. The insulin clearance rate is denoted by \mu I ,
representing the combined insulin uptake at the liver, kidneys, and insulin receptors.
The following relationship describes the process of insulin metabolism:

rate of change of insulin

= glucose diffusion + insulin advection + production - clearance.

Combining these assumptions and similar boundary conditions as the ones for glucose,
the dynamics of I is described by

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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714 YIWEN TAO AND JUNPING SHI

Table 1
Model variables and parameters with physiological meanings and values.

Symbol Meaning Value Unit Ref

G glucose concentration varies mg \cdot dl - 1

I insulin concentration varies \mu U \cdot ml - 1

L length of vein 15 cm [9]

\mu G noninsulin-mediated glucose 0.001 min - 1 [27]
uptake rate

\mu I insulin clearance rate 0.3 min - 1 [27]

vG glucose-cell advection coefficient 0.5 cm \cdot min - 1 [16]
vI insulin-cell advection coefficient 0.5 cm \cdot min - 1 [16]

dG glucose-cell diffusion coefficient 0.0013 cm2 \cdot min - 1 [26, 1]

dI insulin-cell diffusion coefficient 0.00018 cm2 \cdot min - 1 [11]
m half-saturation constant 20000 mg \cdot dl - 1 [27]

Gin net hepatic glucose production rate 0.6 mg \cdot dl - 1 \cdot min - 1 [27]

a maximum insulin production rate 6.27 \mu U \cdot ml - 1 \cdot min - 1 [23]
c insulin sensitivity 0.0005 \mu U - 1 \cdot ml \cdot min - 1 [27]

n Michaelis--Menten exponent 1 -

\left\{       
It = dIIxx  - vII +

aGn

(m+G)n
 - \mu II, 0<x<L, t > 0,

dIIx(0, t) - vII(0, t) = 0, t > 0,

Ix(L, t) = 0, t > 0.

(2.2)

All the system variables and parameters of the model and their physiological
significance are listed in Table 1. The full model of glucose and insulin in the hepatic
portal vein takes the following form:\left\{                     

Gt = dGGxx  - vGGx +Gin  - cIG - \mu GG, 0<x<L, t > 0,

It = dIIxx  - vIIx +
aGn

(m+G)n
 - \mu II, 0<x<L, t > 0,

dGGx(0, t) - vGG(0, t) = 0, t > 0,

dIIx(0, t) - vII(0, t) = 0, t > 0,

Gx(L, t) = Ix(L, t) = 0, t > 0,

G(x,0) =G0(x), I(x,0) = I0(x), 0<x<L, t= 0.

(2.3)

3. Dynamics. In this section, we consider the dynamical behavior of solutions
of (2.3). First, we prove the global existence of solution of (2.3) and establish some
a priori bounds of the solutions. The boundedness of solution directly implies the
existence of a positive steady state solution. Second, we show the uniqueness of the
positive steady state solution, and we also show that the positive steady state solution
is globally asymptotically stable under some additional conditions.

For d> 0, v\geq 0, and B > 0, we define the roots of quadratic equation d\lambda 2  - v\lambda  - 
B = 0 to be

\lambda +(d, v,B) =
v+

\surd 
v2 + 4dB

2d
, \lambda  - (d, v,B) =

v - 
\surd 
v2 + 4dB

2d
,(3.1)

and for 0\leq x\leq L,

w(x;d, v,B) =
v(\lambda +e

\lambda  - (x - L)  - \lambda  - e
\lambda +(x - L))

\lambda +e - \lambda  - L(d\lambda  -  - v) - \lambda  - e - \lambda +L(d\lambda +  - v)
,(3.2)

where \lambda \pm = \lambda \pm (d, v,B) are defined as in (3.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLUCOSE METABOLISM MODEL 715

Lemma 3.1. If d,A,B > 0, v\geq 0, and u(x, t) satisfies\left\{     
ut \leq (\geq )duxx  - vux  - Bu+A, 0<x<L, t > 0,

dux(0, t) - vu(0, t) = ux(L, t) = 0, t > 0,

u(x,0) = u0(x),

(3.3)

then for any \varepsilon > 0, there exists Tu > 0 such that u(x, t)\leq u\ast (x) + \varepsilon (\geq u\ast (x) - \epsilon ) for
(x, t)\in [0,L]\times [Tu,\infty ), where

u\ast (x) =
A

B
(w(x;d, v,B) + 1),

and w(x;d, v,B) is defined in (3.2). Moreover, u\ast (x) is strictly increasing for x \in 
[0,L], and 0<u\ast (0)\leq u\ast (x)\leq u\ast (L)<A/B.

Proof. We only prove the \leq case as the other one is similar. From the comparison
principle of parabolic equations, it is easy to verify that u(x, t)\leq u\ast (x, t) where u\ast (x, t)
is the solution of\left\{     

ut = duxx  - vux  - Bu+A, 0<x<L, t > 0,

dux(0, t) - vu(0, t) = ux(L, t) = 0, t > 0,

u(x,0) = u0(x).

(3.4)

Then we have limsupt\rightarrow \infty u(x, t) \leq limsupt\rightarrow \infty u\ast (x, t) = u\ast (x), where u\ast (x) is the
unique steady state solution of (3.4) satisfying

duxx  - vux  - Bu+A= 0, 0<x<L, dux(0) - vu(0) = ux(L) = 0.(3.5)

It is easy to verify that u(x) =A/B and u(x) = 0 are a pair of upper and lower solutions
of (3.5), hence there exists a solution \~u(x) satisfying u(x) \leq \~u(x) \leq u(x). Since the
solution of (3.5) is unique as it is linear, we have \~u(x) = u\ast (x) and u(x)\leq u\ast (x)\leq u(x).
From the maximum principle for elliptic equations, we can verify that u\ast (x) is strictly
increasing for x \in [0,L], and u\ast (0) \leq u\ast (x) \leq u\ast (L). From the strong maximum
principle, we have 0<u\ast (0)\leq u\ast (x)\leq u\ast (L)<A/B.

The following results show that the solutions of (2.3) always exist for all t > 0
and are ultimately uniformly bounded.

Theorem 3.2. Suppose that Gin, dG,I , \mu G,I , a, c, e,L > 0, and vG,I \geq 0.
1. If G0(x) \geq 0, I0(x) \geq 0 for x \in [0,L], then (2.3) has a unique solution

(G(x, t), I(x, t)) such that G(x, t)> 0, I(x, t)> 0 for t\in (0,\infty ), and x\in [0,L].
2. Any solution (G(x, t), I(x, t)) of (2.3) satisfies

G\ast (x)\leq lim inf
t\rightarrow \infty 

G(x, t)\leq limsup
t\rightarrow \infty 

G(x, t)\leq G\ast (x), x\in [0,L],

I\ast (x)\leq lim inf
t\rightarrow \infty 

I(x, t)\leq limsup
t\rightarrow \infty 

I(x, t)\leq I\ast (x), x\in [0,L],

where

G\ast (x) =
Gin

\mu G
(w(x;dG, vG, \mu G) + 1), I\ast (x) =

a

\mu I
(w(x;dI , vI , \mu I) + 1),

G\ast (x) =
Gin

\mu \ast 
G

(w(x;dG, vG, \mu G) + 1), I\ast (x) =
a

\mu \ast 
I

(w(x;dI , vI , \mu I) + 1),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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716 YIWEN TAO AND JUNPING SHI

with

\mu \ast 
G =

\mu G\mu I + ac(w(L;dI , vI , \mu I) + 1)

\mu I
,

\mu \ast 
I =

\mu IG
n
in(w(0;dG, vG, \mu G) + 1)n

[Gin(w(0;dG, vG, \mu G) + 1) + \mu Gm]n
.

Moreover, (2.3) has at least one positive steady state solution (GS(x), IS(x))
satisfying

G\ast (x)\leq GS(x)\leq G\ast (x), I\ast (x)\leq IS(x)\leq I\ast (x), x\in [0,L].(3.6)

3. For any solution (G(x, t), I(x, t)) of (2.3),

lim
t\rightarrow \infty 

sup

\int L

0

[G(x, t) + I(x, t)]dx\leq (Gin + a)L

min\{ \mu G, \mu I\} 
.(3.7)

Proof. 1. Define

f1(G,I) =Gin  - cIG - \mu GG, f2(G,I) =
aGn

(m+G)n
 - \mu II,

then \partial f1
\partial I =  - cG < 0, and \partial f2

\partial G = naeGn - 1

(m+G)n+1 > 0 in \BbbR 2
+ = \{ G> 0, I > 0\} , which implies

that (2.3) is a mixed quasimonotone system. According to Pao [20, Definition 8.1.2],
a pair of functions ( \=G, \=I) and (G,I) in C( \=DT ) \cap C1,2(DT ) are called ordered upper
and lower solutions of (2.3) if they satisfy the inequalities\left\{                   

Gt  - dGGxx + vGGx  - f1(G,I)\geq 0\geq Gt  - dGGxx + vGGx  - f1(G,I),

It  - dIIxx + vIIx  - f2(G,I)\geq 0\geq It  - dIIxx + vIIx  - f2(G,I),

 - dGGx(0, t) + vGG(0, t)\geq 0\geq  - dGGx(0, t) + vGG(0, t),

 - dIIx(0, t) + vII(0, t)\geq 0\geq  - dIIx(0, t) + vII(0, t),

Gx(L, t)\geq 0\geq Gx(L, t), Ix(L, t)\geq 0\geq Ix(L, t),

G(x, t)\geq G(x, t), I(x, t)\geq I(x, t),

(3.8)

with the initial conditions G(x,0) \geq G0(x) \geq G(x,0), I(x,0) \geq I0(x) \geq I(x,0). Let
GM =max0\leq x\leq LG0(x) and IM =max0\leq x\leq L I0(x). Define

(G,I) =

\Biggl( 
max\{ Gin,GM\} e

vG
dG

x

\mu G
,
max\{ a, IM\} e

vI
dI

x

\mu I

\Biggr) 
.

Then the functions (G,I) and (G,I) = (0,0) are a pair of ordered upper and lower
solutions to (2.3), as they satisfy\left\{               

Gt  - dGGxx(x, t) + vGGx(x, t) - f1(G(x, t), I(x, t))\geq Gine
vG
dG

x  - Gin \geq 0

> - Gin =Gt  - dGGxx(x, t) + vGGx(x, t) - f1(G(x, t), I(x, t)),

It  - dIIxx(x, t) + vIIx(x, t) - f2(G(x, t), I(x, t))\geq a

\Biggl( 
e

vI
dI

x  - G
n

(m+G)n

\Biggr) 
> 0 = It  - dIIxx(x, t) + vIIx(x, t) - f2(G(x, t), I(x, t)),

(3.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLUCOSE METABOLISM MODEL 717

and the boundary conditions and initial values\left\{                     

dG \=Gx(0, t) - vG \=G(0, t) = 0= dGGx(0, t) - vGG(0, t),

dI \=Ix(0, t) - vI \=I(0, t) = 0= dIIx(0, t) - vII(0, t),
max\{ Gin,GM\} vG

\mu GdG
= \=Gx(L, t)\geq 0 =Gx(L, t),

max\{ a, IM\} vI
\mu IdI

e
vI
dI

L
= \=Ix(L, t)\geq 0 = Ix(L, t),

G(x,0)\geq G0(x)\geq G(x,0), I(x,0)\geq I0(x)\geq I(x,0).

(3.10)

According to Theorem 8.3.3 in [20], model (2.3) has a unique globally defined solution
(G(x, t), I(x, t)) which satisfies

0\leq G(x, t)\leq \=G(x), 0\leq I(x, t)\leq \=I(x), 0\leq x\leq L, t\geq 0.

The strong maximum principle implies that G(x, t), I(x, t) > 0 when t > 0 for all
x\in [0,L].

2. To consider the global boundedness, we observe that G(x, t) satisfies

Gt \leq dGGxx  - vGGx +Gin  - \mu GG, 0\leq x\leq L, t > 0.(3.11)

From Lemma 3.1, we have G(x, t)\leq G\ast (x, t), where G\ast (x, t) is the solution of\left\{     
Gt = dGGxx  - vGGx +Gin  - \mu GG, 0\leq x\leq L, t > 0,

dGGx(0, t) - vGG(0, t) =Gx(L, t) = 0, t > 0,

G(x,0) =G0(x),

(3.12)

then limsupt\rightarrow \infty G(x, t) \leq limsupt\rightarrow \infty G\ast (x, t) = G\ast (x). For any \varepsilon > 0, there exists
T1 > 0, such that G(x, t)\leq G\ast (x)+ \varepsilon for x\in [0,L]\times [T1,\infty ). Similarly, I(x, t) satisfies

It \leq dIIxx  - vIIx + a - \mu II, 0\leq x\leq L, t > 0.(3.13)

Hence from Lemma 3.1, limsupt\rightarrow \infty I(x, t) \leq limsupt\rightarrow \infty I\ast (x, t) = I\ast (x), where
I\ast (x, t) is the solution of\left\{     

It = dIIxx  - vIIx  - \mu II + a, 0\leq x\leq L, t > 0,

dIIx(0, t) - vII(0, t) = Ix(L, t) = 0, t > 0,

I(x,0) = I0(x).

(3.14)

Then for \varepsilon > 0, there exists T2 > 0, such that I(x, t)\leq I\ast (x)+\varepsilon for x\in [0,L]\times [T2,\infty ).
Moreover, G(x, t) satisfies

Gt \geq dGGxx  - vGGx  - (c\=Imax + c\epsilon + \mu G)G+Gin, 0\leq x\leq L, t > T2,(3.15)

with \=Imax = a
\mu I

(w(L;dI , vI , \mu I) + 1). From Lemma 3.1, lim inft\rightarrow \infty G(x, t) \geq 
lim inft\rightarrow \infty G\ast (x, t) =G\ast (x). Here G\ast (x, t) is the solution of\left\{     

Gt = dGGxx  - vGGx  - (c\=Imax + \mu G)G+Gin, 0\leq x\leq L, t > 0,

dGGx(0, t) - vGG(0, t) =Gx(L, t) = 0, t > 0,

G(x,0) =G0(x).

(3.16)
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718 YIWEN TAO AND JUNPING SHI

Similarly, I(x, t) satisfies

It \geq dIIxx  - vIIx  - \mu II +
a(G\ast (0) + \epsilon )n

(G\ast (0) + \epsilon +m)n
, 0\leq x\leq L, t > T1.(3.17)

We have lim inft\rightarrow \infty I(x, t)\geq lim inft\rightarrow \infty I\ast (x, t) = I\ast (x). Here, I\ast (x, t) is the solution
of \left\{       

It = dIIxx  - vIIx  - \mu II +
aG\ast (0)n

(G\ast (0) +m)n
, 0\leq x\leq L, t > 0,

dIIx(0, t) - vII(0, t) = Ix(L, t) = 0, t > 0,

I(x,0) = I0(x).

(3.18)

It is also easy to verify that (G\ast (x), I\ast (x)) and (G\ast (x), I\ast (x)) are a pair of ordered
upper and lower solutions of the steady state equation corresponding to (2.3). Hence,
from Theorem 8.10.2 of [20], there exists at least one positive steady state solution of
(2.3) satisfying (3.6).

3. By using (2.3), we obtain that

d

dt

\int L

0

(G+ I) dx\leq (Gin + a)L - 
\int L

0

(cGI + \mu GG+ \mu II) dx,

\leq (Gin + a)L - min\{ \mu G, \mu I\} 
\int L

0

(G+ I) dx,

(3.19)

which implies (3.7).

In Theorem 3.2, we have shown that system (2.3) always has a positive steady
state solution, which satisfies the following elliptic system:\left\{             

dGGxx  - vGGx +Gin  - cIG - \mu GG= 0, 0<x<L,

dIIxx  - vIIx +
aGn

(m+G)n
 - \mu II = 0, 0<x<L,

dGGx(0) - vGG(0) =Gx(L) = 0,

dIIx(0) - vII(0) = Ix(L) = 0.

(3.20)

To prove the uniqueness of positive solution to (3.20), we recall some results on the
following eigenvalue problem:\Biggl\{ 

 - d\phi \prime \prime 
(x) + v\phi 

\prime 
(x) + p(x)\phi = \lambda \phi , 0<x<L,

d\phi 
\prime 
(0) - v\phi (0) = \phi 

\prime 
(L) = 0.

(3.21)

Here d> 0, v\geq 0, and p(x)\in L\infty (0,L). We also define a function space

X(d, v) = \{ \varphi \in C2[0,L] : d\varphi x(0) - v\varphi (0) =\varphi x(L) = 0\} ,(3.22)

and a linear operator L(d, v, p) :X(d, v)\rightarrow C[0,L] by

L(d, v, p)\phi = - d\phi 
\prime \prime 
(x) + v\phi 

\prime 
(x) + p(x)\phi .(3.23)

Then we have the following properties for the eigenvalues [29].
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GLUCOSE METABOLISM MODEL 719

Lemma 3.3. Suppose that d> 0, v\geq 0 and p(x)\in L\infty (0,L).
1. The eigenvalue problem (3.21) has a sequence of eigenvalues

\lambda 1 <\lambda 2 \leq \lambda 3 \leq \cdot \cdot \cdot \leq \lambda n \leq \cdot \cdot \cdot 

and limn\rightarrow \infty \lambda n = \infty , where the principal eigenvalue \lambda 1 has the variational
characterization

\lambda 1(d, v, p) = inf
\phi \in H1(0,L)

\int L

0
e\alpha x[d(\phi \prime (x))2 + p(x)\phi 2(x)]dx+ ve\alpha L\phi 2(L)\int L

0
e\alpha x\phi 2dx

,

with \alpha = v/d.
2. When p(x) \geq (\not \equiv )0, we have \lambda 1(d, v, p) > 0. Moreover, L(d, v, p) is invertible

and L - 1(d, v, p) : C[0,L] \rightarrow X(d, v) is strongly positive. That is, for any
\xi \in C[0,L], there exists a unique \eta \in X(d, v) such that L(d, v, p)\eta = \xi , and
when \xi \geq ( \not \equiv )0 we have \eta (x)> 0 for x\in [0,L].

The following result is a key to our uniqueness result of the positive steady state
solution (see [12]).

Lemma 3.4. Suppose that dG, dI > 0, vG, vI \geq 0, pG, pI \in L\infty (0,L), and f1, f2 \in 
C[0,L] satisfying fi(x)> 0 for x\in [0,L] and i= 1,2. Let L(dG, vG, pG) and L(dI , vI , pI)
be defined as in (3.23), and let X(dG, vG) and X(dI , vI) be defined as in (3.22). Then
the system of linear equations

L(dG, vG, pG)\phi = - f1(x)\psi , L(dI , vI , pI)\psi = f2(x)\phi ,(3.24)

has only the trivial solution (\phi (x),\psi (x))\equiv (0,0).

Now we state the uniqueness result of positive steady state solution of (2.3).

Theorem 3.5. Suppose that Gin, dG,I , \mu G,I , a, c, e,L > 0 and vG,I \geq 0.
1. The system (2.3) has a unique positive steady state solution (GS(x), IS(x)).
2. Fixing all parameters except a, we have

lim
a\rightarrow 0+

GS(x) =G\ast (x), lim
a\rightarrow 0+

IS(x) = 0.

3. Fixing all parameters except Gin, we have

lim
Gin\rightarrow 0+

GS(x) = 0, lim
Gin\rightarrow 0+

IS(x) = 0,

lim
Gin\rightarrow \infty 

GS(x)

Gin
=G\infty (x), lim

Gin\rightarrow \infty 
IS(x) = I\ast (x),

where G\infty (x) is the unique solution of\Biggl\{ 
dGGxx  - vGGx + 1 - cI\ast (x)G - \mu GG= 0, 0<x<L,

dGGx(0) - vGG(0) =Gx(L) = 0.
(3.25)

Proof. We fix all parameters except a\geq 0. We define a nonlinear operator F :\BbbR +\times 
X(dG, vG)\times X(dI , vI)\rightarrow C[0,L]\times C[0,L]:

F (a,G, I) =

\left(  dGGxx  - vGGx +Gin  - cIG - \mu GG

dIIxx  - vIIx +
aGn

(m+G)n
 - \mu II

\right)  .(3.26)
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720 YIWEN TAO AND JUNPING SHI

Then F is a smooth function, and F (a,G, I) = (0,0) if and only if (G,I) is a solution
of (3.20). When a = 0, it is obvious that the only nonnegative solution of (3.20) is
(GS , IS) = (G\ast ,0). The Frech\'et derivative of F at a nonnegative (GS , IS) is

F(G,I)(a,GS , IS)(\phi ,\psi ) =

\biggl( 
dG\phi xx  - vG\phi x  - cIS\phi  - cGS\psi  - \mu G\phi 
dI\psi xx  - vI\psi x + af \prime (GS)\phi  - \mu I\psi ,

\biggr) 
,(3.27)

where f(G) = Gn

(m+G)n and f \prime (G) = mnGn - 1

(m+G)n+1 > 0 for G> 0. Notice that F(G,I)(a,GS ,

IS) (\phi ,\psi ) = (0,0) for some (\phi ,\psi )\in X(dG, vG)\times X(dI , vI) is equivalent to

L(dG, vG, pG)\phi = - cGS\psi , L(dI , vI , pI)\psi = af \prime (GS)\phi ,(3.28)

where pG(x) = cGS(x) + \mu G > 0 and pI(x) = \mu I > 0. From Lemma 3.4, for any
nonnegative solution (GS , IS) of (3.20) with GS(x)> 0, the only solution of (3.28) is
(\phi ,\psi ) = (0,0), which implies that F(G,I)(a,GS , IS) is invertible. In particular, when
a = 0, F(G,I)(0,G

\ast ,0) is invertible. Thus from the implicit function theorem, for a
near a= 0, there is a unique solution (Ga(x), Ia(x)) of F (a,G, I) = 0 near (G\ast (x),0).
On the other hand, from Theorem 3.2 part 2, for a near a = 0, there is a positive
solution ( \~Ga(x), \~Ia(x)) of F (a,G, I) = 0 satisfying (3.6). Since (3.6) implies that
( \~Ga(x), \~Ia(x))\rightarrow (G\ast (x),0) as a\rightarrow 0+, we must have ( \~Ga(x), \~Ia(x)) = (Ga(x), Ia(x))
from the implicit function theorem. Hence for some a0 > 0, there is a positive solution
(Ga(x), Ia(x)) of F (a,G, I) = 0 near (G\ast (x),0) satisfying (Ga(x), Ia(x))\rightarrow (G\ast (x),0)
as a\rightarrow 0+, and all these solutions are on a smooth curve \Gamma (a0) = \{ (a,Ga(x), Ia(x)) :
0<a< a0\} .

Since F(G,I)(a,GS , IS) is invertible for any nonnegative solution (GS , IS) of (3.20)
with GS(x)> 0 from Lemma 3.4, we can further extend \Gamma (a0) beyond a= a0. Indeed,
because of the bound in (3.6), lima\rightarrow a - 

0
(Ga(x), Ia(x)) exists, and it is a nonnegative

solution of F (a,G, I) = 0. From the maximum principle of elliptic equations, a non-
negative solution of F (a,G, I) = 0 with a > 0 and Gin > 0 must be positive. Hence
the implicit function theorem can be applied at a = a0 to extend \Gamma (a0). Repeatedly
applying the argument, we obtain a global curve \Gamma = \{ (a,Ga(x), Ia(x)) : 0 < a <\infty \} 
of positive solutions of F (a,G, I) = 0 as the bound (3.6) holds for all a> 0.

If for some a> 0, there is another positive solution ( \^Ga(x), \^Ia(x)) of F (a,G, I) = 0,
then ( \^Ga(x), \^Ia(x)) also satisfies (3.6) from Theorem 3.2 part 2. Hence we can use the
same argument as above to show that ( \^Ga(x), \^Ia(x)) belongs to another global curve
\^\Gamma = \{ (a, \^Ga(x), \^Ia(x)) : 0 < a <\infty \} . But as a\rightarrow 0+, ( \^Ga(x), \^Ia(x)) must converge to
(G\ast (x),0), which is the unique solution of F (0,G, I) = 0. This contradicts with the
uniqueness of solution of F (a,G, I) = 0 near (a,G, I) = (0,G\ast ,0). Therefore, for any
a > 0, (Ga(x), Ia(x)) is the unique positive solution of F (a,G, I) = 0. This proves
parts 1 and 2.

For part 3, GS \rightarrow 0 as Gin \rightarrow 0+ is easy to see as G\ast ,G\ast \rightarrow 0 as Gin \rightarrow 0+ and
(3.6), and that, in turn, also implies IS \rightarrow 0 by using the equation of IS . On the other
hand, when Gin \rightarrow \infty , \mu \ast 

I \rightarrow \mu I and I\ast \rightarrow I\ast hence IS \rightarrow I\ast . The limit of GS/Gin can
be obtained using the equation of GS rescaled by Gin.

Next, we discuss the global stability of the steady state (GS(x), IS(x)) when vG =
vI = 0. In that case, (GS , IS) is a constant solution where GS is the unique positive

root of Gin  - caGn+1

\mu I(m+G)n  - \mu GG = 0 and IS =
cGn

S

\mu I(m+GS)n . With the transformation
\~G=G - GS , \~I = I  - IS , system (2.3) becomes
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GLUCOSE METABOLISM MODEL 721\left\{     
\~Gt = dG( \~Gxx +GSxx) +Gin  - cI(GS + \~G) - \mu G(GS + \~G), 0<x<L, t > 0,

\~It = dI(\~Ixx + ISxx) +
a(GS + \~G)n

(m+GS + \~G)n
 - \mu I(IS + \~I), 0<x<L, t > 0.

To obtain our conclusions, we define the following Lyapunov functional V by

V (t) =

\int L

0

\Bigl( 
\~G(x, t) + \~I(x, t)

\Bigr) 
dx.

Let I(x, t) be an arbitrary solution of (2.3) with nonnegative initial values. Then

dV (t)

dt
=

\int L

0

\Bigl( 
Gin  - cI(GS + \~G) - \mu G(GS + \~G)

\Bigr) 
dx - dG

\int L

0

\biggl( 
\partial G2

\partial x2
+
\partial G2

S

\partial x2

\biggr) 
dx

+

\int L

0

\Biggl( 
a(GS + \~G)n

(m+GS + \~G)n
 - \mu I(IS + \~I)

\Biggr) 
dx - dI

\int L

0

\biggl( 
\partial I2

\partial x2
+
\partial I2S
\partial x2

\biggr) 
dx,

\leq 
\int L

0

\mu I

\biggl( 
a

\mu I
 - IS

\biggr) 
 - 
\int L

0

\Bigl( 
cI(GS + \~G) + \mu G

\~G
\Bigr) 
dx\leq 0.

Note that dV (t)
dt = 0 holds if and only if ( \~G, \~I) = (0,0). Thus, we conclude that ( \~G, \~I)

converges to (0,0) uniformly for x \in [0,L] as t \rightarrow \infty . We state this global stability
results as follows.

Theorem 3.6. Suppose that the conditions in Theorem 3.5 are satisfied, and, in
addition, vG = vI = 0. Then the unique positive steady state solution (GS , IS) is
globally asymptotically stable with respect to (2.3).

The global asymptotic stability of (GS , IS) when the advection rates are not zero
is not known, but numerical simulations suggest the stability also holds in that case.

4. Simulations.

4.1. Impact of the insulin secretion and sensitivity on glucose
metabolism. Diabetes occurs as a result of insufficient insulin production by the
pancreas or the body's inability to effectively utilize the insulin it produces [5]. In
the United States, the fasting glucose level for hypoglycemia is below 70mg/dl; the
range of 70 - 99mg/dl is considered as euglycemia (normal concentration of glucose
in the blood); and a fasting blood glucose level exceeding 126mg/dl is diagnosed as
diabetes, while the level of 100 - 125mg/dl is considered as prediabetes. The normal
range for fasting insulin level may slightly vary across laboratories. In this study, we
consider the reference range for normal fasting insulin level to be 5 - 25 \mu U/mL, with
I \geq 25 \mu U/mL serving as the indication for hyperinsulinemia [2]. Throughout the
numerical investigations, we interpret the simulation results based on the aforemen-
tioned definitions.

Figure 1 displays the normal levels of glucose and insulin, utilizing the parameter
values outlined in Table 1 (in which a= 6.27 and c= 0.0005) and an initial condition of
(G,I) = (100mg/dl,10 \mu U/mL) during a fasting state. By modifying the value of the
maximum production rate of insulin a while keeping the other parameters constant,
we explore the impact of insulin secretion function on glucose metabolism.

The simulation results of model (2.3) with impaired insulin secretion (a= 0.27),
as depicted in Figure 2 panels (a)--(b), illustrate that a reduced insulin secretion rate
leads to insulin deficiency, resulting in a continual elevation of the individual's glucose
levels indicative of developing diabetes. Conversely, the simulation results of model

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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722 YIWEN TAO AND JUNPING SHI

(a) (b)

Fig. 1. Dynamics of glucose G(x, t) and insulin I(x, t) with the parameter set in Table 1 and
the initial condition of (G,I) = (100mg/dl,10 \mu U/mL).

(a) a = 0.27 (b) a = 0.27

(c) a = 50.27 (d) a = 50.27

Fig. 2. Dynamics of glucose and insulin with different insulin secretion functions. (a)--(b)
Impaired insulin secretion when a = 0.27. (c)--(d) Excessive insulin secretion when a = 50.27. The
other parameters are in Table 1 and the initial condition of (G,I) = (100mg/dl,10 \mu U/mL).

(2.3) with excessive insulin secretion (a = 50.27), shown in Figure 2 panels (c)--(d),
demonstrate that a rapid and substantial increase in insulin secretion rate causes a
sharp rise in insulin levels, progressing to the hyperinsulinemic stage. Consequently,
the glucose level progressively decreases, leading to severe hypoglycemic reactions with
levels reaching approximately 60 mg/dl. The steady state concentration of glucose
and insulin with different insulin secretion rates are shown in Figure 3.

By varying the value of insulin sensitivity c while keeping the other parameters
constant, we investigate the impact of insulin sensitivity on glucose metabolism. Re-
duced insulin sensitivity, also known as insulin resistance, refers to a state in which

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLUCOSE METABOLISM MODEL 723
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Fig. 3. Steady states of glucose and insulin with different insulin secretion functions. (a)--(c)
Steady states of glucose when a= 6.27, a= 0.27, and a= 50.27. (d)--(f) Steady states of insulin when
a = 6.27, a = 0.27, and a = 50.27. The other parameters are in Table 1 and the initial condition of
(G,I) = (100mg/dl,10 \mu U/mL).

(a) c = 0.000001 (b) c = 0.000001 (c) c = 0.001

(d) c = 0.001 (e) c = 0.05 (f) c = 0.05

Fig. 4. Dynamics of glucose and insulin with different sensitivity. (a)--(b) Insulin resistance
when c = 0.000001. (c)--(d) Slightly high insulin sensitivity when c = 0.001. (e)--(f) Excessive
insulin sensitivity when c = 0.05. The other parameters are in Table 1 and the initial condition of
(G,I) = (100mg/dl,10 \mu U/mL).

the target organ of insulin action becomes less responsive to its effects. This means
that a normal dose of insulin produces a biological effect that is lower than normal.
In Figure 4 panels (a)--(b), we present the simulation results of model (2.3) with in-
sulin resistance (c= 0.000001). These results demonstrate that even in the absence of
insulin deficiency (with insulin levels ranging from 10 - 29.3 \mu U/mL), glucose levels
remain elevated, reaching up to 175 mg/dl. This indicates the persistence of elevated
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Fig. 5. Steady states of glucose and insulin with different sensitivity. (a)--(c) Steady states
of glucose when c = 0.000001, c = 0.001, and c = 0.05. (d)--(f) Steady states of insulin when
c= 0.000001, c= 0.001, and c= 0.05. The other parameters are in Table 1 and the initial condition
of (G,I) = (100mg/dl,10 \mu U/mL).

blood glucose levels despite sufficient insulin production. Slightly increased insulin
sensitivity (c = 0.001) has minimal impact on blood glucose and insulin concentra-
tions, as depicted in Figure 4 panels (c)--(d). However, excessive insulin sensitivity
(c= 0.05) can potentially lead to hypoglycemia, as shown in Figure 4 panels (e)--(f).
The steady states of glucose and insulin with different insulin sensitivity are shown
in Figure 5.

4.2. Spatio-temporal sensitivity and correlation. The intricacy and diver-
sity of glucose metabolism pose significant challenges in understanding the correspond-
ing responses of physiological parameters. To address this complexity and identify the
key factors that influence glucose metabolism, we use the following two quantitative
values: the spatio-temporal sensitivity index and correlation index. These analytical
tools play a crucial role in unraveling the intricate relationships between parameters
and provide valuable insights into their impact on glucose metabolism. By utilizing
these quantities, we can gain a better understanding of the dynamic nature of glucose
metabolism and explore the interplay among various factors involved in its regulation.

Sensitivity analysis (SA) serves as a means to reduce the complexity of the system
and uncover high-impact parameters that warrant further investigation in subsequent
studies [25]. In this study, we conduct SA using the normal parameter set outlined
in Table 1. Relative sensitivity indices are employed, which involve evaluating the
sensitivity of the model output to variations in parameters at different values, typically
10\% of the baseline values. These indices are computed by multiplying the partial
derivative (the absolute sensitivity function) by the input and dividing it by the output
value. Consequently, the spatial sensitivity index (SI) SI(x, t, \eta ) of the model output
to parameter variations can be determined for the normal parameter set:

SI(x, t, \eta ) =
\eta +\Delta \eta 

U(x, t, \eta +\Delta \eta )

[U(x, t, \eta +\Delta \eta ) - U(x, t, \eta )]

\Delta \eta 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLUCOSE METABOLISM MODEL 725

where U = G,I, and the parameter \eta is one of dG, dI , vG, vI ,Gin, a,\mu G, \mu I , c,m. The
spatial sensitivity index SI(x, t, \eta ) allows us to assess the influence of parameter vari-
ations on the model's output, providing valuable insights into the dynamics of glucose
metabolism.

In Figure 6, we depict the spatiotemporal variation of the SI in response to changes
in physiological parameters. The absolute sensitivity indices of glucose (G) and insulin
(I) with respect to \mu I , c, Gin, and a are significantly higher compared to other
parameters. This observation suggests that these parameters play a dominant role
in the interactions governing glucose homeostasis. Conversely, the low sensitivity of
parameters vI and dI indicates that variations in these values would have minimal
impact on glucose-insulin dynamics.

(a) dG (b) dI (c) vG

(d) vI (e) Gin (f) a

(g) µG (h) µI (i) m

(j) c

Fig. 6. Spatio-temporal sensitivity of G(x, t) and I(x, t) for the normal set parameters in Table
1 and the initial condition of (G,I) = (100mg/dl,10 \mu U/mL).
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The investigation of parameter correlations involves computing the correlation
between dynamic sensitivities, as outlined in previous studies [24, 25]. These corre-
lations play a significant role in understanding the relationships between parameters
and can guide the development of advanced treatment approaches. For example,
when certain parameters are hard to regulate during therapeutic interventions, one
can regulate the parameters highly correlated to them to indirectly achieve the reg-
ulation goal. By analyzing the correlated or anticorrelated parameters, doctors can
explore alternative strategies for adjusting these parameters. The correlation matrix
is commonly defined by the following term:

rij =

M\sum 
p=1

N\sum 
q=1

(SIipq  - SI
i

pq)(SI
j
pq  - SI

j

pq)\sqrt{}    \Biggl( M\sum 
p=1

N\sum 
q=1

(SIipq  - SI
i

pq)
2

\Biggr) \Biggl( 
M\sum 
p=1

N\sum 
q=1

(SIjpq  - SI
j

pq)
2

\Biggr) ,(4.1)

where SI
i,j

pq are the mean of SIi,jpq , p is space grid, q is time step grid, with 1\leq p\leq M ,
1\leq q\leq N , 1\leq i, j \leq 10 (we consider the effect of 10 parameters here). The correlations
are shown in Figures 7 and 8 from positive correlated (+1) to anti-correlated ( - 1).

In Figure 7 panel (a), we observe the correlations between the dynamic sensitiv-
ities of glucose for the parameters listed in Table 1. A strong positive correlation is
found between the sensitivities of parameters c and \mu G. This indicates a ``compen-
satory effect of feedback to insulin resistance,"" where a high value of \mu G is required
to maintain glucose levels within the normal range when c is low. A similar compen-
satory feedback is also observed between m and \mu I . When m is low, a high value of \mu I

is needed to ensure that insulin fluctuates within the normal range, thus maintaining
blood sugar levels within the normal range. A significantly high negative correla-
tion is observed between the pairs of parameters c,Gin, and \mu G,Gin, suggesting that
a high insulin sensitivity or a noninsulin-mediated glucose uptake rate is necessary
to maintain normal glucose levels when the net hepatic glucose production rate is
high. Similar anticorrelations are observed between the pairs of parameters \mu I ,m and
\mu I , a. In Figure 7 panel (b), we find the correlations between the dynamic sensitivities

(a) (b)

Fig. 7. (a) Correlations between dynamic sensitivities of glucose for parameters in Table 1. (b)
Correlations between dynamic sensitivities of glucose when a= 0.07 and other parameters in Table
1. (Figure in color online.)
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GLUCOSE METABOLISM MODEL 727

(a) (b)

Fig. 8. (a) Correlations between dynamic sensitivities of glucose for parameters in Table 1.
(b) Correlations between dynamic sensitivities of glucose when \mu I = 4.5 and other parameters in
Table 1.

of glucose for a = 0.07 and other parameters listed in Table 1. When normal
physiological parameters change, the initially highly correlated feedback regulatory
processes (in the red box of Figure 7) are influenced, resulting in a significant de-
crease in the absolute value of the correlation.

Figure 8 panel (a) displays the correlations between the dynamic sensitivities of
insulin for the parameters listed in Table 1. Similar to glucose, a ``compensatory effect
of feedback to insulin resistance"" is observed through a strong positive correlation be-
tween parameters c and \mu G. This suggests that a compensatory feedback mechanism
operates to maintain normal insulin levels when insulin resistance is present. Such
feedback is also found between parameters m and \mu I . Additionally, a highly negative
correlation is observed between parameters a and \mu I , indicating that a high insulin
production rate is necessary to maintain normal insulin levels when the clearance rate
is high. In Figure 8 panel (b), we have the correlations between the dynamic sensi-
tivities of glucose for \mu I = 4.5 and other parameters listed in Table 1. When \mu I is
increased, the previously highly correlated feedback between the pairs of parameters
a,\mu I , \mu I ,m, and \mu I ,Gin is affected, resulting in changes in the correlations between
these parameters.

5. Conclusion. In this paper, we propose a reaction-diffusion-advection model
for glucose metabolism in the pancreatic islet, aiming to capture its spatiotemporal be-
haviors. We investigate the global existence and boundedness of the model's solution,
as well as establish the uniqueness of its positive steady state. Moreover, we intro-
duce formulas for spatiotemporal sensitivity index and correlation index to identify
significant physiological factors and illustrate parameter interdependency. Addition-
ally, we conduct simulations to analyze the dynamics of the system across various
stages, including hyperinsulinemia, hypoglycemia, euglycemia, and diabetes. These
findings offer valuable insights and guidance for therapeutic interventions, facilitating
the development of effective treatments.

This work represents the first step of establishing a spatial dynamic model for
glucose-insulin metabolism. Various previous works [14, 23, 21, 2] have considered
the time-delays within the glucose regulation process, and our current study has
not incorporated time-delays which is a limitation of our model. A potential future
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direction would be to include spatiotemporal delays (weighted spatial-average delay
terms) into the diffusive glucose-insulin model, while considering both diffusion and
delay effects.
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