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Abstract
A dynamic reaction–diffusion model of four variables is proposed to describe the
spread of lytic viruses among phytoplankton in a poorly mixed aquatic environ-
ment. The basic ecological reproductive index for phytoplankton invasion and the
basic reproduction number for virus transmission are derived to characterize the phy-
toplankton growth and virus transmission dynamics. The theoretical and numerical
results from the model show that the spread of lytic viruses effectively controls phyto-
plankton blooms. This validates the observations and experimental results of Emiliana
huxleyi-lytic virus interactions. The studies also indicate that the lytic virus transmis-
sion cannot occur in a low-light or oligotrophic aquatic environment.

Keywords Reaction–diffusion model · Phytoplankton blooms · Lytic viruses · Basic
ecological reproductive index · Basic reproduction number

Mathematics Subject Classification 92D25 · 35K57 · 92B05

1 Introduction

Phytoplankton are the world’s most important aquatic producers. They play an
essential role in biogeochemical cycles and strongly influence the abundance and bio-
diversity of aquatic communities. Light and nutrients are two essential resources for
phytoplankton growth (Huisman et al. 2006; Klausmeier and Litchman 2001; Wang
et al. 2007; Yoshiyama et al. 2009; Zhang et al. 2021). Phytoplankton absorb light
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energy to synthesize carbon dioxide and water into organic matter and release oxygen
(Chen et al. 2015; Davies andWang 2021). At the same time, they ingest various nutri-
ents from the surrounding environment to preserve normal physiological metabolism
(Vasconcelos et al. 2016; Zhang et al. 2018, 2021). These processes are important
for achieving energy conversion and elemental cycles in nature and maintaining the
carbon-oxygen balance of the atmosphere.

Viruses in aquatic ecosystems are generally small particles. The components of
viruses are mainly nucleic acids and protein coats (Fuhrman 1999). This means that
viruses can trigger the biosynthesis of the viral genome and protein only when they
are parasitic in the host cells (Beretta and Kuang 1998; Edwards and Steward 2018;
Fuhrman 1999; Fuhrman et al. 2011). Viruses are extremely abundant and widely
distributed over oceans, lakes, and rivers (Suttle 2005). It is shown that viruses are
the major pathogens and important causes of mortality for most aquatic organisms
(Demory et al. 2021; Fuhrman 1999). As a result, viruses directly affect the structure
and stability of aquatic communities.

It is recognized that viruses infect a significant proportion of phytoplankton and
it is a major cause of the loss of phytoplankton (Demory et al. 2021; Kuhlisch et al.
2021; Suttle et al. 1990). According to the mechanism of virus transmission among
phytoplankton, lytic viruses are considered to be one of the most common viruses
(Beretta and Kuang 1998; Edwards and Steward 2018; Fuhrman 1999). The process
of the lytic virus infection can be divided into the following steps. First, the virus
contacts and adsorbs on phytoplankton cells by random diffusion, and then injects
its nucleic acid into the cells. Second, the virus takes over the synthesis machinery
of phytoplankton cells and produces viral genome and protein biosynthesis, which
is needed for the viral offspring. Third, after the new virus is assembled, the lytic
process ends with the lysis of the phytoplankton cell membrane, and then the virus
particles are released into aquatic environments. This infection process indicates that
lytic viruses destroy phytoplankton cells and reduce the biomass of phytoplankton.
In view of the interrelationship between phytoplankton and lytic viruses, it is of great
interest to explore the spread of lytic viruses among phytoplankton.

In this study,wepropose amathematicalmodel to describe the spread of lytic viruses
among phytoplankton. Here the aquatic environment under consideration is a poorly
mixed water column. This suggests that both phytoplankton and virus distributions
are spatially heterogeneous (Huisman et al. 2006; Klausmeier and Litchman 2001).
Light comes from the water surface and nutrients come from the bottom of the water
column (Ryabov et al. 2010; Yoshiyama et al. 2009; Zhang et al. 2021). Phytoplankton
growth requires light and nutrients. Lytic viruses move randomly with turbulence and
use phytoplankton cells as hosts to replicate and reproduce, eventually releasing a
large number of lytic viruses when the cells rupture (Demory et al. 2021; Edwards
and Steward 2018; Fuhrman 1999; Kuhlisch et al. 2021). One principal objective of
the present paper is to model and elucidate the mechanism of lytic virus transmission
among phytoplankton in a heterogeneous environment.

Several mathematical models have been introduced to investigate lytic virus trans-
mission (Béchette et al. 2013; Beretta and Kuang 1998; Demory et al. 2021; Edwards
and Steward 2018; Fuhrman et al. 2011). In these existing studies, the basic assump-
tions are that both phytoplankton and viruses are spatially uniformly distributed.
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However, there is growing evidence that only shallow aquatic environments and
epilimnion are well-mixed, while most aquatic ecosystems are poorly mixed. This
means that phytoplankton generally exhibit strong spatial heterogeneity (Huisman
et al. 2006; Klausmeier and Litchman 2001; Ryabov et al. 2010; Yoshiyama et al.
2009; Zhang et al. 2021). Our model consists of four dynamic reaction–diffusion
equations. Its contribution is the ability to describe the spatially heterogeneous dis-
tribution of phytoplankton and viruses. This model also incorporates the effects of
light and phytoplankton sinking relative to existing models of lytic viruses. Thus
the reaction–diffusion model contains advection terms and a nonlocal structure. This
increases the complexity of the model structure and the difficulty of model analysis.
We will rigorously derive the basic ecological reproductive index for phytoplankton
invasion and the basic reproduction numbers for lytic virus transmission by analyzing
nonnegative steady states and some basic properties of solutions of the model.

Phytoplankton blooms are an important phenomenon in which phytoplankton
biomass increases rapidly and significantly over a period of time (Chen et al. 2015;
Kuhlisch et al. 2021). It has adverse effects on aquatic ecological environments. Phy-
toplankton blooms lead to poor water quality of aquatic resources, cause the death
of aquatic organisms, and even threaten the health and safety of humans (Ho et al.
2019). It has become apparent that lytic viruses can influence phytoplankton biomass
abundance from observations and some experiments (Demory et al. 2021; Edwards
and Steward 2018; Fuhrman et al. 2011; Kuhlisch et al. 2021; Suttle et al. 1990).
For example, Emiliana huxleyi is distributed worldwide and frequently forms large
and dense blooms. These blooms are often terminated by the lytic virus transmission
(Kuhlisch et al. 2021). Experiments have shown that about 50% of Emiliana huxleyi
cells are infected by a large double-stranded DNA virus during blooms, and 25–100%
Emiliana huxleyi deaths are related to the lytic virus infection (Fuhrman 1999; Kuh-
lisch et al. 2021). Another objective of this study is to examine these observations
and experimental results theoretically and reveal the evolution trend in phytoplank-
ton biomass and free lytic virus density with varying ecological factors based on the
mathematical model described above.

The structure of the paper is organized as follows. In the next section, a mathemat-
ical model consisting of four reaction–diffusion equations is formulated to describe
phytoplankton-virus interactions. By using the principal eigenvalue theory, bifurcation
theory, and persistence theory, we analyze some basic properties of dynamic solutions
and nonnegative steady states of the model in Sect. 3. Two important basic indices are
derived. In Sect. 4, numerical bifurcation and time series diagrams are made to explore
the role of lytic virus transmission for phytoplankton blooms, and the changes in phy-
toplankton biomass and free lytic virus density for varying environmental factors. An
overview of the main conclusions and future research questions are presented in the
last section.

2 Model formulation

The water depth coordinate is x and the time scale is t . Consider a poorly mixed water
column with x = 0 at the water surface and x = xl at the bottom of the water column.
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Fig. 1 Phytoplankton-virus interactions in a poorly mixed water column

The model consists of four reaction–diffusion equations describing the change of the
concentrations of susceptible phytoplankton (S(x, t)), virus-infected phytoplankton
(I (x, t)), free lytic virus particles (V (x, t)), and dissolved nutrients (N (x, t)). Their
interaction relationship is shown in Fig. 1. The biological significance of variables and
parameters in the model is summarized in Table 1.

According to the research work in Beretta and Kuang (1998); Edwards and Steward
(2018); Fuhrman et al. (2011), we have the following assumptions:

(A1) Only susceptible phytoplankton can reproduce through photosynthesis and con-
sumption of nutrients;

(A2) Virus-infected phytoplankton are removed by lysis before reproducing. The
latency period is T from the infection to the lysis. The lytic virus reproduces
inside phytoplankton cells during this period T ;

(A3) The lysis of virus-infected phytoplankton releases massive amounts of lytic
virus particles.

Let S(x, t) and I (x, t) be the biomass density of susceptible phytoplankton and
virus-infected phytoplankton, respectively. They have two different forms of move-
ment in the water column. One is random movement in the vertical direction by
turbulence with a diffusivity dp (Huisman et al. 2006; Klausmeier and Litchman
2001; Ryabov et al. 2010; Yoshiyama et al. 2009; Zhang et al. 2021). The other is
directional movement including sinking or buoyant due to gravity or seeking more
light with a velocity ω (Grover 2017; Klausmeier and Litchman 2001; Ryabov et al.
2010; Yoshiyama et al. 2009). The whole water column is a closed environment for
phytoplankton. Thismeans that S(x, t) and I (x, t) satisfy no-flux boundary conditions
at endpoints x = 0 and x = xl .

Whether virus-infected phytoplankton can consume resources is still a disputed
subject (Gourley and Kuang 2004). Here we introduce a parameter θ ∈ [0, 1], which
represents the proportion of infected phytoplankton capable of resource consumption
(Smith and Thieme 2012). By Assumptions (A1) and (A2), the growth of susceptible
phytoplankton depends on light and nutrients. It is expressed as

rg(N ) f (L(x, S + θ I ))S = r · N

γ + N
· L(x, S + θ I )

h + L(x, S + θ I )
· S.
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Here the light intensity L(x, S + θ I ) following the Lambert-Beer law (Huisman et al.
2002) is given by

L(x, S + θ I ) = L0 exp

(
−l0x − l

∫ x

0
(S(z, t) + θ I (z, t))dz

)
, x ∈ (0, xl)

since light is absorbed by water and phytoplankton above the point x . The reduction
of susceptible phytoplankton biomass includes three parts: −μs S (death and grazing
Jäger et al. 2010; Vasconcelos et al. 2016; Wang et al. 2007; Zhang et al. 2021),
−η(S + θ I )S (competition among phytoplankton for other growth resources such
as inorganic carbon for photosynthesis Davies and Wang 2021; Hsu et al. 2017; Nie
et al. 2016; Zhang et al. 2021), and −bβSV (lytic virus infection into virus-infected
phytoplankton (Beretta and Kuang 1998; Edwards and Steward 2018; Fuhrman et al.
2011)). The increase in virus-infected phytoplankton biomass comes from bβSV and
the loss is owing to the lysis with the lytic death rate −δV where δ = 1/T and T is
the latency period from the infection to the lysis.

Let V (x, t) denote the density of free lytic viruses in thewater column. ByAssump-
tion (A3), its increase is from the lysis release of infected phytoplankton with the
lytic virus replication factor q, also known as “burst size" (Beretta and Kuang 1998;
Edwards and Steward 2018; Fuhrman et al. 2011). The reduction in V is caused by
death with a rate −μvV and infectious consumption with a rate −βSV . The free lytic
virus particles move randomly in the water column under the influence of turbulence
with a diffusion rate dv . Neumann boundary conditions at x = 0 and x = xl mean
that no free lytic virus particles enter or leave the water column.

The function N (x, t) describes dissolved nutrient concentration in the water col-
umn. The nutrient supply is through the nutrient exchange at the bottom of the water
column (x = xl ) with a fixed nutrient input concentration N 0 and an exchange
rate α (Klausmeier and Litchman 2001; Ryabov et al. 2010; Yoshiyama et al. 2009;
Zhang et al. 2018). The nutrients are transported by turbulence in the water column
with a diffusion rate dn . A no-flux boundary condition is imposed at x = 0 since
there is no nutrient exchange at the water surface. The nutrient consumption in the
water column by susceptible and virus-infected phytoplankton is described by a rate
−cprg(N ) f (L(x, S + θ I ))(S + θ I ).

The above assumptions and analysis yield the following complete model for
phytoplankton-virus interactions with light and nutrients

St = dp Sxx − ωSx︸ ︷︷ ︸
diffusion and advection

+ rg(N ) f (L(x, S + θ I ))S︸ ︷︷ ︸
susceptible phytoplankton growth

− μp S − η(S + θ I )S︸ ︷︷ ︸
susceptible phytoplankton loss

− bβSV︸ ︷︷ ︸
infection

,

It = dp Ixx − ωIx︸ ︷︷ ︸
diffusion and advection

+ bβSV︸ ︷︷ ︸
infection

− δ I︸︷︷︸
lysis death of virus-infected phytoplankton

,

Vt = dvVxx︸ ︷︷ ︸
diffusion

+ qδ I︸︷︷︸
lysis release of virus-infected phytoplankton

− μvV︸︷︷︸
free lytic virus death

− βSV︸︷︷︸
infection

,

Nt = dn Nxx︸ ︷︷ ︸
diffusion

− cprg(N ) f (L(x, S + θ I ))(S + θ I )︸ ︷︷ ︸
phytoplankton consumption

,

(2.1)
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for x ∈ (0, xl) and t > 0 with the boundary conditions

dp Sx (0, t) − ωS(0, t) = dp Sx (xl , t) − ωS(xl , t) = 0, t > 0,

dp Ix (0, t) − ωI (0, t) = dp Ix (xl , t) − ωI (xl , t) = 0, t > 0,

Vx (0, t) = Vx (xl , t) = 0, t > 0,

Nx (0, t) = 0, dn Nx (xl , t) = α(N 0 − N (xl , t)) (nutrient exchange), t > 0

(2.2)

and the initial conditions

S(x, 0) = S0(x) ≥�≡ 0, I (x, 0) = I0(x) ≥�≡ 0, x ∈ (0, xl),

V (x, 0) = V0(x) ≥�≡ 0, N (x, 0) = N0(x) ≥�≡ 0, x ∈ (0, xl).
(2.3)

Hereω ∈ R, θ ∈ [0, 1], and remainingparameters are assumed to bepositive constants.
Model (2.1) is a system of four reaction–diffusion–advection equations with a

nonlocal structure. To explore the phytoplankton-virus interactions, we rigorously
analyze the dynamic properties of model (2.1) including basic properties and behavior
of solutions and existence and stability of nonnegative steady states.

3 Model analysis

The main purpose of this section is to explore the theoretical results of model (2.1)–
(2.3). Some basic properties of solutions of model (2.1)–(2.3) are given in Sect. 3.1.
The study of nonnegative steady state solutions is in Sect. 3.2. The dynamic numerical
simulations are performed to explain and supplement our theoretical results in Sect.
3.3.

3.1 Basic properties of solutions

Let X = C([0, xl ],R4) denote the Banach space of all continuous functions defined
on [0, xl ] with values in R

4 and the norm being the supremum norm. The feasible
domain W for (2.1)–(2.3) is the positive cone in X :

W := {(S, I , V , N ) ∈ C([0, xl ],R4) : S(·) ≥ 0, I (·) ≥ 0, V (·) ≥ 0, N (·) ≥ 0}.
(3.1)

Theorem 3.1 The system (2.1)–(2.3) possesses a unique classical solution in W for
all t > 0 and it is dissipative.

Proof The local existence and uniqueness of nonnegative classical solutions of system
(2.1)–(2.3) follow from standard arguments (see Martin and Smith 1990). To obtain
the global existence of the solutions, we only need to prove that the solutions of system
(2.1)–(2.3) are dissipative.
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From the N -equation in (2.1), we obtain

Nt ≤ dn Nxx , x ∈ (0, xl), t > 0, Nx (0, t) = 0,

dn Nx (xl , t) = α(N 0 − N (xl , t)), t > 0.

This implies that

lim sup
t→∞

N (x, t) ≤ N 0 on [0, xl ]. (3.2)

Let Ŝ = Se−(ω/dp)x . From the S-equation, we have

Ŝt ≤ dp Ŝxx + ωŜx + r f (L0)Ŝ − ηŜ2e(ω/dp)x , x ∈ (0, xl), t > 0,

Ŝx (0, t) = Ŝx (xl , t) = 0, t > 0.

If ω > 0, then

lim sup
t→∞

S(x, t) = lim sup
t→∞

Ŝ(x, t)e(ω/dp)x ≤ r f (L0)e(ω/dp)xl

η
on [0, xl ].

If ω < 0, then

lim sup
t→∞

S(x, t) = lim sup
t→∞

Ŝ(x, t)e(ω/dp)x ≤ r f (L0)e(−ω/dp)xl

η
on [0, xl ].

Hence

lim sup
t→∞

S(x, t) ≤ r f (L0)e(|ω|/dp)xl

η
on [0, xl ]. (3.3)

From (3.3), for any ε > 0, there exists a t1 > 0 such that S(x, t) ≤
r f (L0)e(|ω|/dp)xl /η + ε on [0, xl ] for any t ≥ t1. Let Î = I e−(ω/dp)x . Adding the
S-equation and the I -equation gives

(Ŝ + Î )t ≤ dp(Ŝ + Î )xx + ω(Ŝ + Î )x + r f (L0)

(
r f (L0)e(|ω|/dp)xl

η
+ ε

)
e−(ω/dp)x

− min{μp, δ}(Ŝ + Î )

for x ∈ (0, xl) and t > t1 with the boundary condition

(Ŝ + Î )x (0, t) = (Ŝ + Î )x (xl , t) = 0, t > t1.
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Applying the parabolic comparison theorem, we get

lim sup
t→∞

I (x, t) ≤ lim sup
t→∞

(S + I )(x, t) = lim sup
t→∞

(Ŝ + Î )e(ω/dp)x

≤
(
r f (L0)

)2
e2(|ω|/dp)xl

ηmin{μp, δ} on [0, xl ].
(3.4)

For the ε > 0 above, there exists a t2 > 0 such that

I (x, t) ≤
(
r f (L0)

)2
e2(|ω|/dp)xl

ηmin{μp, δ} + ε on [0, xl ]

for any t ≥ t2. From the V -equation in (2.1), we have

Vt ≤ dvVxx + qδ

((
r f (L0)

)2
e2(|ω|/dp)xl

ηmin{μp, δ} + ε

)
− μvV , x ∈ (0, xl), t > t2,

Vx (0, t) = Vx (xl , t) = 0, t > t2.

Hence,

lim sup
t→∞

V (x, t) ≤ qδ
(
r f (L0)

)2
e2(|ω|/dp)xl

ημv min{μp, δ} on [0, xl ]. (3.5)

Combining (3.2)–(3.5) shows that the solutions of system (2.1)–(2.3) are dissipative.
This completes the proof. 	

Remark 3.2 By Theorem 3.1, there exists a semiflow 
(t) : W → W for (2.1)–(2.3)
satisfying


(t)(σ0)(x) = (S(x, t, σ0), I (x, t, σ0), V (x, t, σ0), N (x, t, σ0)), x ∈ [0, xl ], t ≥ 0

for every σ0 = (S0, I0, V0, N0) ∈ W . It follows from the dissipativeness of the
solutions for (2.1)–(2.3) that 
(t) is point dissipative. Furthermore, there exists a
global compact attractor for (2.1)–(2.3) in W from Theorem 3.4.8 in Hale (1988)
since 
(t) is compact.

3.2 Steady states

In order to investigate the spread of lytic viruses among phytoplankton, we explore
nonnegative steady states of model (2.1)–(2.3). There are three types of steady state
solutions of model (2.1)–(2.3) as follows.

(i) Extinction steady state E1 = (0, 0, 0, N 0).
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(ii) Disease-free steady state E2 = (S2(x), 0, 0, N2(x)), where S2(x) and N2(x)

satisfy

dp S′′ − ωS′ + rg(N ) f (L(·, S))S − μp S − ηS2 = 0, x ∈ (0, xl),

dn N ′′ − cprg(N ) f (L(·, S))S = 0, x ∈ (0, xl),

dp S′(0) − ωS(0) = dp S′(xl) − ωS(xl) = 0,

N ′(0) = 0, dn N ′(xl) = α(N 0 − N (xl)).

(3.6)

(iii) Endemic steady state E3 = (S3(x), I3(x), V3(x), N3(x)), where S3(x),

I3(x), V3(x) and N3(x) satisfy

dp S′′ − ωS′ + rg(N ) f (L(·, S + θ I ))S − μp S − η(S + θ I )S − bβSV = 0,

dp I ′′ − ωI ′ + bβSV − δ I = 0,

dvV ′′ + qδ I − μvV − βSV = 0,

dn N ′′ − cprg(N ) f (L(·, S + θ I ))(S + θ I ) = 0

(3.7)

on (0, xl) with the boundary conditions

dp S′(0) − ωS(0) = dp S′(xl) − ωS(xl) = 0,

dp I ′(0) − ωI (0) = dp I ′(xl) − ωI (xl) = 0,

V ′(0) = V ′(xl) = 0, N ′(0) = 0, dn N ′(xl) = α(N 0 − N (xl)).

(3.8)

To characterize the dynamic behavior of model (2.1)–(2.3), we define the basic
ecological reproductive index for phytoplankton invasion. For h ∈ L∞([0, xl ]), let
λ1(dp, ω, xl , h(x)) denote the principal eigenvalue of

dpφ
′′(x) − ωφ′(x) + h(x)φ(x) = λφ(x), x ∈ (0, xl),

dpφ
′(0) − ωφ(0) = dpφ

′(xl) − ωφ(xl) = 0.
(3.9)

By Proposition 3.1 in Wang et al. (2019), λ1 exists and it is unique. Moreover,
λ1(dp, ω, xl , h1(x)) ≥ λ1(dp, ω, xl , h2(x)) if h1(x) ≥ h2(x) on [0, xl ]. The basic
ecological reproductive index for phytoplankton invasion is defined as

Rp = μ∗
p

μp
, where μ∗

p = λ1(dp, ω, xl , rg(N 0) f (L(x, 0))). (3.10)

Note that μ∗
p is related to the stability of the unique extinction steady state E1 (see

(3.11)). The index Rp measures the reproductive capacity of phytoplankton, and it
describes the average number of new phytoplankton cells produced by per cubic meter
of phytoplankton in a life cycle.

Theorem 3.3 E1 ≡ (0, 0, 0, N 0) is the unique extinction steady state of (2.1)–(2.3).
If Rp < 1, then E1 is globally asymptotically stable, while E1 is unstable if Rp > 1.
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Proof It is clear that E1 ≡ (0, 0, 0, N 0) exists uniquely. The local stability of E1 is
determined by the eigenvalue problem

λξ = dpξ
′′(x) − ωξ ′(x) +

(
rg(N 0) f (L(x, 0)) − μp

)
ξ, x ∈ (0, xl),

λϕ = dpϕ
′′(x) − ωϕ′(x) − δϕ, x ∈ (0, xl),

λψ = dvψ
′′(x) + qδϕ − μvψ, x ∈ (0, xl),

λζ = dnζ ′′(x) − cprg(N 0) f (L(x, 0))(ξ + θϕ), x ∈ (0, xl)

(3.11)

with the boundary conditions

dpξ
′(0) − ωξ(0) = dpξ

′(xl) − ωξ(xl) = 0, (3.12a)

dpϕ
′(0) − ωϕ(0) = dpϕ

′(xl) − ωϕ(xl) = 0, (3.12b)

ψ ′(0) = ψ ′(xl) = 0, (3.12c)

ζ ′(0) = 0, dnζ ′(xl) = −αζ(xl). (3.12d)

One can observe that λ is an eigenvalue of (3.11) if and only if λ is an eigenvalue of
one of the following four operators

dp
d2

dx2
− ω

d

dx
+

(
rg(N 0) f (L(·, 0)) − μp

)
,

dp
d2

dx2
− ω

d

dx
− δ, dv

d2

dx2
− μv, dn

d2

dx2

with the boundary conditions (3.12a)–(3.12d) (see Theorem 4.1 in Nie et al. 2017).

Note that all eigenvalues of the operators dv

d2

dx2
− μv with the Neumann boundary

condition (3.12c) and dn
d2

dx2
with the Robin boundary condition (3.12d) are less

than 0. By (3.9), all eigenvalues of the operator dp
d2

dx2
− ω

d

dx
− δ with (3.12b) are

less than 0. Applying (3.9) again, all eigenvalues of the operator dp
d2

dx2
− ω

d

dx
+(

rg(N 0) f (L(·, 0)) − μp

)
with (3.12a) are less than 0 if Rp < 1, and it has at least

one eigenvalue greater than 0 if Rp > 1. The above analysis shows that E1 is locally
asymptotically stable when Rp < 1, and E1 is unstable when Rp > 1.

To obtain the global stability of E1 when Rp < 1, we only need to prove that it is
globally attractive. For any ε > 0, from (3.2) and (3.5), there exists a t∗1 > 0 such that

N (·, t) ≤ N 0+ε andV (·, t) ≤ qδ
(
r f (L0)

)2
e2(|ω|/dp)xl /(ημv min{μp, δ})+ε for t ≥

t∗1 . Let ξ be the first component of the positive eigenfunction of (3.11) corresponding
to μ = μ∗

p satisfying S(x, t∗1 ) ≤ cξ(x) for some c > 0. Let Ŝ = Se−(ω/dp)x and

ξ̂ = ξe−(ω/dp)x . It follows from the S-equation in model (2.1) that

Ŝt ≤ dp Ŝxx + ωŜx + rg(N 0 + ε) f (L(x, 0))Ŝ − μp Ŝ, x ∈ (0, xl), t > t∗1 ,
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Ŝx (0, t) = Ŝx (xl , t) = 0, t > t∗1 .

By the comparison theorem of parabolic systems, we have

Ŝ(x, t) ≤ ce−(μp−λ1(dp,ω,xl ,rg(N0+ε) f (L(x,0))))(t−t∗1 )ξ̂ (x), x ∈ [0, xl ], for any t ≥ t∗1 .

This shows that lim sup
t→∞

S(x, t) = lim sup
t→∞

Ŝ(x, t)e(ω/dp)x = 0 on [0, xl ] since Rp < 1

and ε is sufficiently small. Hence we can find a t∗2 > t∗1 satisfying S(x, t) ≤ ε on
[0, xl ] for any t ≥ t∗2 . Let Î = I e−(ω/dp)x . It follows that

Ît ≤ dp Îxx + ω Îx + bβε

(
qδ

(
r f (L0)

)2
e2(|ω|/dp)xl

ημv min{μp, δ} + ε

)

e−(ω/dp)x − δ Î , x ∈ (0, xl), t > t∗2 ,

Îx (0, t) = Îx (xl , t) = 0, t > t∗2 .

Then

lim sup
t→∞

I (x, t) = lim sup
t→∞

Î (x, t)e(ω/dp)x = 0 on [0, xl ] (3.13)

since ε is sufficiently small. Similarly, we can also obtain

lim sup
t→∞

V (x, t) = 0 on [0, xl ]. (3.14)

Following Theorem 1.8 inMischaikow et al. (1995) or Theorem 4.1 in Thieme (1992),
the N -equation in (2.1) becomes

Nt = dn Nxx , x ∈ (0, xl), Nx (0, t) = 0, dn Nx (xl , t) = α(N 0 − N (xl , t))

for sufficiently large t . Thus

lim
t→∞ N (x, t) = N 0 on [0, xl ], (3.15)

and then E1 is globally attractive. 	

Remark 3.4 1. The basic ecological reproductive index for phytoplankton invasion

Rp measures the viability of phytoplankton. Rp < 1 means that phytoplankton
go extinct and nutrients are evenly distributed in the water column. μp = μ∗

p is
a critical loss rate that determines whether phytoplankton can invade an aquatic
ecosystem.

2. From the structure of (3.10), the basic ecological reproductive index Rp depends
on important ecological parameters such as spatial factors dp, ω, the water column
depth xl , nutrient concentration at the bottom of the water column N 0 and light
intensity at thewater surface L0. According to Theorems 3.2 and 3.4 inHsu andLou
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(2010), we conclude that d Rp/dω < 0 and d Rp/dxl < 0. By the monotonicity of
λ1 with respect to rg(N 0) f (L(x, 0)), d Rp/d N 0 > 0 and d Rp/d L0 > 0. Thus,
high N 0 and L0 are conducive to phytoplankton invasion, while high ω and xl

prevent phytoplankton invasion. The dependence of Rp on dp is complicated. Both
high and low dp may be detrimental to the survival of phytoplankton (see Huisman
et al. 2002).

When Rp > 1, the extinction state E1 is unstable and phytoplankton can persist.
To establish the existence of E2 which has a positive phytoplankton mass, we first
derive a priori estimate for nonnegative solutions of (3.6).

Lemma 3.5 Suppose (S2(x), N2(x)) is a nonnegative solution of (3.6) with S2, N2 �≡
0. Then 0 < N2(x) < N 0, 0 < S2(x) ≤ ((rg(N 0) f (L0)+μp)e(|ω|/dp)xl )/η on [0, xl ]
and 0 < μp < μ∗

p.

Proof Let Ū (x) = e−(ω/dp)x S2(x). Then Ū satisfies

− dpŪ ′′ − ωŪ ′ +
(
μp + ηŪe(ω/dp)x

)
Ū = rg(N2) f (L(x, S2))Ū ≥ 0, x ∈ (0, xl),

Ū ′(0) = Ū ′(xl) = 0.

From the strong maximum principle and Hopf boundary lemma, we have S2(x) =
Ū (x)e(ω/dp)x > 0 on [0, xl ]. It follows from (3.6) that

α(N 0 − N2(xl)) =
∫ xl

0
cprg(N2(x)) f (L(x, S2(x)))S2(x)dx

= cp

∫ xl

0

(
μp S2(x) + ηS2

2 (x)
)

dx > 0,

and then N2(xl) < N 0. By the N -equation in (3.6), we obtain

− dn N ′′
2 +

(
cpr f (L(x, S2))S2

∫ 1

0
g′(s N2)ds

)
N2 = 0, x ∈ (0, xl),

N ′
2(0) = 0, dn N ′

2(xl) = α(N 0 − N2(xl)) > 0.

This implies that N2(x) > 0 on [0, xl ] from the maximum principle. Note that

dn N ′′
2 = cprg(N2) f (L(x, S2))S2 > 0, x ∈ (0, xl).

Combining its boundary conditions give N ′
2(x) > 0 on (0, xl). Thus, 0 < N2 < N 0

on [0, xl ].
From the S-equation in (3.6) and S2 > 0, we get

μp = λ1(dp, ω, xl , rg(N2) f (L(x, S2)) − ηS2)

< λ1(dp, ω, xl , rg(N 0) f (L(x, 0))) = μ∗
p.
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By applying the similar arguments of Lemma2.2 in Pang et al. (2019), we can conclude
that S2(x) ≤ ((rg(N 0) f (L0) + μp)e(|ω|/dp)xl )/η on [0, xl ]. 	


We now prove the existence of disease-free steady state E2 by showing E2 bifur-
cating from the line of extinction state {(μp, E1) : μp > 0} at μp = μ∗

p.

Theorem 3.6 (i) If Rp > 1 (equivalently, μp ∈ (0, μ∗
p)), then (2.1)–(2.3) has at least

one disease-free steady state E2.
(ii) There exists an ε > 0 such that for each given s ∈ (0, ε) the bifurcating solu-

tion (μp(s), S2(s, ·), N2(s, ·)) is locally asymptotically stable with respect to the
susceptible phytoplankton-nutrient model

St = dp Sxx − ωSx + rg(N ) f (L(x, S))S − μp S − ηS2, x ∈ (0, xl), t > 0,

Nt = dn Nxx − cprg(N ) f (L(x, S))S, x ∈ (0, xl), t > 0,

dp Sx (0, t) − ωS(0, t) = dp Sx (xl , t) − ωS(xl , t) = 0, t > 0,

Nx (0, t) = 0, dn Nx (xl , t) = α(N 0 − N (xl , t)), t > 0.

(3.16)

Proof (i) The first part of the proof is divided into two steps. The first one is to obtain
the existence of local bifurcation of E2. Applying theCrandall–Rabinowitz bifurcation
theorem (see Theorem 1.7 in Crandall and Rabinowitz 1971), we show that there is
a positive solution branch �+

2 = {(μp(s), S2(s, ·), N2(s, ·)) : 0 < s < ε} for some
ε > 0 from �1 = {(μp, 0, N 0) : μp > 0} at μp = μ∗

p. The second is to explore the
global bifurcation structure of E2. That is to show that the disease-free steady state
E2 exists for all μp ∈ (0, μ∗

p) by using Theorem 3.3 and Remark 3.4 in Shi andWang
(2009).

Let S̃ = Se−(ω/dp)x and Ñ = N 0 − N . Then (3.6) is transformed into

dp S̃′′ + ωS̃′ + rg(N 0 − Ñ ) f (L(x, S̃e(ω/dp)x ))S̃

− μp S̃ − ηS̃2e(ω/dp)x = 0, x ∈ (0, xl),

− dn Ñ ′′ − cprg(N 0 − Ñ ) f (L(x, S̃e(ω/dp)x ))S̃e(ω/dp)x = 0, x ∈ (0, xl),

S̃′(0) = S̃′(xl) = 0, Ñ ′(0) = dn Ñ ′(xl) + α Ñ (xl) = 0

(3.17)

and the extinction state (S, N ) = (0, N 0) is transformed to (S̃, Ñ ) = (0, 0). Set
W := W1 × W2, where

W1 := {h ∈ W 2,p(0, xl) : h′(0) = h′(xl) = 0},
W2 := {h ∈ W 2,p(0, xl) : h′(0) = dnh′(xl) + αh(xl) = 0}.

Step 1 (Local bifurcation). Define T : R+ × W → L p(0, xl) × L p(0, xl), p > 1
as follows

T (μp, S̃, Ñ ) =
(

dp S̃′′ + ωS̃′ + rg(N 0 − Ñ ) f (L(x, S̃e(ω/dp)x ))S̃ − μp S̃ − ηS̃2e(ω/dp)x

−dn Ñ ′′ − cprg(N 0 − Ñ ) f (L(x, S̃e(ω/dp)x ))S̃e(ω/dp)x

)
.
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It can be directly observed that T (μp, 0, 0) = 0 for μp > 0. Let Q :=
T

(S̃,Ñ )
(μ∗

p, 0, 0). A direct calculation shows that

Q[ξ, ζ ] =
(

dpξ
′′ + ωξ ′ +

(
rg(N 0) f (L(x, 0)) − μ∗

p

)
ξ

−dnζ ′′ − cprg(N 0) f (L(x, 0))ξe(ω/dp)x

)

for any (ξ, ζ ) ∈ W.
We claim that Q is a Fredholm operator with index zero. Following the proof of

Theorem 3.5 in Yan et al. (2022), we have dim ker Q = 1 and ker Q = span{(ξ̄ , ζ̄ )}
with ξ̄ > 0, ζ̄ > 0 on [0, xl ]. Here ξ̄ ∈ W1 satisfies

dp ξ̄
′′ + ωξ̄ ′ +

(
rg(N 0) f (L(x, 0)) − μ∗

p

)
ξ̄ = 0, x ∈ (0, xl), (3.18)

and ζ̄ ∈ W2 can be uniquely solved by

−dnζ ′′ − cprg(N 0) f (L(x, 0))ξ̄e(ω/dp)x = 0, x ∈ (0, xl).

If (κ1, κ2) ∈ range Q, then we can find (ξ̂ , ζ̂ ) ∈ W satisfying

dp ξ̂
′′ + ωξ̂ ′ +

(
rg(N 0) f (L(x, 0)) − μ∗

p

)
ξ̂ = κ1, x ∈ (0, xl),

− dn ζ̂ ′′ − cprg(N 0) f (L(x, 0))ξ̂e(ω/dp)x = κ2, x ∈ (0, xl).

(3.19)

By (3.18) and the first equation in (3.19), we have
∫ xl

0
κ1(x)e(ω/dp)x ξ̄ (x)dx = 0, and

ξ̂ ∈ W1 can be uniquely solved under this condition. It follows from the Fredholm
alternative theorem that ζ̂ ∈W2 can then be uniquely solved by the second equation
in (3.19). Hence,

range Q =
{
(κ1, κ2) ∈ L p(0, xl) × L p(0, xl) :

∫ xl

0
κ1(x)e(ω/dp)x ξ̄ (x)dx = 0

}

and codim range Q = 1. This implies that Q is a Fredholm operator with index zero.

One can observe that T
(μp,(S̃,Ñ ))

(μ∗
p, 0, 0)(ξ̄ , ζ̄ ) = (−ξ̄ , 0, 0) and

∫ xl

0
e(ω/dp)x

ξ̄2(x)dx �= 0. Then T
(μp,(S̃,Ñ ))

(μ∗
p, 0, 0) /∈ range Q. According to the Crandall–

Rabinowitz bifurcation theorem (Theorem 1.7 in Crandall and Rabinowitz (1971)),
there is a smooth curve �̃2 = {(μp(s), S̃(s, ·), Ñ (s, ·)) : − ε < s < ε} for some
ε > 0 satisfying (3.17) near (μ∗

p, 0, 0) with the form

S̃(s, ·) = sξ̄ (·) + o(s), Ñ (s, ·) = sζ̄ (·) + o(s).

Here we also define

�̃+
2 = {(μp(s), S̃(s, ·), Ñ (s, ·)) : 0 < s < ε},
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�̃−
2 = {(μp(s), S̃(s, ·), Ñ (s, ·)) : − ε < s < 0}.

Let S2(s, x) = S̃(s, x)e(ω/dp)x , N2(s, x) = N 0 − Ñ (s, x) on [0, xl ], and define

�+
2 = {(μp(s), S2(s, ·), N2(s, ·)) : 0 < s < ε},
�−

2 = {(μp(s), S2(s, ·), N2(s, ·)) : − ε < s < 0}.

Then the bifurcating branch �+
2 consists of positive solutions of (3.6) as ξ̄ > 0 and

N 0 > 0.
Let

π(x, ξ̄ , ζ̄ ) = −hl L(x, 0)g(N 0)

(h + L(x, 0))2

∫ x

0
ξ̄ (z)e(ω/dp)zdz − ηξ̄e(ω/dp)x − γ f (L(x, 0))

(γ + N 0)2
ζ̄ .

Then

μ′
p(0) = −

〈
L, T

((S̃,Ñ )(S̃,Ñ ))

(
μ∗

p, 0, 0
)

[ξ̄ , ζ̄ ]2
〉

2
〈
L, T

(μp ,(S̃,Ñ ))

(
μ∗

p, 0, 0
)

[ξ̄ , ζ̄ ]
〉 =

∫ xl

0
re(ω/dp)xπ(x, ξ̄ , ζ̄ )ξ̄2dx
∫ xl

0
e(ω/dp)x ξ̄2dx

< 0,

where L is a linear functional on L p(0, xl) × L p(0, xl) defined by

〈L, (κ1, κ2)〉 =
∫ xl

0
κ1(x)e(ω/dp)x ξ̄dx .

This shows that the bifurcation of �+
2 or �̃+

2 at (0, N 0) is backward as π < 0.
Step 2 (Global bifurcation). In view of Theorem 4.3 in Shi and Wang (2009), there

exists a connected component �̃ of � containing �̃2 where � = {(μp, S̃, Ñ ) ∈
R

+ × W : T (μp, S̃, Ñ ) = 0, (S̃, Ñ ) �= (0, 0)}. Let �̃+ be the connected component
of �̃\�̃−

2 which contains �̃+
2 . It follows fromTheorem4.4 in Shi andWang (2009) that

�̃+ satisfies one of the following three alternatives: (1) it is not compact inR+×W, (2)
it contains another point (μ̄p, 0, 0) with μ̄p �= μ∗

p, (3) it contains a point (μp, S̄, N̄ )

with 0 �= (S̄, N̄ ) ∈ Z , where Z is a closed complement of ker Q = span{(ξ̄ , ζ̄ )}.
Assume that (2) occurs. Then (μ̄p, 0, 0) is a bifurcation point for T = 0 with

μ̄p �= μ∗
p and 0 is an eigenvalue of T

(S̃,Ñ )
(μp, 0, 0) and μ̄p < μ∗

p. There are only
finitely many such μ̄p, so without loss of generality we may assume that �+ does
not contain any other (μp, 0, 0) with μ̄p < μp < μ∗

p. Since μp = μ∗
p is the only

value such that T
(S̃,Ñ )

(μp, 0, 0) has a positive eigenfunction corresponding to a zero

eigenvalue, then all solutions of T (μp, S̃, Ñ ) = 0 on �̃+ near (μ̄p, 0, 0) must be
sign-changing. Since �̃+ ⊇ �̃+

2 , then there exists (μp, S̃, Ñ ) ∈ �̃+ which satisfies
S̃ > 0 and Ñ > 0. From the connectedness of �+, there exists (μ̂p, S̃, Ñ ) ∈ �̃+ with

ˆμp ∈[μ̄p, μ
∗
p) and x0 ∈ [0, xl ] such that either S̃(x0) = 0 or Ñ (x0) = 0, but S̃(x) ≥ 0

and Ñ (x) ≥ 0 for all x ∈ [0, xl ]. If S̃(x0) = 0, then we also have S̃′(x0) = 0, then we
obtain S̃ ≡ Ñ = 0 on [0, xl ] from the uniqueness of solution to ODE so (2) occurs
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at μ̂p and μ̂p = μ̄p. But the solution (μ̂p, S̃, Ñ ) is not sign-changing, which is a
contradiction. Hence we must have S̃(x) > 0 on [0, xl ] and Ñ (x0) = 0. But this leads
to another contradiction using S̃ ≥ 0 and maximum principle. Hence (2) cannot occur.
Assume that (3) happens. Since 0 �= (S̄, N̄ ) ∈ Z , then either S̄ or N̄ is sign-changing
as ξ̄ > and ζ̄ > 0. We can follow the similar proof as in the one for alternative (2) to
show (3) cannot occurs.

Hence the alternative (1) must occur and the connected component �̃+ is not
compact in R

+ × W. Moreover the proof in the last paragraph implies that if
(μp, S̃, Ñ ) ∈ �̃+ then S̃ > 0 and Ñ > 0. Let

�+ = {(μp, S, N ) : S = S̃e(ω/dp)x , N = N 0 − Ñ , and (μp, S̃, Ñ ) ∈ �̃+}.

Then for any (μp, S, N ) ∈ �+, we know that S = S̃e(ω/dp)x > 0 on [0, xl ], then
N > 0 on [0, xl ] since N ′(0) = 0 and N ′′ > 0 in (0, xl). From Lemma 3.5, every
positive solution of (3.6) is bounded for 0 < μp < μ∗

p and there is no positive solution
of (3.6) for μp ≥ μ∗

p. Therefore �+ can be extended to μp = 0 and the projection of
�+ onto μp-axis contains (0, μ∗

p).
(ii) Let L(μp(s), S(s), N (s)) be the linearized operator of (3.16) at (μp(s),

S(s), N (s)). From Corollary 1.13 and Theorem 1.16 in Crandall and Rabinowitz
(1973), there exist continuously differentiable functions

γ1 : [μ∗
p, μ

∗
p + ε) → R, (ξ1, ζ1) : [μ∗

p, μ
∗
p + ε) → W 2,p(0, xl) × W 2,p(0, xl),

γ2 : [0, ε) → R, (ξ2, ζ2) : [0, ε) → W 2,p(0, xl) × W 2,p(0, xl)

such that

L(μp, 0, N 0)[ξ1(μp), ζ1(μp)] = γ1(μp)[ξ1(μp), ζ1(μp)],
L(μp(s), S2(s, ·), N2(s, ·))[ξ2(s), ζ2(s)] = γ2(s)[ξ2(s), ζ2(s)]

and

lim
s→0+

−sμ′
p(s)γ

′
1(μ

∗
p)

γ2(s)
= 1.

Here γ1(μ
∗
p) = γ2(0) = 0 and (ξ1(μ

∗
p), ζ1(μ

∗
p)) = (ξ2(0), ζ2(0)) = (ξ̄ , ζ̄ ). Note that

γ1(μp) is a simple eigenvalue of

dpξ
′′ − ωξ ′ +

(
rg(N 0) f (L(x, 0)) − μp

)
ξ = γ1(μp)ξ, x ∈ (0, xl),

dpξ
′(0) − ωξ(0) = dpξ

′(xl) − ωξ(xl) = 0.

It follows that γ1(μp) = μ∗
p − μp and then γ ′

1(μ
∗
p) = −1. Recalling μ′

p(0) < 0,
we have γ2(s) < 0 for s ∈ (0, ε). By the perturbation theory of linear operators (see
[22]), γ2(s) is also the principal eigenvalue of L(μp(s), S2(s, ·), N2(s, ·)) when s is

123



Modelling phytoplankton-virus interactions... Page 19 of 35 77

sufficiently small. This means that (S2(s, ·), N2(s, ·)) is locally asymptotically stable
for (3.16). 	


In Theorem 3.6, we obtain the existence of E2 for all 0 < μp < μ∗
p, and the

uniqueness and stability of E2 is unknown. Numerical simulations suggest that the
disease-free steady state E2 is unique if Rp > 1.

Next we show that when Rp > 1 and some additional conditions are satisfied,
solutions of model (2.1)–(2.3) are uniformly persistent and there exists at least one
endemic steady state E3. To obtain the conclusions, we define the basic reproduction
number for lytic virus transmission. Letting Ī = I e−(ω/dp)x and linearizing (2.1) at a
disease-free steady state E2 = (S2, 0, 0, N2), we obtain

Īt = dp Īxx + ω Īx + bβe−(ω/dp)x S2V − δ Ī , x ∈ (0, xl), t > 0,

Vt = dvVxx + qδe(ω/dp)x Ī − μvV − βS2V , x ∈ (0, xl), t > 0,

Īx (0, t) = Īx (xl , t) = Vx (0, t) = Vx (xl , t) = 0, t > 0.

For h1, h2 ∈ C([0, xl ],R+), we consider the following linear parabolic system

Īt = dp Īxx + ω Īx + bβe−(ω/dp)x h1V − δ Ī , x ∈ (0, xl), t > 0,

Vt = dvVxx + qδe(ω/dp)x Ī − μvV − βh2V , x ∈ (0, xl), t > 0,

Īx (0, t) = Īx (xl , t) = Vx (0, t) = Vx (xl , t) = 0, t > 0.

(3.20)

Let
h2(t) : C([0, xl ],R2) → C([0, xl ],R2)denote the solution semigroupgenerated
by the following system

Īt = dp Īxx + ω Īx − δ Ī , x ∈ (0, xl), t > 0,

Vt = dvVxx + qδe(ω/dp)x Ī − (μv + βh2)V , x ∈ (0, xl), t > 0,

Īx (0, t) = Īx (xl , t) = Vx (0, t) = Vx (xl , t) = 0, t > 0.

Define

Fh1(x) =
(
0 bβe−(ω/dp)x h1
0 0

)
.

We assume that the distribution of initial infected phytoplankton and free lytic viruses
is ρ(x) = (ρ1(x), ρ2(x)). As time evolves, the distribution at time t is 
h2(t)ρ(x).
Therefore, it can be deduced that the distribution of total new infected phytoplankton
is

K h1,h2(ρ)(x) =
∫ ∞

0
Fh1(x)
h2(t)ρ(x)dt .
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Here K h1,h2 is called the next generation operator, and its spectral radius is r(K h1,h2).
It follows that the basic reproduction number associated with (h1, h2) is given as

R0(h1, h2) := r(K h1,h2). (3.21)

Especially, if h1 = h2 = S2, then the basic reproduction number associated with E2
for virus transmission is denoted as

R0 := R0(S2, S2) = r(K S2,S2). (3.22)

Since the uniqueness of E2 is not known, R0 defined in (3.22) depends on E2, and
the definition given in (3.21) allows a more general basic reproduction number which
will be used in the following.

Let Ī = eλtϕ and V = eλtψ . Then (λ, ϕ,ψ) satisfies an eigenvalue problem

λϕ = dpϕxx + ωϕx + bβe−(ω/dp)x h1ψ − δϕ, x ∈ (0, xl),

λψ = dvψxx + qδe(ω/dp)xϕ − μvψ − βh2ψ, x ∈ (0, xl),

ϕ′(0) = ϕ′(xl) = ψ ′(0) = ψ ′(xl) = 0.

(3.23)

Note that (3.23) is a cooperative system. By the Krein-Rutman theorem, (3.23) has a
unique principal eigenvalue λ0(h1, h2) with a strongly positive eigenfunction (ϕ̂, ψ̂).
Applying the similar arguments of Theorem 3.1 (i) in Wang and Zhao (2012), one can
obtain the following conclusion.

Lemma 3.7 λ0(h1, h2) and R0(h1, h2) − 1 have the same sign.

To apply the uniform persistence theory inMagal and Zhao (2005); Smith and Zhao
(2001); Zhao (2017), we consider the susceptible phytoplankton-nutrient model (3.16)
(the sub-system of (2.1)–(2.3) with I = V = 0).

Let

U := {(S, N ) ∈ C([0, xl ],R2) : S(x) ≥ 0, N (x) ≥ 0 on [0, xl ]},
U∗ := {(S, N ) ∈ U : S(·) �≡ 0}.

Denote the solution semiflow �(t) : U → U of (3.16) as

�(t)(u0)(x) = (S(x, t, u0), N (x, t, u0)), x ∈ [0, xl ], t ≥ 0,

where (S(·, t, u0), N (·, t, u0)) is the solution of (3.16) with the initial value u0 =
(S0, N0) ∈ U . Following Lemmas 3.7 and 3.8 in Yan et al. (2022), one can obtain the
following conclusion.

Lemma 3.8 If Rp > 1, then (3.16) has a global attractor �0 in U∗ satisfying
�(t)(�0) = �0 and (S2, N2) ∈ �0 ⊂ Int(C([0, xl ],R2+).
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From Theorem 3.3, we have lim
t→∞(S(·, t), N (·, t)) = (0, N 0) when Rp < 1. The

numerical simulations in the next section suggest that the attractor �0 when Rp > 1
only contains the steady state (S2, N2).

Let

W∗ := {(S, I , V , N ) ∈ W : S(·) �≡ 0, I (·) �≡ 0 and V (·) �≡ 0}
and ∂W∗ := W \ W∗. (3.24)

Here W is defined in (3.1). For any (S, N ) ∈ U , we introduce a projection H by
H(S, N ) = S. Let

�0 = H(�0), S∗(x) = inf
S∈�0

S(x), S∗(x) = sup
S∈�0

S(x) for any x ∈ [0, xl ].
(3.25)

The uniform persistence shown in Lemma 3.8 implies that 0 < S∗(x) ≤ S∗(x) for
x ∈ [0, xl ] Substituting h1 = S∗, h2 = S∗ in (3.20) and (3.23) respectively, we
can define the principal eigenvalue λ0(S∗, S∗) and the basic reproduction number
R0(S∗, S∗) associated with (S∗, S∗). It follows from Lemma 3.7 that λ0(S∗, S∗) and
R0(S∗, S∗) − 1 have the same sign.

Let ϒ0 := {(S, 0, 0, N ) ∈ W : (S, N ) ∈ �0}. It will prove that E1 and ϒ0 are
uniform weak repellers with respect to W∗.

Lemma 3.9 If Rp > 1, then E1 is a uniform weak repeller for (2.1)–(2.3) with respect
to W∗, that is, there is a υ1 > 0 satisfying lim sup

t→∞
dist(
(t)σ0, E1) ≥ υ1 for any

σ0 = (S0, I0, V0, N0) ∈ W∗.

Proof If Rp > 1, there is an ε > 0 satisfying Rε
p = μ∗

p/(μp + ε) > 1. Note that both
f and g are continuous. Thus, for the above ε > 0, there is a υ1 > 0 such that

rg(N ) f (L(x, S + θ I )) − η(S + θ I )S − bβSV > rg(N 0) f (L(x, 0)) − ε

(3.26)

when ‖(S, I , V , N ) − (0, 0, 0, N 0)‖ < υ1 on [0, xl ]. By (3.9), μ∗
p − μp − ε > 0 is

the principal eigenvalue of

λξ = dpξ
′′ − ωξ ′ + (rg(N 0) f (L(x, 0)) − μp − ε)ξ, x ∈ (0, xl),

dpξ
′(0) − ωξ(0) = dpξ

′(xl) − ωξ(xl) = 0

with the positive eigenvalue function ξε(x).
Assume that the conclusion is not true. Then we can find a σ0 ∈ W∗ satisfying

lim sup
t→∞

‖
(t)σ0 − (0, 0, 0, N 0)‖ < υ1. (3.27)
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This suggests that

‖(S(·, t, σ0), I (·, t, σ0), V (·, t, σ0), N (·, t, σ0)) − (0, 0, 0, N 0)‖ < υ1, t ≥ T1

for some sufficiently large T1. It follows from the strong maximum principle and the
Hopf boundary lemma that S(·, T1, σ0) > 0 since σ0 ∈ W∗. Hence, there exists a
c1 > 0 such that S(·, T1, σ0) ≥ c1ξε(·). Let Ŝ = Se−(ω/dp)x and ξ̂ ε = ξεe−(ω/dp)x .
From (3.26) and the S-equation in (2.1), we have

Ŝt ≥ dp Ŝxx + ωŜx + (rg(N 0) f (L(x, 0)) − μp − ε)Ŝ, x ∈ (0, xl), t > T1,

Ŝx (0, t) = Ŝx (xl , t) = 0, t ≥ T1,

Ŝ(x, T1, σ0) ≥ c1ξ̂
ε(x), x ∈ [0, xl ].

It is easy to see that c1e(μ∗
p−μp−ε)(t−T1)ξ̂ ε(x) is a solution of

Ŝt = dp Ŝxx + ωŜx + (rg(N 0) f (L(x, 0)) − μp − ε)Ŝ, x ∈ (0, xl), t > T1,

Ŝx (0, t) = Ŝx (xl , t) = 0, t ≥ T1,

Ŝ(x, T1) = c1ξ̂
ε(x), x ∈ [0, xl ].

From the comparison theorem of parabolic system, we obtain

Ŝ(·, t, σ0) ≥ c1e(μ∗
p−μp−ε)(t−T1)ξ̂ ε(·)

for any t ≥ T1. Then lim
t→∞ S(·, t, σ0) = lim

t→∞ Ŝ(·, t, σ0)e(ω/dp)x = ∞ since Rε
p > 1.

It contradicts (3.27). Therefore, E1 is a uniform weak repeller with respect toW∗. 	

Lemma 3.10 Let S∗ and S∗ be defined as in (3.25). If Rp > 1 and R0(S∗, S∗) > 1,
then ϒ0 is a uniform weak repeller for (2.1)–(2.3)with respect toW∗, that is, there is a
υ2 > 0 satisfying lim sup

t→∞
dist(
(t)σ0, ϒ0) ≥ υ2 for any σ0 = (S0, I0, V0, N0) ∈ W∗.

Proof If R0(S∗, S∗) > 1, then λ0(S∗, S∗) > 0. This indicates that there exists a υ2 > 0
such that λ0(S∗ − υ2, S∗ + υ2) > 0 is the principal eigenvalue of

λϕ = dpϕxx + ωϕx + bβe−(ω/dp)x (S∗ − υ2)ψ − δϕ, x ∈ (0, xl), t > 0,

λψ = dvψxx + qδe(ω/dp)xϕ − μvψ − β(S∗ + υ2)ψ, x ∈ (0, xl), t > 0,

ϕx (0, t) = ϕx (xl , t) = ψx (0, t) = ψx (xl , t) = 0, t > 0

with the positive eigenvalue function (ϕ̂υ2 , ψ̂υ2).
If the conclusion does not hold, then for the above υ2, there exists a σ0 ∈ W∗

satisfying lim supt→∞ dist(
(t)σ0, ϒ0) < υ2. This means that

lim sup
t→∞

dist(S(·, t, σ0),�0) < υ2, lim sup
t→∞

‖I (·, t, σ0)‖ < υ2,

lim sup
t→∞

‖V (·, t, σ0)‖ < υ2 (3.28)
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and then there is a T2 > 0 such that

dist(S(·, t, σ0),�0) < υ2 for all t ≥ T2.

Since �0 is compact, we can find an S̄t ∈ �0 satisfying

‖S(·, t, σ0) − S̄t (·)‖ < υ2 for all t ≥ T2.

Hence,

S∗(·) − υ2 ≤ S̄t (·) − υ2 < S(·, t, σ0) < S̄t (·) + υ2 ≤ S∗(·) + υ2 for all t ≥ T2.

From the I - and V -equations in (2.1), we let Ī = I e−(ω/dp)x and have

Īt ≥ dp Īxx + ω Īx + bβe−(ω/dp)x (S∗ − υ2)V − δ Ī , x ∈ (0, xl), t > T2,

Vt ≥ dvVxx + qδe(ω/dp)x Ī − μvV − β(S∗ + υ2)V , x ∈ (0, xl), t > T2,

Īx (0, t) = Īx (xl , t) = Vx (0, t) = Vx (xl , t) = 0, t > T2.

By the strongmaximumprinciple and theHopf boundary lemma, Ī (x, T2, σ0) > 0 and
V (x, T2, σ0) > 0 forσ0 ∈ W∗. There is a c2 > 0 satisfying ( Ī (x, T2, σ0), V (x, T2, σ0))
≥ c2(ϕ̂υ2 , ψ̂υ2) on x ∈ [0, xl ]. It can be seen that c2eλ0(S∗−υ2,S∗+υ2)(t−T2)(ϕ̂υ2 , ψ̂υ2)

is a solution of

Īt = dp Īxx + ω Īx + bβe−(ω/dp)x (S∗ − υ2)V − δ Ī , x ∈ (0, xl), t > T2,

Vt = dvVxx + qδe(ω/dp)x Ī − μvV − β(S∗ + υ2)V , x ∈ (0, xl), t > T2,

Īx (0, t) = Īx (xl , t) = Vx (0, t) = Vx (xl , t) = 0, t > T2.

Applying the comparison theorem of parabolic system again, we have

( Ī (x, t, σ0), V (x, t, σ0)) ≥ c2eλ0(S∗−υ2,S∗+υ2)(t−T2)(ϕ̂υ2 ,

ψ̂υ2) for all x ∈ [0, xl ], t ≥ T2.

This implies that Ī (x, t, σ0), V (x, t, σ0) are unbounded since λ0(S∗ −υ2, S∗ +υ2) >

0. This contradicts with (3.28). The proof is completed. 	

Now we are ready to prove the existence of E3 and uniform persistence of model

(2.1)–(2.3) when Rp > 1 and R0(S∗, S∗) > 1.

Theorem 3.11 Let S∗ and S∗ be defined as in (3.25). If Rp > 1 and R0(S∗, S∗) > 1,
then model (2.1)–(2.3) is uniformly persistent for (W∗, ∂W∗), that is, there exists a
υ > 0 satisfying

lim inf
t→∞ S(·, t, σ0) > υ, lim inf

t→∞ I (·, t, σ0) > υ, lim inf
t→∞ V (·, t, σ0) > υ (3.29)

for any σ0 = (S0, I0, V0, N0) ∈ W∗. Moreover, model (2.1)–(2.3) possesses at least
one endemic steady state E3.
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Proof Applying the Hopf boundary lemma and strong maximum principle again, one
can obtain

S(·, t, σ0) > 0, I (·, t, σ0) > 0, V (·, t, σ0) > 0, N (·, t, σ0) > 0 (3.30)

for any t > 0 and σ0 ∈ W∗, where W∗ is defined in (3.24). Thus, W∗ is positively
invariant under 
(t). Set M∂ := {σ0 ∈ ∂W∗ : 
(t)σ0 ∈ ∂W∗ for any t ≥ 0} and let
ω(σ0) be the omega limit set of the forward orbit O+(σ0) := {
(t)σ0 : t ≥ 0}.

We claim that ω(σ0) ⊂ E1 ∪ ϒ0 for any σ0 ∈ M∂ . Note that 
(t)σ0 ∈ M∂ for any
fixed σ0 ∈ M∂ . This implies that S(·, t, σ0) ≡ 0 or I (·, t, σ0) ≡ 0 or V (·, t, σ0) ≡
0 for σ0 ∈ M∂ . The I and V equations in (2.1) are a cooperative system. Hence,
I (·, t, σ0) ≡ 0 if and only if V (·, t, σ0) ≡ 0. This means that we only need to
investigate the following three cases:
(i) if S0 ≡ 0, V0 ≡ 0, then S(·, t, σ0) ≡ 0 for any t ≥ 0 from the uniqueness of
solutions. The I -equation in model (2.1) reduces to

It = dp Ixx − ωIx − δ I , x ∈ (0, xl), t > 0,

dp Ix (0, t) − ωI (0, t) = dp Ix (xl , t) − ωI (xl , t) = 0, t > 0.

Similar to the derivation process in (3.13)–(3.15), we have

lim sup
t→∞

I (·, t, σ0) = 0, lim sup
t→∞

V (·, t, σ0) = 0 and lim sup
t→∞

N (·, t, σ0) = N0.

Thus, ω(σ0) = E1.
(ii) if S0 ≡ 0, V0 �= 0, then S(·, t, σ0) ≡ 0. Similar to case (i), we have ω(σ0) = E1.
(iii) if S0 �= 0, V0 ≡ 0, then lim sup

t→∞
I (·, t, σ0) = 0 and lim sup

t→∞
V (·, t, σ0) = 0 from

(3.13) and (3.14). By the theory of asymptotic autonomous systems (see Theorem
1.8 in Mischaikow et al. 1995 or Theorem 4.1 in Thieme 1992), (2.1) reduces to
(3.16). From Lemma 3.8, (S(·, t, u0), N (·, t, u0)) will eventually enter �0. Hence
ω(σ0) ⊂ ϒ0.

By Lemmas 3.9 and 3.10, E1 and ϒ0 are uniform weak repellers forW∗. To obtain
our conclusion, we let � : W → [0,∞) satisfying

�(σ0) := min

{
min

x∈[0,xl ]
S0(x), min

x∈[0,xl ]
I0(x), min

x∈[0,xl ]
V0(x)

}

for any σ0 = (S0, I0, V0, N0) ∈ W.

By (3.30), we get�−1(0,∞) ⊆ W∗ and�(
(t)σ0) > 0 for any t > 0 if�(σ0) > 0
or σ0 ∈ W∗ with �(σ0) = 0. For the semiflow 
(t) : W → W , � is a generalized
distance function. In view of the above analysis, we conclude that ω(σ0) ⊂ E1 ∪ ϒ0
for any σ0 ∈ M∂ , and there is no cycle in M∂ from E1 ∪ϒ0 to E1 ∪ϒ0. Furthermore,
E1 and ϒ0 are isolated in W . Let W s(E1) and W s(ϒ0) denote the stable sets of E1
and ϒ0 respectively. It is easy to see that W s(E1) ∩W∗ = ∅ and W s(ϒ0) ∩W∗ = ∅.
From Remark 3.2, 
(t) has a global attractor in W . By Theorem 3 in Smith and
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Fig. 2 Dependence of R0 on some model parameters. Here L0 = 100, N0 = 20 and the remaining
parameter values are derived from Table 1

Zhao (2001), there exists a υ > 0 such that min
φ∈ω(σ0)

�(φ) > υ for any σ0 ∈ W∗.
It follows that (3.29) holds and the uniform persistence is valid. Applying Theorem
3.7 and Remark 3.10 in Magal and Zhao (2005), 
(t) : W∗ → W∗ admits a global
attractor. By Theorem 4.7 in Magal and Zhao (2005), model (2.1)–(2.3) has at least
one endemic steady state E3 ∈ W∗. Similar to the proof in Lemma 3.5, we have
S3(x) > 0, N3(x) > 0 on [0, xl ]. Let Ī3 = I3e−(ω/dp)x . From the second and third
equalities in (3.7), we obtain

−dp Ī ′′
3 − ω Ī ′

3 + δ Ī3 = bβS3V3e−(ω/dp)x ≥ 0, x ∈ (0, xl), Ī3(0) = Ī3(xl) = 0

and

−dvV ′′
3 (x) + (μv + βS3)V3 = qδ I3 ≥ 0, x ∈ (0, xl), V ′

3(0) = V ′
3(xl) = 0.

Thus, I3(x) > 0 and V3(x) > 0 on [0, xl ] following the strong maximum principle.
The proof is complete. 	


From numerical simulations, we speculate that the global attractor�0 = {(S2, N2)}
in Lemma 3.8 and the basic reproduction number R0(S∗, S∗) = R0(S2, S2) = R0 can
be uniquely determined. Theorem 3.11 shows that lytic viruses will be transmitted in
the phytoplankton population if Rp > 1 and R0 > 1. Hence R0 = 1 is a threshold for
lytic viruses from persistence to extinction. Figure2 reveals the evolution of R0 with
respect to model parameters. From numerical simulations in Sect. 3.3, the detailed
lytic virus transmission is more complicated. The endemic state may be a positive
steady state E3, or a positive spatially inhomogeneous periodic solution.
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Fig. 3 The solutions of model (2.1)–(2.3) converge to E1 for μp = 1, μv = 1.2

Fig. 4 The solutions of model (2.1)–(2.3) converge to E2 for μp = 0.1, μv = 24

Fig. 5 The solutions of model (2.1)–(2.3) converge to E3 for μp = 0.1, μv = 1.6

Fig. 6 The solutions of model (2.1)–(2.3) converge to a positive spatially inhomogeneous periodic solution
for μp = 0.1, μv = 0.6

3.3 Simulations

In view of the above model analysis, we do some numerical simulations to further
describe dynamics of the model (2.1)–(2.3). From Figs. 3, 4, 5 and 6, one can observe
that the solutions of model (2.1)–(2.3) converge to different asymptotic states for
different μp, μv . Here ecologically reasonable parameter values are from Table 1
and the initial conditions are S0(x) = 40 + 5 sin x, I0(x) = 10 + 5 cos x, V0(x) =
40 + 20 cos x, N0(x) = 20 + 10 sin x on [0, 10].

In Fig. 3, the extinct steady state E1 is the attractor with Rp = 0.49. Phytoplankton
are extinct and thus the lytic virus does not spread in the water column. Nutrients tend
to the input concentration N 0 and are spatially uniformly distributed. Figure4 shows
that the (possibly unique) disease-free steady state E2 is the attractor when Rp =
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4.91 and R0 = 0.13. Phytoplankton invade aquatic ecosystems and exhibit vertical
aggregation. Lytic virus still cannot be transmitted among phytoplankton because lytic
virus mortality is high.

The model (2.1)–(2.3) is uniformly persistent and an endemic steady state E3
appears to be the asymptotic state when Rp = 4.91 and R0 = 1.59 (see Fig. 5).
As μv decreases further (Rp = 4.91, R0 = 3.24), a positive spatially inhomogeneous
periodic solution becomes the asymptotic state, which arises from bifurcate from E3
via a Hopf bifurcation (see Fig. 6). Both Figs. 5 and 6 show the lytic virus is prevalent
in the phytoplankton, either in a form of spatially heterogenous steady state (Fig. 5) or
a spatially heterogenous temporal-oscillatory fashion (Fig. 6). It is noticeable that sus-
ceptible phytoplankton, virus-infected phytoplankton and lytic viruses aggregate near
the water surface (for only short time in the oscillatory case). Comparing Fig. 4 (a2)–
(b2) and Fig. 5 (a3)–(b3), one can also observe that lytic viruses reduce phytoplankton
biomass.

4 Phytoplankton blooms and lytic virus transmission

Phytoplankton blooms are an important manifestation of the pollution of the aquatic
environments, and even lead to the collapse of entire aquatic ecosystems. It has been
shown that the wide spreading of lytic viruses transmission among phytoplankton can
control phytoplankton blooms from observations and experiments (Fuhrman 1999;
Kuhlisch et al. 2021). In the following discussion, we will verify these observations
and experimental results with the proposed model (2.1)–(2.3). It is noted that the
role of ecological factors in the interaction of phytoplankton blooms and lytic virus
transmission is not very clear. It is also necessary and significant to explore the effects
of ecological factors in this process.

We focus on the environmental parameters related to viral transmission and eco-
logical factors in model (2.1)–(2.3). Those parameters include viral infection-related
rates β, q, spatial ecological factors dp, dv, dn, ω, and resource-related ecological
factors L0 and N 0. In the figures below, we show the evolution of asymptotic states
(steady state solutions E1, E2, E3 and the spatially inhomogeneous periodic solu-
tion) for different parameter values. When the solutions of (2.1)–(2.3) converge
to one of E1, E2, E3 or the spatially inhomogeneous periodic solution, numerical
bifurcation diagrams show the evolution trend of densities of susceptible phyto-
plankton ((1/xl)

∫ xl
0 S(x)dx), virus-infected phytoplankton ((1/xl)

∫ xl
0 I (x)dx), and

free lytic viruses ((1/xl)
∫ xl
0 V (x)dx). For the time-periodic solutions, the minimum

and maximum values are shown. Time series diagrams reveal the evolution of den-
sities of susceptible phytoplankton (((1/xl)

∫ xl
0 S(x, t)dx), infected phytoplankton

((1/xl)
∫ xl
0 I (x, t)dx) and lytic viruses ((1/xl)

∫ xl
0 V (x, t)dx) over time. The parame-

ter values of the numerical analysis used here are derived fromTable 1. The simulations
are implemented in MATLAB via the finite difference method.

We first examine the effect of lytic virus transmission parameters β, q. Changes in
these parameters are closely related to ecological factors such as temperature, salinity
(Demory et al. 2021). The transmission coefficient β is an important indicator for
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Fig. 7 a Effect of the transmission coefficient β on the density of susceptible phytoplankton, virus-infected
phytoplankton and lytic viruses. b Time series of density of phytoplankton and viruses

assessing host resistance to infection. Figure7 displays the variation of phytoplankton
and lytic virus densities in model (2.1)–(2.3) with the transmission coefficient β. For
β = 0, one can observe that lytic viruses do not spread among phytoplankton and that
susceptible phytoplankton biomass is at a high level. When β increases, susceptible
phytoplankton biomass gradually declines, while lytic virus loads ascend sharply and
a significant proportion of phytoplankton are infected by viruses. In Fig. 7a, b, spatially
inhomogeneous periodic solutions bifurcate frompositive steady states through aHopf
bifurcation at β = 0.0032. This shows that increasing the transmission coefficient will
lead to persistent phytoplankton blooms, but a large transmission coefficient will cause
a large amplitude pulse bloom which occurs periodically about every thirty days. In
the latter case, an increase of susceptible phytoplankton precedes the peak of virus
transmission, then the phytoplankton population is at a low level for a long time until
the next wave.

The lytic virus burst size varies with host genotype or environmental conditions.
It is an important factor for describing the transmission of lytic viruses among phy-
toplankton (Edwards and Steward 2018). Figure8 shows an evolution of asymptotic
states in model (2.1)–(2.3) for varying burst size q similar to the one for transmission
coefficient. The dynamics of the model progress from a disease-free steady state, to
an endemic steady state, and then to a spatially inhomogeneous periodic solution.
This indicates that the small burst size does not cause phytoplankton infection and
that only a certain degree of burst size can lead to the spread of lytic viruses among
phytoplankton and a decrease in total phytoplankton biomass.

Emiliana huxleyi are eukaryotic microscopic phytoplankton that are widely dis-
tributed in oceans or brackish waters. They are one of the important producers in
marine ecosystems, especially playing an important role in the carbon cycle of oceans.
Emiliana huxleyi have frequent, large-scale blooms each year. It is known that Emil-
iana huxleyi can be massively infected by a lytic virus with a large double-stranded
DNA structure. The lytic virus is called Emiliana huxleyi virus and causes massive
mortality of Emiliana huxleyi. In Fuhrman (1999); Kuhlisch et al. (2021), the authors
stated that Emiliana huxleyi blooms are often terminated by Emiliana huxleyi virus
from experiments and observations.
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Fig. 8 a Effect of the burst size q on the density of susceptible phytoplankton, virus-infected phytoplankton
and lytic viruses. b Time series of density of phytoplankton and viruses

Fig. 9 Effect of the vertical turbulent diffusivity D = dp = dv = dn on the density of susceptible
phytoplankton, virus-infected phytoplankton and lytic viruses

The periodic pattern shown in Fig. 7b is consistent with the observations and experi-
mental results ofEmiliana huxleyi-lytic virus interactions inFuhrman (1999);Kuhlisch
et al. (2021). At the beginning of a bloom cycle, both phytoplankton and lytic virus
densities are at a very lowvalue.After that, the susceptible phytoplankton biomass rises
rapidly and reaches a maximum, while the virus density remains almost constant. Phy-
toplankton blooms occur at this time. As the time progresses further, there is a sudden
and dramatic increase in lytic virus density. This indicates a large-scale spread of lytic
viruses among phytoplankton. During this process, the total phytoplankton biomass
declines sharply. When the virus reaches its maximum, phytoplankton biomass tends
to almost zero, thus the bloom ends. In the last stage of this bloom cycle, the viral den-
sity decreases, and is again at a low value together with phytoplankton. Figure8b also
exhibits a similar periodic bloom cycle pattern. The above findings effectively validate
the large-scale transmission of lytic viruses to terminate phytoplankton blooms.

The evolution of phytoplankton and lytic virus densities with different spatial eco-
logical factors (turbulent diffusivity and directional movement velocity) can be seen
in Figs. 9 and 10. Phytoplankton, viruses, and nutrients all move randomly in the water
column with turbulence, so it is assumed that they have the same diffusion coefficient
D = dp = dv = dn . If there are no viruses in the aquatic environment, the phytoplank-
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Fig. 10 Effect of the sinking or buoyant velocity ω on the density of susceptible phytoplankton, virus-
infected phytoplankton and lytic viruses

Fig. 11 Effects of the water surface light intensity L0 and sediment input nutrient concentration N0 on the
density of susceptible phytoplankton, virus-infected phytoplankton and lytic viruses

ton biomass rises rapidly and reaches a high value with increasing turbulence intensity.
It is because adequate nutrient transport in the water column facilitates better phyto-
plankton growth (see Fig. 9a). When the lytic virus spreads among phytoplankton, the
biomass of phytoplankton, including susceptible and infected phytoplankton, remains
almost unchanged for D ∈ (0.02, 5) except the periodic oscillatory patterns occurring
for the intermediate diffusion rate (see Fig. 9b). In this process, there are two stability
switches from steady states to periodic oscillations, and then back to steady states.
This illustrates that the presence of lytic viruses not only leads to complex dynamics,
but also effectively reduces the phytoplankton biomass. Comparing Fig. 10a, b, simi-
lar conclusions are obtained for the directional movement velocity ω. This once again
confirms that lytic virus transmission can effectively control phytoplankton blooms.

Light and nutrients are two important ecological factors, and their abundance
directly affects the invasion of phytoplankton and the spread of lytic viruses. We
choose the water surface light intensity L0 and sediment nutrient input concentration
N 0 as typical resource-related ecological factors to explore the survival and extinc-
tion of phytoplankton and lytic viruses. Figure11 shows that low L0 or N 0 causes
phytoplankton extinction since light and nutrients are two essential resources for phy-
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Fig. 12 Parameter regions of L0 versus N0 for the survival and extinction of phytoplankton and lytic
viruses. Phytoplankton are extinct in �1 (Rp < 1), phytoplankton survive while lytic viruses become
extinct in �2 (Rp > 1, R0 < 1), lytic viruses spread among phytoplankton in a steady state form in �3
(Rp > 1, R0 > 1) or as a spatially inhomogeneous periodic solution form in �4 (Rp > 1, R0 > 1)

toplankton growth. With the gradual increase of L0 or N 0, phytoplankton first invade
aquatic ecosystems, after which lytic viruses begin to spread among phytoplankton.
When L0 or N 0 is at a high value, the system undergoes aHopf bifurcation and exhibits
periodic oscillations. This is a classical paradox of enrichment.

The combined effects of L0 and N 0 are presented in Fig. 12. Using the basic ecolog-
ical reproductive index Rp and basic reproduction number R0 to distinguish dynamic
behavior, we take L0 and N 0 as the coordinate parameters to divide the first quad-
rant of the L0 − N 0 plane into four regions �i for i = 1, 2, 3, 4. Phytoplankton go
extinct in �1 (Rp < 1); Phytoplankton successfully invade aquatic habitats, while
lytic viruses cannot survive in �2 (Rp > 1 and R0 < 1). If Rp > 1 and R0 > 1,
lytic viruses spread among phytoplankton as a steady state form in�3 or as a spatially
inhomogeneous periodic solution form in �4. These findings suggest that it is very
difficult for lytic viruses to spread in a low-light or oligotrophic aquatic ecosystem.

5 Conclusion and discussion

Viruses are pervasive components of aquatic ecosystems, and have important influ-
ences on aquatic biodiversity and biogeochemical cycles (Suttle 2005; Suttle et al.
1990). As one of the common viruses, lytic viruses use phytoplankton cells as their
primary hosts and are ubiquitous in aquatic ecosystems (Demory et al. 2021; Edwards
and Steward 2018; Fuhrman et al. 2011; Kuhlisch et al. 2021). They replicate and
reproduce inside phytoplankton cells, and eventually release virions by lysing the
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cells. The spread of lytic viruses causes a dramatic decrease in phytoplankton biomass
and even terminates phytoplankton blooms. Few mathematical models have been for-
mulated to explore the interactions between phytoplankton and lytic viruses and to
expound the mechanisms of lytic virus transmission.

The dynamic model (2.1)–(2.3) is proposed to describe the spread of lytic virus
among phytoplankton in a water column. Compared with the existing models in
Béchette et al. (2013); Beretta and Kuang (1998); Demory et al. (2021); Edwards
and Steward (2018); Fuhrman et al. (2011), there are two novel points in model (2.1)–
(2.3). One is to consider a poorly mixed aquatic environment and take account of
random movements of phytoplankton and viruses. The other is to add phytoplankton
sinking movement and include light as a factor contributing to the growth of phyto-
plankton. Our results show that these newly added factors have a significant effect on
the dynamics of phytoplankton growth and the spread of lytic viruses.

Two quantitative ecological indices: the basic ecological reproductive index Rp for
phytoplankton invasion and the basic reproduction number R0 for virus transmission,
are rigorously derived from the model. According to Theorems 3.3, 3.6, 3.11 and
corresponding remarks, phytoplankton go extinct if Rp < 1, phytoplankton success-
fully invade and lytic viruses are extinct if Rp > 1 and R0 < 1, lytic viruses spread
among phytoplankton as a steady state form or a spatially inhomogeneous periodic
solution form if Rp > 1 and R0 > 1. By using theoretical and numerical analysis of
the model (2.1)–(2.3), we consider the interaction between phytoplankton blooms and
lytic virus transmission and the role of ecological factors. From the numerical bifur-
cation diagrams (Figs. 7, 8, 9, 10, 11), one can observe that the spread of lytic viruses
controls phytoplankton biomass. Time series diagrams (Figs. 7, 8b) reveal large-scale
outbreaks of lytic virus infection effectively terminate phytoplankton blooms. The
findings validate the observations and experimental results of Emiliana huxleyi-lytic
virus interactions in Fuhrman (1999); Kuhlisch et al. (2021). The studies also indicate
that it is very difficult for lytic viruses to spread in a low-light or oligotrophic aquatic
environment (see Figs. 11, 12).

In this paper, we attempt to model the spread of lytic virus among phytoplankton,
and the mechanism of lytic virus transmission and its relationship with phytoplank-
ton blooms are explored. There are still many mathematical and biological problems
worthy of further study. Mathematically, more dynamic properties of model (2.1)–
(2.3) need to be rigorously investigated. For example, the uniqueness and stability of
disease-free steady state E2 and endemic steady state E3, and the existence of spa-
tially inhomogeneous periodic solutions. Biologically, the phytoplankton intracellular
nutrient-to-carbon ratio in model (2.1)–(2.3) is assumed to be constant, but in reality,
it is significantly variable (Loladze et al. 2000; Wang et al. 2007). It is desirable to
include this factor in phytoplankton-virus interactions. Bacteria are a very important
aquatic microorganism. They decompose organic carbon produced by phytoplankton
and are infected by aquatic viruses (Fuhrman 1999; Suttle 2005; Wang et al. 2007;
Yan et al. 2022). It is very natural to add bacteria into the model (2.1)–(2.3) and further
explore the carbon cycle in aquatic ecosystems. In addition, the effects of zooplankton,
fish (Chen et al. 2017) and toxins (Shan and Huang 2019; Nie et al. 2017) could also
be considered.
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