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Standing Waves of Coupled Schrödinger
Equations with Quadratic Interactions from
Raman Amplification in a Plasma

Jun Wang and Junping Shi

Abstract. The standing wave solutions of a coupled nonlinear Schrödinger
equations with quadratic nonlinearities from Raman amplification of laser
beam in a plasma are considered. For both the original three-wave system
and a reduced two-wave system, the existence/nonexistence, continuous
dependence and asymptotic behavior of positive ground state solutions
are established. In particular, multiple positive standing wave solutions
are found via a combination of variational and bifurcation methods for the
attractive interaction case, which has not been found for the conventional
nonlinear Schrödinger systems with cubic nonlinearities.
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1. Introduction and Main Results

1.1. Physical Models

Raman amplification in a plasma is an instability phenomenon taking place
when an incident laser field propagates into a plasma. A Schrödinger type
model has been established to describe such phenomenon [19,22,59]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(i∂t + ivC∂y + α1∂
2
y + α2Δ⊥)AC =

b2

2
nAC − χ(∇ · E)ARe−iθ,

(i∂t + ivR∂y + γ1∂
2
y + γ2Δ⊥)AR =

bc

2
nAR − χ(∇ · E∗)ACeiθ,

(i∂t + δ1Δ)E =
b

2
nE + χ∇(A∗

RACeiθ),

(∂2
t − v2

s�)n = aΔ(|E|2 + b|AC |2 + c|AR|2),

(1.1)

where the vector fields AR,AC , E : R3 → C
3 are the incident laser field, the

backscattered Raman field and the electronic plasma-wave, respectively, and
n is the variation of the density of the ions; the parameters vC and vR are
group velocities, α1, α2, γ1, γ2, χ and δ1 are dispersion coefficients, a, b, c are
the coefficients of the nonlinearities, θ = k1y − w1t, w1 = δ1k

2
1, w1 is the main

frequency of the Raman component, k1 is the wave number and Δ⊥ = ∂2
x +∂2

z .
The model (1.1) was derived to describe nonlinear interaction between

a laser beam and a plasma. From a physical point of view, when an incident
laser field enters a plasma, it is backscattered by a Raman type process. These
two waves interact to create an electronic plasma wave; then the three waves
combine to create a variation of the density of the ions which has an influence
on the three proceedings waves. The system (1.1) describing this phenomenon
is composed by three Schrödinger equations coupled to a wave equation and
reads in a suitable dimensionless form. For a complete description of this model
as well as a precise description of the physical coefficients, we refer to [19,20,
22].

Following simplifications in [22], a subsystem of (1.1) with nonlinear ef-
fects can be simplified and converted into a system of three-wave nonlinear
Schrödinger equations:

⎧
⎪⎨

⎪⎩

i∂tv1 = −Δv1 − μ1|v1|p−2v1 − χv̄2v3,

i∂tv2 = −Δv2 − μ2|v2|p−2v2 − χv̄1v3,

i∂tv3 = −Δv3 − μ3|v3|p−2v1 − χv1v2,

(1.2)

where vi (i = 1, 2, 3) are complex valued functions of (t, x) ∈ R × R
N , p > 2,

N ≤ 3, μi > 0 (i = 1, 2, 3) and χ > 0. Orbital stability of standing wave solu-
tions in form of (eiwtψw, 0, 0), (0, eiwtψw, 0) and (0, 0, eiwtψw) were considered
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in [21,22], see also [52] for the case of dimension N = 4, 5. In the present paper
we look for standing waves of (1.2) of the form

(v1(t, x), v2(t, x), v3(t, x)) = (u(x)eiλ1t, v(x)eiλ2t, w(x)eiλ3t), (1.3)

where u, v and w are real-valued functions of x ∈ R
N . One can see that if

λ3 = λ1 + λ2, substituting (1.3) into (1.2), then we find that (u, v, w) is a
solution of the system

⎧
⎪⎨

⎪⎩

−Δu + λ1u = μ1|u|p−2u + χvw, in R
N ,

−Δv + λ2v = μ2|v|p−2v + χuw, in R
N ,

−Δw + λ3w = μ3|w|p−2w + χuv, in R
N .

(1.4)

Here p satisfies 2 < p < 2∗, 2∗ = 2N/(N −2) if N ≥ 3, and 2∗ = ∞ if N = 1, 2.
When 3 < p < 2∗ and μ1 = μ2 = μ3 = 1, the existence of a positive least energy
solution of (1.4) for χ > 0 sufficiently large was proved in [56]. The existence
and nonexistence of solutions to (1.4) for the case of 2 < p < 3 have been
shown in [69]. In the present paper, we consider the existence, nonexistence
and multiplicity of solutions to system (1.4) with p = 3, i.e.,

⎧
⎪⎨

⎪⎩

−Δu + λ1u = μ1|u|u + βvw, in R
N ,

−Δv + λ2v = μ2|v|v + βuw, in R
N ,

−Δw + λ3w = μ3|w|w + βuv, in R
N .

(1.5)

Here the parameters λi, μi > 0 for i = 1, 2, 3 and β ∈ R.
A special case of (1.5) with u = w, λ1 = λ3 and μ1 = μ3 reduces to a

two-wave equation
⎧
⎨

⎩

−Δu + λ1u = μ1|u|u + βvu, in R
N ,

−Δv + λ2v = μ2|v|v +
β

2
u2, in R

N .
(1.6)

Indeed, under the assumptions we know that ũ = w̃ =
√

2u =
√

2w. Then
the first and third equations of (1.5) becomes −Δũ + λ1ũ = μ̃1|ũ|ũ + βvũ,
and the second equation (1.5) become −Δv + λ2v = μ2|v|v + β

2 ũ2, where
μ̃1 = μ1

2 . Hence, we can get the system (1.6) by re-notation the parameters.
The existence and multiplicity of positive solutions of (1.6) when λ1 = λ2 > 0
and μ2 = 1 have been investigated in [23], and the orbital stability of standing
waves for the corresponding evolution equation was also considered. When
μi = 0 for 1 ≤ i ≤ 3, the systems (1.5) and (1.6) are in the same form as the
Schrödinger system of Second Harmonic Generation (SHG) [73–75], and the
existence of ground state and multi-pulse solutions for 2 ≤ N ≤ 5 has been
investigated in [75] (see also [68]). In the papers [24,25,35], the authors show
the existence of bound state and ground state of Schrödinger-KdV system
with cubic nonlinearity in dimension one, where the terms μ1|u|u and μ2|v|v
are replaced by u3 and 1

2v2 in system (1.6).
Our main results of the present paper are for three cases of (1.5) and

(1.6):
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1. Under the assumption of λ1 
= λ2 and λi > 0, the existence/nonexistence,
uniqueness/multiplicity, asymptotical behavior and bifurcation of posi-
tive solutions or nontrivial solutions of the two-wave system (1.6) (see
Sect. 1.2);

2. Liouville’s type results of the two-wave system (1.6) when λ1 = λ2 = 0
(see Sect. 1.3);

3. The existence/nonexistence, multiplicity, asymptotical behavior and bi-
furcation of positive solutions or nontrivial solutions of the three-wave
system (1.5) (see Sect. 1.4).

The two-wave system (1.6) and three-wave system (1.5) considered here
are both systems of nonlinear Schrödinger type equations with quadratic inter-
action terms. More often nonlinear Schrödinger equations arising from physical
applications have cubic interactions. For example, the Kerr effect in nonlinear
optics, Gross–Pitaevskii equation of Bose–Einstein condensate [8,9,14,65,66].
Models of multiple wave interactions also often inherit such cubic nonlinear ef-
fect, see for example [1,2,4–6,11,16,17,31,34,40–42,48,50,51,53,60,62–64,67]
and the references therein. But in recent years there have been increasing in-
terests in nonlinear Schrödinger type equations with quadratic nonlinearities,
which arises from nonlinear optical effects such as Second Harmonic Gener-
ation (SHG) [13,36,45,55,74,75], and Lotka-Volterra competition models in
ecology [26,29,30].

One of our main findings in this paper is that the two-wave system (1.6)
and three-wave system (1.5) have multiple positive solutions for certain pa-
rameter values (by combining the variational and bifurcation methods). This
is quite different from other Schrödinger type two-wave or three-wave systems.
For the cubic two-wave system studied in [2,4,34,42,49], the positive solution
appears to be unique for all β > 0 when it exists (though not proved except the
special case considered in [71]), and the uniqueness is numerically verified in
[38] for some parameters. On the other hand, it is known when β < 0 the cubic
Schrödinger system has multiple positive solutions [4]. When μ1 = μ2 = 0 in
(1.7), it becomes the Second-Harmonic Generation type I model considered in
[75], and in that case, the uniqueness of the positive solution is known for λ = 0
and λ = 1 and conjectured for all λ > 0 and β > 0 (see [18,75]). Hence, the
nonuniqueness for (1.6) obtained here provides an example of possible multiple
standing waves for Schrödinger type systems with attractive interaction.

The remaining part of the paper is organized as follows: in Sects. 1.2, 1.3
and 1.4, we state our main results on two-wave system (1.6) and three-wave sys-
tem (1.5), respectively. Some preliminaries for two-wave system are reviewed
in Sect. 2. We prove the existence/nonexistence results for two-wave system
in Sect. 3, and bifurcation and asymptotic behavior of solutions of two-wave
system are considered in Sect. 4. Some Liouville type results for two-wave sys-
tem are proved in Sect. 5. Finally, results for three-wave system are proved in
Sect. 6.

Throughout the paper, we use the following notation for the function
spaces: X = H1(RN ), Xr = H1

r (RN ) = {u ∈ H1(RN ) : u is radially sym
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metric}, Y = L2(RN ) and Yr = L2
r(R

N ) = {u ∈ L2(RN ) : u is radially
symmetric}. Also for any linear space Z, Zk is the k-fold Cartesian product
of Z. In this paper we will consider Z2 and Z3 for Z = X,Xr, Y, Yr.

1.2. General Two-Wave System

Let

ũ(x) = u

(
x√
λ1

)

, ṽ(x) = v

(
x√
λ1

)

, β̃ =
β

λ1
, μ̃1 =

μ1

λ1
, μ̃2 =

μ2

λ1
, λ̃2 =

λ2

λ1
.

Then (ũ(x), ṽ(x)) satisfies (1.6) when the parameters λ1, λ2, μ1, μ1, β are re-
placed by 1, λ̃2, μ̃1, μ̃1, β̃, respectively. In the following we shall only consider

⎧
⎨

⎩

−Δu + u = μ1|u|u + βvu, in R
N ,

−Δv + λv = μ2|v|v +
β

2
u2, in R

N ,
(1.7)

as the solutions of (1.6) can be easily converted from the ones of (1.7) via
above scaling. The energy functional associated with (1.7) is defined by

J (u, v) =
1
2

∫

RN

(|∇u|2 + u2) +
1
2

∫

RN

(|∇v|2 + λv2) − β

2

∫

RN

u2v

− 1
3

∫

RN

(μ1|u|3 + μ2|v|3) for (u, v) ∈ X2,

(1.8)

where N ≤ 6. We say that (u, v) is a weak solution of (1.7) if (u, v) ∈ X2, and

J ′(u, v)(φ, ϕ) =
∫

RN

(∇u∇φ + uφ) +
∫

RN

(∇v∇ϕ + λvϕ) − β

∫

RN

uvφ

− β

2

∫

RN

u2ϕ −
∫

RN

(μ1|u|uφ + μ2|v|vϕ) = 0,

for each (φ, ϕ) ∈ X2.
A solution (u, v) of (1.7) is nontrivial if u 
= 0 and v 
= 0. A solution (u, v)

with u > 0 and v > 0 is a positive solution. A solution is called a ground state
solution (or positive ground state solution) if its energy is minimal among all
the nontrivial solutions (or all the nontrivial positive solutions) of (1.7). The
system (1.7) also possesses semitrivial solutions of type (0, v).

In the variational setting we consider a weak solution (u, v) of (1.7) in
the space X2, and we will also consider the problem in the subspace of radially
symmetric functions X2

r . We say that (u, v) ∈ X2
r is a radial solution, and it is

called a radial ground state solution (or positive radial ground state solution)
if its energy is minimal among all the nontrivial radial solutions (or all the
positive radial solutions) of (1.7).

A more general notation of stability of a solution of (1.7) can be defined
through the Morse index. Let (u, v) be a nonnegative solution of (1.7). Then
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for each (φ, ϕ) ∈ X2, one has that

L(φ, ϕ) ≡ J ′′(u, v)[(φ, ϕ), (φ, ϕ)]

=
∫

RN

(|∇φ|2 + φ2 + |∇ϕ|2 + λϕ2) − β

∫

RN

(vφ2 + 2uϕφ)

− 2
∫

RN

(μ1uφ2 + μ2vϕ2).

Let S− be the negative subspace of X2 such that L|S− is negatively definite.
Then the Morse index of a nonnegative solution (u, v) is defined as M(u, v) =
dim S−. Similarly we define S−

r to be the subspace of X2
r such that L|S−

r
is

negatively definite, and the radial Morse index to be Mr(u, v) = dim S−
r .

To state our first existence result for (1.7), we set

β̄0 =
2μ2

[(
λ

N−6
6 + λ−N

3

) 3
2 −
(

μ1

μ2
+ λ−N

2

)]

3min
{

1, λ− N
2

} ,

β̄1 =
2
3

[
μ2λ

N−6
4 (2 + (λ − 1)σ0)

3
2 − (μ2 + μ1)

]
,

β̄2 =
2
3

[

μ2

(

2 +
(

1
λ

− 1
)

σ0

) 3
2

− (μ1 + μ2)

]

,

(1.9)

and
β̂0 = min{β̄0, β̄1, β̄2}, (1.10)

where σ0 = |w0|2L2(RN )/|w0|3L3(RN ), and w0 is the unique positive solution of

− Δu + u = u2, u ∈ Xr ≡ H1
r (RN ). (1.11)

The following is a set of basic existence results for the nontrivial solutions of
(1.7).

Theorem 1.1. Suppose that μ1, μ2, λ > 0 and β ∈ R.
(i) For 1 ≤ N ≤ 5, (1.7) possesses a nontrivial radial ground state solution

z ∈ X2
r if one of the following conditions holds:

(A1) μ1, μ2 > 0, λ >

(
μ2

μ1

) 4
6−N

and β ∈ R; or

(A2) μ1, μ2 > 0, 0 < λ ≤
(

μ2

μ1

) 4
6−N

and β > β̂0.

In addition, if β > 0, then z is also a positive ground state solution of
(1.7).

(ii) If N = 6 and λ > 0, or N > 6, λ, μ1, μ2 > 0 and β > 0, then (1.7) has
no positive solution.

(iii) For N = 1, (1.7) has a nontrivial radial ground state solution z ∈ X2
r if

(A3) μ1, λ, β > 0, and −∞ < μ2 ≤ 0.
(iv) For any β∗ > 0, there exists a Kβ∗ > 0 such that for (u, v) ∈ Sβ∗ ,

|u|∞ + |v|∞ ≤ Kβ∗ ,
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where Sβ∗ = {(u, v) : (u, v) is nontrivial radial positive solution of (1.7)
with β ∈ [0, β∗]}.

Remark 1.2.
1. The range of β in the existence results of (i) of Theorem 1.1 is not the

best one which we can obtain. We give the present form to avoid heavy
notations at this stage, and the more precise range for β can be found in
section 3.1 (see (3.10)).

2. If λ = 1, then for the constants defined in (1.9), β̂0 = β̄0 = β̄1 = β̄2 =
2(μ2 − μ1)/3 ≥ 0 as the condition (A2) is satisfied. For general λ > 0,
one can also show that β̂0 > 0 under the condition (A2).

3. If μ2 = 0 in (1.7), then the conclusions (i) and (iii) still hold for each
λ, μ1 > 0.

Remark 1.3. Comparing to the case of 2 < p < 3 in [69], although the con-
clusions (i)–(ii) and (iv) in Theorem 1.1 are similar to the case 2 < p < 3,
we have the following differences. First of all, due to the sub-quadratic term
|u|p−2u(2 < p < 3) in (1.4), the energy functional is neither bounded from
below on Nehari manifolds nor satisfies the Mountain-Pass condition in X2.
The author combined the Mountain-Pass theorem in convex set and Nehari
manifolds methods to overcome the difficulty and prove the existence posi-
tive solutions. This is the main contribution of the previous paper [69]. On
the other hand, as we have already pointed out that one of our main findings
in this paper is that the two-wave system (1.6) and three-wave system (1.5)
have multiple positive solutions for certain parameter values (by combining
the variational and local bifurcation methods). We also prove the Liouville’s
type results of the systems (1.6) and (1.5). This is quite different from other
cubic Schrödinger type two-wave or three-wave systems.

In the next result we show the existence of small amplitude positive
solutions which bifurcate from the known semi-trivial solutions of (1.7), and
in some cases, the uniqueness of positive solution can also be proved. We denote
S1 to be the best constant of the embedding H1(RN ) ↪→ L3(RN ):

S1 = inf
u∈H1(RN )\{0}

∫

RN

(|∇u|2 + |u|2)
(∫

RN

u3

) 2
3

.

More generally the equation

− Δu + λu = μu2, u ∈ Xr ≡ H1
r (RN ), (1.12)

has a unique positive solution (see Lemma 2.1)

wλ,μ(x) =
λ

μ
w0(

√
λx). (1.13)

By the regularity results one knows that wλ,μ(x) ∈ Xr
p :=W 2,p(RN ) for p ∈

(
N
2 ,∞) ∩ (1,∞). Now we have the following main results.
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Theorem 1.4. Suppose that μ1, μ2, λ > 0. Then the following results hold:
(i) Let β1 > 0 be the principal eigenvalue of

− Δφ + φ = βwλ,μ2φ, φ ∈ Xr
p = W 2,p(RN ), (1.14)

and let φ1,β1 > 0 be the corresponding positive eigenfunction. Then there
exists τ0 > 0 such that when β ∈ (β1−τ0, β1), (1.7) has a positive solution
(u1β , v1β) in the form of

u1β =
β1 − β

μ1

∫

RN

φ2
1,β1

wλ,μ2

∫

RN

φ3
1,β1

φ1,β1 + o(β − β1), v1β = wλ,μ2 + o(β − β1).

Moreover, if either (A1) or (A2) holds, then (u1β , v1β) is not a ground
state solution, and M(u1β , v1β) = 2 for β ∈ (β1 − τ0, β1). Additionally,
we have that M(0, wλ,μ2) = 2 for β1 < β < β1 + τ0 and M(0, wλ,μ2) = 1
for 0 < β < β1.

(ii) There exists τ1 > 0 such that when β ∈ (−τ1, τ1), (1.7) has exactly two
nontrivial solutions (u2β , v2β) and (u3β , v3β) in the form of

u2β = w1,μ1 + β(−Δ + 1 − 2μ1w1,μ1)
−1(w1,μ1wλ,μ2) + o(β),

v2β = wλ,μ2 +
β

2
(−Δ + λ − 2μ2wλ,μ2)

−1(w2
1,μ1

) + o(β),

u3β = w1,μ1 + o(β), v3β =
β

2
(−Δ + λ)−1(w2

1,μ1
) + o(β);

(1.15)

when β ∈ (0, τ1), both of (u2β , v2β) and (u3β , v3β) are positive, and when
β ∈ (−τ1, 0), (u2β , v2β) is positive but (u3β , v3β) satisfies u3β > 0, v3β <
0. Moreover, (u2β , v2β) is not a ground state solution with M(u2β , v2β) =
2, and (u3β , v3β) is a ground state solution with M(u3β , v3β) = 1.

(iii) Suppose that λ = 1, β = μ2 > 0 and 1 ≤ N ≤ 5, and let (u0, v0) be a

positive solution of (1.7). Then u0 =
2μ1

μ2
v0, and v0 satisfies

− Δv + v =
(

μ2 +
2μ2

1

μ2

)

v2, v ∈ H1(RN ). (1.16)

The existence of the principal eigenvalue β1 of (1.14) for fixed λ, μ2 > 0
will be proved in Lemma 4.1. Part (i) shows the local bifurcation of positive
solutions from the branch of the semi-trivial solutions {(β, 0, wλ,μ2) : β > 0},
and part (ii) shows the continuation of the decoupled solution (w1,μ1 , wλ,μ2) to
small β > 0. These two results can be illustrated by Fig. 1. Moreover combining
the existence of positive ground state in Theorem 1.1 and the bifurcation of
a non-ground state positive solution in Theorem 1.4, we obtain the following
result of existence of multiple positive solutions of (1.7).
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Figure 1. Bifurcation diagram for the two-wave system (1.7)

Corollary 1.5. Suppose that μ1, μ2 > 0.

1. If λ >

(
μ2

μ1

) 4
6−N

and β1 is the principal eigenvalue of (1.14) for fixed

λ, μ2 > 0, then (1.7) has at least two positive solutions when β ∈ (β1 −
τ0, β1) for some τ0 > 0.

2. If 0 < λ ≤
(

μ2

μ1

) 4
6−N

and the principal eigenvalue β1 of (1.14) for fixed

λ, μ2 > 0 satisfies β1 > β̂0 (defined in (1.9) and (1.10)), then (1.7) has
at least two positive solutions when β ∈ (β1 − τ0, β1) for some τ0 > 0.

3. For any λ > 0, then (1.7) has exactly two positive solutions when β ∈
(0, τ1) for some τ1 > 0.

Remark 1.6.

1. Corollary 1.5 identifies two intervals of β in which the two-wave equation
(1.7) has multiple positive solutions.

2. Note that when β ∈ (0, τ1), (1.7) has exactly two positive solutions since
when β = 0, there are exactly four nonnegative solutions of (1.7): (0, 0),
(0, w1,μ2), (wλ,μ1 , 0) and (w1,μ1 , wλ,μ2). The first two remains as nonneg-
ative solutions of (1.7) for β ∈ (0, τ1), and the latter two perturb to
positive solutions (u2β , v2β) and (u3β , v3β) for β ∈ (0, τ1). There are no
other positive solutions from Theorem 1.1 part (iv).

3. The solution (u3β , v3β) is a ground state as it achieves the minimal en-
ergy among all non-trivial solutions of (1.7), but the semi-trivial solution
(0, w1,μ2) may have smaller energy.

The next result is concerned with the asymptotical behavior of the posi-
tive ground state solutions of (1.7).
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Theorem 1.7. Assume that 1 ≤ N ≤ 5.
(i) Let (uβn

, vβn
) be any positive ground state solution of (1.7) with β =

βn > 0. Then, passing to a subsequence, as βn → β∗ ≥ 0, one has that
(uβn

, vβn
) → (u0, v0) strongly in X2

r as n → ∞. Then the following results
hold.

(1) If β∗ = 0 and λ >

(
μ2

μ1

) 4
6−N

, then lim
n→∞ Cβn =

S3
1

6μ2
1

and (u0, v0) =

(μ−1
1 w0, 0), where Cβn denotes the least energy level of (1.7) with

β = βn.
(2) If β∗ > 0 and λ > 0, then (u0, v0) is a positive ground state solution

of (1.7) with β = β∗.
(ii) Assume that (A1) and β > 0 hold. Let (uλn

, vλn
) be any positive ground

state solution of (1.7) with λ = λn, where λn → ∞ as n → ∞. Then,
passing to a subsequence, as λn → ∞, we have that

(uλn
, vλn

) → (μ−1
1 w0, 0) in X2

r ,
√

λnvn → 0 in Yr ≡ L2
r(R

N ),

and

lim
n→∞

∫

RN

λnvλn
ϕ = lim

n→∞

∫

RN

β

2
u2

λn
ϕ =

∫

RN

β

2μ2
1

w2
0ϕ, ∀ϕ ∈ C∞

0 (RN ).

(1.17)
(iii) Assume that μ2 = 0, (A1) and β > 0 hold. Let (uλn

, vλn
) be any positive

ground state solution of (1.7) with λ = λn > 0 and μ2 = 0. Then, passing
to a subsequence, as λn → λ∗ ≥ 0, we have that (uλn

, vλn
) → (u0, v0) in

H1
r (RN ) × D1,2

r (RN ), and (u0, v0) is a positive ground state solution of
(1.7) with μ2 = 0 and λ = λ∗.

Remark 1.8. If μ1 = μ2 = 0, the system (1.7) reduces to the well-known
Second-Harmonic Generation type I model (χ(2)-Model), which was studied in
[75] recently. Let (uλ, vλ) be a solution of (1.7) with μ1 = μ2 = 0. It was known
via formal argument [3,13] and later proved in [75] that if λ is large enough,
vλ ≈ u2

λ/(2λ) and uλ is a solution of (1.11) with μ1 = β. Here we prove this
conclusion in an integral sense (see (1.17)) for more general situation.

1.3. The Limiting System

In this part we focus on the case when λ1 = λ2 = 0 in (1.6). The existence
and multiplicity of nontrivial solutions of (1.6) for λ1 = λ2 > 0 were shown in
[23]. Here we shall establish some Liouville’s type results of system (1.6) for
the case λ1 = λ2 = 0, which is

⎧
⎨

⎩

−Δu = μ1|u|u + βvu, in R
N ,

−Δv = μ2|v|v +
β

2
u2, in R

N .
(1.18)

We have the following Liouville’s type results for (1.18).

Theorem 1.9. Assume that μ1, μ2 > 0, and β > − (2μ2
1μ2

) 1
3 . Then the follow-

ing results hold.
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(i) If 1 ≤ N ≤ 4, and (u, v) is a nonnegative classical solution of (1.18),
then (u, v) ≡ (0, 0).

(ii) If 1 ≤ N ≤ 4, and (u, v) is a nonnegative classical solution of
⎧
⎪⎪⎨

⎪⎪⎩

−Δu = μ1u
2 + βvu, in R

N
+ ,

−Δv = μ2v
2 +

β

2
u2, in R

N
+ ,

u = v = 0, on ∂RN
+ ,

(1.19)

then (u, v) ≡ (0, 0), where R
N
+ = {x ∈ R

N : xN > 0}.
(iii) Let Ω ⊂ R

N be a smooth bounded domain in R
N with 1 ≤ N ≤ 4, and let

(u, v) be any nonnegative solution of
⎧
⎪⎪⎨

⎪⎪⎩

−Δu = μ1u
2 + βvu, in Ω,

−Δv = μ2v
2 +

β

2
u2, in Ω,

u = v = 0, on ∂Ω,

(1.20)

then we have ‖u‖L∞(Ω), ‖v‖L∞(Ω) ≤ C, where C = C(β, μ1, μ2,Ω).

Results in Theorem 1.9 are closely related to the ones in Theorems 2.1
and 2.2 of [32] (also see [33,58]), in which Louville’s type results for cubic
Schrödinger system were proved. We notice that the results in [32] hold for
1 ≤ N ≤ 3, while our results hold for 1 ≤ N ≤ 4 as the nonlinearity here is
quadratic. It is an open question for the case N = 5. In order to prove these
results, we shall apply the general theorems given in [33,58].

1.4. Three-Wave Systems

In this subsection, we describe our results for the three-wave system (1.5).
Note that the system (1.5) possesses semi-trivial solutions of type (u, 0, 0),
(0, v, 0) and (0, 0, w). So, similar to the two-wave system, we give the following
definitions of solutions of (1.5). A solution (u, v, w) of (1.5) is nontrivial if
u 
= 0, v 
= 0 and w 
= 0. A solution (u, v, w) with u > 0, v > 0 and w > 0
is called a positive solution. A solution is called a ground state solution (or
positive ground state solution) if its energy is minimal among all the nontrivial
solutions (or all the nontrivial positive solutions) of (1.5). Here the energy
functional corresponded to (1.5) is given by

J̃ (u, v, w) =
1
2

∫

RN

(|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2 + |∇w|2 + λ3w
2)

− 1
3

∫

RN

(μ1|u|3 + μ2|v|3 + μ3|w|3) − β

∫

RN

uvw,

(1.21)

where (u, v, w) ∈ X3. Similar to the two-wave system (1.7), we can also con-
sider the problem in the subspace of radially symmetric functions X3

r , and
define the radial ground state solution (or the positive radial ground state
solution).

In the present paper we consider the case when λ1, λ2 and λ3 are pair-
wisely distinct. The case λ1 = λ2 = λ3 will be considered in a forthcoming
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works. Without loss of generality we assume that λ1 = 1, λ2 
= λ3, λ2 
= 1 and
λ3 
= 1 in (1.5). Set

β̂1 =
μ1

[(
1 + λ

2−N
2

2 + λ
2−N

2
3

) 3
2 −
(
1 + μ2

μ1
λ

−N
2

2 + μ3
μ1

λ
−N

2
3

)]

3min
{

1, λ
− N

2
2 , λ

−N
2

3

} ,

β̂2 =
1
3

[(

3 + (
1 + λ2

λ3
− 2)σ0

) 3
2

μ3 − (μ1 + μ2 + μ3)

]

,

β̂3 =
1
3

[(

3 + (
1 + λ3

λ2
− 2)σ0

) 3
2

μ2 − (μ1 + μ2 + μ3)

]

,

(1.22)

where σ0 = |w0|2L2(RN )/|w0|3L3(RN ), and w0 is the unique positive solution of
(1.11). We make the following assumptions.

To state our results, we define the following conditions.

(B1) μ1, μ2, μ3 > 0, λ2 ≥
(

μ2

μ1

) 4
6−N

, λ3 ≥
(

μ3

μ1

) 4
6−N

and β > β̂1 > 0.

(B2) μ1, μ2, μ3 > 0, λ2 ≥
(

μ2

μ1

) 4
6−N

, 0 < λ3 ≤
(

μ3

μ1

) 4
6−N

and β > β̂2.

(B3) μ1, μ2, μ3 > 0, 0 < λ2 ≤
(

μ2

μ1

) 4
6−N

, λ3 ≥
(

μ3

μ1

) 4
6−N

and β > β̂3.

(B4) μ1, μ2, μ3 > 0, 0 < λ2 <

(
μ2

μ1

) 4
6−N

, 0 < λ3 <

(
μ3

μ1

) 4
6−N

and β >

max
{

β̂2, β̂3

}
.

(B5) μ1, μ2, μ3, λ2, λ3 > 0, and β > max
{

β̂1, β̂2, β̂3

}
.

Then we have the following existence and nonexistence results for the three-
wave system.

Theorem 1.10. Suppose that μ1, μ2, μ3, λ2, λ3 > 0, λ1 = 1, λ2 
= λ3, λ2 
= 1,
λ3 
= 1 and β ∈ R.

(i) If 1 ≤ N ≤ 5 and one of (B1)-(B5) holds, then (1.5) possesses a nontrivial
radial solution z ∈ X3

r . Moreover, if β > 0, then z is a positive ground
state solution of (1.5).

(ii) For any β̃∗ > 0, there exists a K̃β̃∗ > 0 such that for (u, v, w) ∈ S̃β̃∗

|u|∞ + |v|∞ + |w|∞ ≤ K̃β̃∗ ,

where S̃β̃∗ = {(u, v, w) : (u, v, w) is nontrivial radial positive solution of
(1.7) with β ∈ [0, β̃∗]}.

(iii) If N = 6, or N > 6 and β > 0, then (1.5) has no positive solution.

Note that, similar to the two-wave system case, the ranges of β in The-
orem 1.10 can be improved. We can also give other conditions to guarantee
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the conclusions of Theorem 1.10 hold (see Sect. 6). Next we have the following
bifurcation results for the system (1.5).

Theorem 1.11. Suppose that μ1, μ2, μ3, λ2, λ3 > 0 and λ1 = 1. Then the fol-
lowing results hold.

(i) There exists τ2 > 0 such that when β ∈ (β2 − τ2, β2), (1.5) has a positive
solution (u1β , v1β , w1β) in the form of

u1β(x) = w1,μ1(x) + o(β − β2),

v1β(x) =
2(β2 − β) cos θ2

∫

RN

φ2
2,β2

w1,μ1

∫

RN

(μ2 cos3 θ2 + μ3 sin3 θ2)φ3
2,β2

φ2,β2(x) + o(β − β2),

w1β(x) =
2(β2 − β) sin θ2

∫

RN

φ2
2,β2

w1,μ1

∫

RN

(μ2 cos3 θ2 + μ3 sin3 θ2)φ3
2,β2

φ2,β2(x) + o(β − β2),

(1.23)

where β2 > 0 is the principal eigenvalue of

− Δφ +
λ2 + λ3

2
φ −

√
(λ2 − λ3)2 + 4β2w2

1,μ1

2
φ = 0, φ ∈ Xr

p , (1.24)

φ2,β2 > 0 is the corresponding eigenfunction, and θ2 : R
N → (0, π/2)

is a continuous function depending on λ2, λ3, β2, w1,μ1 . Similarly (1.5)
has a positive solution (u2β , v2β , w2β) for β ∈ (β3 − τ3, β3) in a similar
form as (1.23) near (0, wλ2,μ2 , 0), where β3 is the principal eigenvalue
of an eigenvalue problem similar to (1.24) and τ3 > 0; and (1.5) has a
positive solution (u3β , v3β , w3β) for β ∈ (β4 − τ4, β4) in a similar form
as (1.23) near (0, 0, wλ3,μ3), where β4 is the principal eigenvalue of an
eigenvalue problem similar to (1.24) and τ4 > 0. Moreover, each of the
bifurcating positive solution (uiβ , viβ , wiβ) (i = 1, 2, 3) has Morse index
M(uiβ , viβ , wiβ) = 2, and if one of (Bi) (1 ≤ i ≤ 5) holds for λi, μi and
β, then (uiβ , viβ , wiβ) (i = 1, 2, 3) is not a ground state solution.
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(ii) There exists τ5 > 0 such that when β ∈ (−τ5, τ5), (1.5) has exact four
nontrivial solutions (uiβ , viβ , wiβ) (i = 4, 5, 6, 7) of the form

u4β = w1,μ1 + (−Δ + 1 − 2μ1w1,μ1)
−1wλ2,μ2wλ3,μ3β + o(β),

v4β = wλ2,μ2 + (−Δ + λ2 − 2μ2wλ2,μ2)
−1w1,μ1wλ3,μ3β + o(β),

w4β = wλ3,μ3 + (−Δ + λ3 − 2μ3wλ3,μ3)
−1w1,μ1wλ2,μ2β + o(β),

u5β = w1,μ1 + o(β), v5β = wλ2,μ2 + o(β),

w5β = (−Δ + λ3)−1w1,μ1wλ2,μ2β + o(β),

u6β = w1,μ1 + o(β), v6β = (−Δ + λ2)−1w1,μ1wλ3,μ3β + o(β),

w6β = wλ3,μ3 + o(β),

u7β = (−Δ + 1)−1wλ2,μ2wλ3,μ3β + o(β),

v7β = wλ2,μ2 + o(β), w7β = wλ3,μ3 + o(β);

(1.25)

when β ∈ (0, τ5), all four solutions above are all positive, and when
β ∈ (−τ5, 0), the four solutions have sign patterns (u4β , v4β , w4β) =
(+,+,+), (u5β , v5β , w5β) = (+,+,−), (u6β , v6β , w6β) = (+,−,+) and
(u7β , v7β , w7β) = (−,+,+); these solutions have Morse index M(u4β , v4β ,
w4β) = 3, and M(uiβ , viβ , wiβ) = 2 for i = 5, 6, 7. Moreover, if

λ2 <

(
μ2

μ1

) 4
6−N

, and λ3 ≥
(

μ3

μ1

) 4
6−N

,

or λ2 ≥
(

μ2

μ1

) 4
6−N

, λ3 ≥
(

μ3

μ1

) 4
6−N

, and λ2 ≤ λ3,

then (u5β , v5β , w5β) is a ground state solution; if

λ2 ≥
(

μ2

μ1

) 4
6−N

, and λ3 <

(
μ3

μ1

) 4
6−N

,

or λ2 ≥
(

μ2

μ1

) 4
6−N

, λ3 ≥
(

μ3

μ1

) 4
6−N

, and λ2 > λ3,

then (u6β , v6β , w6β) is a ground state solution; and

λ2 <

(
μ2

μ1

) 4
6−N

, and λ3 <

(
μ3

μ1

) 4
6−N

,

then (u7β , v7β , w7β) is a ground state solution.

Remark 1.12.
1. The principal eigenvalue of (1.24) can be defined through a variational

way, see Sect. 6 for details.
2. The bifurcation result in Theorem 1.11 holds when some or even all of

λ1, λ2 and λ3 are equal. For example, if λ2 = λ3 
= 1, then v1β = w1β

and θ2 ≡ π/4.
3. An illustration of the bifurcation of positive solutions of (1.5) is shown

in Fig. 2, in which we assume that β2 < β3 < β4.
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Figure 2. Bifurcation diagram for the three-wave system
(1.5)

4. Part (ii) of Theorem 1.11 show that (1.5) has exactly four positive so-
lutions when β ∈ (0, τ5) for fixed μi, λi > 0. Note that (u4β , v4β , w4β)
has the highest Morse index and also the highest energy. Here one of
(uiβ , viβ , wiβ) with i = 5, 6, 7 is the ground state solution as it achieves
the minimal energy among the non-trivial solutions of (1.5), but indeed
one of semi-trivial solutions has lower energy than all of (uiβ , viβ , wiβ)
with i = 5, 6, 7. Also the Morse index of each semi-trivial solution is 1.

5. In Theorem 1.4 (iii), we prove the uniqueness of positive solution for the
two-wave system (1.7) in a special case. The uniqueness of positive solu-
tion to the three-wave system (1.5) is not true in general as it may possess
multiple synchronous positive solutions, see our forthcoming paper [39,
Theorem 1.1].

2. Preliminaries

In the present paper we use the following notations:

• ‖ · ‖ is the norm of X = H1(RN ) defined by ‖u‖2 =
∫

RN

(|∇u|2 + u2);

• ‖ · ‖M is an equivalent norm of X = H1(RN ) defined by ‖u‖2
M =∫

RN

(|∇u|2 + M |u|2), for a positive function or constant M .

• For z = (u, v) ∈ X2, ‖z‖2
E = ‖u‖2

λ1
+ ‖v‖2

λ2
.

• Xp = W 2,p(RN ), where p ∈ (N
2 ,∞) ∩ (1,∞), and Xr

p denotes the sub-
space of Xp consisting of radially symmetric functions.
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• |·|p is the norm of Lp(RN ) defined by |u|p =
(∫

RN

|u|p
)1/p

for 0 < p < ∞.

• 2∗ = 2N
N−2 if N ≥ 3, and 2∗ = ∞ if N = 1, 2.

• c or Ci(i = 1, · · ·) denotes different positive constants.
Define

Sλ,μ = inf
u∈X\{0}

‖u‖2
λ

(∫

RN μ|u|3)
2
3

and Tλ,μ = inf
u∈M0

{
1
2
‖u‖2

λ − 1
3

∫

RN

μ|u|3
}

,

(2.1)
where M0 = {u ∈ X : u 
= 0, ‖u‖2

λ = μ
∫

RN |u|3}. A direct computation shows
that the following results hold.

Lemma 2.1. Assume that λ, μ > 0, then Tλ,μ is attained by the unique positive
solution wλ,μ(x) (defined in (1.13)) of (1.12). Moreover, we have

Tλ,μ =
1
6
S3

λ,μ and Sλ,μ =
λ1−N

6

μ
2
3

S1,1:=
λ1−N

6

μ
2
3

S1, (2.2)

where S1,1 = S1 =
(∫

RN w3
0

) 1
3 and w0 is the unique positive solution of (1.11).

In order to find nontrivial critical points for J , we consider the following
Nehari manifold for (1.7).

N =

{

z = (u, v) ∈ X2 \ {(0, 0)} :
∫

RN

(|∇u|2 + u2) +
∫

RN

(|∇v|2 + λv2)

=
∫

RN

(μ1|u|3 + μ2|v|3) +
3β

2

∫

RN

u2v

}

.

(2.3)

Apparently all nontrivial solutions of (1.7) are contained in N . The definition
of N implies that for (u, v) ∈ N ,

J |N (u, v) =
1
6
(‖u‖2 + ‖v‖2

λ) =
1
6

∫

RN

(

μ1|u|3 + μ2|v|3 +
3β

2
u2v

)

. (2.4)

Moreover, for each (u, v) ∈ N , it follows from Hölder and Young’s inequalities
that

‖u‖2 + ‖v‖2
λ =

3β

2

∫

RN

u2v +
∫

RN

(μ1|u|3 + μ2|v|3)

≤ c
(‖u‖3 + ‖v‖3

λ + ‖u‖2‖v‖λ

) ≤ c
(‖u‖3 + ‖v‖3

λ

)
,

(2.5)

for some c > 0. Thus, one deduces from (2.4) and (2.5) that J is bounded
uniformly away from zero on N .

Set the ground state energy and the radial ground state energy to be

C = inf
z∈N

J (z), Cr = inf
z∈N ∩X2

r

J (z). (2.6)

The following lemma shows the role of Cr and C.
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Lemma 2.2. Suppose that λ, μ1, μ2 > 0, β ∈ R, and C or Cr is attained by
some z0 ∈ N , then z0 is a solution of (1.7).

Proof. Assume that z0 = (u0, v0) ∈ N is such that J (u0, v0) = C. According
to Theorem 4.1.1 of [15], there exists a Lagrangian multiplier � ∈ R such that

J ′(u0, v0) = �g′(u0, v0), (2.7)

where g(u0, v0) = J ′(u0, v0)(u0, v0). We infer from z0 = (u0, v0) ∈ N that

g′(u0, v0)(u0, v0)

= 2
∫

RN

(|∇u0|2 + u2
0 + |∇v0|2 + λv2

0)

− 9β

2

∫

RN

u2
0v0 − 3

∫

RN

(μ1|u0|3 + μ2|v0|3)

= −
∫

RN

(|∇u0|2 + u2
0 + |∇v0|2 + λv2

0) < 0.

(2.8)

Multiplying the equation (2.7) by (u0, v0), it follows from (2.8) that � = 0.
Thus, we have J ′(u0, v0) = 0. That is, z0 is a critical point of J and a
solution of (1.7). If Cr is attained, one can similarly prove the conclusion. �

Now we prove a basic existence result. That is, both C and Cr are attained
by some (possibly semitrivial) z ∈ N .

Lemma 2.3. Suppose that λ, μ1, μ2 > 0 and β ∈ R, and 1 ≤ N ≤ 5. Then C
(or Cr) defined in (2.6) is attained by some z(
= (0, 0)) ∈ N (or N ∩ X2

r ).

Proof. From (2.4) and (2.5), we know that there exists δ > 0 such that Cr ≥
C ≥ δ > 0. Since (w1,μ1 , 0) ∈ N , N ∩ X2

r 
= ∅. We first prove C can be
attained by a nontrivial z. Let {(un, vn)} ⊂ N be a minimizing sequence. By
using the Ekeland’s variational principle type arguments (see [70, Lemma 3.10]
or [72]), there exists a sequence (still denoted by {(un, vn)}) on N such that

J (un, vn) → C, J ′(un, vn) → 0, as n → ∞, (2.9)

which also implies the boundedness of {(un, vn)}. Without loss of generality
we assume that (un, vn) ⇀ (u0, v0) in X2, (un, vn) → (u0, v0) in [Lp

loc(R
N )]2

for p ∈ (2, 2∗).
We claim that {(un, vn)} is nonvanishing. That is, there exist yn ∈ R

N

and R > 0 such that

lim inf
n→∞

∫

BR(yn)

(u2
n + v2

n) ≥ σ > 0, (2.10)

where BR(yn) = {y ∈ R
N : |y − yn| ≤ R}. If (2.10) is not satisfied, then we

have {(un, vn)} is vanishing, i.e., for any R > 0,

lim
n→∞ sup

y∈RN

∫

BR(y)

(u2
n + v2

n) = 0. (2.11)
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According to Lions’ concentration compactness lemma (see for example [72,
Lemma 1.21]) we have that un → 0 and vn → 0 in Lp(RN ) for ∀p ∈ (2, 2∗).
So, we infer from J ′(un, vn)(un, vn) = 0 that

‖un‖2 + ‖vn‖2
λ =

∫

RN

(μ1|un|3 + μ2|vn|3 +
3β

2
u2

nvn) → 0, n → ∞. (2.12)

Hence, one sees that

0 < δ ≤ C =
1
6
(‖un‖2 + ‖vn‖2

λ) + o(1) → 0, n → ∞. (2.13)

This is a contradiction. Thus, (2.10) holds.
Set ũn = un(x + yn) and ṽn = vn(x + yn). Due to the invariance by

translations, we can assume that (ũn, ṽn) ⇀ (ũ0, ṽ0) in X2, (ũn, ṽn) → (ũ0, ṽ0)
in [Lp

loc(R
N )]2 for p ∈ (2, 2∗) as n → ∞. Moreover, it follows from (2.10) that

lim inf
n→∞

∫

BR(0)

(ũ2
n + ṽ2

n) ≥ σ > 0. (2.14)

So we have ũ0 
= 0 or ṽ0 
= 0. Hence, we infer from (2.9) that J ′(ũ0, ṽ0) =
0 and z̃0 = (ũ0, ṽ0) ∈ N . Furthermore, one deduces from the weak lower
semicontinuity of the norms that

C ≤ J (ũ0, ṽ0) =
1
6
(‖ũ0‖2 + ‖ṽ0‖2

λ) ≤ lim inf
n→∞

1
6
(‖ũn‖2 + ‖ṽn‖2

λ)

= lim inf
n→∞ J (ũn, ṽn) = lim inf

n→∞ J (un, vn) = C.
(2.15)

Therefore, z̃0 = (ũ0, ṽ0) 
= (0, 0) is a ground state solution of (1.7). The proof
for Cr is similar. �

3. Existence Results for the Two-Wave System

In Sect. 2, we have found a ground state solution z = (u, v) 
= (0, 0) of (1.7). In
this section we show that under some additional conditions, (1.7) has a non-
trivial ground state solution, i.e., u 
≡ 0 and v 
≡ 0. We consider the following
two cases separately (i) Existence for 1 ≤ N ≤ 5 and positive μ2; (ii) Existence
for N = 1 and possibly negative μ2.

3.1. Existence Results for 1 ≤ N ≤ 5 and Positive µ2

From Lemmas 2.2 and 2.3, we have found a ground state solution z = (u, v) 
=
(0, 0) of (1.7). So, we only need to exclude the case that z = (u, v) = (0, v). To
accomplish this, we show that for the ground state z and under (A1) or (A2),
we have

C = J (z) < J (0, wλ,μ2) =
1

6μ2
2

λ3−N
2 S3

1 , (3.1)

where wλ,μ2 =
λ

μ2
w0(

√
λx) is given in Lemma 2.1. We first prove that when

(A1) is satisfied, C is attained by a nontrivial solution.
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Lemma 3.1. If (A1) and 2 ≤ N ≤ 5 are satisfied, then the infimum C > 0
(Cr > 0) is attained by a nontrivial (radial) solution of (1.7). Moreover, if
β > 0, then C = Cr > 0 is attained by a nontrivial positive radial solution of
(1.7).

Proof. We only prove that C > 0 is attained by a nontrivial solution of (1.7).
The conclusion that C > 0 has been proved in (2.5), and from Lemma 2.3, C
is attained by some (u0, v0) ∈ N . To prove that u0 
= 0 and v0 
= 0, it suffices
to check that (3.1) holds. That is, we only need to show that

C = J (u0, u0) < J (0, wλ,μ2) =
μ2

6

∫

RN

w3
λ,μ2

=
λ3−N

2

6μ2
2

S3
1 . (3.2)

Since (w1,μ1 , 0) ∈ N ∩ Er, it follows from λ >

(
μ2

μ1

) 4
6−N

that

C = J (u0, v0) ≤ Cr ≤ J (w1,μ1 , 0) =
μ1

6

∫

RN

w3
1,μ1

=
1

6μ2
1

S3
1 <

λ3−N
2

6μ2
2

S3
1 .

(3.3)
Thus, (3.1) holds and C > 0 is attained by a nontrivial radial solution of (1.7).

Now we assume that β > 0. Let (u0, v0) be the nontrivial ground state
solution of (1.7) obtained above such that u0 
= 0 and v0 
= 0. It is easy to
check that there exists a unique t0 > 0 such that (t0|u0|, t0|v0|) ∈ N . That is,
∫

RN

(|∇u0|2 + |u0|2) +
∫

RN

(|∇v0|2 + λ|v0|2) = t0

∫

RN

(μ1|u0|3 + μ2|v0|3)

+t0
3β

2

∫

RN

u2
0|v0|. (3.4)

We deduce from (3.4) and (u0, v0) ∈ N that

t0 =

∫

RN (|∇u0|2 + u2
0) +

∫

RN (|∇v0|2 + λv2
0)

3β
2

∫

RN u2
0|v0| +

∫

RN (μ1|u0|3 + μ2|v0|3)

≤
∫

RN (|∇u0|2 + u2
0) +

∫

RN (|∇v0|2 + λv2
0)

3β
2

∫

RN u2
0v0 +

∫

RN (μ1|u0|3 + μ2|v0|3)
= 1.

(3.5)

So one sees from (2.4) and (3.5) that

C ≤ J (t0|u0|, t0|v0|) =
t20
6

∫

RN

(|∇u0|2 + u2
0 + |∇v0|2 + λv2

0)

≤ 1
6

∫

RN

(|∇u0|2 + u2
0 + |∇v0|2 + λv2

0) = J (u0, v0) = C.

(3.6)

Thus, (u1, v1) = (t0|u0|, t0|v0|) ∈ N is a nontrivial nonnegative radial ground
state solution of (1.7). Moreover, since u1 
= 0, v1 
= 0 and (u1, v1) is a solution
of (1.7), then the strong maximum principle yields that u1 > 0 and v1 > 0.
Hence, when β > 0, C is attained by a positive ground state (u1, v1) of (1.7).
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Similarly, one can prove that Cr is also attained by a positive ground state of
(1.7)

Now we prove that when β > 0, C can also be attained by a positive
radial ground state of (1.7). Let {(un, vn)} ⊂ N be a minimizing sequence
such that J (un, vn) → C as n → ∞. Since β > 0, as in the last paragraph
we can assume that un ≥ 0 and vn ≥ 0. Let u∗

n and v∗
n be the radial functions

obtained by Schwarz symmetrization from un and vn. Then from [46, Theorem
3.7] we infer that

‖u∗
n‖2

1 ≤ ‖un‖2
1, ‖v∗

n‖2
λ ≤ ‖vn‖2

λ, |u∗
n|33 = |un|33,

|v∗
n|33 = |vn|33,

∫

RN

(u∗
n)2v∗

n ≥
∫

RN

u2
nvn.

(3.7)

Let tn > 0 be such that (tnu∗
n, tnv∗

n) ∈ N ∩X2
r . As in (3.5), one can check that

tn ≤ 1. So we infer from (3.7) that J (tnu∗
n, tnv∗

n) ≤ J (u∗
n, v∗

n) ≤ J (un, vn).
Now we can proceed as in the radial case to show that (un, vn) → (u0, v0) in
X2

r as n → ∞, and (u0, v0) is a positive radial ground state solution of (1.7)
such that J (u0, v0) = C. Since u0 and v0 are radial symmetry, it follows that
C = Cr in this case. �

Next we prove the existence result under the condition (A2).

Lemma 3.2. If (A2) is satisfied, then C = Cr > 0 is attained by a nontrivial
positive radial solution of (1.7).

Proof. We use a test function z0(x) = (w0, w1) ≡ (w0(x), w0(
√

λx)) to esti-
mate the ground state energy level. It is straightforward to verify that there
exists a unique t0 > 0 such that t0z0 ∈ N , and

t0 =
‖w0‖2

1 + ‖w1‖2
λ∫

RN

(

μ1w
3
0 + μ2w

3
1 +

3β

2
w1w

2
0

) =
1 + λ1−N/2

μ1 + λ− N
2 μ2 +

3β

2S3
1

∫

RN

w2
0(x)w0(

√
λx)

.

(3.8)
From Lemma 2.3 we know that there exists z ∈ N such that J (z) = C. Since
t0z0 ∈ N , it follows that

C = J (z) ≤ J (t0z0) =
t30S

3
1

6

(

μ1 + λ−N
2 μ2 +

3β

2S3
1

∫

RN

w2
0(x)w0(

√
λx)
)

So to guarantee that (3.1) holds to exclude the semi-trivial solution as the
global minimizer, it suffices to have

t30S
3
1

6

(

μ1 + λ
−N
2 μ2 +

3β

2S3
1

∫

RN

w2
0(x)w0(

√
λx)
)

<
λ3−N

2 S3
1

6μ2
2

. (3.9)

A simple computation shows that if

β > β̃0 =
2S3

1μ2

[(
λ

N−6
6 + λ−N

3

) 3
2 −
(

μ1
μ2

+ λ−N
2

)]

3
∫

RN

w2
0(x)w0(

√
λx)

, (3.10)
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then (3.9) holds. Moreover, one can check that β̃0 > 0 if λ ≤
(

μ2

μ1

) 4
6−N

. To

obtain the value β̄0 in (1.9), we infer from w0(r) is strictly decreasing in r > 0
that

min
{

1, λ− N
2

}
S3

1 ≤
∫

RN

w2
0(x)w0(

√
λx) ≤ max

{
1, λ− N

2

}
S3

1 . (3.11)

Hence,

2μ2

[(
λ

N−6
6 + λ−N

3

) 3
2 −
(

μ1
μ2

+ λ−N
2

)]

3max
{

1, λ− N
2

} ≤ β̃0

≤
2μ2

[(
λ

N−6
6 + λ−N

3

) 3
2 −
(

μ1
μ2

+ λ−N
2

)]

3min
{

1, λ
−N
2

} ≡ β̂0.

(3.12)

Hence, when β > β̄0, (3.9) still holds. We can use test functions z1(x) =
(w0(x), w0(x)) or z2(x) = (w0(

√
λx), w0(

√
λx)) to replace z0 in the above

arguments to obtain β̄1 and β̄2 respectively. Hence when β > min{β̄0, β̄1, β̄2} ≡
β̂0, the energy minimizer is non-trivial. By using the same argument as in
Lemma 3.1, one can show that the minimizer (u, v) is positive and radially
symmetric. Since z0, z1 and z2 are all radial, the proof above is also valid for
Cr. In particular we have C = Cr. �

Remark 3.3. In (1.9), β̂0 can be replaced by β0 = min{β̃0, β̄1, β̄2} and β̂0 ≥ β0.
But β̂0 is more explicit.

Finally, we prove the nonexistence of positive solutions of (1.7) when
N ≥ 6. If (u, v) is a positive solution of (1.7), we can use a standard method
to deduce the following Pohozaev identity (see [57, Theorem 1]). That is, for
each a ∈ R,
[
N

2
− (a + 1)

] ∫

RN

(|∇u|2 + |∇v|2) +
(

N

2
− a

)∫

RN

(u2 + λv2)

+
(

a − N

3

)∫

RN

(μ1|u|3 + μ2|v|3) +
β

2
(3a − N)

∫

RN

u2v = 0.

(3.13)

In particular, we let a = N/2 − 1. Then (3.14) reduces to
∫

RN

(u2 + λv2) =
6 − N

6

∫

RN

(μ1|u|3 + μ2|v|3) +
6 − N

4
β

∫

RN

u2v. (3.14)

Thus, u = v = 0 if N = 6 and λ > 0, or N > 6, λ, μ1, μ2 > 0 and β > 0.
Proof of Theorem 1.1 (i)–(ii) and (iv). The existence of a radial ground state
solution follows from Lemmas 3.1 (A1) and 3.2 (A2), and the nonexistence of
positive solutions follows from (3.14). This proves (i) and (ii) of Theorem 1.1.
Finally, in order to prove the conclusion (iv), one can follow the line of the
proof of [42, Proposition 2.2], and we omit the details here. �
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3.2. Existence for N = 1 and Possibly Negative µ2

In this subsection, we prove the existence of a positive ground state solution
when N = 1 and μ2 ≤ 0. We first have the following estimate for the minimiz-
ing sequences.

Lemma 3.4. If (A3) holds, and {(un, vn)} ⊂ N is a minimizing sequence
such that J (un, vn) → C as n → ∞, then there exists σ > 0 such that
maxt∈R |un(t)| ≥ σ > 0.

Proof. By the Schwarz symmetrization principle (see Lemma 3.1), we may
assume that (un, vn) is nonnegative and radial, and also from Lemma 3.1, we
know that {(un, vn)} is bounded in X2

r . Without loss of generality we assume
that (un, vn) ⇀ (u0, v0) in X2

r , and (un, vn) → (u0, v0) in [L∞
loc(R)]2. Also it

follows from J ′(un, vn)(un, vn) = 0 that

‖un‖2
1 + ‖vn‖2

λ =
∫

RN

(μ1|un|3 + μ2|vn|3) +
3β

2

∫

R

u2
nvn. (3.15)

Since μ2 ≤ 0, we infer from the boundedness of {(un, vn)}, J (un, vn) → C
and (3.15) that

6C + o(1) = ‖un‖2
1 + ‖vn‖2

λ =
∫

RN

(μ1|un|3 + μ2|vn|3) +
3β

2

∫

R

u2
nvn

≤
∫

R

μ1|un|3 +
3β

2

∫

R

|un|2|vn|

≤ max
t∈R

|un(t)|
(∫

R

μ1u
2
n +

3β

2

∫

R

|un||vn|
)

≤ cmax
t∈R

|un(t)|.

(3.16)

This gives the conclusion for n large enough. �

Proof of Theorem 1.1 (iii). Let {(un, vn)} ⊂ N be a minimizing sequence as
in lemma 3.4, then from Lemma 3.4, for each n we can choose tn such that

|un(tn)| ≥ σ > 0. (3.17)

We define
(ũn(t), ṽn(t)) = (un(t + tn), vn(t + tn)). (3.18)

Since J (ũn, ṽn) = J (un, vn) and ‖(ũn, ṽn)‖E = ‖(un, vn)‖E , it follows that
{(ũn, ṽn)} ⊂ N and {(ũn, ṽn)} is bounded. Without loss of generality we
assume that (ũn, ṽn) ⇀ (ũ, ṽ) in X2, and (ũn, ṽn) → (ũ, ṽ) in [L∞

loc(R)]2. Then
(3.17) implies that

|ũ(0)| ≥ σ > 0. (3.19)

That is, ũ 
≡ 0. By the Ekeland’s variational principle (Lemma 2.3), we can
assume that J ′(ũn, ṽn) → 0. Hence the weak convergence of (ũn, ṽn) implies
that (ũ, ṽ) is a weak solution of (1.7). Now we can follow the same argument
as in Lemma 3.1 to obtain desired result. �
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4. Properties of Solutions of Two-Wave System

4.1. Bifurcation and Continuation of Positive Solutions

In this subsection we prove the existence of nontrivial solutions of (1.7) by
using bifurcation theory. As in [43], we consider our problem in X2

p and Lp
r .

First, in order to show the existence of a principal eigenvalue of (1.14), we
need consider the following eigenvalue problem (for a fixed β ≥ 0)

− Δφ + φ − βwλ,μ2φ = θ(β)φ, φ ∈ Xr
p , (4.1)

where β, λ, μ2 > 0, and wλ,μ2 is the unique positive solution of (1.13). We
define the Rayleigh quotient associated with (4.1):

χ1(β) = inf
φ∈Xr

p\{0}

∫

RN

(|∇φ|2 + φ2 − βwλ,μ2φ
2
)

∫

RN

φ2
. (4.2)

Now we show the following result on the eigenvalue problems (4.1) and (1.14).

Lemma 4.1. Suppose that λ, μ2 > 0, then for each β > 0, (4.1) has a unique
principal eigenvalue χ1(β) (which is defined by (4.2)) with a positive eigen-
function φ1,β. Moreover,

lim
β→0+

χ1(β) = 1, lim
β→∞

χ1(β) = −∞, χ′
1(β) < 0 for β > 0. (4.3)

In particular there exists β1 > 0 such that χ1(β1) = 0, hence β1 is the principal
eigenvalue of (1.14).

Proof. First from [10, Section 3, Theorem 3.4], the principal eigenvalue χ1(β)
of (4.1) exists and it is defined by (4.2). It is easy to see that (χ1(β), φ1,β) is
differentiable with respect to β. Differentiating (4.1) in β, we obtain that

− Δφ′ + φ′ − βwλ,μ2φ
′ − wλ,μ2φ = χ′

1(β)φ + χ1(β)φ′, φ ∈ Xr
p , (4.4)

where φ′ =
∂φ

∂β
. Multiplying (4.1) by φ′, multiplying (4.4) by φ, subtracting

and integrating, we obtain that

χ′
1(β)

∫

RN

φ2 = −
∫

RN

wλ,μ2φ
2, (4.5)

which implies that χ′
1(β) < 0. Since wλ,μ2(x) is bounded for x ∈ R

N , then
from (4.2), we have

∫

RN

(|∇φ|2 + φ2 − βwλ,μ2φ
2
) ≥ (1 − β||wλ,μ2 ||∞)

∫

RN

φ2,

for φ ∈ Xr
p . Therefore, χ1(β) ≥ 1−β||wλ,μ2 ||∞, which implies that lim

β→0+
χ1(β)

≥ 1. On the other hand, for each R > 0, let (λR, φR) be the principal eigen-pair
of the following eigenvalue problem

{
−ΔφR(y) = λRφR(y), in BR(0),
φR(0) = 0, on ∂BR(0),

(4.6)
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satisfying
∫

BR(0)

φ2
R = 1. Then we know that λR = λ1R

−2. We extend φR to

be zero outside of BR(0), and use it as a test function for (4.2), then we obtain
that

χ1(β) ≤ 1 + R−2 − β

∫

BR(0)

wλ,μ2φ
2
R, (4.7)

for all β > 0 and R > 0. Hence, χ1(β) ≤ 1 for all β > 0 and in particular
lim

β→0+
χ1(β) = 1. On the other hand, fix an R > 0, then wλ,μ2(x) ≥ δ > 0

for |x| ≤ R. Hence from (4.7), we have χ1(β) ≤ 1 + R−2 − βδ for β > 0,
which implies that lim

β→∞
χ1(β) = −∞. The existence of a unique β1 such that

θ(β1) = 0 follows immediately from (4.3). �

Now we are ready to give the proof of the conclusion (i) of Theorem 1.4.
Proof of Theorem 1.4 (i). Set S∗ = {(β, u, v) = (β, 0, wλ,μ2) : β > 0}, where
wλ,μ2(x) = λμ−1

2 w0(
√

λx) is the unique positive solution of (1.13), and β1 is
given in Lemma 4.1. We shall consider the bifurcation of nontrivial solutions of
(1.7) from the semitrivial branch S∗ near (β1, 0, wλ,μ2). To accomplish this we
apply the bifurcation results of Crandall and Rabinowitz [27]. First, we define
F : R × (Xr

p)2 → (Lp
r)

2 by

F (β, u, v) =
(

Δu − u + μ1u
2 + βuv

Δv − λv + μ2v
2 + β

2 u2

)

. (4.8)

Clearly, for (φ, ψ), (φ1, ψ1), (φ2, ψ2) ∈ (Xr
p)2, one sees that

F(u,v)(β, u, v)[(φ, ψ)] =
(

Δφ − φ + 2μ1uφ + βuψ + βvφ
Δψ − λψ + 2μ2vψ + βuφ

)

,

F(u,v)(u,v)(β, u, v)[(φ1, ψ1)(φ2, ψ2)] =
(

2μ1φ1φ2 + βφ2ψ1 + βφ1ψ2

2μ2ψ1ψ2 + βφ1φ2

)

,

Fβ(β, u, v) =
(

uv
1
2u2

)

, and Fβ(u,v)(β, u, v)[(φ, ψ)] =
(

uψ + vφ
uφ

)

.

(4.9)

We define

L0(φ, ψ) = F(u,v)(β1, 0, wλ,μ2)(φ, ψ) =

(
Δφ − φ + β1wλ,μ2φ

Δψ − λψ + 2μ2wλ,μ2ψ

)

≡
( L1(φ)

L2(ψ)

)

.

(4.10)

From Lemma 4.1, the null space N(L1) = span{φ1,β1}. From [47, Lemma 2.1]
(also see [44,54]), the solution space of L2(ψ) = 0 in X is N1 ≡ span{∂wλ,μ2/
∂xj : 1 ≤ j ≤ N}. Hence null space N(L2) = N1 ∩Xr

p = {0}. So the null space
N(L0) = span{(φ1,β1 , 0)}, and φ1,β1 is the principal eigenfunction of (4.1).
The range space of L0 is defined by

R(L0) =
{

(f, g) ∈ Y 2
r :
∫

RN

fφ1,β1 = 0
}

. (4.11)
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Thus, dimN(L0)=codimR(L0)=1. Since
∫

RN

wλ,μ2φ
2
1,β1

> 0, it follows from

(4.11) that

Fβ(u,v)(β1, 0, wλ,μ2)(φ1,β1 , 0) =
(

φ1,β1wλ,μ2

0

)


∈ R(L0). (4.12)

Thus, we can apply the result of [27] to conclude that the set of positive
solutions to (1.7) near (β1, 0, wλ,μ2) is a smooth curve

Γ = {(β(s), u1β(s), v1β(s)) : s ∈ (0, τ̃0)}, (4.13)

such thatβ(s)=β1+β′(0)s+o(s),u1β(s) = sφ1,β1+o(s) and v1β(s) = wλ,μ2+o(s),
where τ̃0 > 0 is a small constant. Moreover, β′(0) can be calculated as (see for
example [37,61])

β′(0) = −〈F(u,v)(u,v)(β1, 0, wλ,μ2)[(φ1,β1 , 0), (φ1,β1 , 0)], �〉
2〈Fβ(u,v)(β1, 0, wλ,μ2)[(φ1,β1 , 0)], �〉

= −
μ1

∫

RN

φ3
1,β1

∫

RN

wλ,μ2φ
2
1,β1

< 0, (4.14)

where � is a linear functional on (Lp
r)

2 defined as 〈(f, g), �〉 =
∫

RN

fφ1,β1 .

Hence, we infer from (4.13)–(4.14) that for β1 − τ0 < β < β1,

u1β =
β − β1

β′(0)
φ1,β1 + o(β − β1) =

β1 − β

μ1

∫

RN

φ2
1,β1

wλ,μ2

∫

RN

φ3
1,β1

φ1,β1 + o(β − β1),

v1β = wλ,μ2 + o(β − β1). (4.15)

Furthermore, by using the same argument as in [43, Theorem 5.1], one can
deduce that (u1β , v1β) is positive solution. In the next we can also show that
(u1β , v1β) is not a ground state solution. In fact, under the condition (A1) or
(A2), we have shown (see (3.1)) that the ground state energy satisfies (3.1).
On the other hand, when τ0 > 0 is sufficiently small, we infer from (4.15) that
for β ∈ (β1 − τ0, β1),

J (u1β , v1β) =
1

6μ2
2

λ3−N
2 S3

1 + o(s) +
1
2
‖u1β‖2 − 1

3

∫

RN

u3
1β − β

2

∫

RN

u2
1βv1β

=
1

6μ2
2

λ3−N
2 S3

1 − (β − β1)3

6μ2
1

(∫

RN φ1,β1wλ,μ2

)3

(
∫

RN φ3
1,β1

)2
+ o(s)

=
1

6μ2
2

λ3−N
2 S3

1 + o(s). (4.16)

We infer from (3.1) that there exists ε0 > 0 small such that C <
1

6μ2
2

λ3−N
2 S3

1 −
ε0 = J (0, wλ,μ2) − ε0. Hence, for τ0 > 0 small and β ∈ (β1 − τ0, β1),
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J (u1β , v1β) > J (0, wλ,μ2) − ε0 > C. So when the condition (A1) or (A2)
is satisfied, (u1β , v1β) is not a ground state solution.

Finally we use the “principle of exchange of stability” [28, Corollary 1.13
and Theorem 1.16] to calculate the Morse index for the nonnegative solutions
(u1β , v1β) and (0, wλ,μ2). For that purpose we consider the eigenvalue problem

Lβ

(
φ
ψ

)

= F(u,v)(β, 0, wλ,μ2)

(
φ
ψ

)

=

(
Δφ − φ + βwλ,μ2φ

Δψ − λψ + 2μ2wλ,μ2ψ

)

= γ(β)

(
φ
ψ

)

,

(4.17)

where γ(β) : (β1 − τ0, β1 + τ0) → R is the simple eigenvalue of Lβ satisfying
γ(β1) = 0. Notice that the eigenvalues of the problem (4.17) are given by
σp(Lβ) = σp(L1) ∪ σp(L2), where σp(L) denotes the eigenvalues of a linear
operator L, and L1 and L2 are defined as in (4.10) with β1 replaced by β.
Apparently γ(β) is determined by L1, hence γ(β) = −χ1(β) defined in Lemma
4.1. Thus γ′(β) > 0 from (4.5).

Now consider the eigenvalue problem at the bifurcating solution (u1β , v1β):

F(u,v)(β, u1β(s), v1β(s))
(

φ
ψ

)

=
(

Δφ − φ + 2μ1u1β(s)φ + β(s)u1β(s)ψ + βv1β(s)φ
Δψ − λψ + 2μ2v1β(s)ψ + βu1β(s)φ

)

= ξ(s)
(

φ
ψ

)

,

(4.18)

Then from [28, Theorem 1.16], we have

lim
s→0, ξ(s) 	=0

−sβ′(s)γ′(β1)
ξ(s)

= 1. (4.19)

From (4.14) we have β′(0) < 0, hence we infer from (4.19) that ξ(s) > 0 for
s ∈ (0, τ1).

According to [7, Theorem 4.4], L2 has exactly one positive eigenvalue
for β > 0 (note that L2 is independent of β). Therefore Lβ has exactly one
positive eigenvalue when 0 < β < β1, and has exactly two positive eigenvalues
when β1 < β < β1 + τ0 for small τ0 > 0. From ξ(s) > 0 and the continuity
of eigenvalues, we know that the eigenvalue problem (4.18) has two positive
eigenvalues when s ∈ (0, τ̃0). From the definition of Morse index, we know that
M(u1β , v1β) = 2 for β ∈ (β1 − τ0, β1), and M(0, wλ,μ2) = 1 for 0 < β < β1 and
M(0, wλ,μ2) = 2 for β1 < β < β1 + τ0. �

Next we are ready to prove the conclusion (ii) of Theorem 1.4.
Proof of Theorem 1.4 (ii). Notice that

z0(x) = (w1,μ1(x), wλ,μ2(x)) ≡ (μ−1
1 w0(x), λμ−1

2 w0(
√

λx)) (4.20)

is the unique positive solution of (1.7) with β = 0. Recall the mapping defined
in (4.8), and we have

F(u,v)(0, w1,μ1 , wλ,μ2)[(φ, ψ)] =
(

Δφ − φ + 2μ1w1,μ1φ
Δψ − λψ + 2μ2wλ,μ2ψ

)

. (4.21)
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It is well-known that L3 = Δ − 1 + 2μ1w1,μ1 and L4 = Δ − λ + 2μ2wλ,μ2 are
both invertible in Xr

p ([7, Theorem 4.4]), hence z0 is non-degenerate in Xr
p ,

i.e.,
[
F(u,v)(0, z0)

]−1 exists. By the implicit function theorem, there exist β̃0 >

0, R0 > 0 and z2(β) : (−β̃0, β̃0) → BR0(z0) such that for any β ∈ (−β̃0, β̃0),
F (β, z2(β)) = F (β, u2(β), v2(β)) = 0.

Moreover, we can solve (φ, ψ) from

F(u,v)(0, w1,μ1 , wλ,μ2)
(

φ
ψ

)

=
(

Δφ − φ + 2μ1w1,μ1φ
Δψ − λψ + 2μ2wλ,μ2ψ

)

= −
(

w1,μ1wλ,μ2
1
2w2

1,μ1

)

,

(4.22)

to obtain that

φ = (−Δ + 1 − 2μ1w1,μ1)
−1(w1,μ1wλ,μ2), ψ =

1

2
(−Δ + λ − 2μ2wλ,μ2)

−1(w2
1,μ1).

(4.23)

This gives the expression of (u2β , v2β) in (1.15). A similar argument using
implicit function theorem at the semitrivial solution z̃0 = (w1,μ1 , 0) at β = 0
as above, one can obtain the existence of another positive solution (u3β , v3β)
for small β > 0 as in (1.15).

Since (u2β , v2β) and (u3β , v3β) are both obtained from the implicit func-
tion theorem, then their stability are same as the ones of unperturbed solutions
(w1,μ1 , wλ,μ2) and (w1,μ1 , 0) respectively. Again from [7, Theorem 4.4], each
of L3 and L4 has exactly one positive eigenvalue, thus M(u2β , v2β) = 2 for
β ∈ (0, τ1), where τ1 > 0 small. Similarly M(u3β , v3β) = 1 for β ∈ (0, τ1).
From Theorem 1.1 part (iv) and the implicit function theorem, (u2β , v2β)
and (u3β , v3β) are the only positive solutions of (1.7). From Lemma 3.1, the
ground state solution can always be chosen as positive when β > 0, hence
(u3β , v3β) must be a ground state solution, and (u2β , v2β) is not a ground
state. If β ∈ (−τ1, 0), (u3β , v3β) is a opposite sign ground state solution, i.e.,
u3β > 0 and v3β < 0, as if there is a nontrivial solution other than (u2β , v2β)
and (u3β , v3β), its energy necessarily goes to infinity as β → 0−. �

4.2. Uniqueness of Positive Solutions

In this subsection we prove the uniqueness of positive solution of (1.7) stated
in the conclusion (iii) of Theorem 1.4.
Proof of Theorem 1.4 (iii). If λ = 1 and β = μ2, we first look for positive
synchronized solutions of (1.7) of the form (xw0, yw0), where (x, y) ∈ R

+×R
+.

It is easy to calculate that if (x, y) ∈ R
+ × R

+ satisfies

1 = μ1x + μ2y, 2y = 2μ2y
2 + μ2x

2, (4.24)

then (xw0, yw0) is solution of (1.7). A simple computation shows that (4.24)
has a unique positive solution ẑ0 = (u0, v0) ≡ (x0w0, y0w0) if and only if

(x0, y0) =
(

2μ1

2μ2
1 + μ2

2

,
μ2

2μ2
1 + μ2

2

)

. (4.25)
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Next we shall prove that ẑ0 is a unique positive solution of (1.7). Let

k0 =
2μ1

β
and û0 = k−1

0 u0. Then (v0, û0) satisfies

⎧
⎨

⎩

−Δv0 + v0 = μ2v
2
0 +

β

2
k2
0û

2
0, in R

N

−Δû0 + û0 = k0μ1û
2
0 + βû0v0, in R

N .
(4.26)

If N = 1, by using the same arguments as in proof of [71, Theorem 1.1], we
know that v0 = û0 holds. For the case 2 ≤ N ≤ 5, we shall use the idea
of the proof of [71, Theorem 4.2] (also see Appendix II of [12]) to prove the
result. Let Ω1 = {x ∈ R

N : v0(x) > û0(x)}. Thus, Ω1 is a piecewise C1 smooth
domain. Multiplying the first equation in (4.26) by û0 and the second equation
in (4.26) by v0 and then integrating by parts on Ω1 and subtracting together,
we obtain that for β = μ2,
∫

∂Ω1

(û0
∂v0

∂n
− v0

∂û0

∂n
) + (μ2 − β)

∫

Ω1

û2
0v

2
0 +

2μ2
1

β

∫

Ω1

û2
0(û0 − v0)

=
∫

∂Ω1

(û0
∂v0

∂n
− v0

∂û0

∂n
) +

2μ2
1

β

∫

Ω1

û2
0(û0 − v0) = 0,

(4.27)

where n denotes the unit outward normal to ∂Ω1. Since v0(x) − û0(x) > 0 in
Ω1 and v0(x) − û0(x) = 0 in ∂Ω1, it follows that
∫

∂Ω1

(

û0
∂v0

∂n
− v0

∂û0

∂n

)

=
∫

∂Ω1

(û0 − v0)
∂v0

∂n
+
∫

∂Ω1

v0
∂(v0 − û0)

∂n

=
∫

∂Ω1

v0
∂(v0 − û0)

∂n
≤ 0.

(4.28)

Moreover, one sees that

2μ2
1

β

∫

Ω1

û2
0(û0 − v0) ≤ 0. (4.29)

So (4.27)–(4.29) imply that Ω1 = ∅. Similarly, we set Ω2 = {x ∈ R
N : v0(x) <

û0(x)}, and one can check that Ω2 = ∅. So we have v0(x) = û0(x) in R
N which

shows the uniqueness of positive solution of (1.7). �

4.3. Asymptotical Behavior of Positive Solutions

In this subsection we study the asymptotical behavior of positive ground state
solutions of (1.7). For the convenience of notations, we use Cβ , Cβ

r , Jβ and
Nβ (or Cλ, Cλ

r , Jλ and Nλ) instead of C,Cr, J and N (see (2.3)–(2.6)) to
emphasis the dependence on β (or λ).

To prove Theorem 1.7, we first prove some properties of Cβ and Cλ.

Lemma 4.2. For λ, β, μ1, μ2 > 0, the following results hold.

(1) Cβ is non-increasing in β > 0, and lim
β→β∗

Cβ = Cβ∗ , where β∗ ≥ 0.

(2) Cλ is non-decreasing in λ > 0, and lim
λ→(λ∗)+

Cλ = Cλ∗ , where λ∗ > 0.
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Proof. Since the proof of (1) and (2) are similar, we only give the proof of
(1) here. We first prove that Cβ is a non-increasing function on β. Indeed, for
β1 ≥ β2 > 0, we let (u1, v1) and (u2, v2) be the positive ground state solutions
corresponding to β = β1 and β = β2, respectively. Then there exists a unique
t1 > 0 such that t1(u2, v2) ∈ N β1 . So, one sees that

t1 =
‖u2‖2 + ‖v2‖2

λ∫

RN (μ1|u2|3 + μ2|v2|3 + 3β1
2

u2
2v2)

≤ ‖u2‖2 + ‖v2‖2
λ∫

RN (μ1|u2|3 + μ2|v2|3 + 3β2
2

u2
2v2)

= 1.

Hence we obtain that

Jβ1(u1, v1) ≤ Jβ1(t1u2, t1v2) =
t21
6

(‖u2‖2 + ‖v2‖2
λ) ≤ 1

6
(‖u2‖2 + ‖v2‖2

λ)

= Jβ2(u2, v2).

Thus, Cβ is a non-increasing function on β > 0.
Let {βn} be a sequence satisfying βn > 0 and βn → β∗ ≥ 0 as n → ∞, and

let (uβn
, vβn

) be a positive radial ground state solution of (1.7) with β = βn.
We use (un, vn) = (uβn

, vβn
) for simplicity of notation. One infers from (3.2)

that

Jβn
(un, vn) =

1
6
(‖un‖2

1 + ‖vn‖2
λ) = Cβn ≤ Cβn

r ≤ 1
6μ2

1

S2
1 . (4.30)

Thus, {(un, vn)} is bounded in X2
r . Without loss of generality we assume that

(un, vn) ⇀ (u0, v0) in X2
r , and (un, vn) → (u0, v0) in [Lp

loc(R
N )]2 for p ∈ (2, 2∗).

Moreover, u0, v0 ≥ 0 in R
N , and (u0, v0) is a solution of (1.7) with β = β∗.

Similar to (2.5), one can prove that ‖un‖2
1+‖vn‖2

λ ≥ δ > 0. On the other hand,
by using the same arguments as in Lemma 2.3, we can prove that {(un, vn)} is
nonvanishing, i.e., (2.10) holds. Since the system (1.7) is invariant under the
translation un(·) �→ un(· + yn), we can assume that (un, vn) ⇀ (u0, v0) in X2

r ,
(u0, v0) 
= (0, 0) and (u0, v0) ∈ Nβ∗ . It follows from Fatou’s lemma that

Cβ∗ ≤ Jβ∗(u0, v0) =
1
6

∫

RN

(μ1|u0|3 + μ2|v0|3 +
3β∗
2

u2
0v0)

≤ 1
6

lim inf
n→∞

∫

RN

(μ1|un|3 + μ2|vn|3 +
3βn

2
u2

nvn)

= lim
n→∞Jβn

(un, vn) = lim
n→∞ Cβn .

(4.31)

Moreover, by the definition of Cβn , we know that

Cβn ≤ max
t≥0

Jβn
(tu0, tv0)

= max
t≥0

{
t2

2
(‖u0‖2 + ‖v0‖2

λ) − t3

6

∫

RN

(μ1|u0|3 + μ2|v0|3 +
3βn

2
u2

0v0)
}

=
2
3

(‖u0‖2 + ‖v0‖2
λ

)3

(∫

RN (μ1|u0|3 + μ2|v0|3 + 3βn

2 u2
0v0)

)2
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=
2
3

(‖u0‖2 + ‖v0‖2
λ

)3

(∫

RN (μ1|u0|3 + μ2|v0|3 + 3β∗
2 u2

0v0)
)2 + o(1)

= Jβ∗(u0, v0) + o(1) = Cβ∗ + o(1). (4.32)

That is,
lim sup

n→∞
Cβn ≤ Cβ∗ . (4.33)

Combining (4.31) and (4.33) we infer that lim
β→β∗

Cβ = Cβ∗ . �

Now we are ready to give the proof of Theorem 1.7.

Proof of Theorem 1.7. (i) We first consider the case of β∗ = 0. We take
βn > β∗ as in Lemma 4.2. Thus, we know that (un, vn) ⇀ (u0, v0) in
X2

r , (u0, v0) ∈ Nβ∗ \ {(0, 0)} is a nonnegative solution of (1.7), where
(un, vn) = (uβn

, vβn
).

First we consider the case N ≥ 2. We show that u0 
= 0. Assume,
on the contrary, that u0 = 0 and v0 
= 0. Then from Lemma 2.1 we know
that v0 = wλ,μ2 is the unique positive solution of (1.12) with μ = μ2. So
we conclude that

λ3−N
2

6μ2
2

S3
1 = J0(0, wλ,μ2) = J0(u0, v0) =

1
6

∫

RN

(
μ1|u0|3 + μ2|v0|3

)

≤ 1
6

lim inf
n→∞

∫

RN

(

μ1|un|3 + μ2|vn|3 +
3βn

2
u2

nvn

)

= lim
n→∞Jβn

(un, vn) = lim
n→∞ Cβn ≤ 1

6μ2
1

S3
1 ,

(4.34)

which contradicts λ >

(
μ2

μ1

) 4
6−N

. Hence u0 
= 0. Furthermore, if v0 
= 0,

by similar arguments as in (4.34) we can obtain a contradiction. Thus,
we have that u0 
= 0 and v0 = 0. On the other hand, since

‖un‖2
1 = μ1

∫

RN

|un|3 + βn

∫

RN

u2
nvn, (4.35)

it follows that

‖u0‖2
1 ≤ lim inf

n→∞ ‖un‖2
1 = lim inf

n→∞

(

μ1

∫

RN

|un|3 + βn

∫

RN

u2
nvn

)

= μ1

∫

RN

|u0|3.
(4.36)

We infer from u0 is a solution of the first equation of (1.7) that ‖u0‖2
1 =

μ1

∫

RN |u0|3 and lim
n→∞ ‖un‖2

1 = ‖u0‖2
1. Similarly, we can prove lim

n→∞ ‖vn‖2
λ

= 0. Thus, from Brezis-Lieb Lemma (see [72]) we infer that (un, vn) →
(u0, 0) in E as n → ∞.

Next we study the case of N = 1 and β∗ = 0. As in the case N ≥ 2,
one can prove that u0 = w1,μ1 and v0 = 0. We only need to check that
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(un, vn) → (u0, 0) in X2
r . By using the same arguments as in (4.34), one

deduces that

1
6μ2

1

S3
1 = J0(w1,μ1) = J0(u0, v0) =

μ1

6

∫

R

|u0|3

≤ 1
6

lim inf
n→∞

∫

R

(

μ1|un|3 + μ2|vn|3 +
3βn

2
u2

nvn

)

= lim
n→∞Jβn

(un, vn) = lim
n→∞ Cβn ≤ 1

6μ2
1

S3
1 .

(4.37)

Thus, it follows that (un, vn) → (u0, 0) in L3(R) × L3(R). So, by using
the same arguments as in (4.35) and (4.36), one deduces that (un, vn) →
(u0, 0) in X2

r as n → ∞.
At last we prove the case of β∗ > 0 which is part (2) of (i). We take

βn the same as in Lemma 4.2. Hence, we know that (un, vn) ⇀ (u0, v0)
in X2

r , (u0, v0) ∈ Nβ∗ \ {(0, 0)} is a nonnegative solution of (1.6), where
(un, vn) = (uβn

, vβn
). We claim that u0 
= 0 and v0 
= 0. Since (u0, v0) is

a nonnegative solution of (1.6), it follows that (u0, v0) = (0, v0) or u0 
= 0
and v0 
= 0. Assume, on the contrary, that u0 = 0 and v0 
= 0. It is easy
to see that v0 = wλ,μ2 , where wλ,μ2 is the unique positive solution of
(1.12) with (λ, μ) = (λ, μ2). By using similar arguments as in (4.34), one
obtains the contradiction. Hence, we know that u0 
= 0 and v0 
= 0. One
infers from Lemma 4.2 that

C β̂0 ≤ Jβ̂0
(u0, v0) =

1
6
(‖u0‖2

1 + ‖v0‖2
λ) ≤ lim

n→∞Jβn
(un, vn)

=
1
6

lim
n→∞(‖un‖2

1 + ‖vn‖2
λ) = lim

n→∞ Cβn ≤ C β̂0 .

So (un, vn) → (u0, v0) in X2
r as n → ∞, and (u0, v0) is a positive ground

state solution of (1.7) with β = β̂0.
(ii) Let (un, vn) = (uλn

, vλn
) be any radial positive ground state solution of

(1.7) with λ = λn, and λn → ∞, as n → ∞. We first consider the case of
N ≥ 2. As in (4.30) we know that

Jλn
(un, vn) =

1
6
(‖un‖2

1 + ‖vn‖2
λn

) = Cλn ≤ 1
6μ2

1

S3
1 . (4.38)

Set ṽn =
√

λnvn. It follows from λn → ∞ that ‖un‖, ‖vn‖ and |ṽn|2 are
bounded. Without loss of generality we assume that (un, vn) ⇀ (u0, v0) in
X2

r , (un, vn) → (u0, v0) in Lp
r(R

N ) × Lp
r(R

N ) (∀p ∈ (2, 2∗)), and ṽn ⇀ ṽ0

in L2(RN ). We first claim v0 ≡ 0. Indeed, we infer from (un, vn) satisfies
the second equation of (1.7) that

∫

RN

v2
0 = lim

n→∞

∫

RN

v2
n = lim

n→∞
λ−1

n

[∫

RN

(

μ2|vn|3 +
β

2
u2

nvn

)

−
∫

RN

|∇vn|2
]

= 0.

(4.39)
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Thus v0 ≡ 0. Moreover, since (un, vn) satisfies the first equation of (1.7),
we have that for each ϕ ∈ C∞

0 (RN ),

0 = lim
n→∞

[∫

RN

(∇un∇ϕ + unϕ) −
∫

RN

(
μ1u

2
nϕ + βvnunϕ

)
]

=
∫

RN

(∇u0∇ϕ + u0ϕ − μ1u
2
0ϕ).

(4.40)

These, together with Lemma 2.1 we know that u0 
= 0 is a solution of
(1.12) with (λ, μ) = (1, μ1).

Next we shall prove that ‖un − u0‖, ‖vn‖, |ṽn|2 → 0 as n → ∞. We
only prove |ṽn|2 → 0 as n → ∞. As in (4.37) we know that

1
6
(‖u0‖2 + |ṽ0|22

) ≤ lim inf
n→∞

1
6
(‖un‖2 + |ṽn|22)

) ≤ lim inf
n→∞

1
6
(‖un‖2 + ‖vn‖2

λn

)

= Cλn
r ≤ 1

6μ2
1

S3
1 ≤ 1

6
(‖u0‖2

1)
3

(
∫

RN μ1u3
0)2

≤ 1
6
‖u0‖2. (4.41)

Thus, we obtain that ṽ0 = 0, and |ṽn|2 → 0, as n → ∞. Finally, we infer
from (un, vn) → (u0, v0) in Lp

r(R
N ) × Lp

r(R
N ) (∀p ∈ (2, 6)) that for each

ϕ ∈ C∞
0 (RN ),

lim
n→∞

∫

RN

λnvnϕ = lim
n→∞

[∫

RN

(μ2v
2
nϕ +

β

2
u2

nϕ) −
∫

RN

(∇vn∇ϕ)

]

=
β

2

∫

RN

u2
0ϕ.

(4.42)
Next we consider the case of N = 1. Comparing to the proof of the

case of N ≥ 2, the only difference is that the embedding H1
r (R) ↪→ Lp(R)

is not compact. But since the embedding H1
r (R) ↪→ L∞(R) is continuous,

and we can use this to establish (4.40). In fact, since ‖vn‖ is bounded,
it follows that there exists a subsequence {vn} such that vn ⇀ v0 in
H1

r (R). Moreover, we infer from the continuous embedding that v2
n is

also bounded in H1
r (R). So, we can assume that v2

n ⇀ v in H1
r (R). Thus

by local compactness of Sobolev imbedding we have v = v2
0 . This fact

also holds for the sequence {un}. So one sees that for each ϕ ∈ C∞
0 (R),

(4.40) also holds. The remaining part of the proof is the same as that for
the case of N ≥ 2.

(iii) We first consider the case λ∗ = 0. Let (un, vn) = (uλn
, vλn

) be any radial
positive ground state solution of (1.7), where λ = λn, μ2 = 0 and λn → 0
as n → ∞. As in (4.30), we know that

1
6

(

‖un‖2
1 +
∫

RN

|∇vn|2
)

≤ Jλn
(un, vn) =

1
6
(‖un‖2

1 + ‖vn‖2
λn

) ≤ 1
6μ2

1

S2
1 .

(4.43)

So, (un, vn) is bounded in H1
r (RN )×D1,2

r (RN ). Without loss of generality
we assume that un ⇀ u0 in H1

r (RN ), vn ⇀ v0 in D1,2
r (RN ). Moreover, it

follows from (4.43) and Hölder inequality that for each ψ ∈ C∞
0 (RN ),

λn

∫

RN

v2
n ≤ 1

6μ2
1

S2
1 ,

∫

RN

λnvnψ ≤
√

λn

(∫

RN

λnv2
n

) 1
2
(∫

RN

ψ2

) 1
2

. (4.44)
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Thus, we obtain that
∫

RN λnvnψ → 0 for each ψ ∈ C∞
0 (RN ) as n → ∞.

This implies that for each (ϕ,ψ) ∈ C∞
0 (RN ) × C∞

0 (RN ),

lim
n→∞

[∫

RN

(∇un∇ϕ + unϕ + ∇vn∇ψ + λnvnψ) − (μ1u
2
nϕ +

β

2
u2

nψ + βvnunϕ)

]

=

∫

RN

(∇u0∇ϕ + u0ϕ + ∇v0∇ψ) − (μ1u
2
0ϕ +

β

2
u2
0ψ + βv0u0ϕ) = 0. (4.45)

That is, (u0, v0) is a solution of (1.7) with λ = 0 and μ2 = 0. By using the
same argument as the one in Lemma 2.3, we can prove that {(un, vn)} is
nonvanishing, i.e., (2.10) holds. Since the system (1.7) is invariant under
the translation un(·) �→ un(·+yn), we can assume that (un, vn) ⇀ (u0, v0)
in X2

r , (u0, v0) 
= (0, 0) and (u0, v0) ∈ N0, where Nλ|λ=0. Thus u0 
= 0
and v0 
= 0 is a solution of (1.7) with (λ, μ2) = (0, 0).

Finally, by using the arguments of (4.35)–(4.36) we have that (un, vn)
→ (u0, v0) in H1

r (RN ) × D1,2
r (RN ). The proof of the conclusion for λn →

λ∗ > 0 is almost the same as the one for λ∗ = 0, we omit the details. �

5. Liouville Type Results for the Two-Wave System

In this part we mainly focus on the proof of Theorem 1.9. To accomplish this
we shall apply the general results of [33,58]. Precisely, we shall apply the results
[58, Theorems 4 and 6] to prove the conclusions in Theorem 1.9 (i). Base on
this, we can use [33, Theorems 1.2 and 1.3] to get the results in Theorem 1.9
(ii) and (iii).

We first present an elementary algebraic result which will be used in
verifying the conditions of [58, Theorems 4 and 6].

Lemma 5.1. Suppose that μ1, μ2 > 0. Let β� =
(
2μ2

1μ2

) 1
3 . Then when β > −β�,

(1) for any u, v ≥ 0, h(u, v) = μ1u
3 + μ2v

3 +
3β

2
u2v ≥ 0, and h(u, v) = 0 if

and only if u = v = 0.
(2) there exist positive α0, α1 and α2 such that α1(μ1u

2 + βuv) + α2(μ2v
2 +

β
2 u2) ≥ α0(α1u + α2v)2 for any u, v ≥ 0.

(3) There exists some constant σ > 0 such that

2N

(
μ1

3
u3 +

μ2

3
v3 +

β

2
u2v

)

− (N − 2)
(
μ1u

3 + μ2v
3 + 2βu2v

) ≥ σ(u3 + v3)

for 1 ≤ N ≤ 4.

Proof. (1) It is clear that h(u, 0) = μ1u
3 ≥ 0. We prove h(u, v) ≥ 0 for v > 0.

Set t = u/v ≥ 0 and define the function

k(t) = μ1t
3 +

3β

2
t2 + μ2, t ≥ 0.

It suffices to show that min
t≥0

k(t) ≥ 0. By using some elementary calcu-

lations, we know that min
t≥0

k(t) = k

(

− β

μ1

)

=
β3

2μ2
1

+ μ2. Thus when
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β > −β�, we have min
t≥0

k(t) > 0. The second part of the conclusion (1) is

easy to verify.

(2) We set α1 = 1 and α2 =
(

μ1

2μ2

)1/3

. It is clear true when u = 0. Similar

to (1), we set t = v/u and consider the function

f(t) =
(μ1 + βt) + α2(μ2t

2 + β
2 )

(1 + α2t)2
, t ≥ 0. (5.1)

Then f(0) = μ1+
βα2

2
> 0 as β > −β� and lim

t→∞ f(t) =
μ2

α2
> 0. Moreover,

for any t > 0, using β > −β�, we have

(1 + α2t)2f(t) > g(t):=μ1 − β�t + α2

(

μ2t
2 +

−β�

2

)

≥ μ1

2α2
2

(t − α2)2 = β�(t − α2)2 ≥ 0.
(5.2)

Hence α0 = min
t≥0

f(t) > 0 and the conclusion of part (2) of this lemma

holds.
(3) A direct computation shows that

2N

(
μ1

3
u3 +

μ2

3
v3 +

β

2
u2v

)

− (N − 2)
(
μ1u

3 + μ2v
3 + 2βu2v

)

=
6 − N

3

[

μ1u
3 + μ2v

3 +
3
2
βu2v

]

Since β > β� =
(
2μ2

1μ2

) 1
3 , one deduces that there σ > 0 such that the

conclusion (3) holds. �

Now we are ready to give the proof of (i)–(iii) of Theorem 1.9.

Proof of Theorem 1.9. From Lemma 5.1, we verify that the conditions of [58,
Theorems 4 and 6] are satisfied. Thus, we infer from [58, Theorems 4 and 6]
that the results in part (i) hold. On the other hand, from this we deduce from
[33, Theorems 1.2 and 1.3] that the results of Theorem (ii) and (iii) hold. �

6. Existence Results for the Three-Wave System

In this section we prove the results for the three-wave system (1.5). In the
following we always assume that λ1 = 1, and λ2, λ3, μ1, μ2, μ3 > 0. First
we point out that (1.5) has three semi-trivial solutions of the form (u, 0, 0),
(0, v, 0) and (0, 0, w), where u, v, w 
= 0. These are the only possible semitrivial
solutions. Here we are interested in the non-trivial positive solution (u, v, w),
where u, v, w > 0.
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We define the following Nehari manifold

Ñ =
{

z = (u, v, w) ∈ X3 \ {(0, 0, 0)} : ‖u‖2 + ‖v‖2
λ2

+ ‖w‖2
λ3

= 3β

∫

RN

uvw +
∫

RN

(μ1|u|3 + μ2|v|3 + μ3|w|3)
}

,
(6.1)

and we also define

C̃ = inf
(u,v,w)∈ ˜N

J̃ (u, v, w), C̃r = inf
(u,v,w)∈ ˜N ∩X3

r

J̃ (u, v, w).

(6.2)

where J̃ is defined in (1.21). From the definition of Ñ , we know that for
(u, v, w) ∈ Ñ ,

J̃ | ˜N (u, v, w) =
1
6
(‖u‖2 + ‖v‖2

λ2
+ ‖w‖2

λ3
)

=
1
6

∫

RN

(μ1|u|3 + μ2|v|3 + μ3|w|3 + 3βuvw). (6.3)

As in (2.4) and (2.5), one can check that J̃ | ˜N is bounded from below away
from zero on Ñ .

Similar to the two-wave system, we can prove the following basic results
corresponding to Lemmas 2.2 and 2.3.

Lemma 6.1. Let C̃ and C̃r be defined as in (6.2).

1. If C̃ or C̃r is attained by some z ∈ Ñ , then z is a solution of (1.5).
2. Assume that 1 ≤ N ≤ 5, λ2, λ3, μ1, μ2, μ3 > 0 and β ∈ R. Then C̃ > 0

(or C̃r > 0) is attained by some z ∈ Ñ (or Ñ ∩ X3
r ).

Next, to prove the existence of nontrivial solutions for (1.5), we exclude
the possibility of C̃ or C̃r is achieved by one of the semi-trivial solutions:
(u, 0, 0), (0, v, 0) and (0, 0, w). First, if the condition (B1) holds, one has the
following result.

Lemma 6.2. Suppose that 1 ≤ N ≤ 5, and (B1) holds. Then the infimum C̃r

and C̃ > 0 are attained by a nontrivial solution of (1.5). Furthermore, we have
C̃ = C̃r.

Proof. We first prove that C̃ > 0 is attained by a nontrivial solution of (1.5).
From Lemma 6.1 we know that C̃ > 0 is attained by some z = (ũ0, ṽ0, w̃0) ∈
Ñ . So, to exclude the possibility of z = (ũ0, 0, 0), (0, ṽ0, 0) or (0, 0, w̃0), we
only need to show that

C̃ = J̃ (ũ0, ṽ0, w̃0) ≤ C̃r < min
{
J̃ (w1,μ1 , 0, 0), J̃ (0, wλ2,μ2 , 0), J̃ (0, 0, wλ3,μ3)

}
,

(6.4)
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where wλi,μi
is defined in (1.13). We infer from λ2 ≥

(
μ2

μ1

) 4
6−N

and λ3 ≥
(

μ3

μ1

) 4
6−N

that

J̃ (w1,μ1 , 0, 0) =
S3

1

6μ2
1

≤ min

{
S3

1λ
3−N

2
2

6μ2
2

,
S3

1λ
3−N

2
3

6μ2
3

}

= min
{
J̃ (0, wλ2,μ2 , 0), J̃ (0, 0, wλ3,μ3)

}
.

(6.5)

So it suffices to show that

C̃ = J̃ (ũ0, ṽ0, w̃0) ≤ C̃r <
S3

1

6μ2
1

. (6.6)

For z̃0 = (w0, w1, w2) = (w0(x), w0(
√

λ2x), w0(
√

λ3x)), there exists a unique
t̃0 > 0 such that t̃0z̃0 ∈ Ñ . Moreover, we know that

t̃0 =
‖w0‖2

1 + ‖w1‖2
λ2

+ ‖w2‖2
λ3∫

RN

(μ1w
3
0 + μ2w

3
1 + μ3w

3
2 + 3βw0w1w2)

=
S3

1

(
1 + λ

1−N
2

2 + λ
1−N

2
3

)

S3
1

(
μ1 + μ2λ

−N
2

2 + μ3λ
−N

2
2 + 3

S3
1
β
∫

RN w0w1w2

) .

(6.7)

So it follows from t̃0z̃0 ∈ Ñ that

C̃ = J̃ (u, v, w) ≤ C̃r

≤ J̃ (t̃0z̃0) =
t̃30
6

S3
1

(

μ1 + μ2λ
−N

2
2 + μ3λ

−N
2

2 +
3
S3

1

β

∫

RN

w0w1w2

)

.
(6.8)

If
t̃30
6

S3
1

(

μ1 + μ2λ
−N
2

2 + μ3λ
−N
2

2 +
3
S3

1

β

∫

RN

w0w1w2

)

<
S3

1

6μ2
1

, (6.9)

we know that (6.4) holds. Hence, a direct computation shows that if

β > β̃1 =
S3

1μ1

[(
1 + λ

2−N
2

2 + λ
2−N

2
3

) 3
2 −
(

1 +
μ2

μ1
λ

−N
2

2 +
μ3

μ1
λ

−N
2

3

)]

3
∫

RN w0w0(
√

λ2x)w0(
√

λ3x)
, (6.10)

then C̃ is attained by a nontrivial solution of (1.5). We claim that β̂1 ≥ β̃1.
Indeed, since w0(r) is strictly decreasing in r, it follows that

min
{

1, λ
− N

2
2 , λ

−N
2

3

}
S3

1 ≤
∫

RN

w0w0(
√

λ2x)w0(
√

λ3x)

≤ max
{

1, λ
− N

2
2 , λ

−N
2

3

}
S3

1 .
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Substituting this into (6.10), we obtain that

μ1

[(
1 + λ

2−N
2

2 + λ
2−N

2
3

) 3
2 −
(
1 + μ2

μ1
λ

−N
2

2 + μ3
μ1

λ
−N
2

3

)]

3max
{

1, λ
−N
2

2 , λ
−N
2

3

} = β̃2 ≤ β̃1

≤
μ1

[(
1 + λ

2−N
2

2 + λ
2−N

2
3

) 3
2 −
(
1 + μ2

μ1
λ

−N
2

2 + μ3
μ1

λ
−N

2
3

)]

3min
{

1, λ
− N

2
2 , λ

−N
2

3

} :=β̂1.

Hence, if β > β̂1, the inequality (6.4) holds, and C̃ is attained by a non-

trivial solution of (1.5). Moreover, it follows from λ2 ≥
(

μ2

μ1

) 4
6−N

and λ3 ≥
(

μ3

μ1

) 4
6−N

that

(
1 + λ

2−N
2

2 + λ
2−N

2
3

) 3
2 −
(

1 +
μ2

μ1
λ

−N
2

2 +
μ3

μ1
λ

−N
2

3

)

≥
(
1 + λ

2−N
2

2 + λ
2−N

2
3

) 3
2 −
(
1 + λ

6−3N
4

2 + λ
6−3N

4
3

)
> 0.

Thus β̂1 ≥ β̃1 > 0.
Next we show the existence of a positive radial ground state solution of

(1.5) for β > β̂1. Since β > β̂1 > 0, by using the same argument as in Lemma
3.1, one can prove that z = (ũ0, ṽ0, w̃0) is radial. Moreover, we can prove that
C̃ is attained by some positive z0. Indeed, it is easily to check that there exist
a unique t0 > 0 such that (t0|ũ0|, t0|ṽ0|, t0|w̃0|) ∈ Ñ ∩ Ẽr. It follows that

‖(|ũ0|)‖2
1 + ‖(|ṽ0|)‖2

λ2
+ ‖(|w̃0|)‖2

λ3
= ‖ũ0‖2

1 + ‖ṽ0‖2
λ2

+ ‖w̃0‖2
λ3

= t0

∫

RN

(μ1|ũ0|3 + μ2|ṽ0|3 + μ3|w̃0|3) + t03β

∫

RN

|ũ0||ṽ0||w̃0|.
(6.11)

We deduce from (6.11) and (ũ0, ṽ0, w̃0) ∈ Ñ that

t0 =
‖ũ0‖2

1 + ‖ṽ0‖2
λ2

+ ‖w̃0‖2
λ3∫

RN (μ1|ũ0|3 + μ2|ṽ0|3 + μ3|w̃0|3) + 3β
∫

RN |ũ0||ṽ0||w̃0|

≤ ‖ũ0‖2
1 + ‖ṽ0‖2

λ2
+ ‖w̃0‖2

λ3∫

RN (μ1|ũ0|3 + μ2|ṽ0|3 + μ3|w̃0|3) + 3β
∫

RN ũ0ṽ0w̃0
= 1.

(6.12)

So one sees from (6.4) and (6.12) that

C̃ ≤ J (t0|ũ0|, t0|ṽ0|, t0|w̃0|) =
t20
6

(‖ũ0‖2
1 + ‖ṽ0‖2

λ2
+ ‖w̃0‖2

λ3
)

≤ 1
6
(‖ũ0‖2

1 + ‖ṽ0‖2
λ2

+ ‖w̃0‖2
λ3

) = J (ũ0, ṽ0, w̃0) ≤ C̃.

(6.13)

Thus, z0 = (z1
0 , z2

0 , z3
0) = (t0|ũ0|, t0|ṽ0|, t0|w̃0|) is a nonnegative radial ground

state solution of (1.5). From the condition (B1), one deduces that ũ0 
= 0,
ṽ0 
= 0 and w̃0 
= 0. So applying the maximum principle to each equation
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of (1.5) yields that zi
0 > 0 for i = 1, 2, 3. Similarly, we can prove that C̃r is

attained by a positive solution of (1.5) and clearly, we have C = C̃r. �

Remark 6.3.
(1) In the Lemma 6.2, β̂1 can be replaced by β̃1 and β̂1 ≥ β̃1. But β̂1 is more

explicit.
(2) It is also possible to give other conditions under which (6.4) holds. For in-

stance, we replace z̃0 by z̃3 = (w0, w0, w0) or z̃1 = (w0(
√

λ2x), w0(
√

λ2x),
w0(

√
λ2x)) or z̃2 = (w0(

√
λ3x), w0(

√
λ3x), w0(

√
λ3x)) in Lemma 6.2.

Then a direct computation shows that if

β > β̃3 =
1
3

[
(3 + (λ2 + λ3 − 2)σ0)

3
2 μ1 − (μ1 + μ2 + μ3)

]
or

β > β̃4 =
1
3

[

λ
6−N

4
2

(

3 + (
1 + λ3

λ2
− 2)σ0

) 3
2

μ1 − (μ1 + μ2 + μ3)

]

or

β > β̃5 =
1
3

[

λ
6−N

4
3

(

3 + (
1 + λ2

λ3
− 2)σ0

) 3
2

μ1 − (μ1 + μ2 + μ3)

]

,

(6.14)

where σ0 = |w0|2L2(RN )/|w0|3L3(RN ), then the conclusion of Lemma 6.2 still
holds.

Next we study the existence of a ground state solution for the case that
(B2) or (B3) holds.

Lemma 6.4. Assume that 1 ≤ N ≤ 5, and either (B2) or (B3) holds, then the
conclusion of Lemma 6.2 remains true.

Proof. From Lemma 6.1 we know that C̃ > 0 is attained by some z =
(ũ0, ṽ0, w̃0) ∈ Ñ . If (B2) holds, we know that

J̃ (0, 0, wλ3,μ3) ≤ J̃ (w1,μ1 , 0, 0) ≤ J̃ (0, wλ2,μ2 , 0). (6.15)

So, to guarantee (6.4) hold, we only need to show that

C̃ = J̃ (ũ0, ṽ0, w̃0) < J̃ (0, 0, wλ3,μ3) =
S3

1λ
3−N

2
3

6μ2
3

. (6.16)

As in Lemma 6.2, we use z̃1 = (w0(
√

λ3x), w0(
√

λ3x), w0(
√

λ3x)) as a test
function. Then there exists t̃1 > 0 such that t̃1z̃1 ∈ Ñ and

t̃1 =
3λ3 + (1 + λ2 − 2λ3)σ0

μ1 + μ2 + μ3 + 3β
, (6.17)

where σ0 = |w0|2L2(RN )/|w0|3L3(RN ). So it suffices to show that

C̃ = J̃ (ũ0, ṽ0, w̃0) ≤ J̃ (t̃1z̃1) <
S3

1λ
3−N

2
3

6μ2
3

. (6.18)

A direct computation shows that if β > β̂2 (defined in (1.22)), then (6.18)
holds. The remaining part of the proof is the same as that in Lemma 6.2. If
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(B3) holds, by similar arguments as above one can show that if β > β̂3 defined
in (1.22), then the conclusion of the Lemma 6.2 remains true. �

Finally, we consider the case that (B4) or (B5) holds.

Lemma 6.5. Assume that 1 ≤ N ≤ 5, and either (B4) or (B5) holds. Then the
conclusion of Lemma 6.2 remains true.

Proof. If (B4) holds, one can check that

J̃ (0, wλ2,μ2 , 0) < J̃ (w1,μ1 , 0, 0) and J̃ (0, 0, wλ3,μ3) < J̃ (w1,μ1 , 0, 0).
(6.19)

So it suffices to prove that

C̃ = J̃ (ũ0, ṽ0, w̃0) < min
{
J̃ (0, wλ2,μ2 , 0), J̃ (0, 0, wλ3,μ3)

}
. (6.20)

By the proof of Lemma 6.2 we know that if β > max{β̂2, β̂3}, then (6.20)
holds. Hence, the conclusion of Lemma 6.2 remains true if (B4) holds. Finally,
if (B5) holds, as in the proof of Lemmas 6.2 and 6.4, we know that (6.4) holds.
Then the conclusion of Lemma 6.2 remains true. �

Remark 6.6. Similar to Remark 6.3, it is possible to find other conditions to
guarantee (6.4) holds in Lemmas 6.4 and 6.5. Here we omit details and leave
it to the interested readers.

Now we are ready to prove Theorem 1.10.

Proof of Theorem 1.10. The conclusion (i) follows from Lemmas 6.2, 6.4 and
6.5. The conclusion (ii) follows from the arguments of the proof of [42, Propo-
sition 2.2]. For (iii), assume by contradiction, if (u, v, w) is a positive solution
of (1.5), then the following Pohozaev identity holds (see [57, Theorem 1]): for
any a ∈ R,
[
N

2
− (a + 1)

] ∫

RN

(|∇u|2 + |∇v|2 + |∇w|2)+

(
N

2
− a

)∫

RN

(u2 + λ2v
2 + λ3w

2)

+

(

a − N

3

)∫

RN

(
μ1|u|3 + μ2|v|3 + μ3|w|3)+ β(3a − N)

∫

RN

uvw = 0.

(6.21)

Let a =
N

2
− 1 in (6.21). Then one has

∫

RN

(u2 + λ2v
2 + λ3w

2) +
N − 6

6

∫

RN

(μ1|u|3 + μ2|v|3 + μ3|w|3)

+
N − 6

4
β

∫

RN

uvw = 0.

(6.22)

Thus, u = v = w = 0 if N = 6 and λ2, λ3 > 0, or N > 6, λ2, λ3, μ1, μ2, μ3 > 0
and β > 0. �

Next we prove the bifurcation result Theorem 1.11 for the three-wave
system.
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Proof of Theorem 1.11 (i). In the following we only give the proof of the result
at the bifurcation point (β, u, v, w) = (β2, w1,μ1 , 0, 0). We denote u0 = w1,μ1 .
First, we consider an eigenvalue problem

− Δφ +
λ2 + λ3

2
φ −

√
(λ2 − λ3)2 + 4β2u2

0

2
φ = θ(β)φ, φ ∈ Xr

p . (6.23)

Set

χ2(β) =
λ2 + λ3

2
+ inf

φ∈Xr
p\{0}

∫

RN

2|∇φ|2 −
∫

RN

√

(λ2 − λ3)2 + 4β2u2
0φ

2

2
∫

RN

φ2
.

(6.24)
As in the proof of Lemma 4.1, one can verify that

lim
β→0+

χ2(β) =
λ2 + λ3 − |λ2 − λ3|

2
> 0, lim

β→∞
χ2(β) = −∞, (6.25)

and χ′
2(β) < 0 for β > 0. Hence we know that there exists β2 > 0 such

that χ2(β2) = 0 is the principal eigenvalue of the problem (6.23), and the
corresponding positive eigenvalue function is denoted by φ2,β2 . Thus as in
Lemma 4.1, (1.24) has a principal eigenvalue β2 > 0, and the corresponding
positive eigenfunction is φ2,β2 .

Set S = {(β,w1,μ1 , 0, 0) : β > 0}. We shall consider the bifurcation of
nontrivial solutions of (1.5) from the semi-trivial branch S near (β2, w1,μ1 , 0, 0).
To accomplish this we also apply the bifurcation result in [27]. We define
G : R × (Xr

p

)3 → (
Lr

p

)3 by

G(β, u, v, w) =

⎛

⎝
Δu − u + μ1u

2 + βvw
Δv − λ2v + μ2v

2 + βuw
Δw − λ3w + μ3w

2 + βuv

⎞

⎠ . (6.26)

For (φ1, φ2, φ3), (ψ1, ψ2, ψ3) ∈ (Xr
p

)3, one sees that

G(u,v,w)(β, u, v, w)[(φ1, φ2, φ3)]

=

⎛

⎝
Δφ1 − φ1 + 2μ1uφ1 + βvφ3 + βwφ2

Δφ2 − λ2φ2 + 2μ2vφ2 + βwφ1 + βuφ3

Δφ3 − λ3φ3 + 2μ3wφ3 + βvφ1 + βuφ2

⎞

⎠ ,

G(u,v,w)(u,v,w)(β, u, v, w)[(φ1, φ2, φ3), (ψ1, ψ2, ψ3)]

=

⎛

⎝
2μ1ψ1φ1 + βφ2ψ3 + βφ3ψ2

2μ2φ2ψ2 + βφ1ψ3 + βφ3ψ1

2μ3φ3ψ3 + βφ1ψ2 + βφ2ψ1

⎞

⎠ ,

Gβ(β, u, v, w)

=

⎛

⎝
vw
uw
uv

⎞

⎠ , and Gβ(u,v,w)(β, u, v, w)[(φ1, φ2, φ3)] =

⎛

⎝
vφ3 + wφ2

uφ3 + wφ1

uφ2 + vφ1

⎞

⎠ .

(6.27)
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We define
L5[(φ1, φ2, φ3)] = G(u,v,w)(β2, w1,μ1 , 0, 0)[(φ1, φ2, φ3)]

=

⎛

⎝
Δφ1 − φ1 + 2μ1w1,μ1φ1

Δφ2 − λ2φ2 + β2w1,μ1φ3

Δφ3 − λ3φ3 + β2w1,μ1φ2

⎞

⎠ .
(6.28)

Next we characterize N(L5) and R(L5). Again from [47, Lemma 2.1],
the only solution of Δφ1 − φ1 + 2μ1w1,μ1φ1 = 0 in Xr

p is 0, hence N(L5) =
{(0, φ2, φ3) : L6[(φ2, φ3)] = (0, 0)} where L6 is defined by

L6[(φ2, φ3)] =
(

Δφ2 − λ2φ2 + β2u0φ3

Δφ3 − λ3φ3 + β2u0φ2

)

, (6.29)

where u0 = w1,μ1 . To solve L6[(φ2, φ3)] = (0, 0), we set

a1 = λ3 − λ2 +
√

(λ3 − λ2)2 + 4β2
2u2

0, a2 = λ3 − λ2 −
√

(λ3 − λ2)2 + 4β2
2u2

0,

a3 = a2
1 + 4β2

2u2
0, and a4 = a2

2 + 4β2
2u2

0.

(6.30)
By using an orthonormal transformation,

(
φ2

φ3

)

=

(
a1√
a3

a2√
a4

2β2u0√
a3

2β2u0√
a4

)(
Ψ2

Ψ3

)

=

(
a1√
a3

Ψ2 + a2√
a4

Ψ3

2β2u0√
a3

Ψ2 + 2β2u0√
a4

Ψ3

)

, (6.31)

L6[(φ2, φ3)] = (0, 0) is transformed into two decoupled equations:
⎧
⎪⎨

⎪⎩

ΔΨ2 − λ2 + λ3

2
Ψ2 +

√
(λ2 − λ3)2 + 4β2

2u2
0

2
Ψ2 = 0,

ΔΨ3 − λ2 + λ3

2
Ψ3 −

√
(λ2 − λ3)2 + 4β2

2u2
0

2
Ψ3 = 0.

(6.32)

Thus, we know that Ψ2 = φ2,β2 and Ψ3 = 0 from the fact that χ2(β2) = 0
is the principal eigenvalue of the problem (6.23). Hence the only solution to
L6[(φ2, φ3)] = (0, 0) is

(φ2, φ3) =

(
a1

√
a2
1 + 4β2

2u2
0

φ2,β2 ,
2β2u0

√
a2
1 + 4β2

2u2
0

φ2,β2

)

. (6.33)

Define θ2 : RN → (0, π/2) by

θ2(x) = tan−1

(
2β2u0

a1

)

= tan−1

⎛

⎝
2β2w1,μ1(x)

λ3 − λ2 +
√

(λ3 − λ2)2 + 4β2
2w2

1,μ1
(x)

⎞

⎠ .

(6.34)

Then the subspace N(L5) = span {(0, cos θ2φ2,β2 , sin θ2φ2,β2)}. Noticing that
the linear operator L6 is indeed self-adjoint, then we obtain that the range
space of L5 is defined by

R(L) =
{

(f1, f2, f3) ∈ (Lp
r)

3 :
∫

RN

(f2 cos θ2 + f3 sin θ2)φ2,β2 = 0
}

. (6.35)
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This shows that dimN(L5)=codimR(L5)=1. Finally it is also straightforward
to use (6.35) to check that

Gβ(u,v,w)(β2, u0, 0, 0) [(0, φ2, φ3)] =

⎛

⎝
0

u0 cos θ2φ2,β2

u0 sin θ2φ2,β2

⎞

⎠ 
∈ R(L5), (6.36)

where (φ2, φ3) is defined in (6.33). Thus we can apply the result of [27] to
conclude that the set of positive solutions to (1.7) near (β2, u0, 0, 0) is a smooth
curve

Γ = {(β(s), u1β(s), v1β(s), w1β(s)) : s ∈ (0, τ̄2)}, (6.37)
such that β(s) = β2 + β′(0)s + o(s), u1β(s) = u0

+ o(s) and v1β(s) = cos θ2φ2,β2s + o(s) and w1β(s) = sin θ2φ2,β2s + o(s).
Moreover, β′(0) can be calculated (see for example [37,61])

β′(0) = −〈G(u,v,w)(u,v,w)(β2, u0, 0, 0)[(0, φ2, φ3)(0, φ2, φ3)], �〉
2〈Gβ(u,v,w)(β2, u0, 0, 0)[(0, φ2, φ3)], �〉

= −

∫

RN

(μ2 cos3 θ2 + μ3 sin3 θ2)φ3
2,β2

2
∫

RN

u0 sin θ2 cos θ2φ
2
2,β2

< 0,

(6.38)

where � is a linear functional on (Lp
r)

3 defined as 〈[(f1, f2, f3]), �〉 =
∫

RN (f2 cos
θ2+f3 sin θ2)φ2,β2 . Hence we infer from (6.37)–(6.38) that (1.5) has a nontrivial
solution (u1β , v1β , w1β) in the form of (1.23) for β2 − τ2 < β < β2. Moreover,
by using the arguments of [43, Theorem 5.1], one deduces that (u1β , v1β , w1β)
is positive solution.

The Morse index of (u1β , v1β , w1β) can be calculated similar to the two-
wave system case, which is omitted. Under the condition (Bi) (1 ≤ i ≤ 5), we
have shown that the ground state energy satisfies (6.4). On the other hand,
when τ2 > 0 is sufficiently small, we infer from L6[(cos θ2φ2,β2 , sin θ2φ2,β2)] = 0
and (1.23) that for β ∈ (β2 − τ2, β2),

J̃ (u1β , v1β , w1β) =
S3
1

6μ2
1

+ o(s) +
1

2

(‖v1β‖2
λ2 + ‖w1β‖2

λ3

)

− 1

3

∫

RN

(
μ2v

3
1β + μ3w

3
1β

)− β

∫

RN

u1βv1βw1β

=
S3
1

6μ2
1

− 2(β − β2)
3

3

(∫

RN φ2,β2w1,μ1 sin θ2 cos θ2
)3

(
∫

RN (μ2 cos3 θ2 + μ3 sin3 θ2)φ3
2,β2

)2
+ o(s)

=
S3
1

6μ2
1

+ o(s).

(6.39)

One deduces from (6.4) that C̃r < J̃ (u0, 0, 0) =
S3

1

6μ2
1

. Hence, for τ2 > 0

sufficiently small and β ∈ (β2 − τ2, β2), J̃ (u1β , v1β , w1β) > C̃r. So when one
of the condition (Bi) (1 ≤ i ≤ 5) is satisfied, (u1β , v1β , w1β) is not a ground
state solution. �

Next we prove the conclusion (ii) of Theorem 1.11.
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Proof of Theorem 1.11 (ii). Set

u1(x) =
1
μ1

w0(x), v1(x) =
λ2

μ2
w0(
√

λ2x), w1(x) =
λ3

μ3
w0(
√

λ3x). (6.40)

Then we know that when β = 0, (1.5) has the following non-trivial non-
negative solutions

z1 = (u1, v1, w1), z2 = (u1, v1, 0), z3 = (u1, 0, w1), z4 = (0, v1, w1),

z5 = (u1, 0, 0), z6 = (0, v1, 0), z7 = (0, 0, w1).
(6.41)

We shall apply the implicit function theorem at zi with parameter β = 0
for i = 1, 2, 3, 4. Since the proof is essentially the same for each of i =
1, 2, 3, 4, we only present the proof for z1. Since z1 is nondegenerate in Xr

p , i.e.,
[
G(u,v,w)(0, z1)

]−1 =
[
G(u,v,w)(0, u1, v1, w1)

]−1 exists. By the implicit function
theorem, there exist β̃0 > 0, R0 > 0 and z̃1(β) : (−β̃0, β̃0) → BR0(z1) such that
for any β ∈ (−β̃0, β̃0), G(β, z̃1(β)) = G(β, ũ1(β), ṽ1(β), w̃1(β)) = 0.

For each (φ1, φ2, φ3) ∈ (XR
p

)3, one infers from (6.27) that

G(u,v,w)(0, u1, v1, w1)[(φ1, φ2, φ3)] =

⎛

⎝
Δφ1 − φ1 + 2μ1u1φ1

Δφ2 − λ2φ2 + 2μ2v1φ2

Δφ3 − λ3φ3 + 2μ3w1φ3

⎞

⎠ = −
⎛

⎝
w1v1
u1w1

u1v1

⎞

⎠ .

(6.42)

Hence one has that

φ1 = (−Δ + 1 − 2μ1u1)−1w1v1, φ2 = (−Δ + λ2 − 2μ2v1)−1u1w1

φ3 = (−Δ + λ3 − 2μ3w1)−1u1v1,
(6.43)

which implies the form of (u4β , v4β , w4β) in (1.25). Similarly by using the
implicit function theorem at zi for i = 2, 3, 4, we can obtain the positive
solutions (uiβ , viβ , wiβ) with i = 5, 6, 7 as in (1.25). Note that the implicit
function theorem can also be applied at zi for i = 5, 6, 7 but will only yield
semi-trivial solutions.

Hence there exists τ5 > 0 such that when β ∈ (0, τ5), (1.5) has ex-
actly four positive solutions, and the sign information of (uiβ , viβ , wiβ) with
i = 4, 5, 6, 7 and β ∈ (−τ5, 0) can also be easily obtained by using the form
in (1.25). The Morse indices of all solutions can be obtained similarly as in
the proof of Theorem 1.4, by using the stability information of each solution
when β = 0. Finally the energy of the four positive solutions can be com-
pared with the ones of three semi-trivial ones, and we can conclude that one
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of (uiβ , viβ , wiβ) with i = 5, 6, 7 is the ground state solution under proper
conditions on λ2 and λ3. �
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Anal. Non Linéaire 27(3), 953–969 (2010)

[33] Dancer, E.N., Weth, T.: Liouville-type results for non-cooperative elliptic sys-
tems in a half-space. J. Lond. Math. Soc. (2) 86(1), 111–128 (2012)

[34] de Figueiredo, D.G., Lopes, O.: Solitary waves for some nonlinear Schrödinger
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