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Abstract
We study a two-species competition model in a patchy advective environment, where
the species are subject to both directional drift and undirectional random dispersal
between patches and there are losses of individuals in the downstream end (e.g., due
to the flow into a lake or ocean). The two competing species are assumed to have the
same growth rates but different advection and random dispersal rates. We focus our
studies on the properties of an associated eigenvalue problem which characterizes the
extinction/persistence dynamics of the underlying patch population model. We also
derive conditions on the advection and random dispersal rates under which a mutant
species can or cannot invade the resident species.
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1 Introduction

The organisms in streams are subject to both directional drift and undirectional random
diffusion. Intuitively, the stream flow takes the organisms to the downstream locations
which are often fatal to them, while random diffusion may drive them to favorable
locations in the upstream.How the joint force of directed and undirectionalmovements
affects the extinction and persistence of a biological species have attracted the attention
of many researchers (Huang et al. 2016; Jin and Lewis 2011; Lou and Lutscher 2014;
Lutscher et al. 2006, 2007, 2005; Speirs and Gurney 2001).

In the framework of discrete patch models, a population in a stream environment
with logistic type growth can be described by the following system (Chen et al. 2022b;
Cosner 1996; Li and Shuai 2010; Lu and Takeuchi 1993):

{
dui
dt = ∑n

j=1 Li j u j + ui (ri − ui ), i = 1, . . . , n, t > 0,

u(0) = u0 ≥ ( �≡) 0,
(1.1)

where n ≥ 2 is the number of patches; u = (u1, . . . , un), and ui denotes the population
density in patch i ; Li j is the movement rate of individuals from patch j to patch i ; and
ri is the intrinsic growth rate in patch i . The connection matrix L = (

Li j
)
depends

on the topology of the stream and the directional and undirectional movement rates
of the species. In this paper, we only consider the population dynamics in a stream
with free flow from upstream end (patch i = 1) to the downstream end (patch i = n).
The following three ecological scenarios at the downstream end are typical (Lou and
Lutscher 2014; Lutscher et al. 2006; Speirs and Gurney 2001):

(i) Stream to lake. The lake environment is as favorable as the stream environment
for the species, and individuals can return to the stream from the lake by diffusion.
Moreover, the diffusive flux into and from the lake balances;

(ii) Stream to ocean. The ocean environment is fatal to the species in the stream,
and individuals cannot return to the stream from the ocean;

(iii) Inland stream. Individuals cannot move in or out through the downstream end.

The above cases (i)–(iii) correspond to three types of movements at the downstream
end, see (a)–(c) in Fig. 1.

The movement of the species among patches in Fig. 1 can be described by an n× n
matrix L = dD+qQwithd andq being the diffusion and advection rates, respectively,
and D = (Di j ) representing the diffusion pattern and Q = (qi j ) describing the
directed movement pattern of individuals. Then, the matrices D and Q satisfy one of
the following three assumptions:
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Fig. 1 Advective and diffusive movement of the species among patches. Here, a stream to lake; b stream
to ocean; and c inland stream. Here, d > 0 is the diffusion rate, and q ≥ 0 is the advection rate

H1. Case (a): stream to lake. The matrix D = (Di j ) is given by

Di j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, i = j − 1 or i = j + 1,

−2, i = j = 2, . . . , n − 1,

−1, i = j = 1, n,

0, otherwise,

(1.2)

and Q = (Qi j ) is given by

Qi j =

⎧⎪⎨
⎪⎩
1, i = j + 1,

−1, i = j = 1, . . . , n,

0, otherwise.

(1.3)

H1∗. Case (b): stream to ocean. The same as H1 except that Dnn = −2.
H1∗∗. Case (c): inland stream. The same as H1 except that Qnn = 0.

We will consider the following two-species Lotka–Volterra competition model in
a spatially homogeneous patchy stream environment:

⎧⎪⎨
⎪⎩

dui
dt = ∑n

j=1(d1Di j + q1Qi j )u j + ui (r − ui − vi ), i = 1, . . . , n, t > 0,
dvi
dt = ∑n

j=1(d2Di j + q2Qi j )v j + vi (r − ui − vi ), i = 1, . . . , n, t > 0,

u(0) = u0 ≥ ( �≡) 0, v(0) = v0 ≥ ( �≡) 0.
(1.4)

Here, the growth rate r is assumed to be a positive constant for all patches, and
the two species have the same interspecific and intraspecific competition coefficients
(normalized to be 1 for simplicity). So the two competing species are identical except
their diffusion and advection rates. The connection matrices are

L(k) =
(
L(k)
i j

)
= dk D + qkQ, k = 1, 2, (1.5)
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where
(
Di j

)
and

(
Qi j

)
are defined in (1.2) and (1.3) for case (a)–(c), respectively.

For the purpose of brevity, we will restrict our attention to cases (a) and (b) where
there are losses of individuals in the downstream end, and case (c) will be studied in
a follow-up paper.

Our work is largely motivated by previous researches on population dynamics in
streams in the framework of partial differential equation models (Cantrell and Cosner
2004; Lam et al. 2015, 2016; Lou and Lutscher 2014; Lou et al. 2016; Lou and Zhou
2015; Ma and Tang 2020; Vasilyeva and Lutscher 2012; Zhao and Zhou 2016; Zhou
2016). The reaction–diffusion–advection model analogous to (1.1) is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = d̃uxx − q̃ux + u[r(x) − u], 0 < x < l, t > 0,

d̃ux (0, t) − q̃u(0, t) = 0, t > 0,

d̃ux (l, t) − q̃u(l, t) = −βq̃u(l, t), t > 0,

u(x, 0) ≥ ( �≡)0.

(1.6)

Here, the species u lives in a stream represented by 0 ≤ x ≤ l; d̃ is the diffusion
rate and q̃ is the advection rate of the species; x = 0 is the upstream end and x = l
is the downstream end. The no-flux boundary condition is imposed at the upstream
end x = 0, which means that individuals cannot move in or out through the upstream
boundary. A parameter β is introduced for the boundary condition at the downstream
end x = l to measure the loss rate of individuals. The corresponding three cases
in Fig. 1 are as follows: (1) free-flow boundary condition ux (l, t) = 0 for β = 1;
(2) hostile boundary condition u(l, t) = 0 for β → ∞; and (3) no-flux boundary
condition d̃ux (l, t) − q̃u(l, t) = 0 for β = 0.

The reaction–diffusion–advection version of the two species competition model
(1.4) over a stream with different boundary conditions in the downstream end has
been studied by many authors (Lam et al. 2015; Lou and Lutscher 2014; Lou et al.
2016; Lou and Zhou 2015; Ma and Tang 2020; Vasilyeva and Lutscher 2012; Zhao
and Zhou 2016; Zhou 2016). In the seminal work of Hastings (1983) and Dockery
et al. (1998), it has been shown that a mutant species can invade if and only if it
has a smaller diffusion rate when both species have no directional movement and
are identical except for the diffusion rates. However, in a stream environment with
free-flow boundary conditions (Lou and Lutscher 2014; Vasilyeva and Lutscher 2012;
Zhou and Zhao 2018) or inland boundary conditions (Lam et al. 2015; Lou et al. 2018,
2016; Lou and Zhou 2015; Zhou 2016), the species with larger diffusion rate and/or
smaller advection rate may be selected. The Dirichlet boundary condition case seems
to be less studied, and the authors in Yan et al. (2022) showed that both coexistence
and bi-stability are possible numerically.

Model (1.1) is a discrete version of (1.6). We divide the interval [0, l] into n + 1
sub-intervals with equal length �x = l/(n + 1) and endpoints 0, 1, . . . , n + 1. At
endpoints i = 1, . . . , n, we discretize uxx and ux to obtain the following equation:

dui
dt

= d̃
ui+1 − 2ui + ui−1

(�x)2
− q̃

ui − ui−1

�x
+ ui (ri − ui ), i = 1, . . . , n, (1.7)
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where ui (t) is the population density at endpoint i . Note that for i = 2, · · · , n − 1,
(1.7) is the same as (1.1) with d = d̃/(�x)2 and q = q̃/�x . At the upstream end
x = 0, we discretize the no-flux boundary condition to obtain

d̃
u1 − u0

�x
− q̃u0 = 0.

Substituting it into (1.7) for i = 1, we obtain (1.1) for i = 1. If the downstream end
x = l is imposed with the free-flow boundary condition, then the discrete version is

d̃
un+1 − un

�x
= 0.

Substituting it into (1.7) for i = n, we obtain (1.1) for i = n. If the downstream
end is associated with the hostile boundary condition, then we obtain un+1 = 0 at
the endpoint of the stream. Again, we can substitute it into (1.7) for i = n to obtain
the corresponding equation in (1.1). The no-flux boundary condition at x = l can be
treated similarly.

The discrete patchmodel (1.1) and the two-species competitionmodel (1.4)with the
dispersal matrix D, Q defined as in (1.2)–(1.3) approximate the reaction–diffusion–
advection model (1.6) and the corresponding two-species competition model as the
number of patches gets large and the total length of the system remains fixed. Similar
approach for spatial population dynamics has been used in DeAngelis et al. (2016),
Keitt et al. (2001), Levin (1976), Owen and Lewis (2001), and comparison of con-
tinuous and discrete space models was also made in these work. While the two types
of models often produce similar results, it is known that they can also have different
outcomes when there is Allee effect in the system (Keitt et al. 2001; Owen and Lewis
2001).

We will investigate model (1.4) in the approach of adaptive dynamics framework
(Dieckmann and Law 1996; Geritz et al. 1998), which is the method adopted in Lou
and Lutscher (2014), Vasilyeva and Lutscher (2012). For this purpose, we will first
impose conditions on d1 and q1 such that u-species is established as a semi-trivial
equilibrium E1 = (u∗, 0) (the v-only equilibrium will be denoted by E2 = (0, v∗))
when there is no v-species in the system. Then, we investigate the stability/instability
of E1 when d2 and q2 varies. We show that there is a curve q = q∗

r−u∗(d) passing
through (d1, q1) and dividing the d − q plane into two regions such that E1 is stable
if (d2, q2) is above the curve while E1 is unstable if (d2, q2) is below it. When the
downstream end is coupled with no-flux boundary conditions (case (a)), we show that
the curve q = q∗

r−u∗(d) is strictly increasing, and v species can invade if it has larger
diffusion or smaller advection rate. If the hostile boundary conditions (case (b)) are
imposed at the downstream end, we show that smaller advection rate is selected. If
q2 = q1 and d2 is close to d1, [q∗

r−u∗(d)]′|d=d1 > (<)0means that species v can invade

if and only if d2 > (<)d1. We show that
[
q∗
r−u∗(d)

]′ |d=d1 changes sign in case (b)
as (d1, q1) varies, which indicates whether smaller or larger diffusion rate is favored
depends on (d1, q1). For both cases, we find parameter ranges of d2 and q2 such that
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competitive exclusion happens. We also give conditions under which coexistence or
bi-stability of the two species occurs.

The global dynamics of the single species patch model (1.1) is well-known. In
Cosner (1996), Li and Shuai (2010); Lu and Takeuchi (1993), it has been shown that
either the trivial equilibrium of (1.1) is globally stable or the model has a globally
asymptotically stable positive equilibrium. There are also many research works on
the two-species competition model (1.4), especially when the number of patches n
is small (n = 2 or 3). We refer interested readers to the works on two-patch models
without directional dispersal (Cheng et al. 2019; Gourley and Kuang 2005; Lin et al.
2014) and the ones with directional dispersal (Hamida 2017; Jiang et al. 2020, 2021;
Lou 2019; Noble 2015; Xiang and Fang 2019). More recently, the competition on a
river network was considered for three-patch models (Jiang et al. 2020, 2021). When
(d1, q1) is a multiple of (d2, q2), complete global dynamics of (1.4) has been classified
in our recent work (Chen et al. 2022a). We refer to Cantrell et al. (2007), Cantrell et al.
(2012, 2017), Kirkland et al. (2006), Levin et al. (1984), McPeek and Holt (1992),
Smith (1995) and the references therein for more works on competition models in
patchy environment.

Our paper is organized as follows. In Sect. 2, we introduce the terminology and
state some useful results; in Sect. 3, we study the properties of the principal eigenvalue
of an associated eigenvalue problem which determines the existence/nonexistence of
positive equilibrium of (1.1); and in Sect. 4, we perform invasion analysis for the two-
species competition model (1.4). In Sect. 5, we present some numerical simulations
and formulate some conjectures on coexistence and bi-stability about the solutions of
the model.

2 Preliminaries

Let u = (u1, . . . , un)T ∈ R
n be a vector. We write u � 0 (u ≥ 0) if ui > 0 (ui ≥ 0)

for all 1 ≤ i ≤ n, and u > 0 if u ≥ 0 and u �= 0. Let A = (ai j )n×n be a real-valued
square matrix, and let σ(A) be the set of all eigenvalues of A. The spectral bound
s(A) of A is defined as

s(A) = max{Re(λ) : λ ∈ σ(A)}.

The matrix A is reducible if we can partition {1, 2, . . . , n} into two nonempty subsets
E and F such that ai j = 0 for all i ∈ E and j ∈ F . Otherwise, A is irreducible.
A real-valued square matrix A is called essentially nonnegative if all its off-diagonal
entries are nonnegative. If A is an irreducible essentially nonnegative matrix, then
by the Perron–Frobenius Theorem (Li and Schneider 2002), s(A) is an eigenvalue
of A (called the principal eigenvalue), which is the unique eigenvalue corresponding
with a positive eigenvector. It is easy to see that D and L defined in the Introduction
are irreducible and essentially nonnegative. If D satisfiesH1 or H1∗∗, then s(D) = 0
corresponding with a positive eigenvector (1/n, . . . , 1/n); and if D satisfiesH1∗, then
s(D) < 0.
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Denote by λ1(d, q, r) the principal eigenvalue of the matrix dD+ qQ + diag(ri ),
where r = (r1, . . . , rn) is a real-valued vector, so λ1(d, q, r) satisfies the following
eigenvalue problem:

n∑
j=1

(dDi j + qQi j )φ j + riφi = λφi . i = 1, . . . , n, (2.1)

The global dynamics of the single species model (1.1) is determined by the sign
of λ1(d, q, r) (see Cosner 1996; Li and Shuai 2010; Lu and Takeuchi 1993 for the
proof):

Lemma 2.1 Suppose that H1, H1∗ or H1∗∗ holds. Let λ1(d, q, r) be the principal
eigenvalue of (2.1). If λ1(d, q, r) ≤ 0, then the trivial equilibrium 0 of (1.1) is
globally asymptotically stable; and if λ1(d, q, r) > 0, then model (1.1) admits a
unique positive equilibrium u∗ � 0, which is globally asymptotically stable.

For further applications, we need the following result about the monotonicity of the
spectral bound/principal eigenvalue (Altenberg 2012; Chen et al. 2022b).

Lemma 2.2 Let A = (ai j )n×n be an irreducible essentially nonnegative matrix and
R = diag(ri ) be a real diagonal matrix. Then, the following results hold:

(i) If s(A) < 0, then

d

dμ
s(μA + R) < 0

for μ ∈ (0,∞); Moreover,

lim
μ→0

s(μA + R) = max
1≤i≤n

{ri } and lim
μ→∞ s(μA + R) = −∞;

(ii) If s(A) = 0, then

d

dμ
s(μA + R) ≤ 0

for μ ∈ (0,∞) and the equality holds if and only r1 = · · · = rn; Moreover,

lim
μ→0

s(μA + R) = max
1≤i≤n

ri and lim
μ→∞ s(μA + R) =

n∑
i=1

θi ri ,

where θi ∈ (0, 1), 1 ≤ i ≤ n, is determined by A and
∑n

i=1 θ1 = 1 (if A has
each column sum equaling zero, then θ = (θ1, . . . , θn)

T is a positive eigenvector
of A corresponding to eigenvalue 0).
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We will use the monotone dynamical system theory (Hess 1991; Hsu et al. 1996;
Lam andMunther 2016; Smith 1995) to investigate the global dynamics of the Lotka–
Volterra competition system (1.4). Let X = (Rn+ × R

n+,≤K ) be an ordered Banach
space with the order ≤K generated by the cone K = R

n+ × (−R
n+). That is, for x =

(u1, v1), y = (u2, v2) ∈ X , we say x ≤K y if u1 ≤ u2 and v1 ≥ v2; x <K y if x ≤K

y and x �= y. The solutions of (1.4) induce a strictly monotone dynamical system
in X : for two initial data (u1,0, v1,0) <K (u2,0, v2,0), the corresponding solutions of
(1.4) satisfy (u1(t), v1(t)) <K (u2(t), v2(t)) for all t ≥ 0. By the strictly monotone
dynamical system theory, the global dynamics of (1.4) is largely determined by the
local/linearized stability of the semi-trivial equilibria E1 and E2:

1. if E2 is unstable and (1.4) has no positive equilibrium, then E1 is globally asymp-
totically stable; if E1 is unstable and (1.4) has no positive equilibrium, then E2 is
globally asymptotically stable;

2. if E1 and E2 are both unstable, then (1.4) has at least one stable positive equilib-
rium, which is globally asymptotically stable if it is unique;

3. if E1 and E2 are both locally asymptotically stable, then (1.4) has at least one
unstable positive equilibrium.

3 Persistence of a Single Species

In this section, we consider the mutual effects of the diffusion and advection rates on
the dynamics of the single species model (1.1). By Lemma 2.1, the global dynamics
of the model is determined by the sign of λ1(d, q, r). In this section, we study the
properties of λ1(d, q, r) with respect to d and q in cases (a)–(b).

3.1 Monotonicity of �1(d, q, r) in q

In this subsection, we study the monotonicity of λ1(d, q, r) with respect to the advec-
tion rate q.

Lemma 3.1 Suppose thatH1 orH1∗ holds. Let λ1(d, q, r) be the principal eigenvalue
of (2.1). Then, for fixed d > 0, λ1(d, q, r) is strictly decreasing with respect to q in
[0,∞). Moreover,

lim
q→0

λ1(d, q, r) = λ1(d, 0, r) and lim
q→∞ λ1(d, q, r) = −∞. (3.1)

Proof Let φ = (φ1, φ2, . . . , φn)
T � 0 be the eigenvector corresponding to the prin-

cipal eigenvalue λ1(d, q, r) with

n∑
i=1

φi = 1, q ∈ [0,∞). (3.2)
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Differentiating (2.1) with respect to q yields

∂λ1

∂q
φi + λ1

∂φi

∂q
=

n∑
j=1

(
dDi j + qQi j

) ∂φ j

∂q
+

n∑
j=1

Qi jφ j + ri
∂φi

∂q
. (3.3)

Then, multiplying (3.3) by φi and (2.1) by ∂φi
∂q and taking the difference, we have

∂λ1

∂q
φ2
i =

∑
j �=i

(
dDi j + qQi j

) (
∂φ j

∂q
φi − ∂φi

∂q
φ j

)
+

n∑
j=1

Qi jφiφ j . (3.4)

Let

(β1, β2, β3, . . . , βn) =
(
1,

d

d + q
,

(
d

d + q

)2

, . . . ,

(
d

d + q

)n−1
)

.

Multiplying (3.4) by βi and summing them over i , we obtain

∂λ1

∂q

n∑
i=1

βiφ
2
i =

n∑
i=1

∑
j �=i

βi
(
dDi j + qQi j

) (
∂φ j

∂q
φi − ∂φi

∂q
φ j

)
+

n∑
i=1

n∑
j=1

βi Qi jφiφ j .

(3.5)
A direct computation yields

n∑
i=1

∑
j �=i

βi
(
dDi j + qQi j

) (
∂φ j

∂q
φi − ∂φi

∂q
φ j

)

=
n−1∑
i=1

[
βi d

(
∂φi+1

∂q
φi − ∂φi

∂q
φi+1

)
+ βi+1(d + q)

(
∂φi

∂q
φi+1 − ∂φi+1

∂q
φi

)]

=
n−1∑
i=1

[
(βi d − βi+1(d + q))

(
∂φi+1

∂q
φi − ∂φi

∂q
φi+1

)]
= 0,

(3.6)
where we have used βi d−βi+1(d+q) = 0 for all i = 1, 2, . . . , n−1. This, combined
with (3.5), implies that

∂λ1

∂q

n∑
i=1

βiφ
2
i =

n∑
i=1

n∑
j=1

βi Qi jφiφ j

= −
n∑

i=1

βiφ
2
i +

n−1∑
i=1

βi+1φiφi+1

= −β1

2
φ2
1 − βn

2
φ2
n −

n−1∑
i=1

(
βi

2
φ2
i − βi+1φiφi+1 + βi+1

2
φ2
i+1

)
< 0,

(3.7)
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where we have used the fact that

βi

2
φ2
i − βi+1φiφi+1 + βi+1

2
φ2
i+1 ≥ βi+1

2
(φi − φi+1)

2 ≥ 0

as βi ≥ βi+1 for i = 1, . . . , n − 1. This implies that λ1(d, q, r) is strictly decreasing
with respect to q in [0,∞).

Clearly, limq→0 λ1(d, q, r) = λ1(d, 0, r). It remains to show limq→∞ λ1(d, q, r)
= −∞. Since λ1(d, q, r) is decreasing in q, the limit limq→∞ λ1(d, q, r) exists in
[−∞,∞). Suppose to the contrary that limq→∞ λ1(d, q, r) ∈ (−∞,∞). By (3.2),
up to a subsequence, we have limq→∞ φ = φ∗, where φ∗ = (φ∗

1 , . . . , φ
∗
n )

T ≥ 0 and∑n
i=1 φ∗

i = 1. Dividing both sides of (2.1) by q and taking q → ∞, we have

n∑
j=1

Qi jφ
∗
j = 0, i = 1, . . . , n.

This implies that φ∗ = 0, which is a contradiction. Therefore, we have limq→∞ λ1(d,

q, r) = −∞.

From Lemmas 2.1–2.2 and 3.1, we obtain the following results about the impact of
d and q on the dynamics of model (1.1) for case (a).

Proposition 3.2 Suppose that H1 holds. Then, the following statements hold:

(i) If
∑n

i=1 ri > 0, then for any d > 0 there exists q∗
r (d) > 0 such that

λ1(d, q∗
r (d), r) = 0, λ1(d, q, r) < 0 for q > q∗

r (d), and λ1(d, q, r) > 0
for q < q∗

r (d). Moreover, we have the following results:

(i1) If q ≥ q∗
r (d), then the trivial equilibrium 0 of model (1.1) is globally asymp-

totically stable;
(i2) If q < q∗

r (d), model (1.1) admits a unique positive equilibrium, which is
globally asymptotically stable;

(ii) If
∑n

i=1 ri < 0 < max1≤i≤n ri , then there exists d∗ > 0 such that λ1(d∗, 0, r) =
0, λ1(d, 0, r) < 0 for d > d∗, and λ1(d, 0, r) > 0 for d < d∗; Moreover, we
have the following results:

(ii1) If d ∈ (0, d∗), then there exists q∗
r (d) > 0 such that (i1)–(i2) hold;

(ii2) If d ≥ d∗, then for any q > 0, the trivial equilibrium 0 of model (1.1) is
globally asymptotically stable;

(iii) If max1≤i≤n ri ≤ 0, then the trivial equilibrium 0 of model (1.1) is globally
asymptotically stable for any d > 0 and q ≥ 0.

Proof Note that D is an irreducible essentially nonnegative matrix with s(D) = 0
corresponding with a positive eigenvector (1/n, . . . , 1/n). It follows from Lemma 2.2
that

∂λ1(d, 0, r)
∂d

≤ 0,
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where the equality holds if and only r1 = · · · = rn . Moreover,

lim
d→0

λ1(d, 0, r) = max
1≤i≤n

ri and lim
d→∞ λ1(d, 0, r) =

∑n
i=1 ri
n

.

This, combined with Lemmas 2.1 and 3.1, implies (i)–(i i i).

A similar result holds for case (b).

Proposition 3.3 Suppose that H1∗ holds. Then, we the following results:

(i) If max1≤i≤n ri > 0, then there exists d∗ > 0 such that λ1(d∗, 0, r) = 0,
λ1(d, 0, r) < 0 for d > d∗, and λ1(d, 0, r) > 0 for d < d∗; Moreover, we
have:

(i1) If d ∈ (0, d∗), then there exists q∗
r (d) > 0 such that (i1)–(i2) in Proposition

3.2 hold;
(i2) If d ≥ d∗, then for any q > 0, the trivial equilibrium 0 of model (1.1) is

globally asymptotically stable;

(ii) If max1≤i≤n ri ≤ 0, then the trivial equilibrium 0 of model (1.1) is globally
asymptotically stable for any d > 0 and q ≥ 0.

Proof Since s(D) < 0, by Lemma 2.2, we have

∂λ1(d, 0, r)
∂d

< 0,

and

lim
d→0

λ1(d, 0, r) = max
1≤i≤n

ri and lim
d→∞ λ1(d, 0, r) = −∞.

This, combined with Lemmas 2.1 and 3.1, implies (i)–(ii).

3.2 Dependence of �1(d, q, r) on d

In this section, we study the dependence of λ1(d, q, r) on d for cases (a)–(b).When the
directed movement rate q = 0, we know that λ1(d, 0, r) is decreasing in d ∈ (0,∞).
However, this may no longer be true when q > 0.

We first compute the limits of λ1 as d → 0 or ∞ in case (a).

Lemma 3.4 Suppose that H1 holds. Let λ1(d, q, r) be the principal eigenvalue of
(2.1). Then, we have the following:

lim
d→0

λ1(d, q, r) = max
1≤i≤n

ri − q, and lim
d→∞ λ1(d, q, r) =

∑n
i=1 ri − q

n
.

Proof Firstly, it is easy to see that limd→0 λ1(d, q, r) = λ1(0, q, r) = max1≤i≤n ri −
q. Then,we compute the limit ofλ1(d, q, r) asq → ∞. Letφ = (φ1, φ2, . . . , φn)

T �
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0 be the eigenvector corresponding to the principal eigenvalue λ1(d, q, r) with∑n
i=1 φi = 1. Summing all the equations in (2.1), we have

n∑
i=1

n∑
j=1

(dDi j + qQi j )φ j +
n∑

i=1

riφi = λ1(d, q, r)
n∑

i=1

φi . (3.8)

It follows from H1 that

n∑
i=1

n∑
j=1

Di jφ j = 0 and
n∑

i=1

n∑
j=1

Qi jφ j = −φn .

Therefore, by (3.8), we have

− qφn +
n∑

i=1

riφi = λ1(d, q, r)
n∑

i=1

φi . (3.9)

This gives a bound for λ1(d, q, r):

min
1≤i≤n

ri − q ≤ λ1(d, q, r) ≤ max
1≤i≤n

ri ,

which implies that
lim
d→∞ λ1(d, q, r) ∈ (−∞, max

1≤i≤n
ri ]. (3.10)

Up to a subsequence, we may assume limd→∞ λ1(d, q, r) = a and limd→∞ φ = φ̄,
where φ̄ = (φ̄1, . . . , φ̄n)

T ≥ 0 and
∑n

i=1 φ̄i = 1. Dividing both sides of (2.1) by d
and taking d → ∞, we have Dφ̄ = 0, which implies that

φ̄ = (φ̄1, . . . , φ̄n)
T =

(
1

n
, . . . ,

1

n

)T

. (3.11)

Taking d → ∞ in (3.9), we have

−qφ̄n +
n∑

i=1

ri φ̄i = a
n∑

i=1

φ̄i .

This gives

lim
d→∞ λ1(d, q, r) = a =

∑n
i=1 ri − q

n
.

For r̂ � 0, the principal eigenvalue λ1(d, q, r̂) satisfies the following property for
case (a), which will be useful later.

123



Journal of Nonlinear Science            (2023) 33:40 Page 13 of 35    40 

Lemma 3.5 Suppose that H1 holds. Let λ1(d, q, r̂) be the principal eigenvalue of
(2.1) with r̂ � 0. If λ1(d∗, q, r̂) = 0 for some d∗ > 0, then

∂

∂d
λ1(d, q, r̂)

∣∣
d=d∗ > 0. (3.12)

Proof Let φ = (φ1, φ2, . . . , φn)
T � 0 be the positive eigenvector corresponding to

the eigenvalue λ1(d, q, r̂) with
∑n

i=1 φi = 1. By similar arguments as in the proof of
Lemma 3.1, we obtain

∂λ1

∂d

n∑
i=1

βiφ
2
i =

n∑
i=1

n∑
j=1

βi Di jφiφ j ,

where βi is defined in (3.1). A direct computation implies that

∂λ1

∂d

n∑
i=1

βiφ
2
i =

n−1∑
i=1

βi (φi+1 − φi )

[
φi −

(
d

d + q

)
φi+1

]
. (3.13)

If λ1(d∗, q, r̂) = 0, then we see from (2.1) that

(d∗ + q)(φn−1 − φn) = −r̂nφn,

(d∗ + q)(φi−1 − φi ) = −r̂iφi + d∗(φi − φi+1), i = 2, . . . , n − 1.
(3.14)

Since r̂ � 0, we have
φ1 < φ2 < · · · < φn . (3.15)

Summing the first k equations in (2.1), where 1 ≤ k ≤ n − 1, we find

d∗φk+1 − (d∗ + q)φk = −
k∑

i=1

r̂iφi < 0.

This, combined with (3.13) and (3.15), implies (3.12).

We also have the limits of λ1 as d → 0 or ∞ in case (b).

Lemma 3.6 Suppose that H1∗ holds. Let λ1(d, q, r) be the principal eigenvalue of
(2.1). Then, we have the following:

lim
d→0

λ1(d, q, r) = max
1≤i≤n

ri − q, and lim
d→∞ λ1(d, q, r) = −∞.

Proof The proof is similar to that of Lemma 3.4, and the difference is that (3.9) is
replaced by the following equation:

− (d + q)φn +
n∑

i=1

riφi = λ1(d, q, r)
n∑

i=1

φi . (3.16)
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This gives a bound for λ1(d, q, r):

min
1≤i≤n

ri − (d + q) ≤ λ1(d, q, r) ≤ max
1≤i≤n

ri .

Assume to the contrary that limd→∞ λ1(d, q, r) �= −∞. Up to a subsequence,wemay
assume limd→∞ λ1(d, q, r) = a ∈ (−∞,max1≤i≤n ri ] and limd→∞ φ = φ̄, where
φ̄ = (φ̄1, . . . , φ̄n) ≥ 0 and

∑n
i=1 φ̄i = 1. Dividing both sides of (2.1) by d and taking

d → ∞, we have Dφ̄ = 0. So φ̄ is a nonnegative eigenvector corresponding with
eigenvalue 0 of D. This contradicts with s(D) < 0. Therefore, limd→∞ λ1(d, q, r) =
−∞.

3.3 Some Properties on q∗
r (d)

In this subsection, we give some properties on function q∗
r (d) obtained in Proposi-

tions 3.2 and 3.3, which will be used in the next section.
We first consider case (a).

Lemma 3.7 Suppose thatH1 holds and r � 0, and let q∗
r (d) be defined in Proposition

3.2. Then, the following statements about q∗
r (d) hold:

(i) q∗
r (d) is strictly increasing with respect to d in (0,∞);

(ii) limd→0 q∗
r (d) = max1≤i≤n ri , and limd→∞ q∗

r (d) = ∑n
i=1 ri ;

(iii) If r1 > r2 � 0, then q∗
r1(d) > q∗

r2(d) for any d > 0.

Proof (i) Let d1 > d2 > 0. Then, by the definition of q∗
r (d), we have

λ1
(
d1, q

∗
r (d1), r

) = λ1
(
d2, q

∗
r (d2), r

) = 0.

This, combined with Lemma 3.5, yields

λ1
(
d1, q

∗
r (d1), r

)−λ1
(
d1, q

∗
r (d2), r

) = λ1
(
d2, q

∗
r (d2), r

)−λ1
(
d1, q

∗
r (d2), r

)
< 0.

(3.17)
By Lemma 3.1, λ1(d, q, r) is strictly decreasing with respect to q. Therefore, we can
see from (3.17) that q∗

r (d1) > q∗
r (d2).

(ii) Since q∗
r (d) is strictly increasingwith respect to d, the limit limd→0 q∗

r (d) exists
in [0,∞) and the limit limd→∞ q∗

r (d) exists in (0,∞]. We denote

a1 := lim
d→0

q∗
r (d) and a2 := lim

d→∞ q∗
r (d).

We first suppose that a1 �= 0 (i.e., a1 > 0). Then, for sufficiently small ε > 0, there
exists d̄ > 0 such that 0 < a1 − ε < q∗

r (d) < a1 + ε for all 0 < d < d̄. Since
λ1(d, q, r) is strictly decreasing in q, we have

λ1(d, a1 + ε, r) < λ1(d, q∗
r (d), r) = 0 ≤ λ1(d, a1 − ε, r) (3.18)
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for all 0 < d < d̄ . Taking d → 0 in (3.18) and using Lemma 3.4, we have

max
1≤i≤n

ri − (a1 + ε) ≤ 0 ≤ max
1≤i≤n

ri − (a1 − ε). (3.19)

This gives max1≤i≤n ri −ε ≤ a1 ≤ max1≤i≤n ri +ε. Since ε > 0 is arbitrary, we have
a1 = max1≤i≤n ri . If a1 = 0, then the first inequality of (3.19) still holds, which gives
max1≤i≤n ri ≤ ε. Since ε > 0 is arbitrary, we have r = 0, which is a contradiction.
This proves limd→0 q∗

r (d) = max1≤i≤n ri .
Letφ = (φ1, φ2, . . . , φn)

T � 0 be the eigenvector corresponding to the eigenvalue
λ1(d, q∗

r (d), r) = 0 with
∑n

i=1 φi = 1. Then, we have

dDφ + q∗
r (d)Qφ + diag(ri )φ = 0. (3.20)

Up to a subsequence, wemay assume limd→∞ φ = φ∗, where φ∗ = (φ∗
1 , . . . , φ

∗
n )

T ≥
0 and

∑n
i=1 φ∗

i = 1.Now,we claim thata2 �= ∞. Suppose to the contrary thata2 = ∞.
Multiplying (3.20) by (1, . . . , 1) and dividing both sides by q∗

r (d), we obtain

− φn + 1

q∗
r (d)

n∑
i=1

riφi = 0, (3.21)

which yields φ∗
n = limd→∞ φn = 0. By virtue of (3.20) again, we obtain that

φn−1 − φn = −rnφn

d + q∗
r (d)

,

φi−1 − φi = d

d + q∗
r (d)

(φi − φi+1) − riφi

d + q∗
r (d)

, i = 2, . . . , n − 1.
(3.22)

Taking d → ∞ in (3.22), we have φ∗
1 = · · · = φ∗

n , and consequently φ∗ = 0. This is
a contradiction, and hence, a2 ∈ (−∞,∞). Dividing (3.20) by d and taking d → ∞,
we have Dφ∗ = 0, which implies that

φ∗ = (φ∗
1 , . . . , φ

∗
n )

T =
(
1

n
, . . . ,

1

n

)T

.

Then taking the limit of (3.21), we have a2 = ∑n
i=1 ri .

(iii) Clearly, if r1 > r2, then

λ1(d, q, r1) > λ1(d, q, r2) for any d, q > 0. (3.23)

Note that λ1(d, q∗
r1(d), r1) = λ1(d, q∗

r2(d), r2) = 0. This, combined with (3.23),
implies that

λ1(d, q∗
r1(d), r1) − λ1(d, q∗

r2(d), r1) = λ1(d, q∗
r2(d), r2) − λ1(d, q∗

r2(d), r1) < 0.

Since λ1(d, q, r) is strictly decreasing in q, we have q∗
r1(d) > q∗

r2(d) as desired.
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Next, we consider case (b).

Lemma 3.8 Suppose that H1∗ holds, and let q∗
r (d) and d∗ be defined in Proposition

3.3. Then, the following statements hold:

(i) If r = (r1, . . . , rn) satisfies max1≤i≤n ri > 0, then

lim
d→0

q∗
r (d) = max

1≤i≤n
ri and lim

d→d∗ q
∗
r (d) = 0;

(ii) If r j = (r j,1, . . . , r j,n) satisfies r1 > r2 and max1≤i≤n r j,i > 0 for j = 1, 2,
then q∗

r1(d) > q∗
r2(d) for any d ∈ (0, d̂). Here, d̂ = min{d∗

1 , d∗
2 } = d∗

2 , where
λ1(d∗

1 , 0, r1) = λ1(d∗
2 , 0, r2) = 0;

(iii) If r = (r , . . . , r) with r > 0 and q∗
r (d̄) < r for some d̄ ∈ (0, d∗), then

[q∗
r (d)]′ < 0 for d ∈ [d̄, d∗).

Proof (i) By Proposition 3.3 and max1≤i≤n ri > 0, q∗
r (d) is well-defined. Up to a

subsequence, we have

a1 := lim
d→0

q∗
r (d) and a2 := lim

d→d∗ q
∗
r (d),

where a1, a2 ∈ [0,∞]. Using the same argument as in the proof of Lemma 3.7, we can
show a1, a2 �= ∞. Then, similar to Lemma 3.7, we can use Lemma 3.6 to compute
a1 = max1≤i≤n ri .

Now, we claim that a2 = 0. If it is not true, then for sufficiently small ε > 0, there
exists d̄ > 0 such that 0 < a2 − ε < q∗

r (d) < a2 + ε for all d ∈ (d̄, d∗). Since
λ1(d, q∗

r (d), r) = 0 and λ1(d, q, r) is strictly decreasing in q, we have

λ1(d, a2 + ε, r) < λ1(d, q∗
r (d), r) = 0 < λ1(d, a2 − ε, r).

for all d ∈ (d̄, d∗). Taking d → d∗, we have

λ1(d
∗, a2 + ε, r) ≤ 0 ≤ λ1(d

∗, a2 − ε, r).

Taking ε → 0, we have λ1(d∗, a2, r) = 0, which contradicts with a2 > 0.
The proof of (ii) is similar to the one for Lemma 3.7, so we omit it here.
(iii) Let φ = (φ1, φ2, . . . , φn)

T � 0 be the eigenvector corresponding to the
eigenvalue λ1(d, q∗

r (d), r) = 0 with
∑n

i=1 φi = 1. Then, we have

d
n∑
j=1

Di jφ j + q∗
r (d)

n∑
j=1

Qi jφ j + rφi = 0. (3.24)

Differentiating (3.24) with respect to d, we obtain

n∑
j=1

Di jφ j +
n∑
j=1

Di jφ
′
j + [q∗

r (d)]′
n∑
j=1

Qi jφ j + q∗
r (d)

n∑
j=1

Qi jφ
′
j + rφ′

i = 0.

(3.25)
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Multiplying (3.25) by φi and (3.24) by φ′
i and taking the difference, we have

[q∗
r (d)]′

n∑
j=1

Qi jφiφ j = −
n∑
j=1

(dDi j + q∗
r (d)Qi j )(φiφ

′
j − φ′

iφ j ) −
n∑
j=1

Di jφiφ j .

(3.26)
Similar to the proof of Lemma 3.1, let

(β1, β2, β3, . . . , βn) =
(
1,

d

d + q∗
r (d)

,

(
d

d + q∗
r (d)

)2

, . . . ,

(
d

d + q∗
r (d)

)n−1
)

.

Multiplying (3.26) by βi and summing them over i , we obtain

[q∗
r (d)]′

n∑
i=1

n∑
j=1

βi Qi jφiφ j = −
n∑

i=1

n∑
j=1

βi Di jφiφ j , (3.27)

where we have used

n∑
i=1

n∑
j=1

βi
(
dDi j + q∗

r (d)Qi j
)
(φiφ

′
j − φ′

iφ j ) = 0.

By (3.7), we have
n∑

i=1

n∑
j=1

βi Qi jφiφ j < 0. (3.28)

A direct computation gives

n∑
i=1

n∑
j=1

βi Di jφiφ j =
n−1∑
i=1

βi (φi+1 − φi )

[
φi −

(
d

d + q∗
r (d)

)
φi+1

]
− βnφ

2
n .

(3.29)
Suppose q∗

r (d̄) < r for some d̄ ∈ (0, d∗). We can rewrite (3.24) as

d̄(φ1 − φ2) = (r − q∗
r (d̄))φ1,

d̄(φi − φi+1) = (d̄ + q∗
r (d̄))(φi−1 − φi ) + rφi , i = 2, . . . , n − 1,

d̄(φn−1 − 2φn) + q∗
r (d̄)(φn−1 − φn) + rφn = 0.

(3.30)

It follows from (3.30) that φ1 > · · · > φn . So, by (3.29), we have

n∑
i=1

n∑
j=1

βi Di jφiφ j < 0.

This combined with (3.27)–(3.28) gives [q∗
r (d̄)]′ < 0. Therefore, we must have

[q∗
r (d)]′ < 0 for d ∈ [d̄, d∗).
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Remark 3.9 The monotonicity of λ1(d, q, r) in q for cases (a) and (b) of reaction–
diffusion models was proved in Lou and Lutscher (2014). To our best knowledge, the
properties of q∗

r (d) were not studied for reaction–diffusion models.

4 Invasion Analysis for Two Competing Species

In this section, we study the evolution of diffusion and advection rates by con-
sidering the two species competition model (1.4). Throughout this section, assume
r = (r , . . . , r) � 0.

If we treat u = (u1, . . . , un)T as the resident species and v = (v1, . . . , vn)
T as the

mutant species, our purpose is to find conditions under which v can or cannot invade.
To this aim, we suppose that species u has been established, and model (1.4) has a
unique semi-trivial equilibrium by (u∗, 0), where u∗ = (u∗

1, . . . , u
∗
n)

T � 0 satisfies

n∑
j=1

(d1Di j + q1Qi j )u j + ui (r − ui ) = 0, i = 1, . . . , n, (4.1)

where r > 0 in this section. Then, we study the stability of (u∗, 0) when d2 and q2
are different from d1 and q1, respectively. Biologically, if (u∗, 0) is stable, this means
that an introduction of small amount of species v cannot invade species u; if (u∗, 0)
is unstable, this means that a small amount of species v may be able to destabilize the
system and the mutant species v may be established.

We denote the v-only semi-trivial equilibrium by (0, v∗) if it exists, where v∗ =
(v∗

1 , . . . , v
∗
n)

T � 0 solves

n∑
j=1

(d2Di j + q2Qi j )v j + vi (r − vi ) = 0, i = 1, . . . , n. (4.2)

4.1 Invasion Analysis for Case (a)

By Proposition 3.2, q∗
r (d1) > 0 exists for any d1 > 0. We suppose that species u is

established, i.e.,

H2. q1 < q∗
r (d1),

where q∗
r (d1) satisfies λ1(d1, q∗

r (d1), r) = 0. If H2 is satisfies, model (1.4) admits a
unique semi-trivial equilibrium (u∗, 0) by Proposition 3.2.

The following estimate about u∗ will be useful later.

Lemma 4.1 Suppose that H1 and H2 hold. Let u∗ = (u∗
1, . . . , u

∗
n)

T be the unique
positive solution of (4.1). Then, 0 < u∗

1 < · · · < u∗
n < r .
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Proof It follows from (4.1) that

(d + q)(u∗
n−1 − u∗

n) = −u∗
n(r − u∗

n),

(d + q)(u∗
i−1 − u∗

i ) = d(u∗
i − u∗

i+1) − u∗
i (r − u∗

i ), i = 2, . . . , n − 1,

qu∗
1 = d(u∗

2 − u∗
1) + u∗

1(r − u∗
1).

(4.3)

We first claim that u∗
n < r . If it is not true, then we see from the first equation of (4.3)

that u∗
n−1 ≥ u∗

n ≥ r . By induction, we obtain from the second equation of (4.3) that

u∗
1 ≥ u∗

2 ≥ · · · ≥ u∗
n ≥ r .

By the third equation of (4.3),

qu∗
1 = d(u∗

2 − u∗
1) + u∗

1(r − u∗
1) ≤ 0,

which contradicts with u∗
1 > 0. Therefore, u∗

n < r . Then, by virtue of (4.3), we obtain
that u∗

1 < u∗
2 < · · · < u∗

n < r . This completes the proof.

By Lemma 4.1, we have r − u∗ � 0. Therefore, the function q∗
r−u∗(d) is well-

defined for d ∈ (0,∞) by Lemma 3.2. Moreover, by Lemma 3.7 (iii), we have
q∗
r−u∗(d) < q∗

r (d) for all d > 0.

Proposition 4.2 Suppose that H1 and H2 hold. Then, q∗
r−u∗(d) is strictly increasing

for d ∈ (0,∞) with

lim
d→0

q∗
r−u∗(d) = r − u∗

1 > 0 and lim
d→∞ q∗

r−u∗(d) =
n∑

i=1

(r − u∗
i ) > 0.

Proof By Lemma 4.1, we have 0 < u∗
1 < · · · < u∗

n < r . Then, the results follow from
Lemma 3.7.

We partition the first quadrant of the d − q plane into two disjoint subsets:

S1 :={(d, q) : q, d > 0, q > q∗
r−u∗(d)},

S2 :={(d, q) : q, d > 0, q < q∗
r−u∗(d)}. (4.4)

We have the following result about the local stability of the semi-trivial equilibrium
(u∗, 0) of model (1.4).

Proposition 4.3 Suppose that H1 and H2 hold. Then, the following statements about
the semi-trivial equilibrium (u∗, 0) of (1.4) hold:

(i) If (d2, q2) ∈ S1, then (u∗, 0) is locally asymptotically stable.
(ii) If (d2, q2) ∈ S2, then (u∗, 0) is unstable.
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Proof Linearizing (1.4) at (u∗, 0), we can see that its stability is determined by the sign
ofλ1(d2, q2, r−u∗): ifλ1(d2, q2, r − u∗) < 0, it is stable; and ifλ1(d2, q2, r − u∗) >

0, it is unstable. By Lemma 3.1, λ1(d, q, r − u∗) > 0 is decreasing in q ∈ (0,∞)

for each d > 0. Since λ1(d, q∗
r−u∗(d), r − u∗) = 0, we know λ1(d2, q2, r − u∗) < 0

for (d2, q2) ∈ S1, and λ1(d2, q2, r − u∗) > 0 for (d2, q2) ∈ S2. Therefore, (u∗, 0) is
locally asymptotically stable for (d2, q2) ∈ S1 and is unstable for (d2, q2) ∈ S2.

To characterize the set S1 and S2 more precisely, we first prove the following property
about q = q∗

r−u∗(d).

Lemma 4.4 Suppose thatH1 andH2 hold. Then, the two functions q = q∗
r−u∗(d) and

q = q1
d1
d have exactly one intersection point (d1, q1) in the first quadrant.

Proof Since λ1(d1, q1, r − u∗) = 0, we have q1 = q∗
r−u∗(d1). Therefore, d = d1 is

a root of the equation q∗
r−u∗(d) − q1

d1
d = 0. To see this is the only root, we suppose

to the contrary that d̄1 �= d1 is another root. Without loss of generality, we assume
d̄1 = μ̄d1 for some μ̄ > 1. So, we have q∗

r−u∗(d̄1) = q1
d1
d̄1 = μ̄q1. By Lemma 2.2,

we have

d

dμ
λ1(μd1, μq1, r − u∗) < 0.

Therefore, we obtain

0 = λ1(d1, q1, r − u∗) > λ1(μ̄d1, μ̄q1, r − u∗) = λ1(d̄1, q
∗
r−u∗(d̄1), r − u∗) = 0,

which is a contradiction.

Next, we define two subsets of the first quadrant of the d − q plane:

G1 :={(d, q) : 0 < d ≤ d1
q1

q, q ≥ q1, (d, q) �= (d1, q1)},

G2 :={(d, q) : d ≥ d1
q1

q, 0 < q ≤ q1, (d, q) �= (d1, q1)}.

By Proposition 4.2, function q∗
r−u∗(d) is strictly increasing in d. By Lemma 4.4,

we have:
G1 ⊂ S1 and G2 ⊂ S2. (4.5)

It turns out that we are able to completely understand the dynamics of model (1.4) for
(d2, q2) ∈ G1 ∪ G2. The key ingredient is the following result:

Lemma 4.5 Suppose that H1 and H2 hold. Then, if (d2, q2) ∈ G1 ∪ G2, model (1.4)
has no positive equilibrium.

Proof Let (d2, q2) ∈ G1 ∪ G2. Suppose to the contrary that model (1.4) admits a
positive equilibrium (û, v̂), where û = (û1, . . . , ûn) � 0 and v̂ = (v̂1, . . . , v̂n) � 0.
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Then, we have

(d1 + q1)(ûn−1 − ûn) = −ûn(r − ûn − v̂n),

(d1 + q1)(ûi−1 − ûi ) = d1(ûi − ûi+1) − ûi (r − ûi − v̂i ), i = 2, . . . , n − 1,

q1û1 = d1(û2 − û1) + û1(r − û1 − v̂1).

and

(d2 + q2)(v̂n−1 − v̂n) = −v̂n(r − ûn − v̂n),

(d2 + q2)(v̂i−1 − v̂i ) = d2(v̂i − v̂i+1) − v̂i (r − ûi − v̂i ), i = 2, . . . , n − 1,

q2v̂1 = d2(v̂2 − v̂1) + v̂1(r − û1 − v̂1).

Then, using similar arguments as in the proof of Lemma 4.1, we can show that ẑ1 <

ẑ2 < · · · < ẑn for z = u, v and ûi + v̂i < r for 1 ≤ i ≤ n. Therefore, r − û − v̂ � 0.
ByProposition 3.2, functionq = q∗

r−û−v̂
(d) iswell-defined ford ∈ (0,∞).Moreover,

by Lemma 3.7, it is strictly increasing in (0,∞).
Noticing that (û, v̂) is a positive equilibrium, we have λ1(d1, q1, r − û − v̂) =

λ1(d2, q2, r − û − v̂) = 0. By virtue of similar arguments as in the proof of Lemma
4.4, the functions q = q∗

r−û−v̂
(d) and q = q1

d1
d have exactly one intersection point

(d1, q1) in the first quadrant of the d − q plane. It follows that

G1 ⊂ {(d, q) : q, d > 0, q > q∗
r−û−v̂

(d)}

and

G2 ⊂ {(d, q) : q, d > 0, q < q∗
r−û−v̂

(d)}.

By Lemma 3.1, we have λ1(d2, q2, r − û − v̂) < 0 for (d2, p2) ∈ G1 and
λ1(d2, q2, r − û − v̂) > 0 for (d2, p2) ∈ G2, which contradicts with λ1(d2, q2, r − û
−v̂) = 0. Therefore, model (1.4) has no positive equilibrium if (d2, q2) ∈ G1 ∪ G2.

By virtue of Proposition 4.3, Lemma 4.5 and the monotone dynamical system
theory, we have the following main result about the global dynamics of model (1.4):

Theorem 4.6 Suppose that H1 and H2 hold. Then, the following statements hold:

(i) If (d2, q2) ∈ G1, then (u∗, 0) is globally asymptotically stable for (1.4);
(ii) If (d2, q2) ∈ G2, then the semi-trivial equilibrium (0, v∗) exists and is globally

asymptotically stable for (1.4).

Proof (i) Suppose (d2, q2) ∈ G1. We claim that semi-trivial equilibrium (0, v∗) is
either unstable or does not exist. Indeed, if q2 < q∗

r (d2), then (0, v∗) exists. Since the
nonlinear terms of the model are symmetric and (u∗, 0) is unstable when (d2, q2) ∈
G2, (0, v∗) is unstable when (d2, q2) ∈ G1. If q2 ≥ q∗

r (d2), then (0, v∗) does not exist.
Since model (1.4) has no positive equilibrium for (d2, q2) ∈ G1, by the monotone
dynamical system theory (Hess 1991; Hsu et al. 1996; Lam and Munther 2016; Smith
1995), (u∗, 0) is globally asymptotically stable.
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Fig. 2 Illustration of Proposition 4.3 and Theorem 4.6 for model (1.4)-case (a). Here, d1 and q1 are fixed
and satisfy H2 such that (u∗, 0) exists. If (d2, q2) is above the curve q = q∗

r−u∗ (d), then (u∗, 0) is stable;
if (d2, q2) is under the curve, then (u∗, 0) is unstable. If (d2, q2) ∈ G1, (u∗, 0) is globally asymptotically
stable; and if (d2, q2) ∈ G2, (0, v∗) exists and is globally asymptotically stable

(ii) By Lemma 3.7, we have q∗
r−u∗(d) < q∗

r (d) for all d > 0. So if (d2, q2) ∈
G2 ⊂ {(d, q) : q, d > 0, q < q∗

r (d)}, semi-trivial equilibrium (0, v∗) exists. Since
(u∗, 0) is unstable and model (1.4) has no positive equilibrium for (d2, q2) ∈ G2, the
desired result follows from the monotone dynamical system theory (Hess 1991; Hsu
et al. 1996; Lam and Munther 2016; Smith 1995).

Remark 4.7 Theorem 4.6 is illustrated in Fig. 2. We are able to completely understand
the global dynamics of model (1.4) in the colored regions (G1 and G2), in which the
competitive exclusion happens.

We have the following observations from Theorem 4.6:

Corollary 4.8 Suppose that H1 and H2 hold. Then, the following statements hold:

(i) Fix q2 = q1. If d2 < d1, (u∗, 0) is globally asymptotically stable for (1.4); and
if d2 > d1, (0, v∗) is globally asymptotically stable;

(ii) Fix d2 = d1. If q2 > q1, (u∗, 0) is globally asymptotically stable for (1.4); and
if q2 < q1, (0, v∗) is globally asymptotically stable.

Remark 4.9 By Corollary 4.8, the species with a larger diffusion rate or a smaller
advection rate can invade and replace the resident species. Moreover, Corollary 4.8 (i)
resolves a conjecture in Lou (2019), which was originally proposed for a two-patch
model.

To study the dynamics ofmodel (1.4)with (d2, q2) in the region other thanG1,G2 in
Fig. 2, we first show that there exists a curve which determines the stability of the semi-
trivial equilibrium (0, v∗). We recall that (0, v∗) exists if and only if 0 < q2 < q∗

r (d2).
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Proposition 4.10 Suppose thatH1 andH2 hold. Then, the following statements hold:

(i) For any d2 > 0, λ1(d1, q1, r − v∗(d2, q2)) is strictly increasing in q2 for q2 ∈
(0, q∗

r (d2));
(ii) For any d2 > 0, there exists a unique q∗

2 (d2) ∈ (0, q∗
r (d2)) such that

λ1(d1, q1, r − v∗(d2, q∗
2 (d2))) = 0; (4.6)

Moreover, q∗
2 (d1) = q1, and

q1 < q∗
2 (d2) < min

{
q1
d1

d2, q
∗
r (d2)

}
for d2 > d1,

q1
d1

d2 < q∗
2 (d2) < min

{
q1, q

∗
r (d2)

}
for d2 < d1.

(4.7)

(iii) Semi-trivial equilibrium (0, v∗(d2, q2)) is stable if 0 < q2 < q∗
2 (d2) and unstable

if q∗
2 (d2) < q2 < q∗

r (d2).

Proof (i) Clearly, v∗(d2, q2) satisfies

n∑
j=1

(d2Di j + q2Qi j )v j + vi (r − vi ) = 0, i = 1, . . . , n, (4.8)

Differentiating (4.8) with respect to q2 yields

−
n∑
j=1

(d2Di j + q2Qi j )v
′
j − (r − 2vi )v

′
i =

n∑
j=1

Qi jv j , i = 1, . . . , n, (4.9)

Denote L̃ = d2D + q2Q + diag(r − 2vi ), and we have s(L̃) < s(d2D + q2Q +
diag(r − vi )) = 0. So −L̃ is an irreducible non-singular M-matrix, and red each
entry of −L̃−1 is positive (Berman and Plemmons 1994). By Lemma 4.1, we have
v1 < · · · < vn . Therefore, the right hand side of (4.9) is negative. This implies that
v′
i < 0 for i = 1, . . . , n and each entry of v∗(d2, q2) is strictly decreasing in q2 for
q ∈ (0, q∗

r (d2)). Then, it follows from Lemma 3.1 that (i) holds.
(ii) We only consider the case 0 < d2 < d1, since the other case d2 > d1 is

similar. It follows from Theorem 4.6 that (0, v∗) is stable for q2 ≤ q1
d1
d2 and unstable

for q2 ≥ q1. Hence, we have λ1(d1, q1, r − v∗(d2, q2)) < 0 for q2 ≤ q1
d1
d2 and

λ1(d1, q1, r − v∗(d2, q2)) > 0 for q2 ≥ q1. Note that

lim
q2→q∗

2 (d2)−
λ1(d1, q1, r − v∗(d2, q2)) = λ1(d1, q1, r) > 0.

Since λ1(d1, q1, r − v∗(d2, q2)) is strictly increasing in q2, there exists unique q∗
2 (d2)

satisfying (4.6)–(4.7). Clearly, q∗
2 (d1) = q1, and (iii) follows from (i)–(ii). This

completes the proof.
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By Propositions 4.2 and 4.10 and the monotone dynamical system theory, we have
the following result.

Theorem 4.11 Suppose that H1 and H2 hold. Let q∗
2 (d2) be defined in Proposition

4.10. Then, the following statements hold:

(i) If q∗
2 (d2) < q∗

r−u∗(d2), then for any q2 ∈ (
q∗
2 (d2), q∗

r−u∗(d2)
)
both (u∗, 0) and

(0, v∗) are unstable, and system (1.4) admits a stable positive equilibrium;
(ii) If q∗

2 (d2) > q∗
r−u∗(d2), then for any q2 ∈ (

q∗
r−u∗(d2), q∗

2 (d2)
)
both (u∗, 0) and

(0, v∗) are stable, and system (1.4) admits an unstable positive equilibrium.

Remark 4.12 Since λ1(d1, q1, r − v∗(d2, q2)) is strictly increasing in q2, the sign of
q∗
2 (d2) − q∗

r−u∗(d2) is determined by the sign of

λ∗
1(d2) := λ1

(
d1, q1, r − v∗(d2, q∗

r−u∗(d2))
)
. (4.10)

If λ∗
1(d2) > (<)0, then q∗

2 (d2) < (>)q∗
r−u∗(d2).

Remark 4.13 Someof our resultswere known for the corresponding reaction–diffusion
models. A similar result of Lemma 4.1 was obtained in Vasilyeva and Lutscher (2010),
a similar result of Corollary 4.8 (i) was presented in Lou and Lutscher (2014), and
similar results of Lemma 4.5 and Theorem 4.6 were proved in Zhou and Zhao (2018)
using a more sophisticated method. We used the monotonicity property of u∗ in q in
the proof of Proposition 4.10, which was also known for reaction–diffusion models
(Vasilyeva and Lutscher 2010). Similar results of Proposition 4.10 and Theorem 4.11
were proved in Lou et al. (2018) with respect to some other parameters. To our best
knowledge, similar results of Propositions 4.2, 4.3 and Lemma 4.4 were not proved
for reaction–diffusion models.

4.2 Invasion Analysis for Case (b)

In this subsection, we suppose that H1∗ holds. By Lemma 2.2, there exists a unique
d∗ > 0 such that λ1(d∗, 0, r) = 0. By Theorem 3.3, for any d1 ∈ (0, d∗), there exists
q∗
r (d1) > 0 such that λ1(d1, q1, r) > 0 for q1 < q∗

r (d1) and λ1(d1, q1, r) < 0 for
q1 > q∗

r (d1). We suppose that species u is established, i.e.,

H2∗. 0 < d1 < d∗ and q1 < q∗
r (d1).

Under assumptions H1∗ and H2∗, model (1.4) admits a unique species u-only semi-
trivial equilibrium (u∗, 0).

We first prove an estimate of u∗, which will be useful later.

Lemma 4.14 Suppose that H1∗ and H2∗ hold. Let u∗ = (u∗
1, . . . , u

∗
n)

T be the unique
positive solution of (4.1). Then, we have 0 � u∗ � r .

Proof Let û = r . It is easy to check that û is an upper solution of (4.1). By the method
of upper and lower solutions and the uniqueness of the positive solution of (4.1), we
have 0 � u∗ � r .

123



Journal of Nonlinear Science            (2023) 33:40 Page 25 of 35    40 

By Lemma 2.2, there exists a unique d∗∗ > 0 such that λ1(d∗∗, 0, r − u∗) =
0. By Proposition 3.3, for any d2 ∈ (0, d∗∗) there exists q∗

r−u∗(d2) > 0 such that
λ1(d2, q2, r − u∗) > 0 for q2 < q∗

r−u∗(d2) and λ1(d2, q2, r − u∗) < 0 for q2 >

q∗
r−u∗(d2). Moreover, if d2 ≥ d∗∗, then λ1(d2, q2, r − u∗) ≤ 0 for all q2 > 0. This

suggests us to define the following parameter sets:

S∗
1 :={(d, q) : q > q∗

r−u∗(d), 0 < d < d∗∗} ∪ {(d, q) : q > 0, d ≥ d∗∗},
S∗
2 :={(d, q) : 0 < q < q∗

r−u∗(d), 0 < d < d∗∗}.

We have the following result about the local stability of semi-trivial equilibrium
(u∗, 0) of model (1.4), and its proof is omitted as it is similar to Proposition 4.3.

Proposition 4.15 Suppose thatH1∗ andH2∗ hold. The the following statements about
semi-trivial equilibrium (u∗, 0) of (1.4) hold:

(i) If (d2, q2) ∈ S∗
1 , then (u∗, 0) is locally asymptotically stable;

(ii) If (d2, q2) ∈ S∗
2 , then (u∗, 0) is unstable.

We also have the following property about the function q = q∗
r−u∗(d), and its proof

is exactly the same as that of Lemma 4.4 so we omit it.

Lemma 4.16 Suppose that H1∗ and H2∗ hold. Then, the two functions q = q∗
r−u∗(d)

and q = q1
d1
d have exactly one intersection point (d1, q1) in the first quadrant.

Again we define parameter sets:

G∗
1 :={(d, q) : d1 < d ≤ d1

q1
q, (d, q) �= (d1, q1)},

G∗
2 :={(d, q) : d1

q1
q ≤ d ≤ d1, q > 0, (d, q) �= (d1, q1)}.

Since the two functions q = q∗
r−u∗(d) and q = q1

d1
d have exactly one intersection point

(d1, q1) in the first quadrant, we have thatG∗
1 ⊂ S∗

1 andG
∗
2 ⊂ S∗

2 . The following result
is similar to Lemma 4.5.

Lemma 4.17 Suppose that H1∗ and H2∗ hold. Then, if (d2, q2) ∈ G∗
1 ∪ G∗

2, model
(1.4) has no positive equilibrium.

Proof Let (d2, q2) ∈ G∗
1 ∪ G∗

2. Suppose to the contrary that model (1.4) admits a
positive equilibrium (û, v̂), where û = (û1, . . . , ûn) � 0 and v̂ = (v̂1, . . . , v̂n) � 0.
Then, we have

(d1 + q1)(ûn−1 − ûn) = d1ûn − ûn(r − ûn − v̂n),

(d1 + q1)(ûi−1 − ûi ) = d1(ûi − ûi+1) − ûi (r − ûi − v̂i ), i = 2, . . . , n − 1,

q1û1 = d1(û2 − û1) + û1(r − û1 − v̂1).

(4.11)
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and

(d2 + q2)(v̂n−1 − v̂n) = d2v̂n − v̂n(r − ûn − v̂n),

(d2 + q2)(v̂i−1 − v̂i ) = d2(v̂i − v̂i+1) − v̂i (r − ûi − v̂i ), i = 2, . . . , n − 1,

q2v̂1 = d2(v̂2 − v̂1) + v̂1(r − û1 − v̂1).

(4.12)
We claim max1≤i≤n{r − ûi − v̂i } > 0. Suppose to the contrary that r − ûi − v̂i ≤ 0
for all 1 ≤ i ≤ n. Then, by the first two equations in both (4.11) and (4.12), we obtain
that ẑ1 > ẑ2 > · · · > ẑn for z = u, v. Then, by the third equation in (4.11), we
get qû1 = d(û2 − û1) + û1(r − û1 − v̂1) < 0, which is a contradiction. Therefore,
max1≤i≤n{r − ûi − v̂i } > 0. By Proposition 3.3, function q = q∗

r−û−v̂
(d) is well-

defined. Similar to Lemma 4.16, functions q = q∗
r−û−v̂

(d) and q = q1
d1
d have exactly

one intersection point (d1, q1) in the first quadrant of the d − q plane. The rest of the
proof is similar to that of Lemma 4.5, so we omit it here.

By Proposition 4.15, Lemma 4.17 and the monotone dynamical system theory, we
have the following result about the global dynamics of model (1.4). We omit the proof
as it is similar to Theorem 4.6.

Theorem 4.18 Suppose that H1∗ and H2∗ hold. Then, the following statements hold:

(i) If (d2, q2) ∈ G∗
1, semi-trivial equilibrium (u∗, 0) is globally asymptotically stable

for model (1.4);
(ii) If (d2, q2) ∈ G∗

2, semi-trivial equilibrium (0, v∗) exists and is globally asymp-
totically stable for model (1.4).

Remark 4.19 Theorem 4.18 is illustrated in Fig. 3. We are able to completely under-
stand the global dynamics of model (1.4) in the colored regions, in which competitive
exclusion occurs.

We have the following observations from Theorem 4.18:

Corollary 4.20 Suppose that H1∗ and H2∗ hold. Fix d2 = d1. If q2 > q1, (u∗, 0) is
globally asymptotically stable for (1.4); if q2 < q1, (0, v∗) is globally asymptotically
stable.

By Corollary 4.20, the species with a smaller advection rate can invade and replace
the resident species in this case. However, whether a smaller or larger diffusion rate is
favored seems to be more complicated in case (b). If we treat v as the mutant species
such that d2 is close to d1 and q1 = q2, then

[
q∗
r−u∗(d)

]′ |d=d1 > 0 means that v can

invade if and only if d2 > d1;
[
q∗
r−u∗(d)

]′ |d=d1 < 0 means that v can invade if and

only if d2 < d1. We will show that the sign
[
q∗
r−u∗(d)

]′ |d=d1 is not definite.
Define S := {(d, q) : 0 < d < d∗, 0 < q < q∗

r (d)}, and recall that (u∗, 0) exists
if and only if (d1, q1) ∈ S. Let S ′ := {(d, q) : 0 < q < r , q = q∗

r (d)}. By Lemma
3.8, S ′ is non-empty and it is a curve q = q∗

r (d) connecting to (d∗, 0).

Proposition 4.21 Suppose that H1* and H2* holds. Then,
[
q∗
r−u∗(d)

]′ |d=d1 changes
sign for (d1, q1) ∈ S. Moreover,
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Fig. 3 Illustration of Proposition 4.15 and Theorem 4.18 for model (1.4)-case (b). Here, d1 and q1 are fixed
and satisfyH2∗ such that (u∗, 0) exists. If (d2, q2) is above the curve q = q∗

r−u∗ (d), then (u∗, 0) is stable;
if (d2, q2) is under the curve, then (u∗, 0) is unstable. If (d2, q2) ∈ G∗

1, (u
∗, 0) is globally asymptotically

stable; and if (d2, q2) ∈ G∗
2, (0, v

∗) is globally asymptotically stable

(i) lim(d1,q1)→(d0,0)
[
q∗
r−u∗(d)

]′ |d=d1 < 0 for any d0 ∈ (0, d∗);
(ii) lim(d1,q1)→(0,q0)

[
q∗
r−u∗(d)

]′ |d=d1 > 0 for any q0 ∈ (0, r);

(iii) lim(d1,q1)→(d0,q0)
[
q∗
r−u∗(d)

]′ |d=d1 < 0 for any (d0, q0) ∈ S ′.

Proof For simplicity, we denote q∗
r−u∗(d) by q∗

1 (d). Let φ = (φ1, φ2, . . . , φn)
T � 0

be the eigenvector corresponding to the eigenvalue λ1(d, q∗
1 (d), r − u∗) = 0 with∑n

i=1 φi = 1. Then, we have

d
n∑
j=1

Di jφ j + q∗
1 (d)

n∑
j=1

Qi jφ j + (r − u∗
i )φi = 0, i = 1, . . . , n. (4.13)

Similar to the proof of Lemma 3.8 (iii), we can show

[
q∗
1 (d)

]′ = −
∑n

i=1
∑n

j=1 βi Di jφiφ j∑n
i=1

∑n
j=1 βi Qi jφiφ j

, (4.14)

where

(β1, β2, β3, . . . , βn) =
(
1,

d

d + q∗
1 (d)

,

(
d

d + q∗
1 (d)

)2

, . . . ,

(
d

d + q∗
1 (d)

)n−1
)

.

Since u∗ is an eigenvector corresponding to λ1(d1, q1, r − u∗)(= 0), q∗
1 (d1) = q1

and φ is a multiple of u∗ when d = d1.

123



   40 Page 28 of 35 Journal of Nonlinear Science            (2023) 33:40 

It is easy to see that

lim
(d1,q1)→(d0,0)

(β1, . . . , βn) = (1, . . . , 1),

lim
(d1,q1)→(0,q0)

(β1, . . . , βn) = (1, 0, . . . , 0),
(4.15)

and
lim

(d1,q1)→(d0,0)
u∗ = ũ∗, and lim

(d1,q1)→(0,q0)
u∗ = û∗,

where ũ∗ and û∗ satisfy (4.1) with (d1, q1) = (d0, 0) and (d1, q1) = (0, q0), respec-
tively. A direct computation implies that

ũ∗
1 > · · · > ũ∗

n > 0, and 0 < r − q0 = û∗
1 < · · · < û∗

n .

(The left inequalities can be proved similarly as Lemma 4.1 starting with ũ∗
1 > ũ∗

2; We
can show û∗ � r as Lemma 4.14, and then, the right inequalities follow easily from
(4.1) with (d1, q1) = (0, q0).) This combined with (4.14)–(4.15) implies (i)–(ii).

Finally, we prove (iii). We claim that lim(d1,q1)→(d0,q0) u
∗ = 0. To see it, suppose to

the contrary that, up to a subsequence, u∗ → ǔ∗ �= 0 as (d1, q1) → (d0, q0). Then, we
have 0 < ǔ∗ ≤ r and λ1(d0, q0, r − ǔ∗) = lim(d1,q1)→(d0,q0) λ1(d1, q1, r − u∗) = 0.
Since (d0, q0) ∈ S ′, we have λ1(d0, q0, r) = 0. This implies λ1(d0, q0, r − ǔ∗) <

λ1(d0, q0, r) = 0, which is a contradiction.
Letting d = d1 in (4.13) and using q∗

1 (d1) = q1 and u∗ → 0, we obtain φ → φ̌ as
(d1, q1) → (d0, q0), where φ̌ satisfies

d0

n∑
j=1

Di j φ̌ j + q0

n∑
j=1

Qi j φ̌ j + r φ̌i = 0, i = 1, . . . , n. (4.16)

We rewrite (4.16) as

d0(φ̌1 − φ̌2) = (r − q0)φ̌1,

d0(φ̌i − φ̌i+1) = (d0 + q0)(φ̌i−1 − φ̌i ) + r φ̌i , i = 2, . . . , n − 1,

d0(φ̌n−1 − 2φ̌n) + q0(φ̌n−1 − φ̌n) + r φ̌n = 0.

(4.17)

This combined with q0 < r implies φ̌1 > · · · > φ̌n . Therefore,

n∑
i=1

n∑
j=1

β̌i Di j φ̌i φ̌ j =
n−1∑
i=1

β̌i

(
φ̌i+1 − φ̌i

) [
φ̌i −

(
d0

d0 + q0

)
φ̌i+1

]
− β̌nφ̌

2
n < 0,

(4.18)
where (β̌1, . . . , β̌n) = (1, . . . , ( d0

d0+q0
)n−1). Similar to (3.7), we can show

n∑
i=1

n∑
j=1

β̌i Qi j φ̌i φ̌ j < 0. (4.19)
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Evaluating (4.14) at d = d1, taking (d1, q1) → (d0, q0), and using (4.18)–(4.19), we
obtain (iii).

Remark 4.22 By Proposition 4.21 and Lemma 3.8, for each q1 ∈ (0, r), there
exists at least one d̄1 > 0 such that

[
q∗
r−u∗(d)

]′ |d=d̄1 = 0. Moreover, the sign of[
q∗
r−u∗(d)

]′ |d=d1 switches from positive to negative at d1 = d̄1. This suggests that
the evolutionary singular strategy d1 = d̄1 may be a locally convergent stable strategy
(A strategy is convergent stable if the species with the strategy closer to it can win the
competition Apaloo et al. 2009; Lam and Lou 2014).

Remark 4.23 For corresponding reaction–diffusion models, a similar result of Theo-
rem 4.18 was proved in a very recent paper (Yan et al. 2022). To our best knowledge,
similar results of Propositions 4.15 and 4.21 were not proved for reaction–diffusion
models.

5 Simulations and Discussions

In this section, we perform some numerical simulations when model (1.4) is coupled
with free-flow (case (a)) or hostile (case (b)) boundary conditions. We consider four
patches, i.e., n = 4 and set r = 2.

5.1 Simulations for Case (a)

We choose d1 = 1, q1 = 0.5 such that (u∗, 0) exists for case (a). We first plot the
curve q = q∗

r−u∗(d), which divide the first quadrant into two subregions. In Fig. 4,
we see that the curve q = q∗

r−u∗(d) is monotone increasing, which is expected due to
Lemma 3.7. By Propositions 4.3, E1 = (u∗, 0) is stable if (d2, q2) is above the curve
q = q∗

r−u∗(d) and unstable if it is below the curve.
We further consider the stability of E2 = (0, v∗) when (d2, q2) = (d, q∗

r−u∗(d)),
which is determined by the sign of the principal eigenvalue

λ∗
1(d2) = λ1

(
d1, q1, r − v∗(d2, q∗

r−u∗(d2))
)
.

In Fig. 4, the curve λ∗
1(d) seems to be below zero. Therefore, if we choose (d2, q2)

sufficiently close to but above the curveq = q∗
r−u∗(d), then both (u∗, 0) and (0, v∗) are

stable and we have bi-stability. To confirm this, we choose (d2, q2) = (0.08, 0.44),
which is slightly above the curve q = q∗

r−u∗(d). In Fig. 5, we plot the solutions
of (1.4) with different initial data. If the initial data are u(0) = (0.1, 0.1, 0.1, 0.1)
and v(0) = (2, 2, 2, 2), then species v wins the competition; if the initial data are
u(0) = (5, 5, 5, 5), v(0) = (1, 1, 1, 1), then species u wins the competition. This
confirms that it is possible to have bi-stability in case (a). We conjecture that for case
(a) we always have λ∗

1(d2) < 0 for all d2 �= d1 and the model has no stable coexistence
equilibrium.

123



   40 Page 30 of 35 Journal of Nonlinear Science            (2023) 33:40 

Fig. 4 Curves q = q∗
r−u∗ (d) and λ∗

1(d) with n = 4, r = 2, d1 = 1, q1 = 0.5 for case (a). The sign of the
curve q = λ∗

1(d) determines the stability of E2 when d2 = d and q2 = q∗
r−u∗ (d)

5.2 Simulations for Case (b)

We choose d1 = 1, q1 = 0.5 or 3 such that E1 exists for case (b), and we plot the
curve q = q∗

r−u∗(d) in Fig. 6.
By Proposition 4.15, E1 is stable if (d2, q2) is above the curve q = q∗

r−u∗(d) and
unstable if it is below the curve. In Fig. 6, the sign of λ∗

1(d) seems to be positive for
q1 = 0.5 and negative for q1 = 3. If q1 = 0.5 and (d2, q2) is sufficiently close to but
below the curve q = q∗

r−u∗(d), then both E1 and E2 are unstable and we should have
coexistence. To confirm this, we choose (d2, q2) = (0.05, 0.555). In Fig. 7, we plot
the solutions of (1.4), and it appears that the two species coexist. If q1 = 3 and (d2, q2)
is sufficiently close to but above the curve q = q∗

r−u∗(d), we should have bi-stability
(we omit the graphs here since they are similar to the ones in case (a) shown in Fig. 5).
Our simulations show that both bi-stability and coexistence can occur for case (b).

5.3 Evolution of Dispersal for Case (a) and (b)

Suppose that species v is the mutant species, and (d2, q2) is close to but not equal to
(d1, q1). When the model is coupled with free-flow boundary conditions (case (a)), we
always have

[
q∗
r−u∗(d)

]′ |d=d1 > 0. Biologically, this means that the mutant species
can invade if and only if it has a larger diffusion rate.

If the model is coupled with hostile boundary conditions (case (b)), the dynamics of
the model is more complicated. In Fig. 6, we can see that the sign of

[
q∗
r−u∗(d)

]′ |d=d1
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Fig. 5 Solutions of (1.4) with n = 4 for case (a). The parameters are r = 2, d1 = 1, q1 = 0.5, d2 = 0.08
and q2 = 0.44. a and b Initial data: u(0) = (0.1, 0.1, 0.1, 0.1), v(0) = (2, 2, 2, 2), and species v wins the
competition; c and d Initial data: u(0) = (5, 5, 5, 5), v(0) = (1, 1, 1, 1), and species uwins the competition.
This shows that the model has bi-stability in case (a)

Fig. 6 Curves q = q∗
r−u∗ (d) and λ∗

1(d) with n = 4, r = 2, d1 = 1 for case (b). (Left) q = 0.5; (right)
q = 3. The sign of the curve λ∗

1(d) determines the stability of E2 when d2 = d and q2 = q∗
r−u∗ (d)

123



   40 Page 32 of 35 Journal of Nonlinear Science            (2023) 33:40 

Fig. 7 Solutions of (1.4) with n = 4 for case (b). The parameters are r = 2, d1 = 1, q1 = 0.5, d2 = 0.05
and q2 = 0.555. The two species seem to coexist

Fig. 8 Curves q = q∗
r−u∗ (d) and λ∗

1(d) with n = 4, r = 2, q1 = 2 for case (b). The first figure is for
d1 = 0.5 and the second one for d1 = 2. The sign of the curve λ∗

1(d) determines the stability of (0, v∗)

when d2 = d and q2 = q∗
r−u∗ (d)

changes from negative to positive when q increased from 0.5 to 3. Biologically, when
the advection rate is small (q1 = 0.5), the mutant species v can invade if it has a
smaller diffusion rate; however, when the advection rate is large (q1 = 3), the mutant
species v may need to have a larger diffusion rate than the resident species u to invade
it. Therefore, if the downstream end is coupled with hostile boundary conditions,
whether smaller or larger diffusion rate is a better strategy for the species depends on
the advection rate. We conjecture that when d1 is small the sign of

[
q∗
r−u∗(d)

]′ |d=d1
for case (b) changes from negative to positive as q increases, i.e., smaller diffusion rate
is better when the advection rate is small, while larger diffusion rate is favored when
advection rate is large. We also conjecture that when d1 is sufficiently large, then the
sign of

[
q∗
r−u∗(d)

]′ |d=d1 for case (b) is always negative, i.e., smaller diffusion rate is
always better.

Ifwefixq1 = 2 for case (b), as shown inFig. 8, the sign of
[
q∗
r−u∗(d)

]′ |d=d1 changes
from positive to negative when d1 increased from 0.5 to 2. Therefore, there exists
d̄1 ∈ (0.5, 2) such that

[
q∗
r−u∗(d)

]′ |d=d̄1 = 0.Moreover, the sign of
[
q∗
r−u∗(d)

]′ |d=d̄1
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switches from positive to negative at d1 = d̄1. This suggests that d1 = d̄1 may be a
convergence stable strategy. We conjecture that for each advection rate q1 ∈ (0, r),
there exists a unique intermediate diffusion rate, which is a convergence stable strategy.
We remark that if n = 2 the authors in Xiang and Fang (2019) have shown that for
each q1 ∈ (0, r) there exists a unique evolutionary stable strategy for d1.
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