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Abstract
Some quantities in reaction-diffusion models from cellular biology or ecology depend on
the spatial average of density functions instead of local density functions. We show that
such nonlocal spatial average can induce instability of constant steady state, which is differ-
ent from classical Turing instability. For a general scalar equation with spatial average, the
occurrence of the steady state bifurcation is rigorously proved, and the formula to determine
the bifurcation direction and the stability of the bifurcating steady state is given. For the two-
species model, spatially non-homogeneous time-periodic orbits could arise due to spatially
non-homogeneous Hopf bifurcation from the constant equilibrium. Examples from a nonlo-
cal cooperative Lotka-Volterra model and a nonlocal Rosenzweig-MacArthur predator-prey
model are used to demonstrate the bifurcation of spatially non-homogeneous patterns.

Keywords Nonlocal spatial average · Pattern formation · Reaction-diffusion equation ·
Spatial non-homogeneous Hopf bifurcation · Steady state bifurcation

Mathematics Subject Classification 34K18 · 92B05 · 35B32 · 35K57

1 Introduction

Spatiotemporal pattern formation in the natural world has been a fascinating subject for sci-
entific research in recent years. One well-acknowledged theory is proposed by Turing [47]
who suggested that the randommovement of chemicals can destabilize the system and result
in the spatially non-homogeneous distribution of chemicals. Different types of Turing-type
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spatiotemporal patterns have been discovered in chemistry [24,35], developmental biology
[22,37,39], and ecology [18,21,36]. Turing’s theory of diffusion-driven instability or Tur-
ing instability has been credited as the main mechanism of these natural pattern formation
phenomena [23,27].

While Turing’s instability theory profoundly influences the studies of many spatial chem-
ical or biological models, its scope of application is also restricted. For a system of two
interacting chemical/biological species, the occurrence of Turing instability requires (i) inter-
action of species of activator-inhibitor type; and (ii) diffusion coefficients of two species
in different scales. Hence Turing type pattern formation cannot occur for a two-species
reaction-diffusion system if the system is a competitive or cooperative type, or the two dif-
fusion coefficients are nearly identical. Indeed it is known that a stable steady state of a
diffusive cooperative (or two-species competitive) system under no-flux boundary condi-
tion on a convex domain must be a constant [20]. Also, a constant steady state’s stability
in a reaction-diffusion system does not change if the diffusion coefficients of variables are
identical. It is also known that a stable steady state of a scalar reaction-diffusion equation
under no-flux boundary condition on a convex domainmust be a constant [3,28]. On the other
hand, other types of dispersals have been suggested as possible mechanisms of pattern forma-
tion (usually for two-species diffusive competition models), such as cross-diffusion [26,32],
density-dependent diffusion [33], advection towards better resource [9–11], or nonlocal com-
petition [34]. Spatial pattern formation is also possible for a scalar equation or two-species
diffusive competition model on a dumbbell-shaped domain (which is not convex) [28,29].

In this paper, we explore the effect of the spatial average of density functions on the
dynamics of reaction-diffusion systems, particularly on spatiotemporal pattern formation.
Here the density function u(x, t) depends on spatial variable x and time t , and the spatial
average is ū = 1

|�|
∫
�
u(y, t)dy where� is a bounded spatial domain and |�| is the Lebesgue

measure (volume) of �. This is a special form of integral average like
∫
�
K (x, y)u(y, t)dy

with an integral kernel K (x, y). Such nonlocal effect appears in various reaction-diffusion
models. In [2,16], such a nonlocal term represents the aggregation induced by grouping
behavior, for example, the aggregation of insects for social work or the herd behavior for
defense. The integral form also appears as nonlocal competition for the resource or a nonlocal
crowding effect in a scalar model of bacteria colonies [4,14,15,42,44]. Further studies have
been conducted for diffusive competition model [34], or predator-prey model with nonlocal
crowding effect in prey population [8,30]. Another reaction-diffusion model with the effect
of spatial average was proposed in [1], where the integral term represents the total amount
of cytoplasmic molecules in a feedback loop, see also [46] for a more recent study.

Motivated by previous examples, we consider the following general form of a two-species
reaction-diffusion system with spatial average:

⎧
⎨

⎩

ut = d1�u + f (u, v, ū, v̄, r), x ∈ �, t > 0,
vt = d2�v + g(u, v, ū, v̄, r), x ∈ �, t > 0,
∂νu = ∂νv = 0, x ∈ ∂�, t > 0,

(1.1)

where u(x, t), v(x, t) are the density functions of two interacting chemical/biological species,

ū = 1

|�|
∫
�
u(x, t)dx , v̄ = 1

|�|
∫
�

v(x, t)dx are the spatial averages of u and v respectively;

� is a bounded domain in R
m (m ≥ 1) with smooth boundary ∂�; a no-flux boundary

condition is imposed so the system is a closed one; the interactions are described by smooth
functions f , g : R5 → R; and d1, d2 > 0 are the diffusion coefficients and r > 0 is a possible
kinetic system parameter. Assume that (u∗, v∗) is a non-negative spatially constant steady
state, and it is linearly stable concerning a spatially homogeneous perturbation. We show that
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(u∗, v∗) can be unstable under a spatially non-homogeneous perturbation, that is, the constant
steady state (u∗, v∗) is unstable for the system (1.1). While this is possible under the Turing
instability scheme, our instability result does not necessarily require the activator-inhibitor
interaction, nor it requires the different scales of diffusion coefficients. Our approach can not
only produce spatially non-homogeneous steady state pattern through steady state instability,
but it can also produce spatially non-homogeneous time-periodic oscillatory patterns through
wave instability. All these patterns can be generated by varying the diffusion coefficients,
and bifurcation theory can be used to prove the existence of small amplitude non-constant
steady states or periodic orbits. Note that the classical Turing mechanism cannot lead to wave
instability for systems with only two interacting species.

More specifically, let the Jacobian matrices at (u∗, v∗) be defined as

JU =
(
fu fv
gu gv

)

, JŪ =
(
fū fv̄
gū gv̄

)

. (1.2)

We assume that the matrix JU + JŪ is stable with all eigenvalues with negative real parts,
but JU is not stable, then we have the following scenarios for the pattern formation of system
(1.1): (see Theorem 3.2 for more details)

(i) if Tr(JU ) < 0, then steady state instability may occur but not the wave instability;
(ii) if Tr(JU ) > 0, then both wave and steady state instability may occur.

Here Tr(JU ) = fu + gv is the trace of JU . The studies here are induced by the dependence
of dynamics on the spatial average of the variable, which is reflected in JŪ . A similar study
in [5] considered the dependence of dynamics on the time-delayed variables. The diffusion-
induced pattern formation found in (1.1) here does not occur in the corresponding “localized
system” of (1.1):

⎧
⎪⎨

⎪⎩

ut = d1�u + f (u, v, u, v, r), x ∈ �, t > 0,

vt = d2�v + g(u, v, u, v, r), x ∈ �, t > 0,

∂νu = ∂νv = 0, x ∈ ∂�, t > 0,

(1.3)

which is the standard two-species reaction-diffusion system where the reaction is wholly
localized, or in the corresponding ordinary differential equation model in which the reaction
is entirely homogenized. Hence both the localized reaction and the homogenized reaction
pattern contribute to the formation in (1.1). This shows that not only spatial heterogeneity
can induce rich spatial patterns, but sometimes partial homogeneity can also lead to spa-
tiotemporal patterns.

As an example of this new pattern formation mechanism, we show in Sect. 4 that in a
reaction-diffusion Lotka-Volterra cooperative system with a nonlocal intraspecific compe-
tition, a stable spatially non-homogeneous steady state pattern can occur when one of the
diffusion coefficients decreases. In contrast, the constant coexistence steady state is glob-
ally asymptotically stable in its corresponding localized system. In this case, the interaction
between the two species is not an activator-inhibitor type but a cooperative or mutualistic one.
In various spatially heterogeneous ecosystems, alternative stable states or self-organized pat-
terns have been found [19], and themechanism introduced here could be the cause of spatially
non-homogeneous patterns. In Sect. 5, we demonstrate the occurrence of both steady state and
wave instability in a reaction-diffusion Rosenzweig-MacArthur predator-prey model with a
nonlocal intraspecific competition in the prey population. Again in the corresponding local-
ized system, the constant coexistence steady state is globally asymptotically stable. However,
the addition of the spatial average intraspecific competition can lead to either a spatially non-
homogeneous steady state or a spatially non-homogeneous time-periodic pattern. The latter
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one can be viewed as a stable pattern generated fromTuring-Hopf bifurcation, which is rarely
achieved in two-variable reaction-diffusion models [27].

Our result also has a version for the scalar counter part of (1.1):
{
ut = d�u + r f (u, ū), x ∈ �, t > 0,

∂νu = 0, x ∈ ∂�, t > 0.
(1.4)

Assume that u∗ is a constant steady state, and it is stable for the non-spatial model in the
sense that fu + fū < 0 at u = u∗. In Sect. 2 we show that

(i) if fu < 0, then u∗ is locally asymptotically stable for all d, r > 0;
(ii) if fu > 0, then there exists d1 > 0 such that u∗ is locally asymptotically stable for

d > d1, and it is unstable for 0 < d < d1. A spatially non-homogeneous steady state
pattern emerges at d = d1.

Here fu = fu(u∗, u∗). The above results for the scalar equation (1.4) have been implied in
[15], and our results for the two-species model (1.1) are generalizations of these results in a
sense. Nevertheless, wave instability cannot occur for scalar equations, and there are more
possible cases to consider for the two-species model (1.1).

This paper is organized as follows. First, the pattern formation for a general scalar equation
with the spatial average is studied in Sect. 2. In Sect. 3, the possible scenarios for pattern
formation in a general two-species reaction-diffusion model with spatial average subjected
to the homogeneous Neumann boundary condition are considered. The general theory is
applied to two specific biological systems: a diffusive Lotka-Volterra cooperative model
and a diffusive Rosenzweig-MacArthur predator-prey model, each with the effect of spatial
average, in Sects. 4 and 5, respectively. In Sect. 6, we conclude our work and compare
our results with the classic Turing pattern formation. For the convenience of the following
analysis, we introduce some notations: the real-valued Sobolev space corresponding to the
Neumann boundary value problem is denoted as X = {u ∈ W 2,p(�) : ∂νu = 0} and
Y = L p(�) denotes the real-valued L p space, where p > m. Also, it is well known that the
eigenvalue problem

{
�ϕ + λϕ = 0, x ∈ �,

∂νϕ = 0, x ∈ ∂�,
(1.5)

has infinitely many eigenvalues satisfying

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ λi+1 ≤ · · · < +∞,

with the corresponding eigenfunction ϕi (i ≥ 0) satisfying
∫
�

ϕ2
i dx = 1.

2 Pattern Formation in Scalar Models

In this section we consider the pattern formation in the scalar reaction-diffusion model (1.4).
We recall that from [3,28], the localized model

{
ut = d�u + r f (u, u), x ∈ �, t > 0,

∂νu = 0, x ∈ ∂�, t > 0,

has no non-constant stable steady state solutions if � is convex.
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We assume that there exists at least one positive constant steady state u = u∗ of (1.4)
such that f (u∗, u∗) = 0. Linearizing Eq. (1.4) at u = u∗, we obtain an eigenvalue problem

{
d�φ + r( fuφ + fū φ̄) = μφ, x ∈ �,

∂νφ = 0, x ∈ ∂�,
(2.1)

where fu = fu(u∗, u∗), fū = fū(u∗, u∗). The eigenvalues of (2.1) are easy to determine as
follows:

Lemma 2.1 Let λi be eigenvalues of (1.5) and let ϕi be the corresponding eigenfunctions
for i ∈ N0. Then the eigenvalues of (2.1) are μ0 = r( fu + fū) with eigenfunction φ0 = 1,
and μi = −dλi + r fu for i ≥ 1 with eigenfunction φi = ϕi .

Proof Integrating (2.1), we have that r( fu + fū)φ̄ = μφ̄. When φ̄ �= 0, we obtain μ0 =
r( fu + fū) and φ0 = φ̄0 = 1; and when φ̄ = 0, we obtain μi = −dλi + r fu and φi = ϕi for
i ≥ 1. 	


The stability of a constant steady state u = u∗ and possible emergence of spatial patterns
of (1.4) now can be stated as follows.

Theorem 2.2 Suppose that r > 0, f ∈ C1(R2,R) satisfying f (u∗, u∗) = 0 for some u∗ ≥ 0,
fu = fu(u∗, u∗), fū = fū(u∗, u∗), and fu + fū < 0.

(i) if fu < 0, then u∗ is locally asymptotically stable with respect to (1.4) for all d, r > 0;
(ii) if fu > 0, then there exist d1 := r fu/λ1 such that u∗ is locally asymptotically stable for

d > d1, and it is unstable for 0 < d < d1.

Proof The condition fu + fū < 0 guarantees that u = u∗ is locally asymptotically stable
in the absence of diffusion and μ0 < 0. When fu < 0 is satisfied, from Lemma 2.1, we
see that μi < 0 holds for any i ∈ N, thus u∗ is locally asymptotically stable for system
(1.4), thus (i) is proved. If fu > 0, it is possible for μi = −dλi + r fu = 0 and it occurs at
d = di := r fu/λi . Also, we know that the constant equilibrium loses its stability at the first
bifurcation point d = d1. This completes the proof of part (ii). 	


In the following theorem, we give a more detailed bifurcation result for the following
steady state (nonlocal elliptic) problem:

{
d�u + r f (u, ū) = 0, x ∈ �,

∂νu = 0, x ∈ ∂�.
(2.2)

Theorem 2.3 Suppose that r > 0, f ∈ C1(R2,R) satisfying f (u∗, u∗) = 0 for some u∗ ≥ 0
and fu + fū < 0. And we assume that for some i ∈ N, λi is a simple eigenvalue of (1.5),
and fu > 0.

(i) Near (di , u∗), Eq. (2.2) has a line of trivial solutions 	0 = {(d, u∗) : d > 0} and a
family of nontrivial solutions bifurcating from 	0 at d = di :

	i = {(di (s), ui (s, x)) : −δ < s < δ} , (2.3)

where δ > 0, ui (s, x) = u∗ + sϕi (x) + sgi (s, x) and di (s), gi (s, ·) are continuous
functions defined for s ∈ (−δ, δ) such that di (0) = di , and gi (0, ·) = 0; and there are
no other solutions of (2.2) than the ones on 	0 and 	i near (d, u) = (di , u∗).
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(ii) If f ∈ C2 near (u∗, u∗), then di (s), gi (s, ·) are C1 for s ∈ (−δ, δ), and

d ′
i (0) =

di fuu

∫

�

ϕ3
i dx

2 fu

∫

�

ϕ2
i dx

, (2.4)

If d ′
i (0) �= 0, then the steady state bifurcation at d = di is transcritical type. Moreover

the solution (d1(s), u1(s, ·)) with d1(s) < d1 is locally asymptotically stable, and the
one with d1(s) > d1 is unstable; and all solutions of 	i with i ≥ 2 are unstable.

(iii) If d ′
i (0) = 0 and f ∈ C3 near (u∗, u∗), then di (s), gi (s, ·) are C2 for s ∈ (−δ, δ), and

d ′′
i (0) =

di fuuu

∫

�

ϕ4
i dx + 3di fuu

∫

�

wϕ2
i dx + 3di fuū

∫

�

w̄ϕ2
i dx

3 fu

∫

�

ϕ2
i dx

, (2.5)

where w = w(x) is the unique solution of
⎧
⎪⎪⎨

⎪⎪⎩

di�w + r fuw + r fūw̄ = −r fuuϕ2
1 , x ∈ �,

∂νw = 0, x ∈ ∂�,∫

�

w(x)dx = 0.

(2.6)

If d ′′
i (0) �= 0, then the steady state bifurcation at d = di is pitchfork type. Moreover, the

solution (d1(s), u1(s, ·)) with all s �= 0 is locally asymptotically stable when d ′′
1 (0) < 0

(the bifurcation is supercritical), and the solution (d1(s), u1(s, ·)) with all s �= 0 is
unstable when d ′′

1 (0) > 0 (the bifurcation is subcritical).

Proof For Eq. (2.2), u = u∗ is a constant steady state of (2.2) for all r , d > 0. Fixing r > 0,
we define a nonlinear mapping F : R

+ × X → Y by

F(d, u) = d�u + r f (u, ū). (2.7)

It is clear that F(d, u∗) = 0.
Then, we have

Fu (di , u∗) [ψ] = di�ψ + r fuψ + r fūψ̄ := L[ψ]. (2.8)

Step 1 First, we determine the null space N (L) of L . If ψ ∈ N (L), then we have

di�ψ + r fuψ + r fūψ̄ = 0, (2.9)

or equivalently, �ψ + λiψ + r fū/di ψ̄ = 0. Integrating Eq. (2.9), we obtain

r( fu + fū)ψ̄ = 0,

which implies that ψ̄ = 0 as fu + fū < 0 and r > 0, so ψ satisfies that �ψ + λiψ = 0,
then ψ = ϕi . And N (L) = Span {ϕi } as λi is assumed to be simple, thus dimN (L) = 1.
Step 2 We next consider the range space R(L) of L . If q ∈ R(L), then there exists ψ ∈ X
such that

di�ψ + r fuψ + r fūψ̄ = q. (2.10)
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Multiplying Eq. (2.10) by ϕi and integrating over �, we obtain

0 = r fūψ̄
∫

�

ϕi dx =
∫

�

qϕi dx .

On the other hand, if
∫
�
qϕi dx = 0, then the solution of (2.10) is

ψ = q̄

r( fu + fū)
+
∑

j �=i

a j

r fu − diλ j
ϕ j + kϕi , if q = q̄ +

∑

j �=i

a jϕ j ,

where k ∈ R is arbitrary. HenceR(L) = {q ∈ Y : ∫
�
qϕi dx = 0

}
, which is co-dimensional

1 in Y .
Step 3 We prove that Fdu(di , u∗)[ϕi ] /∈ R(L). From (2.7), we have

Fdu (d, u∗) [ϕi ] = �ϕi = −λiϕi /∈ R(L), (2.11)

as
∫
�

λiϕ
2
i dx �= 0. By applying Theorem 1.7 in [12], we conclude that there exists an

open interval (−δ, δ) with δ > 0 and continuous functions di (s) : (−δ, δ) → R, gi (·, s) :
(−δ, δ) → Z , where Z is any complement of Span{ϕi }, such that the solution set of (2.2)
near (di , u∗) consists precisely of the curves 	0 and 	i defined by (2.3). This completes the
proof of part (i).
Step 4 Now we consider the bifurcation direction and stability of the bifurcating solutions
in 	i . According to the results in [13,38], the direction of the steady state bifurcation is
determined by d ′

i (0) and d ′′
i (0). For y ∈ Y ∗ (the conjugate space of Y ) defined by 〈y, q〉 =∫

�
qϕi dx , we have [38]

d ′
i (0) = − 〈y, Fuu (di , u∗) [ϕi , ϕi ]〉

2 〈y, Fdu (di , u∗) [ϕi ]〉 . (2.12)

By (2.11) and the definition of y, we have

〈y, Fdu (di , u∗) [ϕi ]〉 = −λi

∫

�

ϕ2
i dx .

From (2.8), it can be obtained that

Fuu (di , u∗) [ϕi , ϕi ] = r fuuϕ
2
i .

Therefore,

d ′
i (0) = r fuu

∫
�

ϕ3
i dx

2λi
∫
�

ϕ2
i dx

= di fuu
∫
�

ϕ3
i dx

2 fu
∫
�

ϕ2
i dx

,

where di = r fu/λi is applied. Then, according to [13,38], a transcritical steady state bifur-
cation occurs at d = di if d ′

i (0) �= 0.
If d ′

i (0) = 0, then we need to calculate d ′′
i (0) to determine the bifurcation direction.

According to [38], d ′′
i (0) takes the following form:

d ′′
i (0) = −〈y, Fuuu (di , u∗) [ϕi , ϕi , ϕi ]〉 + 3 〈y, Fuu (di , u∗) [ϕi , η]〉

3 〈y, Fdu (di , u∗) [ϕi ]〉 , (2.13)

where η is the unique solution of

Fuu (di , u∗) [ϕi , ϕi ] + Fu (di , u∗) [η] = 0, (2.14)

which is equivalent to (2.6). By (2.8), we have

Fuu(di , u∗)[ϕi , η] = r fuuϕiη + r fuūϕi η̄,
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and

Fuuu(di , u∗)[ϕi , ϕi , ϕi ] = r fuuuϕ
3
i .

Substituting them into (2.13), we obtain (2.5). From [38], d ′′
i (0) < 0 implies a supercrit-

ical pitchfork type bifurcation occurs and d ′′
i (0) > 0 implies a subcritical pitchfork type

bifurcation occurs.
Step 5 The bifurcating solutions on 	i with i ≥ 2 are all unstable as the trivial solution
(d, u∗) is unstable for 0 < d < d1 (Lemma 2.1). The stability of bifurcating non-constant
steady state solutions on 	1 can be determined by the two eigenvalue problems (see [13])

Fu(d, u∗)[ψ(d)] = M(d)K [ψ(d)], for d ∈ (d1 − ε, d1 + ε),

Fu(d1(s), u1(s, ·))[�(s)] = μ(s)K [�(s)], for s ∈ (−δ, δ),

where K : X → Y is inclusion map K (u) = u, M(d) and μ(s) satisfy M(d1) = μ(0) = 0
and ψ(d1) = �(0) = ϕ1. By applying Corollary 1.13 and Theorem 1.16 in [13] or Theorem
5.4 in [25], the stability of (d1(s), u1(s, ·)) can be determined by the sign of μ(s) which
satisfies

lim
s→0

−sd ′
1(s)M

′(d1)
μ(s)

= 1. (2.15)

It is easy to calculate that M(d) = r fu − dλ1 with ψ(d) = ϕ1, so M ′(d1) = −λ1 < 0.
Thus (2.15) implies that Sign(μ(s)) = Sign(sd ′

1(s)). When d ′
1(0) = 0 and d ′′

1 (0) < 0, we
have sd ′

1(s) < 0 soμ(s) < 0 for all s �= 0, hence a supercritical pitchfork bifurcation occurs.
Similarly when d ′

1(0) = 0 and d ′′
1 (0) > 0, all bifurcating steady states are unstable for s �= 0.

The case for d ′
1(0) �= 0 can be obtained in a similar way as well. 	


We apply the results in Theorems 2.2 and 2.3 to the following two examples.

Example 2.4 The following diffusive population model was considered in [15]:
{
ut = d�u + ru(1 + au − bū), x ∈ �, t > 0,

∂νu = 0, x ∈ ∂�, t > 0,
(2.16)

where a, b, r > 0 are constants, and d is the diffusion coefficient. The growth rate per capita
r(1 + au − bū) in (2.16) has a nonlocal crowding effect −rbū but also a localized positive
dependent term rau. When b > a, Eq. (2.16) has a unique positive constant equilibrium

u∗ = 1/(b − a), and we can calculate that fu(u∗, u∗) = a

b − a
> 0 and fu(u∗, u∗) +

fū(u∗, u∗) = −1 < 0. So from Theorem 2.2, u = u∗ is locally asymptotically stable when

d > d1 and it is unstable when 0 < d < d1, where d1 = ar

(b − a)λ1
. Assume m = 1 and

� = (0, lπ) for some l > 0, di = arl2

(b − a)i2
for i ∈ N and the corresponding eigenfunction

at d = di is cos(i x/l). From Theorem 2.3 and the fact that
∫ lπ
0 cos3(x/l)dx = 0, we find

that d ′
1(0) = 0; and from (2.5),

fuu = 2a, fuū = −b, fuuu = 0,

and

w = − fuu
2( fu + fū)

+ fuu
6 fu

cos

(
2i x

l

)

= a + b − a

3
cos

(
2i x

l

)

,
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Fig. 1 Dynamics of Eq. (2.16) with a = 0.1, b = 1.1, r = 1 and � = (0, 2π): (Left) convergence to a
constant steady state when d = 0.45 > d1 = 0.4; (Right) convergence to a non-constant steady state when
d = 0.3 < d1

we obtain that d ′′
1 (0) = −−2ra(b − a)

3λ1
< 0. Then Theorem 2.3 shows that a supercritical

pitchfork type steady state bifurcation occurs for system (2.16) at d = d1, and the bifurcating
non-homogeneous steady states are locally asymptotically stable (see Fig. 1 for numerical
simulation).

Example 2.5 Consider the logistic type model:
{
ut = d�u + a − bū − cu − d̃ū2 − euū, x ∈ �, t > 0,

∂νu = 0, x ∈ ∂�, t > 0,
(2.17)

where a, b, c, d̃, e are all constants. We assume that

a > 0, d̃ + e > 0. (2.18)

It is clear that under (2.18), there is a unique positive constant steady state u = u∗ satisfying
a−(b+c)u−(d̃+e)u2 = 0. Since fu = −(c+eu∗) < 0 and fū = −(b+2d̃u∗+eu∗) < 0,
u = u∗ is locally asymptotically stable for all d > 0 from Theorem 2.2 (i) when (2.18) is
satisfied. Indeed the constant steady state u = u∗ is globally asymptotically stable as in the
following proposition, and its proof is included in the “Appendix”.

Proposition 2.6 The unique positive constant steady state u = u∗ of Eq. (2.17) is globally
asymptotically stable for all non-negative initial conditions when (2.18) is satisfied.

As an application of (2.17) and Proposition 2.6, we consider the followingmodel proposed
in [1]:

{
ut = d�u + kon(1 − ū) + k f b(1 − ū)u − kof f u, x ∈ �, t > 0,

∂νu = 0, x ∈ ∂�, t > 0.
(2.19)

Here u is the density of membrane-bound molecules and ū := |�|−1
∫
�
u(x, t)dx denotes

the total density of cytoplasmic molecules. From [1], the four terms in Eq. (2.19) can be
interpreted as: (1) d is the lateral diffusion rate of molecules; (2) kon stands for the sponta-
neous association of cytoplasmic molecules to random locations on the membrane; (3) k f b
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represents the recruitment of cytoplasmic molecules to the locations of membrane-bound
signalling; (4) kof f is the rate of random disassociation of molecules from the membrane.
Then from Proposition 2.6, there is a unique positive constant steady state u = u∗ satisfying
k f pu2 + (kon + kof f − k f p)u − kon = 0, and it is globally asymptotically stable thus there
is no spatial pattern in (2.19).

3 Pattern Formation in Two-Species System

For model (1.1), we assume that f , g are Ck functions with (k ≥ 1) satisfying

f (u∗, v∗, u∗, v∗, r) = 0, g(u∗, v∗, u∗, v∗, r) = 0,

which means that (u∗, v∗) is a constant steady state of system (1.1) for all r > 0 as well as
the localized system (1.3). We linearize Eq. (1.1) at (u∗, v∗) and obtain:

(
φt

ψt

)

= D

(
�φ

�ψ

)

+ JU

(
φ

ψ

)

+ JŪ

(
φ̄

ψ̄

)

, (3.1)

where

D =
(
d1 0
0 d2

)

, JU =
(
fu fv
gu gv

)

, JŪ =
(
fū fv̄
gū gv̄

)

, (3.2)

and φ̄ = 1

|�|
∫
�

φ(x)dx, ψ̄ = 1

|�|
∫
�

ψ(x)dx . On the other hand, the linearized equation

of the localized system (1.3) at (u∗, v∗) is
(

φt

ψt

)

= D

(
�φ

�ψ

)

+ (JU + JŪ )

(
φ

ψ

)

. (3.3)

By using Fourier expansion (for example, see [46, Lemma 4.1]), the stability of the
linearized systems (3.1) and (3.3) can be determined by the traces (Tr ) and determinants
(Det) of matrices defined in

Ti = Tr(−λi D + JU ), Di = Det(−λi D + JU ),

T̃i = Tr(−λi D + JU + JŪ ), D̃i = Det(−λi D + JU + JŪ ), i ∈ N0.
(3.4)

For the convenience of later discussion, we present Ti and Di as continuous functions of a
variable p here:

T (p) = fu + gv − (d1 + d2)p, D(p) = d1d2 p
2 − (d1gv + d2 fu)p + fugv − gu fv.

(3.5)

And we define

� = (d1gv + d2 fu)
2 − 4d1d2( fugv − gu fv), (3.6)

and denote the roots of T (p) and D(p) (when � > 0) as

p∗ = fu + gv

d1 + d2
, p± = (d1gv + d2 fu) ± √

�

2d1d2
, (3.7)

note that T (λi ) = Ti and D(λi ) = Di for i ∈ N0.
To state a general criterion for the pattern formation of system (1.1), we recall some

definitions and results about real-valued square matrices, which will help us determine the
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stability of the constant steady state (u∗, v∗). Denote Mn(R) as the set of all n × n real
matrices for n ≥ 2, then we introduce the following definitions for the stability/instability of
a real-valued matrix.

Definition 3.1 Let A, D ∈ Mn(R), and assume that D is diagonal with positive entries. For
p ≥ 0, we denote the eigenvalues of A − pD by μ j (p) for each 1 ≤ j ≤ n.

(i) A is stable if Re(μ j (0)) < 0 for all 1 ≤ j ≤ n;
(ii) A is strongly stable ifRe(μ j (p)) < 0 for all 1 ≤ j ≤ n and p > 0, that is A − pD is

stable for all p > 0;
(iii) A has steady state instability if A is stable and there exists p > 0 such that μ j (p) > 0

for some 1 ≤ j ≤ n;
(iv) A has wave instability if A is stable and there exists p > 0 such that μ j (p) = α + iβ

with α > 0 and β �= 0 for some 1 ≤ j ≤ n.

When applying these definitions to the linearized system of (1.1) for some Ji with i ≥ 1
and diffusion matrix D, spatial or spatiotemporal patterns could emerge if Ji is unstable.
The steady state instability corresponds to the generation of mode-i spatial patterns through
a symmetry-breaking bifurcation of spatially non-constant steady states. The wave instabil-
ity corresponds to the creation of mode-i time-periodic spatiotemporal patterns through a
symmetry-breaking Hopf bifurcation of spatially non-constant periodic orbits. Indeed the
roots p∗, p± in (3.7) define two intervals of wave-number for pattern formation: steady state
wave number

IS = {p > 0 : Det(JU − pD) < 0} = (p−, p+) ∩ (0,+∞), (3.8)

and cycle wave number

IH = {p > 0 : Tr(JU − pD) > 0, Det(JU − pD) > 0} = (0, p∗)\[p−, p+]. (3.9)

A mode-i steady state pattern may exist if λi ∈ IS , and a mode-i periodic orbit may exist if
λi ∈ IH .

We have the following classification results on the possible instability occurring in (1.1).

Theorem 3.2 Suppose that (u∗, v∗) is a constant steady state of (1.1). Let JU , JŪ , � be
defined in (3.2), (3.6), and let p∗, p± be defined in (3.7). We denote the two intervals of
wave-number for pattern formation by IS and IH as in (3.8) and (3.9). Suppose that JU + JŪ
is stable and JU is not strongly stable, then we have the following scenarios for the pattern
formation of system (1.1) from the stability of matrix JU ( based on the assumption that the
spatial domain is properly chosen):

(i) Det(JU ) < 0 and Tr(JU ) < 0: the steady state instability may occur but not the wave
instability with IS = (0, p+);

(ii) Det(JU ) > 0 and Tr(JU ) > 0: (a) if � ≤ 0, or � > 0 and d1gv + d2 fu < 0,
the wave instability may occur but not the steady state instability with IH = (0, p∗);
(b) if � > 0, d1gv + d2 fu > 0 and p∗ > p+, both the wave and the steady state
instability may occur with IS = (p−, p+) and IH = (0, p−)∪ (p+, p∗); (c) if � > 0,
d1gv + d2 fu > 0 and p− < p∗ < p+, both the wave and the steady state instability
may occur with IS = (p−, p+) and IH = (0, p−); (d) if � > 0, d1gv + d2 fu > 0 and
p∗ < p−, both the wave and the steady state instability may occur with IS = (p−, p+)

and IH = (0, p∗);
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(iii) Det(JU ) < 0 and Tr(JU ) > 0: (a) if p∗ ≤ p+, the steady state instability may occur
but not the wave instability with IS = (0, p+); (b) if p∗ > p+, both the wave and the
steady state instability may occur with IS = (0, p+) and IH = (p+, p∗);

(iv) Det(JU ) > 0 and Tr(JU ) < 0: if � > 0 and d1gv + d2 fu > 0, the steady state
instability may occur but not the wave instability with IS = (p−, p+).

Proof According to the values of Det(JU ) and Tr(JU ), we discuss the possible bifurcation
scenarios shown in Fig. 2.

For case (i), that is, Det(JU ) < 0 and Tr(JU ) < 0, we see that T (p) < 0 holds for all
p > 0, thus the wave instability is impossible. The function D(p) is quadric in p, and as
Det(JU ) < 0, it has a unique positive root p+. If there exists some λi ∈ (0, p+), then steady
instability may occur, and it is clear that the steady state wave number interval IS = (0, p+),
the situation is demonstrated in Fig. 2 (i).

When it comes to case (ii), that is, Det(JU ) > 0 and Tr(JU ) > 0, the situation is more
complicated. First, if either � ≤ 0, or � > 0 and d1gv + d2 fu < 0 holds, then from Fig. 2
(ii-a1) and (ii-a2), we can see that D(p) has no positive roots, thus the steady state instability
cannot occur.However, in both situations,T (p)has apositive root p∗, thus thewave instability
is possible and the cyclewave number interval is IH = (0, p∗). If� > 0 and d1gv+d2 fu > 0
holds, D(p) has two positive roots p±, thus the steady state instability is possible and the
steady state wave number interval is IS = (p−, p+). Though the wave instability can still
occur, but the cycle wave number interval will be influenced by the distribution of p+ and
p∗: if p∗ > p+, that is the situation in Fig. 2 (iib), we have IH = (0, p−) ∪ (p+, p∗); if
p− < p∗ < p+, that is the situation in Fig. 2 (iic), now IH = (0, p−); and if p∗ < p− [see
Fig. 2 (iid)], we have IH = (0, p∗).

For case (iii), that is, Det(JU ) < 0 and Tr(JU ) > 0. It is clear that both D(p) and T (p)
have a unique positive root. When p∗ < p+ [see Fig. 2 (iii-a)], we can see that only the
steady state instability can occur with IS = (0, p+); when p∗ > p+ [see Fig. 2 (iii-b)],
we see that both the wave and the steady state instability may occur with IS = (0, p+) and
IH = (p+, p∗).

Finally, for case (iv), when Det(JU ) > 0 and Tr(JU ) < 0, if � ≤ 0, or � > 0
and d1gv + d2 fu < 0, then we have JU is strongly stable, which is a contradiction to the
assumption, thus these cases will not happen; if � > 0 and d1gv + d2 fu > 0 (see Fig. 2),
D(p) has two positive roots, thus the steady state instability may occur for IS = (p−, p+).
	


As a comparison, we recall the classical Turing diffusion-induced instability result for a
standard two-species reaction-diffusion system:

⎧
⎪⎨

⎪⎩

ut = d1�u + f (u, v, r), x ∈ �, t > 0,

vt = d2�v + g(u, v, r), x ∈ �, t > 0,

∂νu = ∂νv = 0, x ∈ ∂�, t > 0,

(3.10)

and we use the same notation as above (or simply assuming f , g are independent of ū, v̄),
then we have the following results (as Turing [47]).

Theorem 3.3 Suppose that (u∗, v∗) is a constant steady state of (3.10). Let JU , � be defined
in (3.2), (3.6). Suppose that JU is stable [so Det(JU ) > 0 and Tr(JU ) < 0] and JU is not
strongly stable, then if � > 0 and d1gv + d2 fu > 0, the steady state instability may occur
but not the wave instability with IS = (p−, p+).

123



Journal of Dynamics and Differential Equations (2022) 34:2123–2156 2135

(a) (i) (b) (ii-a1) (c) (ii-a2)

(d) (ii-b) (e) (ii-c) (f ) (ii-d)

(g) (iii-a) (h) (iii-b) (i) (iv)

Fig. 2 The demonstration for the possible scenarios of the pattern formation in system (1.1). In each figure,
the red dashed line stands for T (p) and the blue solid curve stands for D(p). The interval IS is marked by
yellow color and IH is marked by green color on the horizontal axis (Color figure online)

The proof of Theorem 3.3 is similar to that of Theorem 3.2 so it is omitted. Comparing
these two results, one can see that only the case (iv) in Theorem 3.2 occurs for Theorem 3.3,
so the systemwith spatial average (1.1) allowsmore possible pattern formation scenarios than
the classical reaction-diffusion system (3.10). Also Theorem 3.3 (and indeed Turing [47])
shows that the wave stability is not possible for the classical two-species reaction-diffusion
system (3.10), but it is possible for the two species reaction-diffusion system with spatial
average (1.1).
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Remark 3.4 1. The conditions in Theorem 3.2 are necessary for pattern formation but not
sufficient: These conditions determine if IS or IH is non-empty, but whether the interval
IS or IH contains eigenvalues λi depends on the spatial domain �. When IS or IH is
non-empty, one can rescale the domain� through a dilation� �→ l� := {lx : x ∈ �} for
k > 0, then IS or IH must contain some eigenvalue λi (l�) = l−2λi (�) if l is sufficiently
large so all instability described in Theorem 3.2 can be achieved for the dilated domain
l�.

2. Results in Theorem 3.2 are stated for a fixed diffusion matrix D, but varying D =
diag(d1, d2) will change the value of p±, p∗, � and d1gv + d2 fu , which determine
the type of instability in case (ii), (iii) and (iv).

3. A more detailed result of bifurcation of non-constant steady states or periodic orbits like
Theorem 2.3 can also be stated for system (1.1) by using either diffusion coefficients
d1, d2, or kinetic parameter r , or domain scaling parameter l as the bifurcation parameter.
But it is too tedious to state the results for every case in Theorem 3.2 so we will not
give the whole list. Instead we demonstrate such detailed bifurcation analysis through
two specific examples: cooperative Lotka-Volterra model [case (i)] and Rosenzweig-
MacArthur predator-prey model [case (ii)] in the following sections.

4 A Nonlocal Two-Species Cooperative Lotka-Volterra Model

In this section, we show that the spatial average can induce spatial patterns in a diffusive
cooperative Lotka-Volterra system with nonlocal competition in one of the species. Here for
simplicity, we assume that the spatial dimension m = 1 and � = (0, lπ) for l > 0, and
the corresponding eigenvalues/eigenfunctions for the diffusion operator are λ j = j2/l2 and
ϕ j (x) = cos( j x/l). Note that l is a scaling parameter for the spatial domain as in Remark
3.4. The model on (0, lπ) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = βuxx + u

(

1 − a

lπ

∫ lπ

0
u(x, t)dx + bv

)

, x ∈ (0, lπ), t > 0,

vt = vxx + v (1 + cu − dv) , x ∈ (0, lπ), t > 0,

ux (0, t) = ux (lπ, t) = 0, vx (0, t) = vx (lπ, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ].

(4.1)

Here u(x, t) and v(x, t) are the densities of two cooperating populations, and all parameters
a, b, c, d, β are positive.

Before our study for the nonlocal system (4.1), first we give a brief description for its
corresponding local system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = βuxx + u (1 − au + bv) , x ∈ (0, lπ), t > 0,

vt = vxx + v (1 + cu − dv) , x ∈ (0, lπ), t > 0,

ux (0, t) = ux (lπ, t) = 0, vx (0, t) = vx (lπ, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ].
(4.2)

It is clear that system (4.2) has three unstable constant equilibria: (0, 0), (0, 1/d), (1/a, 0)
and a unique positive constant equilibrium (u∗, v∗) which is locally asymptotically stable
with

u∗ = d + b

ad − bc
, v∗ = a + c

ad − bc
, (4.3)
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when ad − bc > 0 is satisfied. Furthermore, the global stability of (u∗, v∗) with respect to
(4.2) for all β > 0 can be obtained by the monotone dynamical systems theory or Lyapunov
method [40,45]. It is also known that if (4.2) has a stable equilibrium (u(x), v(x)) on a higher
dimensional convex domain, then (u(x), v(x)) must be a constant one [20].

For the nonlocal system (4.1), the linearization at (u∗, v∗) gives

D =
(

β 0
0 1

)

, JU + JŪ =
(−au∗ bu∗

cv∗ −dv∗

)

, JU =
(

0 bu∗
cv∗ −dv∗

)

. (4.4)

Then JU + JŪ is stable as ad − bc > 0, and JU satisfies Tr(JU ) < 0 and Det(JU ) < 0 so
this example belongs to the case (i) in Theorem 3.2.

Following Sect. 3, we obtain the characteristic equation with the diffusion ratio β taken
as a parameter:

μ2 − Tj (β)μ + Dj (β) = 0, j ∈ N0, (4.5)

where

T0(β) = au∗ + dv∗, D0(β) = (ad − bc)u∗v∗,

and for j ≥ 1,

Tj (β) = (β + 1)
j2

l2
+ dv∗, Dj (β) = β

j4

l4
+ βdv∗

j2

l2
− bcu∗v∗

with u∗ and v∗ defined by (4.3). By letting p = j2

l2
, we define the trace and determinant

functions by

T (β, p) = (β + 1)p + dv∗, D(β, p) = β p2 + βdv∗ p − bcu∗v∗. (4.6)

From (4.5), we know that Tj (β) > 0 holds for any j ∈ N0 and D0(β) > 0, while the sign
of Dj (β) could change which may lead to steady state instability in the system (4.1) but not
wave instability [see Theorem 3.2 case (i)].

The following lemma about the property of the root of D(β, p) is easy to obtain.

Lemma 4.1 Let D(β, p) be defined in (4.6), then it has a unique positive zero p = p�(β) such
that D(β, p) < 0 for p ∈ (0, p�(β)) and D(β, p) > 0 for p ∈ (p�(β),+∞). Moreover,
p�(β) is strictly decreasing in β > 0, limβ→0 p�(β) = ∞ and limβ→∞ p�(β) = 0.

Proof The existence and uniqueness of p�(β) is obvious as D(β, p) = 0 is quadric in p, β >

0, βdv∗ > 0 and −bcu∗v∗ < 0. By taking derivative with respect to β in D(β, p�(β)) = 0,
we obtain

p′
�(β) = − p2� + dv∗ p�

β(2p� + dv∗)
< 0.

Therefore p� is strictly decreasing with respect to β and the limits can be obtained by a direct
calculation. 	


Now we have the main result on the stability/instability of (u∗, v∗) and bifurcation of
non-constant solutions for system (4.1).

Theorem 4.2 For system (4.1)with fixed parameters a, b, c, d, l > 0 satisfying ad−bc > 0,
we have the following results about the stability and bifurcation of constant equilibrium
(u∗, v∗):
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(i) There exists a decreasing sequence β j = bcu∗v∗
λ j (λ j + dv∗)

with λ j = j2/l2 such that

system (4.1) undergoes a steady state bifurcation at β = β j near (u∗, v∗);
(ii) (u∗, v∗) is locally asymptotically stable for β ∈ (β1,∞) and unstable for β ∈ (0, β1);
(iii) there exists a positive constant δ > 0 such that the set of non-constant steady state

solutions 	1 of (4.1) near (β1, u∗, v∗) has the form:

	1 = {(β1(s),U (s, x), V (s, x)) : −δ < s < δ} , (4.7)

where U (s, x) = u∗ + sϕ1(x) + sg1(s, x), V (s, x) = v∗ + shϕ1(x) + sg2(s, x), and
β(s), gi (s, ·)(i = 1, 2) are smooth functions defined for s ∈ (0, δ) such that β(0) = β1,

and gi (0, ·) = 0 (i = 1, 2) and h = cv∗
λ1 + dv∗

;

(iv) β ′
1(0) = 0, β ′′

1 (0) �= 0, thus the bifurcation is of pitchfork type. Moreover, if β ′′
1 (0) > 0,

the bifurcation is supercritical and the bifurcating steady states are unstable for s ∈
(−δ, δ); and if β ′′

1 (0) < 0, the bifurcation is subcritical and the bifurcating steady states
are locally asymptotically stable for s ∈ (−δ, δ).

Proof For part (i), the steady state bifurcation occurs at β = β j if there exist some j ∈ N such
that p�(β j ) = λ j which is equivalent to Dj (β j ) = 0. By Lemma 4.1, p� is strictly decreasing
in β > 0, thus we obtain a decreasing sequence β j such that system (4.1) undergoes a steady
state bifurcation at β j . Part (ii) is a corollary of (i) since the equilibrium (u∗, v∗) loses its
stability at the first bifurcation value.

For part (iii) and (iv), we again use the abstract bifurcation theory in [12,38], which is
similar to the proof of Theorem 2.3. The steady states of (4.1) satisfy the following nonlocal
elliptic system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

βuxx + u

(

1 − a

lπ

∫ lπ

0
u(x)dx + bv

)

= 0, x ∈ (0, lπ),

vxx + v (1 + cu − dv) = 0, x ∈ (0, lπ),

ux (0) = ux (lπ) = 0, vx (0) = vx (lπ) = 0.

(4.8)

We define a nonlinear mapping G : R
+ × X2 → Y 2 by

G(β, u, v) =
⎛

⎝ βuxx + u

(

1 − a

lπ

∫ lπ

0
udx + bv

)

vxx + v(1 + cu − dv)

⎞

⎠ . (4.9)

It is clear that G(β, u∗, v∗) = 0. We have

G(u,v) (β1, u∗, v∗) [ϕ,ψ] =
⎛

⎝ β1ϕxx − au∗
lπ

∫ lπ

0
ϕdx + bu∗ψ

ψxx + cv∗ϕ − dv∗ψ

⎞

⎠ := L̃. (4.10)

Then the kernel isN (L̃) = Span {q̃ = (1, h)ϕ1} where h = cv∗
λ1 + dv∗

, thus dim
(
N (L̃)

)
=

1. The range space of L̃ is R(L̃) = {( f1, f2) ∈ Y 2 : 〈y, ( f1, f2)〉 = 0
}
, where y is defined

by

〈y, ( f1, f2)〉 =
∫ lπ

0

(

f1 + bu∗
λ1 + dv∗

f2

)

ϕ1dx,
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and thus codim
(
R(L̃)

)
= 1. Also, from (4.9), we have

Gβ(u,v) (β1, u∗, v∗) [q̃] = (1, h)T�ϕ1 = −(1, h)T λ1ϕ1 /∈ R(L̃), (4.11)

as
∫
�

(

1 + β1λ1

λ1 + dv∗

)

ϕ2
i dx > 0. By applying Theorem 1.7 in [12], we obtain the result in

part (iii).
Then we calculate β ′

1(0). From [17], we know that β ′
1(0) has the following form:

β ′
1(0) = −

〈
y, G(u,v)(u,v) (β1, u∗, v∗) [q̃, q̃]〉

2
〈
y, Gβ(u,v) (β1, u∗, v∗) [q̃]〉 . (4.12)

Also, from (4.11), we have

〈
y, Gβ(u,v) (β1, u∗, v∗) [q̃]〉 = −

(

1 + β1λ1

λ1 + dv∗

)∫ lπ

0
ϕ2
1dx = − lπ

2

(

1 + β1λ1

λ1 + dv∗

)

,

and
〈
y, G(u,v)(u,v) (β1, u∗, v∗) [q̃, q̃]〉

=
[

2bhβ−1
1 + 2h(c − dh)

β1λ1

h(λ1 + dv∗)

] ∫ lπ

0
ϕ3
1dx = 0, (4.13)

since
∫ lπ
0 ϕ3

1dx = ∫ lπ
0 cos3

( x
l

)
dx = 0. Therefore, Theorem 1.7 in [12] can be applied to

obtain the existence of the branch of non-constant solutions 	1 as in (4.7), and β ′
1(0) = 0.

Continuing to calculate β ′′
1 (0), which reads [17],

β ′′
1 (0) = −

〈
y, G(u,v)(u,v)(u,v) (β1, u∗, v∗) [q̃, q̃, q̃]〉+ 3

〈
y, G(u,v)(u,v) (β1, u∗, v∗) [q̃,�]〉

3
〈
y, Gβ(u,v) (β1, u∗, v∗) [q̃]〉 .

(4.14)

First we have
〈
y, G(u,v)(u,v)(u,v) (β1, u∗, v∗) [q̃, q̃, q̃]〉 = 0 since all the third derivatives are

zero. Then,

〈
y, G(u,v)(u,v) (β1, u∗, v∗) [q̃,�]〉 = lπ

2
A + 3lπ

8
B,

where

A = [−a�1
0 + bh(�1

0 − �1
2) + b(�2

0 − �2
2)
]

+ β1λ1

h(λ1 + dv∗)
[
ch(�1

0 − �1
2) + (c − 2dh)(�2

0 − �2
2)
]
,

B = [2bh�1
2 + 2b�2

2

]+ β1λ1

h(λ1 + dv∗)
[
2ch�1

2 + 2(c − 2dh)�2
2

]
,

(4.15)

with

�1
0 = bh(−dhu∗ + c∗ + dv∗)

(ad − bc)u∗v∗
, �1

2 = −bh(−dhu∗ + cu∗ + dv∗ + 4λ1)

bcu∗v∗ − 4dβ1λ1v∗ − 16β1λ
2
1

,

�2
0 = au∗(c − dh) + bcv∗

(ad − bc)u∗v∗
, �2

2 = − h(bcv∗ + 4cβ1λ1 − 4dhβ1λ1)

bcu∗v∗ − 4dβ1λ1v∗ − 16β1λ
2
1

.

(4.16)

Thus we have

β ′′
1 (0) = 1

β1λ1

(

A + 3

4
B

)

= P

Q
, (4.17)
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with

P = 6bcd4v5∗ − 4(ad − bc)d4v5∗ − 9ac2d2λ1u
2∗v2∗ + 10acd3λ1u∗v3∗ − 37ad4λ1v

4∗
+ 9bc3dλ1u

2∗v2∗ + 2bc2d2λ1u∗v3∗ + 79bcd3λ1v
4∗ − 19ac2dλ21u

2∗v∗ + 20acd2λ21u∗v2∗
− 87ad3λ21v

3∗ + 25bc3λ21u
2∗v∗ + 52bc2dλ21u∗v2∗ + 153bcd2λ21v

3∗ + 30ac2λ31u
2∗

+ 10acdλ3u∗v∗ − 79ad2λ31v
2∗ + 50bc2λ31u∗v∗ + 109bcdλ31v

2∗ − 25(ad − bc)λ41v∗,
Q = 6(d3v3∗ + 7d2λ1v

2∗ + 11dλ2v∗ + 5λ3)(dv∗(ad − bc) + (ad − bc)λ1)v∗u2∗.
The assertion on the stability follows from the same way as the proof of Theorem 2.3. 	

Remark 4.3 In [17], a detailed bifurcation analysis for steady state bifurcation is carried out
in a regular reaction-diffusion system. Here, we give a calculation for bifurcation direction
when the spatial average is introduced into a reaction-diffusion system. The main difference
lies in the calculation for the derivatives of the nonlinear operator G. For instance, we see the
first Fréchet derivative G(u,v) (β1, u∗, v∗) [q] in (4.10), because the integral

∫ lπ
0 ϕdx = 0,

so the parameter a does not play role in determination of bifurcation direction [the similar
for the second derivative (4.13)]. However, if we replace the nonlocal term with a local one,
parameter a will certainly affect the direction of steady state bifurcation.

We do not have amore definite conclusion on the sign ofβ ′′
1 (0) in (4.17) due to the complex

form of P and Q, but for a given set of parameters a, b, c, d, l, it can be calculated. For
example, when the parameters in (4.1) are

a = 1, b = 0.1, c = 0.1, d = 1, l = 1, (4.18)

we can compute that β ′′
1 (0) = −1.6759 < 0 from (4.17), thus the pitchfork bifurcation is

subcritical and the bifurcating non-constant steady states are locally asymptotically stable
near β = β1. Here, we plot the graph of D(β, p) = 0 in (β, p) plane (see Fig. 3), and the
steady state bifurcation points are

β1 = 0.00585, β2 = 0.000605.

Guided by the above stability and bifurcation analysis, we choose three different β values
for numerical simulations: β = 0.008, β = 0.004, β = 0.0005 to observe the dynamical
behavior of Eq. (4.1). When β = 0.008 > β1, according to Theorem 4.2, we know that
(u∗, v∗) is still locally stable. In Fig. 4 (top row), we see that the solution of Eq. (4.1)
converges to the stable equilibrium (u∗, v∗) = (0.085, 1.008). Then we decrease β such that
β < β1. First, when β = 0.004 satisfying β2 < 0.004 < β1, a mode-1 Turing pattern is
observed in Fig. 4 (middle row). Next we take β = 0.0005 < β2, then we observe a mode-
2 Turing patterns in Fig. 4 (bottom row). Our theoretical result in Theorem 4.2 confirms
the observations at β = 0.008 and β = 0.004, but the mode-2 Turing pattern observed at
β = 0.0005 probably is due to a secondary bifurcation not primary one from the constant
steady state.

As we mentioned in the beginning of this section, the model (4.1) is an example of case
(i) in Theorem 3.2. If a nonlocal competition exists in the system, then the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = βuxx + u

(

1 − a

lπ

∫ lπ

0
u(x, t)dx + bv

)

, x ∈ (0, lπ), t > 0,

vt = vxx + v

(

1 + cu + dv − e

lπ

∫ lπ

0
v(x, t)dx

)

, x ∈ (0, lπ), t > 0,

ux (0, t) = ux (lπ, t) = 0, vx (0, t) = vx (lπ, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ],

(4.19)
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Fig. 3 The plot of D(β, p) = 0 (black dash-doted curve) with the parameters from (4.18), and the blue solid
horizontal lines are p = j2/l2 with j ∈ N (Color figure online)

provides an example of case (iii) in Theorem 3.2. Here e satisfying e > d is the nonlocal
competition parameter in species v and d is the growth of v, and other parameters have the
same meaning as that in (4.1). It is clear that system (4.19) has a unique positive constant
equilibrium (u∗, v∗):

u∗ = e − d + b

a(e − d) − bc
, v∗ = a + c

a(e − d)d − bc
, (4.20)

when a(e − d) − bc > 0 is satisfied. And the linearization at (u∗, v∗) gives

D =
(

β 0
0 1

)

, JU + JŪ =
(−au∗ bu∗

cv∗ −(e − d)v∗

)

, JU =
(

0 bu∗
cv∗ dv∗

)

. (4.21)

Then JU + JŪ is stable as a(e−d)−bc > 0, and JU satisfies Tr(JU ) > 0 and Det(JU ) < 0
so this example belongs to the case (iii) in Theorem 3.2. Through a tedious calculation, we
find that p∗ < p+ always holds for this model, so this is an example of case (iii-a) and Turing
patterns can be generated similar to (4.1).

5 A Diffusive Predator-PreyModel with Nonlocal Competition

In this section, we consider the following reaction-diffusion predator-prey (consumer-
resource) model with nonlocal prey competition:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = d1uxx + u

(

1 − 1

klπ

∫ lπ

0
u(x, t)dx

)

− muv

u + 1
, x ∈ (0, lπ), t > 0,

vt = d2vxx − θv + muv

u + 1
, x ∈ (0, lπ), t > 0,

ux (0, t) = ux (lπ, t), vx (0, t) = vx (lπ, t), t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ],

(5.1)

123



2142 Journal of Dynamics and Differential Equations (2022) 34:2123–2156

(a) species u (b) species v

(c) species u (d) species v

(e) species u (f ) species v

Fig. 4 The dynamics of Eq. (4.1) with parameters in (4.18). (Top row): β = 0.008, the constant steady state
(u∗, v∗) = (0.085, 1.008) is locally asymptotically stable; (Middle row): β = 0.004 < β1, a mode-1 Turing
pattern can be observed; (Bottom row): β = 0.0005 < β2, a mode-2 Turing pattern can be observed
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where u(x, t), v(x, t) stand for the prey and predator population densities respectively, the
spatial domain is assumed to be one-dimensional interval (0, lπ), k > 0 is the carrying
capacity, m > 0 is the predation parameter and θ > 0 is the mortality rate of predator.
The intraspecific competition of the prey is assumed to be nonlocal. The model (5.1) was
first proposed in [30,31] for wave propagation an unbounded domain. In [8], the existence
of the nonlocality-induced stable spatially non-homogeneous periodic orbits was proved via
Hopf bifurcation theory (see Theorems 3.2, 3.4, 3.5 in [8]). In [48], the same model was
investigated for the Turing-Hopf bifurcation. Here we revisit this nonlocal model (5.1) and
show that the nonlocal competition can induce spatially non-homogeneous steady state.

For the corresponding model with local competition
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = d1uxx + u
(
1 − u

k

)
− muv

u + 1
, x ∈ (0, lπ), t > 0,

vt = d2vxx − θv + muv

u + 1
, x ∈ (0, lπ), t > 0,

ux (0, t) = ux (lπ, t), vx (0, t) = vx (lπ, t), t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ],

(5.2)

a thorough bifurcation analysis was carried out in [49]: The system (5.2) (or equivalently
(5.1)) has there constant non-negative equilibrium: (0, 0), (k, 0) and (λ, vλ) with

λ = θ

m − θ
, vλ = (k − λ)(1 + λ)

km
, 0 < λ < k. (5.3)

In the following we assume that 0 < k ≤ 1 and 0 < λ < k which ensures that the
positive equilibrium (λ, vλ) is globally asymptotically stable for the local system (5.2)(see
[49, Theorem 2.3]). From the results in [49], it is also known that neither spatial steady state
nor spatiotemporal patterns can appear in Eq. (5.2) under the assumptions that 0 < k ≤ 1
and 0 < λ < k. Here we demonstrate that the spatial average in system (5.1) can induce
non-constant spatial patterns.

The linearization ofEq. (5.1) at (λ, vλ)gives the following diffusion and Jacobianmatrices

D =
(
d1 0
0 d2

)

, JU + JŪ =
⎛

⎜
⎝

λ(k − 1 − 2λ)

k(1 + λ)
−θ

k − λ

k(1 + λ)
0

⎞

⎟
⎠ , JU =

⎛

⎜
⎝

λ(k − λ)

k(1 + λ)
−θ

k − λ

k(1 + λ)
0

⎞

⎟
⎠ .

(5.4)

Then, when 0 < k ≤ 1, JU + JŪ is stable as 0 < λ < k, and JU satisfies Tr(JU ) > 0 and
Det(JU ) > 0 so this example belongs to the case (ii) in Theorem 3.2. Thus, the characteristic
equation for the linearized system (3.1) is

μ2 − Ti (λ)μ + Di (λ) = 0, i ∈ N0, (5.5)

where

T0(λ) = λ(k − 1 − 2λ)

k(1 + λ)
, D0(λ) = θ(k − λ)

k(1 + λ)
,

and for i ≥ 1,

Ti (λ) = λ(k − λ)

k(1 + λ)
− (d1 + d2)i2

l2
, Di (λ) = θ(k − λ)

k(1 + λ)
− d2λ(k − λ)

k(1 + λ)

i2

l2
+ d1d2i4

l4
.
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By letting p = i2/l2, we define the trace and determinant functions to be

T (λ, p) = C1(λ) − (d1 + d2)p, D(λ, p) = d1d2 p
2 − d2C1(λ)p + θ(k − λ)

k(1 + λ)
, (5.6)

where

C1(λ) := λ(k − λ)

k(1 + λ)
. (5.7)

For the further discussion, we also defineC2(λ) := λC1(λ). For the properties of functions
C1(λ) and C2(λ), the following results are given in [8, Lemma 3.1]:

Lemma 5.1 For k > 0, the following statements are true:

(i) there exists λ∗ := √
k + 1− 1 such that C ′

1(λ∗) = 0 and C ′
1(λ) > 0 for λ ∈ (0, λ∗) and

C ′
1(λ) < 0 for λ ∈ (λ∗, k) and maxλ∈[0,k] C1(λ) = C1(λ∗);

(ii) there exists λ� := k − 3 +√(k − 3)2 + 16k

4
such that C ′

2(λ�) = 0 and C ′
2(λ) > 0 for

λ ∈ (0, λ�) and C ′
2(λ) < 0 for λ ∈ (λ�, k) and maxλ∈[0,k] C2(λ) = C2(λ�).

Also the result on spatially non-homogeneous Hopf bifurcations are obtained.

Proposition 5.2 ([8, Theorem 3.2]) Let λ� and λ∗ be defined in Lemma 5.1, and suppose that
d1, d2, m, θ > 0 and 0 < k ≤ 1 satisfy

d1
d2

>
C2(λ�)

4θ
, (5.8)

and define

lHi := i

√
d1 + d2
C1(λ∗)

, with i ∈ N. (5.9)

Then, the following two statements are true.

(i) If l ∈ (0, l H1 ), then (λ, vλ) is locally asymptotically stable for λ ∈ (0, k).
(ii) If l ∈ (l H1 ,∞), then there exist finitely many critical points satisfying

0 < λH
1,−(l) < · · · < λH

n,−(l) < λ∗ < λH
n,+ < · · · < λH

1,+(l) < k,

such that (λ, vλ) is locally asymptotically stable for λ ∈
(
0, λH

1,−(l)
)
∪
(
λH
1,+(l),∞

)
and

unstable for λ ∈
(
λH
1,−(l), λH

1,+(l)
)
. Moreover, system (5.1) undergoes Hopf bifurcation

atλ = λH
n,±(l), and the bifurcatingperiodic solutions nearλH

n,−(l)orλH
n,+(l)are spatially

non-homogeneous.

We now consider the steady state bifurcations for (5.1). The steady state solutions of (5.1)
satisfy the following elliptic problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d1uxx + (u + λ)

(

1 − 1

klπ

∫ lπ

0
(u(x) + λ)dx

)

− m(u + λ)(v + vλ)

u + λ + 1
= 0, x ∈ (0, lπ),

d2vxx − θ(v + vλ) + m(u + λ)(v + vλ)

u + λ + 1
= 0, x ∈ (0, lπ),

ux (0) = ux (lπ) = 0, vx (0) = vx (lπ) = 0,

(5.10)
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which has a trivial equilibrium (0, 0), and we want to find its non-trivial solution. Then, the
condition for steady state bifurcation is that D(λ, i2/l2) = Di (λ) = 0 which is defined in

(5.6). It is clear that
θ(k − λ)

k(1 + λ)
> 0 and d2C1(λ) > 0 for any λ ∈ (0, k). So if we assume

that

d1
d2

<
C2(λ�)

4θ
, (5.11)

then from Lemma 5.1, there exist λ, λ̄ satisfying 0 < λ < λ� < λ̄ < k such that

d1
d2

= C2(λ)

4θ
= C2(λ̄)

4θ
, (5.12)

and for any λ ∈ (λ, λ̄), D(λ, ·) = 0 has two positive roots:

p±(λ) =
d2C1(λ) ±

√
C1(λ)(d22C2(λ) − 4d1d2θ)

2d1d2
. (5.13)

By using similar arguments in the proof of [49, Lemma 3.9], we obtain the following prop-
erties of p±(λ).

Proposition 5.3 Suppose that 0 < k ≤ 1 and (5.11) holds, there exist λ−, λ+ ∈ [λ, λ̄] such
that

(i) p+(λ) is increasing in (λ, λ+) and decreasing in (λ+, λ̄), and max p+(λ) = p+(λ+);
(ii) p−(λ) is decreasing in (λ, λ−) and increasing in (λ−, λ̄), and min p−(λ) = p−(λ−).

Now we have the following results on the steady state bifurcations and Hopf bifurcations
for system (5.1) under the condition (5.11).

Theorem 5.4 Suppose that d1, d2, θ, 0 < k ≤ 1 satisfy (5.11).

(i) Let p±(λ) be defined by (5.13) and λ± in Proposition 5.3, for i ∈ N we define

lSi,− := i
√
p+(λ+)

, l Si,+ := i
√
p−(λ−)

.

When l ∈
(
l Si,−, l Si,+

)
, there exist exactly two points λS

i,± ∈ [λ, λ̄] such that p±
(
λS
i,±
)

=
i2

l2
. If λS

i,± �= λS
j,± for j �= i , then there is a smooth curve 	i,± of positive solutions of

(5.10) bifurcating from the line of constant solutions (λ, u, v) = (λ, λ, uλ) at λ = λS
i,±.

Moreover, near
{
(λS

i,±, λS
i,±, vλS

i,±
)
}
, there exists a positive constant δ > 0 such that

	i,± ∈ C∞ has the following form:

	i,± = {(λ(s), u(s), v(s)) : −δ < s < δ} , (5.14)

where

u(s) = λS
i,± + s cos

(
i x

l

)

+ sz1(s, x),

v(s) = vλS
i,±

+
l2
(
k − λS

i,±
)

d2i2k
(
1 + λS

i,±
) s cos

(
i x

l

)

+ sz2(s, x),
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with λ(s), z j (s, x) are smooth functions defined for s ∈ (−δ, δ) such that λ(0) = λS
i,±,

and z j (0, x) = 0 ( j = 1, 2).
(ii) Let lHi , λH

n,± be defined in Lemma 5.2 and let C2(λ), λ� defined in Lemma 5.1. Then
system (5.1) undergoes a Hopf bifurcation at λ = λH

n,± if λH
n,± /∈ [λ, λ̄], where λ, λ̄ are

defined in (5.12).

Proof The proof of part (i) is similar to the proof of Theorems 2.3 and 4.2, and we again use
the abstract bifurcation theory in [12,38].

Following the similar setting in [49], we define a nonlinear mapping H : R
+ × X2 → Y 2

by

H(λ, u, v) =

⎛

⎜
⎜
⎝

d1uxx + (u + λ)

(

1 − 1

klπ

∫ lπ

0
(u(x) + λ)dx

)

− m(u + λ)(v + vλ)

u + λ + 1

d2vxx − θ(v + vλ) + m(u + λ)(v + vλ)

u + λ + 1

⎞

⎟
⎟
⎠ .

(5.15)

It is clear that H(λ, 0, 0) = (0, 0). At λ = λS
i,±, we have

H(u,v)

(
λS
i,±, 0, 0

)
[ϕ,ψ]=

⎛

⎝ d1ϕxx − λS
i,±
klπ

∫ lπ

0
ϕdx + C1(λ

S
i,±)ϕ − θψ,

d2ψxx + A(λS
i,±)ϕ.

⎞

⎠ := L̂[ϕ,ψ],

(5.16)

where A(λ) := k − λ

k(1 + λ)
and C1(λ) is defined in (5.7). We assume that λS

i,± �= λS
j,±

for j �= i , then the kernel is N (L̂) = Span
{
q̂ = (1, ĥ)ϕ1

}
where ĥ =

l2A
(
λS
i,±
)

d2i2
, thus

dimN (L̂) = 1. The range space of L̂ isR(L̂) = {( f1, f2) ∈ Y 2 : 〈y, ( f1, f2)〉 = 0
}
, where

y is defined by

〈y, ( f1, f2)〉 =
∫ lπ

0

(

f1 − l2θ

d2i2
f2

)

ϕ1dx,

and thus codimR(L̂) = 1.

Next, We prove that Hλ(u,v)

(
λS
i,±, 0, 0

)
[q̂] /∈ R(L̂). From (5.15), we have

Hλ(u,v)

(
λS
i,±, 0, 0

)
[q̂] =

(
C ′
1(λ

S
i,±), A′(λS

i,±)
)T

ϕi . (5.17)

Using the definition of R(L̂), we obtain the integral

T :=
∫ lπ

0

(

f1 − l2θ

d2i2
f2

)

ϕi dx =
∫ lπ

0

(

C ′
1(λ

S
i,±) − l2θ A′(λS

i,±)

d2i2

)

ϕ2
i dx . (5.18)

Since p±(λ) satisfies D(λ, p±(λ)) = 0, we have

d1d2 p
2±(λ) − d2C1(λ)p±(λ) + A(λ) = 0. (5.19)
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Differentiating (5.19) with respect to λ at λ = λS
i,±, we obtain

p′±
(
λS
i,±
)

=
θ A′

(
λS
i,±
)

− d2C ′
1

(
λS
i,±
)
p±
(
λS
i,±
)

2d1d2 p±
(
λS
i,±
)

− d1C ′
1

(
λS
i,±
) .

Since l ∈
(
l Si,−, l Si,+

)
, thus p′±

(
l Si,±
)

�= 0 which implies that

θ A′ (λS
i,±
)

− d2C
′
1

(
λS
i,±
)
p±
(
λS
i,±
)

�= 0,

together with p±
(
λS
i,±
)

= i2

l2
, we have T �= 0 with T defined in (5.18), thus

Hλ(u,v)

(
λS
i,±, 0, 0

)
[q̂] /∈ R(L̂) is proved. By applying Theorem 1.7 in [12], we obtain

the result in part (i).
As for part (ii), from (5.13), when λ ∈ [λ, λ̄], we have D(λ, ·) ≤ 0 which does not satisfy

the condition of Hopf bifurcation. But when λH
n,± /∈ [λ, λ̄], we have D(λH

n,±, ·) > 0 thus
Hopf bifurcations can occur. 	


Proposition 5.2 and Theorem 5.4 define two minimal domain size (patch length) l H1 for
Hopf bifurcation and l S1,− for steady state bifurcation. Together with the threshold conditions
(5.8) and (5.11) for the diffusion coefficients, we have the following classification of different
scenarios of steady state and Hopf bifurcations when using λ as the bifurcation parameter.

Corollary 5.5 Let C2(λ), λ�, l H1 be defined in Lemma 5.2 and lS1,− be defined in Theorem 5.4.

Denote M = C2(λ�)

4θ
, for the bifurcation scenarios in system (5.1), we have the following

results:

(i) when d1 > d2M, l < l H1 or d1 < d2M, l < l S1,−, the constant steady state (λ, vλ) is
locally asymptotically stable, and both steady state and Hopf bifurcation will not occur;

(ii) when d1 > d2M, l > l H1 or d1 < d2M, l H1 < l < l S1,−, Hopf bifurcation can occur,
but steady state bifurcation cannot occur;

(iii) when d1 < d2M, l < l H1 and l > l S1,−, steady state bifurcation can occur, but Hopf
bifurcation can not occur;

(iv) when d1 < d2M, l > l H1 and l > l S1,−, both steady state and Hopf bifurcation can
occur.

A similar classification was given in [6] on the pattern formation conditions for a diffusive
Gierer-Meinhardt system. The results in Corollary 5.5 are depicted numerically in Fig. 5.

Remark 5.6 (i) In Theorem 5.4, the direction of the steady state bifurcations in system (5.1)
can be determined similarly as in Theorem 4.2.

(ii) For the stability of periodic orbits bifurcated through a Hopf bifurcation, we refer readers
for the calculation of the normal form of a classical reaction-diffusion system in [49]. The
calculation for our model with the spatial average is similar. Because of the introduction
of the spatial average term, some differences happen for the derivatives of the nonlinear
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Fig. 5 Illustration of possible bifurcation scenarios in system (5.1), which correspond to the four cases in
Corollary 5.5. The parameters used: a d2 = 1, θ = 1, k = 0.5; b d2 = 0.1, θ = 0.01, k = 1

functions f (λ, u, v) and g(λ, u, v) at (λ, vλ):

fuu = 2(k − λ)

k(1 + λ)2
, fuv = − θ

λ(1 + λ)
, fvv = 0,

fuuu = − 6(k − λ)

k(1 + λ)3
, fuuv = 2θ

λ(1 + λ)2
, fuvv = 0, fvvv = 0,

guu = − 2(k − λ)

k(1 + λ)2
, guv = θ

λ(1 + λ)
, gvv = 0,

guuu = 6(k − λ)

k(1 + λ)3
, guuv = − 2θ

λ(1 + λ)2
, guvv = 0, gvvv = 0.

(5.20)

Other calculations are similar, so we will not repeat here. Also, in [7], the Hopf bifurca-
tion direction in a diffusive Holling-Tanner predator-prey model with spatial average is
computed similarly.

Fig 6 show the bifurcation diagrams of system (5.1) by plotting the graphs of zero level set
of determinant function D(λ, p) = 0 and trace function T (λ, p) = 0. The intersection points
of the closed loop D(λ, p) = 0 and lines p = i2/l2 determine the steady state bifurcation
points, while the intersection points of T (λ, p) = 0 and p = i2/l2 outside of the loop
D(λ, p) = 0 determine the Hopf bifurcation points. Cases (i) and (ii) here belong to Case
(ii-a1) in Fig. 2, and the set {(λ, p) : D(λ, p) = 0} is empty; and cases (iii) and (iv) belong
to Case (ii-d) in Fig. 2, and the set {(λ, p) : D(λ, p) = 0} is a closed loop.

Guided by Corollary 5.5, Figs. 5 and 6, we use numerical simulations to verify the spa-
tiotemporal pattern formations.

Example 5.7 When

d1 = 0.1, d2 = 0.2, θ = 1, k = 0.5, l = 1, (5.21)

the case (i) in Corollary 5.5 occurs, and it is predicted that neither steady state nor Hopf
bifurcation will occur. Fig 7 shows that the constant steady state is asymptotically stable for
this choice of parameters.
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Fig. 6 Bifurcation diagrams corresponding to four scenarios in Fig. 5. In each case, the graphs of D(λ, p) = 0
(black dash-dot curve), T (λ, p) = 0 (red dashed curve) are plotted, and the blue solid horizontal lines are
p = i2/l2 with i ∈ N. The parameters for four diagrams are, respectively: (i) d1 = 0.1, d2 = 0.2, θ = 1, k =
0.5, l = 1; (ii)d1 = 0.1, d2 = 0.2, θ = 1, k = 0.5, l = 4; (iii)d1 = 0.005, d2 = 1, θ = 1, k = 0.5, l = 2;
(iv) d1 = 0.006, d2 = 0.9, θ = 1, k = 0.5, l = 4 (Color figure online)

(a) Prey (b) Predator

Fig. 7 Dynamics of Eq. (5.1) with parameters in (5.21) andm = 6 (λ = 0.2): converges to the constant steady
state with initial values u0(x) = 0.4 − 0.1 cos(x/4), v0(x) = 0.02 − 0.01 cos(x/4)
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(a) Prey (b) Predator

(c) Prey (d) Predator

Fig. 8 Dynamics of Eq. (5.1) with parameters in (5.22) andm = 6 (λ = 0.2): (top row)mode-1 spatiotemporal
patterns with initial values u0(x) = 0.4−0.1 cos(x/4), v0(x) = 0.02−0.01 cos(x/4); (bottom row) mode-2
spatiotemporal patterns with initial values u0(x) = 0.4 − 0.1 cos(x/2), v0(x) = 0.02 − 0.01 cos(x/2)

Example 5.8 When

d1 = 0.1, d2 = 0.2, θ = 1, k = 0.5, l = 4, (5.22)

it is the case (ii) in Corollary 5.5, and only spatially non-homogeneous Hopf bifurcations can
occur and the spatially non-homogeneous Hopf bifurcation points are:

λH
1,− = 0.0199, λH

1,+ = 0.4707, λH
2,− = 0.1049, λH

2,+ = 0.3576.

Figure 8 shows that when λ = 0.2, both mode-1 and mode-2 spatially non-homogeneous
time-periodic patterns are observed with different initial conditions.

Example 5.9 When

d1 = 0.005, d2 = 1, θ = 1, k = 0.5, l = 2, (5.23)

the graphs of Di = 0 and Ti = 0 are depicted in (λ, p) plane in Fig. 6 (iii). In this case Hopf
bifurcations cannot occur and steady state bifurcations occur. And the steady state bifurcation
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(a) Prey (b) Predator

(c) Prey (d) Predator

Fig. 9 Dynamics of Eq. (5.1) with the parameters in (5.23) and m = 3.5 (λ = 0.4): (top row) mode-4 spatial
patterns with initial values u0(x) = 0.4 − 0.1 cos(2x), v0(x) = 0.07 − 0.07 cos(2x); (bottom row) mode-5
spatial patterns with initial values u0(x) = 0.4 − 0.1 cos(2.5x), v0(x) = 0.07 − 0.07 cos(2.5x)

points can be computed as:

λS
4,− = 0.3264, λS

4,+ = 0.4136, λS
5,− = 0.2317, λS

5,+ = 0.4126,

λS
6,− = 0.2018, λS

6,+ = 0.3868, λS
7,− = 0.2087, λS

7,+ = 0.3423.

In Fig. 9, with λ = 0.40, the mode-4 and mode-5 spatially non-homogeneous steady states
are observed with different initial conditions. Compared with the local system (5.2) in which
there are no stable spatial patterns, we can conclude that the nonlocal competition induces
the spatially non-homogeneous steady states.

Example 5.10 Finally we take the parameters as

d1 = 0.006, d2 = 0.9, θ = 1, k = 0.5, l = 4. (5.24)

The graphs of Di = 0 and Ti = 0 are shown in (λ, p) plane in Fig. 6 (iv). We have the
spatially non-homogeneous Hopf bifurcation points:

λH
1,− = 0.0706, λH

1,+ = 0.4011,
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(a) Prey (b) Predator

(c) Prey (d) Predator

Fig. 10 The dynamics of Eq. (5.1) with the parameters being (5.24) and m = 3.857 (λ = 0.35): (top row)
mode-1 spatiotemporal pattern with initial values u0(x) = 0.3+ 0.1 cos(x/4), v0(x) = 0.2+ 0.05 cos(x/4);
(bottom row) mode-10 spatial patterns with initial values u0(x) = 0.35 − 0.1 cos(10x/4), v0(x) = 0.103 −
0.01 cos(10x/4)

and the steady state bifurcation points are:

λS
10,− = 0.2988, λS

10,+ = 0.3602, λS
11,− = 0.2765,

λS
11,+ = 0.3478, λS

12,− = 0.2837, λS
12,+ = 0.3128.

By using the normal form calculations (see [49] and Remark 5.6), we find that

Re(c1(λ
H
1,−)) = 54.6124 > 0, Re(c1(λ

H
1,+)) = 0.0434 < 0. (5.25)

As a consequence of (5.25) and the fact that λH
1,− < λ∗, λH

1,+ > λ∗, we have

μ′(λH
1,−) > 0, μ′(λH

1,+) < 0.

According to [49], we know that the spatially non-homogeneousHopf bifurcation atλ = λH
1,−

and λ = λH
1,+ are both supercritical, and the bifurcating periodic orbits near λ = λH

1,− and

λ = λH
1,+ are both stable. In Fig.10, with λ = 0.35, the mode-1 spatially non-homogeneous

time-periodic pattern and mode-10 spatially non-homogeneous steady state are observed
with different initial conditions.
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6 Discussion

In this work, we study the effect of spatial average on the pattern formation of reaction-
diffusion systems. Spatial pattern formation is impossible on a convex spatial domain for
a classical scalar reaction-diffusion equation subject to the homogeneous Neumann bound-
ary condition. However, when the spatial average is incorporated into the model, a stable
spatially non-constant steady state can emerge from a symmetry-breaking bifurcation. For a
classical two-species reaction-diffusion system with homogeneous Neumann boundary con-
dition, Hopf bifurcation of the corresponding ODE system induces spatially homogeneous
periodic orbits, and a non-constant steady state can be generated through Turing instability.
However, stable spatially non-homogeneous time-periodic patterns can only be generated
through a secondary Turing-Hopf bifurcation, which is co-dimension two [41,43]. Here, it
is found that in a two-species reaction-diffusion system with spatial average, spatially non-
homogeneous periodic orbits can be generated from a primary (co-dimension one) spatially
non-homogeneous Hopf bifurcation from the stable constant steady state.

Also, we want to address that nonlocality-induced instability allows more flexible condi-
tions on thekinetics of the underlying system, and it does not require typical activator-inhibitor
interaction between the two species. The diffusive Lotka-Volterra cooperative model with
spatial average effect serves as an example to support this view. As an example, we use the
diffusive Rosenzweig-MacArthur predator-prey model to show how the spatial average can
generate spatiotemporal patterns in an otherwise stable system with a unique homogeneous
state. Our theory and these examples clearly show that the addition of the effect of spatial
average in reaction-diffusion systems broadens the range of reaction-diffusion models for
spatiotemporal pattern formation.

Spatial heterogeneity usually increases the complexity of spatial patterns. Interestingly,
the mechanism of pattern formation here is to add some partial spatial homogeneity. In some
reaction-diffusion systems, stable spatial patterns are not able to be formed. Nevertheless,
when the spatial average is added into the system, spatial patterns can be observed. If we
replace all the local terms with the corresponding spatial average terms, the system will
be equivalent to an ODE system, and spatial pattern formation is also impossible. Thus a
combination of locality and nonlocality may be helpful for the formation of spatial patterns.

Acknowledgements The authors thank an anonymous reviewer for helpful comments which improved the
initial draft of the paper. This work was done when the first author visitedWilliam&Mary during the academic
year 2016–2018, and she would like to thank Department of Mathematics at William &Mary for their support
and kind hospitality.

Appendix

The proof of Theorem 2.6

Proof Firstly, we integrate both sides of Eq. (2.17) on� and divide by |�|which is the spatial
domain size, then we obtain a ODE system of ū:

ūt = a − (b + c)ū − (d̃ + e)ū2. (A.1)

Then, the equilibrium of Eq. (A.1) also satisfies (2.17) which admits a unique positive root
u = u∗. In addition, for Eq. (A.1), the unique equilibrium u = u∗ is globally stable, and all
the solutions of (A.1) will converge to u = u∗ as t → +∞. Note that ū is a function of t .
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Then, we rewrite Eq. (2.17) as:

ut = d�u + A(t) − B(t)u, (A.2)

where A(t) = a − bū − d̃ū2 and B(t) = c + eū. Denote Ã = limt→+∞ A(t) > 0, B̃ =
limt→+∞ B(t) > 0, then for any 0 < ε � 1, there exists T > 0 such that for arbitrary
t > T , we have

{
ut ≤ d�u + ( Ã + ε) − (B̃ − ε)u,

ut ≥ d�u + ( Ã − ε) − (B̃ + ε)u.

Therefore, we can use the u1 ≥ u(x, t) as the upper solution with u1 is the solution of the
following equation:

{
u′
1 = ( Ã + ε) − (B̃ − ε)u1, t > T ,

u1(0) = max
x∈�

u(x, T ),
(A.3)

and the lower solution u2 ≤ u(x, t) satisfying
{
u′
2 = ( Ã − ε) − (B̃ + ε)u2, t > T ,

u2(0) = max
x∈�

u(x, T ).
(A.4)

Moreover, by the theory of ODE, we know the asymptotic behavior of Eqs. (A.3) and (A.4):

lim
t→+∞ u1(t) = Ã + ε

B̃ − ε
, lim

t→+∞ u2(t) = Ã − ε

B̃ + ε
.

By the arbitrariness of ε, we obtain that limt→+∞ u(x, t) = Ã/B̃ = u∗. We complete the
proof. 	
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