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Abstract. A general reaction–diffusion equation with spatiotemporal delay and homogeneous Dirichlet boundary condition
is considered. The existence and stability of positive steady-state solutions are proved via studying an equivalent reaction–
diffusion system without nonlocal and delay structure and applying local and global bifurcation theory. The global structure
of the set of steady states is characterized according to type of nonlinearities and diffusion coefficient. Our general results
are applied to diffusive logistic growth models and Nicholson’s blowflies-type models.
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1. Introduction

Reaction–diffusion models have been used to describe the evolution of population density in biological or
chemical problems, and the qualitative behavior of solutions to the models can be used to predict outcomes
of natural or engineered biochemical events. Typical long-term behavior of the models is the convergence
to steady-state solutions or time-periodic orbits, or formation of some particular spatiotemporal patterns.
The reaction dynamics of the models often depends on the system states of past time, which induces time
delays in the model equations. Realistic time delay terms in the model distribute over all past time, and
due to the spatial structure and the diffusive nature of population, the time delay is also nonlocal over
the space.

In this paper, we consider a general reaction–diffusion model with spatiotemporal nonlocal delay effect
and Dirichlet boundary conditions:

⎧
⎪⎨

⎪⎩

ut(x, t) = dΔu(x, t) + F (λ, u(x, t), (g ∗ ∗H(u))(x, t)), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, t) = η(x, t), x ∈ Ω, t ∈ (−∞, 0],
(1.1)

where u(x, t) is the population density at time t and location x ∈ Ω ⊂ R
n, d > 0 is the diffusion coefficient,

and the initial condition is assumed to be given for all past time; F (λ, u, v) is a nonlinear function
depending on a parameter λ, the local population density u(x, t), and a variable v(x, t) representing past
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state of population density. Here, the past state of population density v(x, t) is given by a form

v(x, t) = (g ∗ ∗H(u))(x, t) =

t∫

−∞

∫

Ω

G(x, y, t − s)g(t − s)H(u(y, s))dyds, (1.2)

where the spatial weighing function G(x, y, t − s) means the probability that an individual in location y
moves to location x at a past time t−s, the temporal weighing function g(t−s) characterizes the weight of
past time t−s in the entire past, and H is a function of the state variable u. Here, G : Ω×Ω×(0,∞) → R

is a (generalized) function or measure and g : [0,∞) → R
+ is a probability distribution function satisfying

∫

Ω

G(x, y, t)dy = 1, x ∈ Ω, t > 0, and

∞∫

0

g(t)dt = 1. (1.3)

The nonlocal distributed delay term g ∗ ∗H(u) is a spatiotemporal average of the past state of density
function u. Such nonlocal delay effect was first introduced in [4] when Ω = R

n, and in [18] when Ω is a
bounded domain. See [17,19,40] for more detailed explanation of the nonlocal delay in the population
models.

In this paper, we assume that G(x, y, t) is the Green’s function of diffusion equation with Dirichlet
boundary condition:

G(x, y, t) =
∞∑

n=1

e−dλntφn(x)φn(y), (1.4)

where λn is the n-th eigenvalue of the following eigenvalue problem
{

−Δφ(x) = λφ(x), x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω,

such that
0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → +∞, as n → ∞,

and φn(x) is the corresponding eigenfunction of λn normalized so that (1.3) is satisfied. This assumption
is consistent with the diffusive behavior of the population in the past time. On the other hand, the
temporal distribution function is chosen to be

gw(t) =
1
τ

e− t
τ , gs(t) =

t

τ2
e− t

τ , (1.5)

which are referred as weak kernel and strong kernel. When G and g take the forms in (1.4) and (1.5), the
model (1.1) is equivalent to a system of reaction–diffusion equations without nonlocal and delay effect
(the precise equivalence is described in Sect. 2). For example, when the weak kernel is used, the new
equivalent system is

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = dΔu(x, t) + F (λ, u(x, t), v(x, t)), x ∈ Ω, t > 0,

vt(x, t) = dΔv(x, t) +
1
τ

(H(u(x, t)) − v(x, t)), x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.6)

We use established techniques for classical reaction–diffusion systems such as local and global bifurcation
theory, linear stability analysis, nonlinear elliptic equations, and a priori estimates to study (1.6), which in
turn provides information on steady-state solutions and dynamical behavior of reaction–diffusion equation
with nonlocal delay effect (1.1). Our results assume general form of the nonlinear functions F and H,
hence they can be applied to a wide variety of population growth models in the literature. In particular,
we demonstrate our result by applying them to logistic-type models [4], and Nicholson’s blowflies-type
models [40].
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Our results can be compared to a vast body of previous work on (1.1) with other choices of G and g as
well as other boundary conditions. The spatiotemporal kernel G can take the form: (A) δ(x − y) (local);
(B) K(x, y) (spatial); or (C) the one in (1.4) (diffusion). Special examples of (B) include: (B1) Green’s
function of stationary diffusion operator −dΔ + μ; or (B2) constant function. The delay distribution

function g can take the form: (a) δ(t−τ) (discrete delay); or (b) gn(t) =
tne−t/τ

τn+1Γ(n + 1)
(Gamma function

of order n). Note that gw and gs defined in (1.5) are the Gamma function of order 0 and 1. Finally, the

boundary conditions can be: (α) Dirichlet u = 0; (β) Neumann
∂u

∂n
= 0; or (γ) periodic on R

n. Various

combinations of G, g and boundary conditions have been used for (1.1), and Table 1 gives a partial list of
references which consider (1.1) with these different choices of kernel functions and boundary conditions.

When the spatiotemporal kernel G is a delta function δ(x−y) as type (A), the system (1.1) is spatially
local. For discrete-type delay (a), it has been shown that for Neumann boundary value problem, the
positive steady-state solution loses its stability via a Hopf bifurcation when the delay τ is large [27,34,47],
while the same phenomenon is also proved for small amplitude positive steady state for Dirichlet boundary
value problem [5,37,38,42]. A temporally oscillatory solution emerges from the Hopf bifurcation, and this
solution is spatially nonhomogeneous under Dirichlet boundary condition [5,37,38,42] or with spatial
heterogeneity [34]. Similar Hopf bifurcation and temporally oscillatory solution are also found when the
delay is distributed one as type (b) [16,33,49]. When the kernel function G is a spatial one as type (B), the
system (1.1) is a nonlocal one. For discrete delay (a) and Dirichlet boundary condition, Hopf bifurcation
and spatially nonhomogeneous oscillatory solution bifurcating from small amplitude positive steady state
have also been found [8,10,21,22]. The rigorous proof of Hopf bifurcation and spatially nonhomogeneous
oscillatory solution bifurcating from large amplitude positive steady state remains an open question,
although numerically it has been found in many cases.

For the diffusion kernel defined in (1.4) (C) and Gamma distribution function (b), it is found under
Dirichlet boundary condition that the small amplitude positive steady state does not undergo Hopf
bifurcation and it remains stable for τ > 0 [9]. Same result holds for Neumann boundary condition and
weak kernel, but Hopf bifurcation occurs for Neumann boundary condition and strong kernel [50]. This
paper also considers the Dirichlet diffusion kernel defined in (1.4) (C) and weak kernel, and we show that
for fixed τ > 0, the bifurcating positive steady-state solution is usually locally asymptotically stable for
d ∈ (d∗(τ) − ε(τ), d∗(τ)), where d∗(τ) is the bifurcation point and ε(τ) is a small constant depending on
τ . So our results here again confirm the nonoccurrence of Hopf bifurcation for the diffusion kernel case
and weak distribution kernel as indicated in [9,50]. The results in this paper take an entirely different
approach based on the equivalent system (1.6) and theory of semilinear elliptic systems, and it also holds
for much general setting compared to the ones in [9,50]. Some of our existence, stability and uniqueness
results are of global nature (see Sects. 5 and 6).

Equation (1.1) has also been used to model biological invasion or spreading behavior, and traveling
wave solutions of (1.1) with various choices of G and g have been considered in, for example, [1,2,15,26,
35,40,41].

The rest of this paper is organized as follows. In Sect. 2, we prove the equivalence of the system
(1.1) with spatiotemporal delay and a system without nonlocal and delay effect. Section 3 is devoted
to obtain the existence of the local bifurcated spatially nonhomogeneous steady-state solutions, and the
stability of bifurcating solutions is shown in Sect. 4. In Sect. 5, the global bifurcation structure of positive
steady-state solutions is shown in two different scenarios, and a uniqueness of positive steady-state result
for one-dimensional case is shown in Sect. 6. In Sect. 7, we apply our main results to the logistic-type
models and Nicholson’s blowflies-type equations.
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2. Equivalence of systems

In this section, we establish the equivalence of the reaction–diffusion system (1.1) with spatiotemporal
delay given in (1.4) and (1.5) and reaction–diffusion systems without delays. We will consider the cases
of bounded domains and entire space R

n.

2.1. The bounded domain

First, we recall the following standard result for the linear parabolic equations.

Lemma 2.1. Let Ω be a bounded domain in R
n with smooth boundary. Suppose that f : Ω × (t0,+∞) is

continuous and u ∈ C2,1(Ω × [t0,+∞)) ∩ C0(Ω̄ × [t0,+∞)) satisfies

⎧
⎪⎨

⎪⎩

ut(x, t) = dΔu(x, t) − ku(x, t) + f(x, t), x ∈ Ω, t > t0,

Bu(x, t) = 0, x ∈ ∂Ω, t ≥ t0,

u(x, t0) = u0(x), x ∈ Ω,

(2.1)

where Bu = u, or Bu =
∂u

∂n
+ a(x)u with a(x) ≥ 0. Then,

u(x, t) =
∫

Ω

G(x, y, t − t0)e−k(t−t0)u0(y)dy +

t∫

t0

∫

Ω

G(x, y, t − s)e−k(t−s)f(y, s)dyds, (2.2)

where for any fixed y ∈ Ω, G(x, y, t) is the Green function of the diffusion equation satisfying

⎧
⎪⎨

⎪⎩

Gt(x, y, t) = dΔxG(x, y, t), x ∈ Ω, t > 0
BG(x, y, t) = 0, x ∈ ∂Ω, t > 0,

G(x, y, 0) = δ(x − y).

Proof. Denote by {(μn, ϕn(x))}∞
n=1 the eigenvalues and the corresponding normalized eigenfunctions of

{
−Δϕ(x) = μϕ(x), x ∈ Ω,

Bϕ(x) = 0, x ∈ ∂Ω.

The for the homogeneous equation
⎧
⎪⎨

⎪⎩

vt(x, t) = dΔv(x, t) − kv(x, t), x ∈ Ω, t > t0,

Bv(x, t) = 0, x ∈ ∂Ω, t ≥ t0,

v(x, t0) = v0(x), x ∈ Ω,

the solution is given by

v(x, t) =
∞∑

n=1

cne−(dμn+k)(t−t0)ϕn(x), cn =
∫

Ω

φn(y)v0(y)dy.
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This implies that

v(x, t) =
∞∑

n=1

⎛

⎝

∫

Ω

ϕn(y)v0(y)dy

⎞

⎠ e−(dμn+k)(t−t0)ϕn(x)

=
∫

Ω

( ∞∑

n=1

e−dμn(t−t0)ϕn(x)ϕn(y)

)

e−k(t−t0)v0(y)dy

=
∫

Ω

G(x, y, t − t0)e−k(t−t0)v0(y)dy.

By the Duhamel principle, it follows that the solution of the initial boundary value problem (2.1) is given
by (2.2). �

Now we have the following result regarding an entire solution u(x, t) defined for t ∈ (−∞,+∞):

Lemma 2.2. Let Ω be a bounded domain in R
n with smooth boundary. Suppose that f : Ω × (−∞,+∞)

is continuous and u ∈ C2,1(Ω × (−∞,+∞)) ∩ C0(Ω × (−∞,+∞)) satisfies
{

ut(x, t) = dΔu(x, t) − ku(x, t) + f(x, t), x ∈ Ω, t ∈ (−∞,+∞),
Bu(x, t) = 0, x ∈ ∂Ω, t ∈ (−∞,+∞).

Then,

u(x, t) =

t∫

−∞

∫

Ω

G(x, y, t − s)e−k(t−s)f(y, s)dyds. (2.3)

Proof. For any fixed t0 < t, by Lemma 2.1, we have

u(x, t) = h(x, t; t0) +

t∫

t0

∫

Ω

G(x, y, t − s)e−k(t−s)f(y, s)dyds,

where h(x, t; t0) �
∫

Ω

G(x, y, t − t0)e−k(t−t0)u(y, t0)dy. And

‖h(x, t; t0)‖ ≤ ‖u(·, t0)‖
∫

Ω

G(x, y, t − t0)dye−k(t−t0) ≤ ‖u(·, t0)‖e−k(t−t0).

Then, h(x, t; t0) → 0 as t0 → −∞ and from the arbitrariness of t0, we let t0 → −∞ and we obtain (2.3).
�

By using Lemma 2.2, we have the following results on the equivalence of the two systems under the
weak or strong distribution kernels.

Proposition 2.3. Suppose that the distributed delay kernel g(t) is given by the weak kernel function gw(t) =
1
τ

e− t
τ , and define

v(x, t) = (gw ∗ ∗H(u))(x, t) =

t∫

−∞

∫

Ω

G(x, y, t − s)gw(t − s)H(u(y, s))dyds.
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1. If u(x, t) is the solution of (1.1), then (u(x, t), v(x, t)) is the solution of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t) = dΔu(x, t) + F (λ, u(x, t), v(x, t)), x ∈ Ω, t > 0,

vt(x, t) = dΔv(x, t) +
1
τ

(H(u(x, t)) − v(x, t)), x ∈ Ω, t > 0,

Bu(x, t) = Bv(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = η(x, 0), x ∈ Ω,

v(x, 0) =
1
τ

0∫

−∞

∫

Ω

G(x, y,−s)e
s
τ H(η(y, s))dyds, x ∈ Ω.

(2.4)

2. If (u(x, t), v(x, t)) is a solution of
⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = dΔu(x, t) + F (λ, u(x, t), v(x, t)), x ∈ Ω, t ∈ R,

vt(x, t) = dΔv(x, t) +
1
τ

(H(u(x, t)) − v(x, t)), x ∈ Ω, t ∈ R,

Bu(x, t) = Bv(x, t) = 0, x ∈ ∂Ω, t ∈ R.

(2.5)

Then, u(x, t) satisfies (1.1) such that η(x, s) = u(x, s), −∞ < s < 0. In particular, if (u(x), v(x)) is
a steady-state solution of (2.4), then u(x) is a steady-state solution of (1.1); and if (u(x, t), v(x, t))
is a periodic solution of (2.5) with period T , then u(x, t) is a periodic solution of (1.1) with period
T .

Proposition 2.4. Suppose that the distributed delay kernel g(t) is given by the strong kernel function

gs(t) =
t

τ2
e− t

τ , and define

v(x, t) = (gs ∗ ∗H(u))(x, t) =

t∫

−∞

∫

Ω

G(x, y, t − s)gs(t − s)H(u(y, s))dyds. (2.6)

1. If u(x, t) is the solution of (1.1), then (u(x, t), v(x, t), w(x, t)) is the solution of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t) = dΔu(x, t) + F (λ, u(x, t), v(x, t)), x ∈ Ω, t > 0,

vt(x, t) = dΔv(x, t) +
1
τ

(w(x, t) − v(x, t)), x ∈ Ω, t > 0,

wt(x, t) = dΔw(x, t) +
1
τ

(H(u(x, t)) − w(x, t)), x ∈ Ω, t > 0,

Bu(x, t) = Bv(x, t) = Bw(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = η(x, 0), x ∈ Ω,

v(x, 0) =

0∫

−∞

∫

Ω

G(x, y,−s)
−s

τ2
e

s
τ H(η(y, s))dyds, x ∈ Ω,

w(x, 0) =

0∫

−∞

∫

Ω

G(x, y,−s)
1
τ

e
s
τ H(η(y, s))dyds, x ∈ Ω.

(2.7)

2. If (u(x, t), v(x, t), w(x, t)) is a solution of
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut(x, t) = dΔu(x, t) + F (λ, u(x, t), v(x, t)), x ∈ Ω, t ∈ R,

vt(x, t) = dΔv(x, t) +
1
τ

(w(x, t) − v(x, t)), x ∈ Ω, t ∈ R,

wt(x, t) = dΔw(x, t) +
1
τ

(H(u(x, t)) − w(x, t)), x ∈ Ω, t ∈ R,

Bu(x, t) = Bv(x, t) = Bw(x, t) = 0, x ∈ ∂Ω, t ∈ R.

(2.8)
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Then, u(x, t) satisfies (1.1) with the strong kernel gs(t) such that η(x, s) = u(x, s), −∞ < s < 0.
In particular, if (u(x), v(x), w(x)) is a steady-state solution of (2.7), then u(x) is a steady-state
solution of (1.1); if (u(x, t), v(x, t), w(x, t)) is a periodic solution of (2.8) with period T , then u(x, t)
is a periodic solution of (1.1) with period T .

The proof of Proposition 2.3 is immediate from Lemma 2.2, and the proof of Proposition 2.4 follows
from differentiating (2.6) with respect to t and elementary calculation. The equivalence of (1.1) and (2.7)
has been first observed in [18].

2.2. The whole space R
N

Consider a general scalar reaction–diffusion equation with spatiotemporal delay in the entire space:

ut(x, t) = dΔu(x, t) + F (λ, u(x, t), (g ∗ ∗H(u))(x, t)), x ∈ R
N , t ∈ R. (2.9)

Here,

(g ∗ ∗H(u))(x, t) =

t∫

−∞

∫

RN

G(x, y, t − s)g(t − s)H(u(y, s))dyds,

where for y ∈ R
N , G(x, y, t) is a fundamental solution of

{
Gt(x, y, t) = dΔxG(x, y, t), x ∈ R

N , t > 0,

G(x, y, 0) = δ(x − y), x ∈ R
N , t > 0.

By using the similar method as Propositions 2.3 and 2.4, we can prove the following results on
equivalence of (2.9) and associated systems:

Proposition 2.5. 1. If (u(x, t), v(x, t)) is a solution of
⎧
⎨

⎩

ut(x, t) = dΔu(x, t) + F (λ, u, v), x ∈ R
N , t ∈ R,

vt(x, t) = dΔv(x, t) +
1
τ

(H(u(x, t)) − v(x, t)), x ∈ R
N , t ∈ R,

then u(x, t) is also a solution of (2.9) with the weak kernel gw(t) =
1
τ

e− t
τ .

2. If (u(x, t), v(x, t), w(x, t)) is a solution of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut(x, t) = dΔu(x, t) + F (λ, u, v), x ∈ R
N , t ∈ R,

vt(x, t) = dΔv(x, t) +
1
τ

(w(x, t) − v(x, t)), x ∈ R
N , t ∈ R,

wt(x, t) = dΔw(x, t) +
1
τ

(H(u(x, t)) − w(x, t)), x ∈ R
N , t ∈ R,

then u(x, t) is also a solution of (2.9) with the strong kernel gs(t) =
t

τ2
e− t

τ .

Note that the equivalence of systems is valid for any solution defined for all t ∈ R, which include
steady-state solutions, periodic solutions, and also traveling wave solutions. This equivalence was first
observed in [4]. In this paper, we only consider the bounded domain case.
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3. Existence and local bifurcation of steady-state solutions

In this section, we consider the existence of positive steady-state solution of the system (1.1) with a weak
kernel subject to Dirichlet boundary condition. The strong kernel case can be considered similarly but
will not be considered here. By Theorem 2.3, we only need to consider the steady-state solutions of the
equivalent system (2.4), which are the solutions of system of semilinear elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

dΔu(x) + F (λ, u(x), v(x)) = 0, x ∈ Ω,

dΔv(x) +
1
τ

(H(u(x)) − v(x)) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(3.1)

In the following, we always assume that d > 0, τ > 0 and λ ≥ 0. We use bifurcation method with
parameter d to prove the existence of positive solutions to (3.1). Note that a bifurcation analysis can also
be conducted using parameter λ with a fixed d. So in the following, we assume F (λ, u, v) ≡ F (u, v) as λ
is fixed, so we consider

⎧
⎪⎪⎨

⎪⎪⎩

dΔu(x) + F (u(x), v(x)) = 0, x ∈ Ω,

dΔv(x) +
1
τ

(H(u(x)) − v(x)) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(3.2)

We assume that the nonlinearities F (u, v) and H(u) in (3.2) satisfy

(A1) There exists a δ > 0 such that F : Uδ × Uδ → R and H : Uδ → R are C2 functions, where
Uδ = {y ∈ R : |y| < δ};

(A2) F (0, 0) = 0, H(0) = 0 and H ′(0) > 0.

In the following, the first and second derivatives of F and H are denoted by

Fu(0, 0) = a, Fv(0, 0) = b, H ′(0) = k > 0,

Fuu(0, 0) = p, Fuv(0, 0) = q, Fvv(0, 0) = r, H ′′(0) = l.
(3.3)

From (A2), it is known that (u, v) = (0, 0) is a trivial solution of (3.2) for any d, τ > 0. Let X =
W 2,p(Ω)×W 1,p

0 (Ω) for p > n, and let Y = Lp(Ω). For the bifurcation of positive solutions of (3.2), fixing
τ > 0, we define a nonlinear mapping W : R × X2 → Y 2 by

W (d, u, v) =

(
dΔu + F (u, v)

dΔv +
1
τ

(H(u) − v)

)

. (3.4)

Then, a solution (d, u, v) of (3.2) is equivalent to W (d, u, v) = (0, 0)T .
Our main result on the local bifurcation of positive solutions of (3.2) is as follows:

Theorem 3.1. Suppose that τ > 0 is fixed, the conditions (A1) and (A2) hold, and also

(A3) a + bk > 0.

Define

d∗(τ) =
1

2λ1τ
(aτ − 1 +

√
(aτ + 1)2 + 4bτk), (3.5)

where λ1 is the principal eigenvalue of −Δ in H1
0 (Ω) with corresponding eigenfunction φ1(x) > 0. Then,

1. d = d∗ = d∗(τ) is the unique bifurcation point of the system (3.2) where positive solutions of (3.2)
bifurcate from the line of trivial solutions Γ0 = {(d, 0, 0) : d > 0}.



   43 Page 10 of 26 W. Zuo and J. Shi ZAMP

2. Near (d, u, v) = (d∗, 0, 0), there exists δ1 > 0 such that all positive solutions of (3.2) near the
bifurcation point lie on a smooth curve Γ1 = {(d(s), ud(s, ·), vd(s, ·)) : s ∈ (0, δ1)} with d(s) =
d∗ + d′(0)s + s2z0(s), (ud(s, ·), vd(s, ·)) = s(1,M)φ1(·) + s2(z1(s, ·), z2(s, ·)), where

M =
2k

aτ + 1 +
√

(aτ + 1)2 + 4bτk
, (3.6)

such that z0 : (0, δ1) → R and z1, z2 : (0, δ1) → X are smooth functions satisfying zi(0) = 0 for
i = 0, 1, 2. Moreover,

d′(0) =

[k(p + 2qM + rM2) + bMl]
∫

Ω

φ3
1(x)dx

2λ1(k + M2bτ)
∫

Ω

φ2
1(x)dx

. (3.7)

Proof. Let W be defined as in (3.4). Then, from (A1), W is twice differentiable in R × X2
δ , where Xδ is

an open neighborhood of 0 in X. The Fréchet derivative of W in variable (u, v) is

W(u,v)(d, u, v)
(

ξ1

ξ2

)

=

(
dΔξ1 + Fu(u, v)ξ1 + Fv(u, v)ξ2

dΔξ2 +
1
τ

(H ′(u)ξ1 − ξ2)

)

, (3.8)

and in particular when (u, v) = (0, 0),

W(u,v)(d, 0, 0)
(

ξ1

ξ2

)

=
(

dΔξ1

dΔξ2

)

+ A

(
ξ1

ξ2

)

, (3.9)

where A is defined by

A =

(
a b
k

τ
−1

τ

)

. (3.10)

The eigenvalues of A satisfy the characteristic equation

μ2 −
(

a − 1
τ

)

μ − a + bk

τ
= 0.

From (A3), we have a + bk > 0, then it is easy to see that A has a unique positive eigenvalue μ1 > 0
defined by

μ1 =
1
2τ

(aτ − 1 +
√

(aτ + 1)2 + 4bτk) (3.11)

with a positive eigenvector (1,M) where M is defined in (3.6). From the implicit function theorem, if d > 0
is a bifurcation point for positive solutions of (3.2) from the line of trivial solutions, then W(u,v)(d, 0, 0)
is not invertible. That is, the null space N(W(u,v)(d, 0, 0)) �= {0}. From Fourier theory, we must have
d = μ1/λn, where λn is an eigenvalue of −Δ in H1

0 (Ω). Since φ1 is the only eigenfunction which does not
change sign in Ω, the only possible bifurcation point for positive solutions is d = d∗ = μ1/λ1 which is
given by (3.5).

At (d∗, 0, 0), it is easy to compute the kernels of the linearized operator W(u,v)(d∗, 0, 0) and associated
adjoint operator W ∗

(u,v)(d
∗, 0, 0), respectively:

N(W(u,v)(d∗, 0, 0)) = span{(1,M)φ1}, N(W ∗
(u,v)(d

∗, 0, 0)) = span{(1,Mbτ/k)φ1}.

And the range of the operator W(u,v)(d∗, 0, 0) is described by the following form:

R(W(u,v)(d∗, 0, 0)) =

⎧
⎨

⎩
(g1, g2) ∈ Y 2 :

∫

Ω

(kg1(x) + Mbτg2(x)) φ1(x)dx = 0

⎫
⎬

⎭
.
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Moreover, we have

Wd(u,v)(d∗, 0, 0)[(1,M)φ1] = −λ1(1,M)φ1 �∈ R(W(u,v)(d∗, 0, 0)),

as
∫

Ω

(
k + M2bτ

)
φ2

1dx > 0 since k + M2bτ = M
√

(aτ + 1)2 + 4bτk > 0. Now applying [11, The-

orem 1.7], we conclude that the set of positive solutions to (3.2) near (d∗, 0, 0) is a smooth curve
Γ1 = {(d(s), ud(s, ·), vd(s, ·) : s ∈ (0, δ)} satisfying d(0) = d∗ with d(s) = d∗ + d′(0)s + s2z0(s),
(ud(s, ·), vd(s, ·)) = s(1,M)φ1(·) + s2(z1(s, ·), z2(s, ·)), z0 : (0, δ) → R and z1, z2 : (0, δ) → X are smooth
functions satisfying zi(0) = 0 for i = 0, 1, 2. Furthermore, d′(0) can be calculated by (see, for example
[31]),

d′(0) = − 〈ζ,W(u,v)(u,v)(λ, d∗, 0, 0)((1,M)T φ1(x))2〉
2〈ζ,Wd(u,v)(λ, d∗, 0, 0)(1,M)T φ1(x)〉

= − 〈ζ, (p + 2qM + rM2, l/τ)φ2
1(x)〉

2〈ζ,−λ1(1,M)φ1(x)〉

=

[k(p + 2qM + rM2) + Mbl]
∫

Ω

φ3
1(x)dx

2λ1(k + M2bl)
∫

Ω

φ2
1(x)dx

,

where ζ is a linear function on Y 2 defined as

〈ζ, [f1, f2]〉 =
∫

Ω

(

f1(x) + f2(x)
Mbτ

k

)

φ1(x)dx.

Obviously, if d′(0) > 0 (resp. d′(0) < 0), the d(s) > d∗ (resp. d(s) < d∗) for s ∈ (0, δ1), and nonconstant
positive solutions exist for d ∈ (d∗, d∗ + ε) (resp. d ∈ (d∗ − ε, d∗)). �

We notice that the bifurcation point d = d∗(τ) depends on the parameter τ (which is related to
the delay in the original spatiotemporal model). We can characterize the bifurcation point (or threshold
diffusion rate) d = d∗(τ) in more details:

Proposition 3.2. Suppose that the conditions (A1)–(A3) hold, and let d∗(τ) be the bifurcation point defined
in Theorem 3.1. Then,

1. if b = 0, then d∗(τ) =
a

λ1
which is independent of τ ;

2. if a ≤ 0, then d∗(τ) is strictly decreasing in τ ;
3. if a > 0 and b > 0, then d∗(τ) is strictly decreasing in τ ; if a > 0 and b < 0, then d∗(τ) is strictly

increasing in τ ;
4.

lim
τ→0+

d∗(τ) =
a + bk

λ1
, lim

τ→+∞ d∗(τ) =
1

2λ1
(a + |a|) =

⎧
⎨

⎩

0, if a < 0,
a

λ1
, if a > 0.

Proof. 1. It is easy to verify that d∗(τ) =
a

λ1
when b = 0 from (3.5).

2. Note that d∗(τ) =
2(a + bk)
λ1L(τ)

where L(τ) = 1 − aτ +
√

(aτ + 1)2 + 4bτk. Then,

L′(τ) =
a(aτ + 1) + 2bk − a

√
(aτ + 1)2 + 4bτk

√
(aτ + 1)2 + 4bτk

> 0, (3.12)
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as a ≤ 0, b > 0, k > 0 and a + bk > 0 from assumptions and (A2), (A3). Thus, d∗(τ) is decreasing
in τ .

3. If a > 0 and b > 0, from (3.12) we have

L′(τ) =
4bk(a + bk)

√
(aτ + 1)2 + 4bτk[a(aτ + 1) + 2bk + a

√
(aτ + 1)2 + 4bτk]

> 0, (3.13)

so d∗(τ) is decreasing in τ . On the other hand, if a > 0, b < 0 and a + bk > 0, then L′(τ) < 0 from
(3.13) and d∗(τ) is increasing in τ .

4.

lim
τ→0+

d∗(τ) = lim
τ→0+

2(a + bk)
λ1L(τ)

=
a + bk

λ1
,

lim
τ→+∞ d∗(τ) = lim

τ→+∞
1

2λ1

⎛

⎝a − 1
τ

+

√
(

a +
1
τ

)2

+
4bk

τ

⎞

⎠ =
1

2λ1
(a + |a|).

�

4. Stability of bifurcating steady states

In Sect. 3, we have shown that for fixed τ , nonconstant steady-state solutions (d(s), u(s), v(s)) ∈ Γ1

bifurcate from the line of trivial solutions near d = d∗ under the conditions (A1)–(A3). In this section,
we investigate the local stability of the bifurcating steady-state solutions by applying the method in [12].

Consider an equation:
W (d, u, v) = 0,

where W : S ×V → Y is a twice continuously Fréchet differentiable mapping and X,Y are Banach spaces;
V is an open neighborhood of (0, 0) in X, S = (a, b) ⊂ R. We first recall some necessary definitions and
results in [12].

Definition 4.1. [12, Definition 1.2] Let T,K ∈ B(X,Y ), where B(X,Y ) denotes the set of bounded linear
maps from X to Y . Then, μ ∈ R is a K−simple eigenvalue of T if

dimN(T − μK) = codimR(T − μK) = 1,

and if N(T − μK) = span{x0}, Kx0 �∈ R(T − μK).

In our case, for X = W 2,p(Ω) ∩ W 1,p
0 (Ω) and Y = Lp(Ω), the mapping K : X → Y is simply the

inclusion map K(u) = u. Then, Theorem of Exchange of Stability in [12, Theorem 1.16] can be stated as
follows adapting to (3.2).

Theorem 4.2. Assume the conditions in Theorem 3.1 are satisfied, and let Γ0,Γ1 be the line of trivial
solutions and the curve of nonconstant solutions of (3.2). Then, the following results are true:

1. There exist open neighborhoods Ĩ , J̃ of d∗ and 0 and continuously differentiable functions r :
Ĩ → R, μ : J̃ → R, z : Ĩ → X, w : J̃ → X satisfying

W(u,v)(d, 0, 0)z(d) = r(d)Kz(d), d ∈ Ĩ ,

W(u,v)(d(s), u(s, ·), v(s, ·))w(s) = μ(s)Kw(s), s ∈ J̃ ,

where r(d∗) = μ(0) = 0, K : X → Y is defined by K(u) = u.
2. r′(d∗) �= 0 and near s = 0, μ(s) and −sd′(s)r′(d∗) have the same zeros and the same sign whenever

μ(s) �= 0. More precisely,

lim
s→0

−sd′(s)r′(d∗)
μ(s)

= 1.



ZAMP Existence and stability of steady-state solutions... Page 13 of 26    43 

Then, we have the following stability result for (2.4) by applying Theorem 4.2:

Theorem 4.3. Assume the conditions in Theorem 3.1 are satisfied. Then,
1. when k(p + 2qM + rM2) + Mbl < 0, the positive steady-state solution (u(s, ·), v(s, ·)) obtained in

Theorem 3.1 is locally asymptotically stable with respect to (2.4) for s ∈ (0, δ2) and d(s) ∈ (d∗−ε, d∗);
2. when k(p + 2qM + rM2) + Mbl > 0, the positive steady-state solution (u(s, ·), v(s, ·)) obtained in

Theorem 3.1 is unstable with respect to (2.4) for s ∈ (0, δ2) and d(s) ∈ (d∗, d∗ + ε).

Proof. From (3.7), k +M2bτ > 0 and that φ1 > 0, we have Sign(d′(0)) = Sign[k(p+2qM + rM2)+Mbl].
On the other hand, it is easy to see that from (3.9), for z(d) = s(1,M)T φ1(x), we have

W(u,v)(d, 0, 0)z(d) = s

(
dΔφ1(x) + aφ1(x) + bMφ1(x)

MdΔφ1(x) +
1
τ

(kφ1(x) − Mφ1(x))

)

= r(d)s
(

1
M

)

φ1(x).

That is, r(d) = −dλ1 + a + bM hence r′(d∗) = −λ1 < 0. Therefore, from Theorem 4.2 part 2, we have
Sign(μ(s)) = Sign(d′(s)) = Sign(d′(0)) = Sign[k(p + 2qM + rM2) + Mbl] for s ∈ (0, δ2). In particular,
when k(p + 2qM + rM2) + Mbl < 0, μ(s) < 0 and (u(s, ·), v(s, ·)) is locally asymptotically stable with
respect to (2.4); and when k(p + 2qM + rM2) + Mbl > 0, μ(s) > 0 and (u(s, ·), v(s, ·)) is unstable. �

The stability result in Theorem 4.3 implies the nonoccurrence of Hopf bifurcations when the parameter
(d, τ) is in the range described in Theorem 4.3.

Corollary 4.4. Suppose that τ > 0 is fixed and the conditions (A1)–(A3) are satisfied, and let d∗(τ)
be defined as in (3.5). Then, there is no Hopf bifurcation occurring for the positive steady state d ∈
(d∗(τ) − ε(τ), d∗(τ)) when k(p + 2qM + rM2) + Mbl < 0.

One should be cautious that the results in Corollary 4.4 is obtained for a fixed τ > 0 and d∗(τ), ε(τ)
both depend on the value of τ . In other situations especially the discrete delay case, the steady state is
independent of delay and Hopf bifurcation could occur when the delay value increases [5,8,37].

5. Global bifurcation of steady states

In Sect. 3, we only consider the existence of positive steady-state solutions of (3.2) near the bifurcation
points using local bifurcation theory. Next, we consider the global bifurcation of positive steady states of
(3.2) in two different cases. Here, we assume F and H satisfy the following condition not restricted to
neighborhoods of zeros:
(A1’) F : R+ × R

+ → R and H : R+ → R are C2 functions.

5.1. Case 1: a = Fu(0, 0) > 0

Here, we further assume the following condition holds:
(A4) There exist a continuous function F1 : R̄+ → R and positive constants K0 > 0 and u∗ > 0 such

that F (u, v) ≤ F1(u)u for (u, v) ∈ R̄+ × R̄+, and F1 satisfies F1(u∗) = 0 and 0 < F1(u) < K0 for
u ∈ (0, u∗) and F1(u) < 0 for u > u∗.

First, we have the following a priori bound for the steady-state solutions when (A4) is satisfied.

Lemma 5.1. Suppose the conditions (A1’), (A2), (A4) hold and (u, v) is a nonnegative solution of (3.2).
Then,

0 ≤ u(x) ≤ u∗, 0 ≤ v(x) ≤ max
0≤u≤u∗

H(u) := H∗, (5.1)

where u∗ is defined in (A4).
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Proof. If u(x) ≡ 0, then v(x) ≡ 0 and the result is obviously true. Hence, we assume that u(x) > 0
for x ∈ Ω from the maximum principle. Let x0 ∈ Ω such that u(x0) = max

x∈Ω̄
u(x) > 0. Then, from the

maximum principle, the first equation of (3.2) and (A4), we have that

0 ≤ −dΔu(x0) = F (u(x0), v(x0)) ≤ F1(u(x0))u(x0).

This implies that F1(u(x0)) ≥ 0, and from (A4), we have 0 < u(x0) ≤ u∗ and consequently 0 < u(x) < u∗

in Ω from the strong maximum principle.
Since u(x) > 0, then v(x) = (−dΔ + τ−1)−1(τ−1H(u)) > 0 for x ∈ Ω. Let x1 ∈ Ω such that

v(x1) = max
x∈Ω̄

v(x) > 0. Then, from the maximum principle and the second equation of (3.2), we have that

0 ≤ −dΔv(x1) =
1
τ

[H(u(x1)) − v(x1)],

which implies that v(x1) ≤ H(u(x1)) ≤ max
0≤u≤u∗

H(u) := H∗ as 0 ≤ u(x1) ≤ u∗. �

Denote the set of positive solutions of (3.2) by

Σ = {(d, u, v) ∈ R × X2 : d > 0, u > 0, v > 0,W (d, u, v) = (0, 0)},

where W is defined in (3.4). We have the following result on the global bifurcation of positive solutions
of (3.2) when a > 0.

Theorem 5.2. Suppose that the conditions (A1’), (A2)–(A4) hold and a > 0. Then, the following results
are true:

1. (3.2) has no positive solution when d > d∗∗ := K0/λ1;
2. there exists a connected component Σ1 of Σ such that Γ1 ⊆ Σ1, the projection PdΣ1 of Σ1 into

the d−component satisfies PdΣ1 = (0, d0) for some d0 ∈ [d∗, d∗∗), and for every (d, u, v) ∈ Σ1,
||u||∞ + ||v||∞ ≤ C for some C > 0 independent of d.

Proof. 1. Suppose that (d, u, v) is a positive solution of (3.2). Multiplying the first equation of (3.2)
by φ1 and integrating on Ω, we obtain

λ1d

∫

Ω

u(x)φ1(x)dx = − d

∫

Ω

Δu(x)φ1(x)dx =
∫

Ω

φ1(x)F (u(x), v(x))dx

≤
∫

Ω

φ1(x)F1(u(x))u(x)dx ≤ K0

∫

Ω

u(x)φ1(x)dx.

That is, (dλ1−K0)
∫

Ω

u(x)φ1(x)dx ≤ 0. Thus, the system (3.2) has no positive solution if d > K0/λ1.

2. According to Krasnoselskii–Rabinowitz global bifurcation theorem (see [30,32]), a connected com-
ponent Σ1 of Σ that contains Γ1 (defined in Theorem 3.1) satisfies one of the following: (i) Σ1 is
unbounded; or (ii) Σ1 contains (d̃, 0, 0), where (d̃, 0, 0) is another bifurcation point from Γ0 such
that d̃ > 0 (the line of trivial solutions); or (iii) Σ1 contains (d̂, û, v̂) which is on the boundary ∂S
of S = {(d, u, v) ∈ R × X2 : d > 0, u > 0, v > 0}.

From Theorem 3.1, we know the case (ii) cannot occur as d = d∗ is the only bifurcation point for
positive solutions of (3.2). From Lemma 5.1, any positive solution (u, v) of (3.2) satisfies ||u||∞ + ||v||∞ ≤
u∗ + H∗ which is independent of d; and from part 1 of Theorem 5.2, any solution (d, u, v) of (3.2) must
satisfy 0 ≤ d ≤ d∗∗. Hence, the alternative (i) cannot occur either. Therefore, (iii) occurs, and Σ1 contains
(d̂, û, v̂) which is on ∂S. From the strong maximum principle, if û(x) = 0 for some x ∈ Ω, then û(x) ≡ 0
for x ∈ Ω. If û(x) ≡ 0, it is easy to see v̂ ≡ 0. If we also have d̂ > 0 then this returns to the case (ii).
Thus, we must have d̂ = 0. This shows that PdΣ1 ⊃ (0, d∗). Let d0 = sup{d > 0 : (d, u, v) ∈ Σ1}. Then,
d0 ≥ d∗, and from part 1 of Theorem 5.2, we also have d0 < d∗∗. This completes the proof. �
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5.2. Case 2: a = Fu(0, 0) < 0

In this subsection, we further assume the following condition holds:

(A5) There exist positive constants K1, K2, K3 and a continuous function F2 : R̄+ → R such that
F (u, v) ≤ −K1u + F2(v) for (u, v) ∈ R̄+ × R̄+, F2(v) ≤ K2v for v ∈ R̄+, and H(u) ≤ K3u for
u ∈ R̄+.

(A6a) There exists a positive constant K4 such that F2(v) ≤ K4 for v ∈ R̄+; or
(A6b) There exists a positive constants K5 such that H(u) ≤ K5 for u ∈ R̄+.

We remark that (A5) implies that

a = Fu(0, 0) ≤ −K1, b = Fv(0, 0) ≤ K2, k = H ′(0) ≤ K3. (5.2)

Similar to Lemma 5.1, we have the following a priori estimates under (A5a) or (A5b).

Lemma 5.3. Suppose the conditions (A1’), (A2), (A3), (A5) hold and a < 0, (u, v) is a nonnegative
solution of (3.2).

1. When (A6a) is also satisfied, then

0 ≤ u(x) ≤ K4

K1
, 0 ≤ v(x) ≤ max

0≤u≤K4/K1

H(u) := H∗∗. (5.3)

2. When (A6b) is also satisfied, then

0 ≤ u(x) ≤ 1
K1

max
0≤v≤K5

F2(v) := H∗∗∗, 0 ≤ v(x) ≤ K5. (5.4)

Proof. If u(x) ≡ 0, then v(x) ≡ 0 and the result is obviously true. Thus, we assume that u(x) > 0
for x ∈ Ω from the maximum principle. First, we assume that (A6a) is satisfied. Let x0 ∈ Ω such that
u(x0) = max

x∈Ω̄
u(x) > 0. Then, from the maximum principle, the first equation of (3.2) and (A5), we have

that
0 ≤ −dΔu(x0) = F (u(x0), v(x0)) ≤ −K1u(x0) + F2(v(x0)), (5.5)

which together with (A6a) implies that u(x0) ≤ F2(v(x0))
K1

≤ K4

K1
and hence 0 < u(x) ≤ K4

K1
for x ∈ Ω

from the strong maximum principle.
Since u(x) > 0, v(x) = (−dΔ + τ−1)−1(τ−1H(u)) > 0 for x ∈ Ω. Let x1 ∈ Ω such that v(x1) =

max
x∈Ω̄

v(x) > 0. Then, from the maximum principle and the second equation of (3.2), we have that

0 ≤ −dΔv(x1) =
1
τ

[H(u(x1)) − v(x1)], (5.6)

which implies that for any x ∈ Ω, v(x) ≤ v(x1) ≤ H(u(x1)) ≤ max
0≤u≤K4/K1

H(u) := H∗∗ as 0 ≤ u(x1) ≤
K4

K1
.

Next, we assume that (A6b) is satisfied. Let x0 and x1 be the same definition as above. Then, from
(5.6) and (A6b), we have v(x) ≤ v(x1) ≤ H(u(x1)) ≤ K5 for any x ∈ Ω, and from (5.5), we have

u(x) ≤ u(x0) ≤ F2(v(x0))
K1

≤ 1
K1

max
0≤v≤K5

F2(v) := H∗∗∗. �

Now we have the following results on the global bifurcation of positive solutions of (3.2).

Theorem 5.4. Suppose that the conditions (A1’), (A2), (A3), (A5), (A6a) or (A6b) hold and a < 0. Then,
the following results are true:
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1. (3.2) has no positive solution when d > d∗∗∗ which is defined as

d∗∗∗(τ) =
1

2λ1τ
(−K1τ − 1 +

√
(−K1τ + 1)2 + 4τK2K3), (5.7)

and K1, K2, K3 are defined in (A5);
2. there exists a connected component Σ1 of Σ such that Γ1 ⊆ Σ1, the projection PdΣ1 of Σ1 into

the d−component satisfies PdΣ1 = (0, d0) for some d0 ∈ [d∗, d∗∗∗), and for every (d, u, v) ∈ Σ1,
||u||∞ + ||v||∞ ≤ C for some C > 0 independent of d.

Proof. 1. Assume that (d, u, v) is a positive solution of (3.2). Multiplying the second equation of (3.2)
by φ1(x) and integrating on Ω, using (A5) we have

λ1d

∫

Ω

v(x)φ1(x)dx = −d

∫

Ω

Δv(x)φ1(x)dx =
1
τ

∫

Ω

H(u(x))φ1(x)dx − 1
τ

∫

Ω

v(x)φ1(x)dx

≤ K3

τ

∫

Ω

u(x)φ1(x)dx − 1
τ

∫

Ω

v(x)φ1(x)dx,

which implies
(

λ1d +
1
τ

) ∫

Ω

v(x)φ1(x)dx ≤ K3

τ

∫

Ω

u(x)φ1(x)dx. (5.8)

Similarly multiplying the first equation of (3.2) by φ1(x) and integrating on Ω, using (A5) we have

λ1d

∫

Ω

u(x)φ1(x)dx = −d

∫

Ω

Δu(x)φ1(x)dx =
∫

Ω

F (u(x), v(x))φ1(x)dx

≤ −K1

∫

Ω

u(x)φ1(x)dx + K2

∫

Ω

v(x)φ1(x)dx,

which implies

(λ1d + K1)
∫

Ω

u(x)φ1(x)dx ≤ K2

∫

Ω

v(x)φ1(x)dx. (5.9)

Combining (5.8) and (5.9), we obtain that

(λ1d + K1)
(

λ1d +
1
τ

)

≤ K2K3

τ
. (5.10)

It is easy to calculate that (5.10) holds when 0 < d ≤ d∗∗∗, since K2K3 − K1 ≥ bk + a > 0 from
(A3) and (5.2). Therefore, system (3.2) have no positive solution if d > d∗∗∗.

2. According to Krasnoselskii–Rabinowitz global bifurcation theorem (see [30,32]), a connected com-
ponent Σ1 of Σ that contains Γ1 (defined in Theorem 3.1) satisfies one of the following: (i) Σ1 is
unbounded; or (ii) Σ1 contains (d̃, 0, 0), where (d̃, 0, 0) is another bifurcation point from Σ0; or (iii)
Σ1 contains (d̂, û, v̂), which is on the boundary ∂S of S = {(d, u, v) ∈ R× X2 : d > 0, u > 0, v > 0}.

From Theorem 3.1, we know the case (ii) cannot occur as d = d∗ is the only bifurcation point for
positive solutions of (3.2). From Lemma 5.3, any positive solution (u, v) of (3.2) satisfies ||u||∞ + ||v||∞ ≤
K4

K1
+H∗∗ or H∗∗∗ +K5, which is independent of d; and from part 1 of Theorem 5.4, any solution (d, u, v)

of (3.2) must satisfy 0 ≤ d ≤ d∗∗∗. Hence, the alternative (i) cannot occur either. Therefore, (iii) occurs,
and Σ1 contains (d̂, û, v̂) which is on ∂S. Similar to the proof of Theorem 5.2 we must have d̂ = 0 thus
PdΣ1 ⊃ (0, d∗). Let d0 = sup{d > 0 : (d, u, v) ∈ Σ1}. Then, d0 ≥ d∗, and from part 1 of Theorem 5.4, we
also have d0 < d∗∗∗. This completes the proof. �
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6. Uniqueness of the steady state

In Sects. 3 and 5, the existence of a positive steady-state solution of (1.1) for all small diffusion coefficient
case d ∈ (0, d0) has been proved under proper conditions on the nonlinear functions F and H. In general
the positive steady-state solution is not necessarily unique for all d ∈ (0, d0), except near the bifurcation
point d = d∗. Here, we show that when the spatial domain is one-dimensional and the nonlinearity is
in a more special form, the positive steady-state solution of (1.1) is unique for all d ∈ (0, d0) due to its
“consumer–resource”-type structure.

This section focuses on the one-dimensional steady-state problem with the nonlinearity being in a
form of F (u, v) = uf(u, v):

⎧
⎪⎪⎨

⎪⎪⎩

−du′′(x) = u(x)f(u(x), v(x)), x ∈ (0, L),

−dv′′(x) =
1
τ

(H(u(x)) − v(x)), x ∈ (0, L),

u(0) = u(L) = v(0) = v(L) = 0,

(6.1)

where L > 0 and ′ :=
d
dx

. The linearized equation at a positive solution (ud(x), vd(x)) of (6.1) can be
written as ⎧

⎪⎪⎨

⎪⎪⎩

−dφ′′ − [udfu(ud, vd) + f(ud, vd)]φ = udfv(ud, vd)ψ, x ∈ (0, L),

−dψ′′ +
1
τ

ψ =
1
τ

H ′(ud)φ, x ∈ (0, L),

φ(0) = φ(L) = ψ(0) = ψ(L) = 0.

(6.2)

The coexistence state (ud(x), vd(x)) of (6.1) is nondegenerate if the only solution of (6.2) is (φ, ψ) = (0, 0).
The key of establishing the uniqueness of positive solution of (6.1) is the following nondegeneracy property
of positive solution.

Proposition 6.1. Suppose that the conditions (A1’), (A2) hold for F (u, v) = uf(u, v) and f(u, v), H(u)
also satisfy
(A7) fu(u, v) < 0 and fv(u, v) < 0 for (u, v) ∈ R

+ × R
+, and H ′(u) > 0 for u ∈ R

+.
If (ud(x), vd(x)) is a positive solution of (6.1), then (ud(x), vd(x)) is nondegenerate.

Proof. Since (ud(x), vd(x)) solves (6.1), the following equalities hold:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

−d
d2

dx2
− f(ud, vd)

)

ud = 0,
(

−d
d2

dx2
+

1
τ

− 1
τ

H(ud)
vd

)

vd = 0,

ud(0) = ud(L) = vd(0) = vd(L) = 0.

Since (ud, vd) is positive, it follows from the Krein–Rutman Theorem,

ρ1

(

−d
d2

dx2
− f(ud, vd)

)

= ρ1

(

−d
d2

dx2
+

1
τ

− 1
τ

H(ud)
vd

)

= 0, (6.3)

where ρ1(L) is the principal eigenvalue corresponding to the operator L. Clearly, the linearized equation
(6.2) can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L1φ �
(

−d
d2

dx2
− udfu(ud, vd) − f(ud, vd)

)

φ = udfv(ud, vd)ψ,

L2ψ �
(

−d
d2

dx2
+

1
τ

)

ψ =
1
τ

H ′(ud)φ,

φ(0) = φ(L) = ψ(0) = ψ(L) = 0.

(6.4)
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By the monotonicity of principal eigenvalue ρ1(·), (6.3) and (A7), we have

ρ1(L1) = ρ1

(

−d
d2

dx2
− udfu(ud, vd) − f(ud, vd)

)

> ρ1

(

−d
d2

dx2
− f(ud, vd)

)

= 0,

ρ1(L2) = ρ1

(

−d
d2

dx2
+

1
τ

)

> ρ1

(

−d
d2

dx2
+

1
τ

− 1
τ

H(ud)
vd

)

= 0.

(6.5)

From (6.5), we know that all eigenvalues of the operators L1 and L2 are positive, and they have the
inverse operators L−1

1 and L−1
2 , respectively, which are compact, strictly order-preserving with respect

to the usual cone of positive functions.
We prove that the only solution of (6.4) is (φ, ψ) = (0, 0) by contradiction. Suppose (6.4) has a

nontrivial solution (φ, ψ) �= (0, 0). From (6.4), we have

φ = L−1
1

(

udfv(ud, vd)L−1
2

(
1
τ

H ′(ud)φ
))

. (6.6)

Since fv(u, v) < 0 and H ′(u) > 0, and the right-hand side of (6.6) determines a compact, strongly order-
preserving operator. Thus, φ must change sign in (0, L), and consequently ψ must change sign in (0, L).
Now we can follow the argument in [25, Lemma 3.1] or [7, Lemma 5.2] to show that φ(x) = ψ(x) ≡ 0 for
x ∈ (0, L). �

Now we can prove the uniqueness of positive steady state and exact global bifurcation when a =
Fu(0, 0) > 0 and Ω = (0, L).

Theorem 6.2. Suppose that the conditions (A1’), (A2)–(A4), (A7) hold and a > 0. Then, (6.1) has a
unique positive solution (ud(x), vd(x)) which is nondegenerate when 0 < d < d∗, and it has no pos-
itive solution when d ≥ d∗. Moreover, all positive solutions of (6.1) are on a smooth curve Σ1 =
{(d, ud(x), vd(x)) : 0 < d < d∗}.
Proof. From (A7), f(u, v) < f(0, 0) for any (u, v) ∈ R

+ × R
+. If (u, v) is a positive solution of (6.1), by

integrating
−duu′′ = u2f(u, v) < u2f(0, 0), u(0) = u(L) = 0,

we obtain

d

L∫

0

[u′(x)]2dx < f(0, 0)

L∫

0

u2(x)dx ≤ f(0, 0)
λ1

L∫

0

[u′(x)]2dx.

This implies that d ≤ f(0, 0)
λ1

=
Fu(0, 0)

λ1
=

a

λ1
= d∗. Hence, (6.1) has no positive solution when

d ≥ d∗. On the other hand, the existence of positive solution of (6.1) has been shown in Theorem 5.2. In
particular, for d ∈ (d∗ − ε, d∗), (6.1) has a positive solution (ud, vd) so that lim

d→(d∗)−
(ud, vd) = (0, 0), and

these solutions are on a curve Γ1 = {(d(s), u(s), v(s)) : s ∈ (0, δ1)}. Note now the direction of the curve
Γ1 is given by

d′(0) = (fu(0, 0) + fv(0, 0)M)

L∫

0

φ3
1(x)dx

λ1

L∫

0

φ2
1(x)dx

< 0,

as b = 0, p = 2fu(0, 0) < 0, q = fv(0, 0) < 0, r = 0, and M = k/(aτ +1) > 0. From Theorem 5.2, Γ1 ⊂ Σ1

which is a connected component of the set of positive solution Σ of (6.1), and PdΣ1 = (0, d∗). From
Proposition 6.1, any positive solution on Σ1 is nondegenerate, so Σ1 is locally a smooth curve at any
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(d, ud, vd) ∈ Σ1 hence Σ1 can be globally parameterized by d ∈ (0, d∗). Suppose that for some d ∈ (0, d∗),
there is another positive solution (d, ûd, v̂d) not on Σ1, then using the same argument and Proposition
6.1, we can show that (d, ûd, v̂d) is on another connected component Σ2 of Σ, and Σ2 is also globally a
smooth curve. We also have PdΣ2 = (0, d∗) as d = d∗ is the only bifurcation point for positive solutions
of (6.1). But the local bifurcation result in Theorem 3.1 shows that near d = d∗ the positive solution
is unique for (6.1), which contradicts with the existence of two solutions (d, ud, vd) and (d, ûd, v̂d). So
such a second component Σ2 cannot exist, and all positive solutions of (6.1) are on the smooth curve
Σ1 = {(d, ud(x), vd(x)) : 0 < d < d∗}. In particular, the positive solution of (6.1) is unique for 0 < d < d∗.
�

7. Applications

In this section, we apply the previous main results obtained in Sects. 2–6 to the following logistic-type
and Nicholson’s blowfly-type models with nonlocal delay.

7.1. Logistic-type models

We consider a modified Hutchinson’s equation with diffusion and nonlocal delay:
{

ut(x, t) = dΔu(x, t) + κu(x, t)(1 − Au(x, t) − B(g ∗ ∗u)(x, t)), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
(7.1)

where κ > 0 is the maximum growth rate per capita, the parameters A,B > 0 denote the portions of
instantaneous and previous dependence of the growth rate, respectively.

Then, by Sect. 2, the system (7.1) is equivalent to the following system:
⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = dΔu(x, t) + κu(x, t)(1 − Au(x, t) − Bv(x, t)), x ∈ Ω, t > 0,

vt(x, t) = dΔv(x, t) +
1
τ

(u(x, t) − v(x, t)), x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0.

(7.2)

Let F (u, v) = κu(1 − Au − Bv) and H(u) = u. It is easy to compute that

a = F ′
u(0, 0) = κ > 0, b = F ′

v(0, 0) = 0, k = H ′(0) = 1,

p = Fuu(0, 0) = −2Aκ, q = Fuv(0, 0) = −Bκ, r = Fvv(0, 0) = 0, l = H ′′(0) = 0.

By Theorems 3.1(2), 4.3(1), 5.2 and 6.2, we obtain the following results:

Proposition 7.1. Suppose that A,B, κ, τ > 0, and denote d∗ =
κ

λ1
.

1. System (7.2) has at least one positive steady-state solution (ud(x), vd(x)) for any d ∈ (0, d∗) and
has no positive steady-state solution for d > d∗; the positive steady state (ud(x), vd(x)) satisfies
ud(x), vd(x) ≤ 1/A; there is a connected component Σ1 of the set of positive steady-state solutions of
(7.1) such that PdΣ1 = (0, d∗); near d = d∗, Σ1 is a smooth curve {(d, ud(·), vd(·)) : d∗ − ε < d < d∗}
such that lim

d→(d∗)−
ud(·) = lim

d→(d∗)−
vd(·) = 0, and (ud(·), vd(·)) is locally asymptotically stable for

d ∈ (d∗ − ε, d∗).
2. When d > d∗, the trivial steady-state solution u = 0 is globally asymptotically stable for (7.2); and

when 0 < d < d∗, u = 0 is unstable.
3. For Ω = (0, L) ⊂ R

1, the positive steady-state solution ud(x) of system (7.2) is unique and nonde-
generate for d ∈ (0, d∗).
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Fig. 1. Numerical simulations of (7.1) with κ = 1, A = 0.5, B = 0.4, τ = 0.5 and η(x, t) = 0.1 sin x, t ∈ (−∞, 0). a
d = 1.05, the solution converges to the trivial solution u ≡ 0; b d = 0.5, the solution converges to a positive steady-state

solution

Proof. 1. It is easy to verify that the conditions (A1)–(A3) and (A1’) hold and according to (3.7), we
have

d′(0) = −κ(A + BM)
∫

Ω
φ3

1(x)dx

λ1

∫

Ω
φ2

1(x)dx
< 0, (7.3)

where M = 1/(τ +1) > 0. Then, the local bifurcation and stability of positive steady-state solutions
of (7.2) follows from Theorem 3.1 part 2 and Theorem 4.3 part 1. Define F1(u) = κ(1 − Au) which
satisfies F (u, v) ≤ F1(u)u, F1(1/A) = 0 and 0 < F1(u) < κ for u ∈ (0, 1/A) and F1(u) < 0
for u > 1/A. That is, (A4) holds. Then, by Theorem 5.2, (7.2) has at least one positive steady-
state solution ud(x) for any d ∈ (0, d∗), and (7.1) has no positive steady-state solution for d > d∗

following the proof of Theorem 6.2. Moreover, from Lemma 5.1, any positive steady state satisfies
ud(x), vd(x) ≤ 1/A.

2. When d > d∗, we have ut ≤ dΔu + κu(1 − Au), then the global stability of u = 0 follows from
well-known results for the logistic reaction–diffusion model (see for example [6]). When d < d∗, it is
standard to show that u = 0 is unstable.

3. Let f(u, v) = κ(1 − Au − Bv). Clearly fu(u, v) = −κA < 0 and fv(u, v) = −κB < 0 so the
condition (A7) holds. By Theorem 6.2, the system (7.2) has a unique positive solution (ud(x), vd(x))
for d ∈ (0, d∗) when Ω = (0, L).

�

As a numerical example, we consider (7.1) with κ = 1, A = 0.5, B = 0.4, τ = 0.5, Ω = (0, π) and
choose the initial condition η(x, t) = 0.1 sin x, t ∈ (−∞, 0). When d = 1.05 > d∗ = κ/λ1 = 1, the zero
solution is globally asymptotically stable from Proposition 7.1, illustrated in Fig. 1a. On the other hand,
when d = 0.5 < d∗ = 1, the zero solution loses its stability and the unique positive steady-state solution
appears to be asymptotically stable as shown in Fig. 1b.

It is an interesting open question whether the uniqueness of positive solution of (7.1) holds for the
general domain Ω ∈ R

n with n ≥ 2, and the local/global stability of the positive solution of (7.1) is also
not known even in the case of n = 1. Note that the nondegeneracy shown in Proposition 6.1 rules out
the zero eigenvalue of linearized equation, but Hopf bifurcation can still occur to destabilize the positive
steady state. When the boundary condition of (7.1) is Neumann one, it is known that the positive steady
state is unique and is constant in space [28]. We also remark that the bifurcation at d = d∗ is supercritical
so that the bifurcating positive steady-state solutions are stable ones. A subcritical bifurcation is possible
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in the following variant of (7.1):
{

ut(x, t) = dΔu(x, t) + κu(x, t)(1 + Au(x, t) − B(g ∗ ∗u)(x, t) − Cu2(x, t)), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
(7.4)

where κ,A,B,C > 0. For (7.4), results similar to the ones in Proposition 7.1 can be proved and Eq. (7.3)
becomes

d′(0) = −κ(−A + BM)
∫

Ω
φ3

1(x)dx

λ1

∫

Ω
φ2

1(x)dx
. (7.5)

So the bifurcation is subcritical if −A + BM < 0, and system (7.4) has multiple positive steady-state
solutions for d ∈ (d∗, d∗ + ε).

Another example with similar structure is the food-limited population model considered in [18]:
⎧
⎨

⎩

ut(x, t) = dΔu(x, t) + κu(x, t)
1 − Au(x, t) − B(g ∗ ∗u)(x, t)

1 + cAu(x, t) + cB(g ∗ ∗u)(x, t)
, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
(7.6)

where κ,A,B, c > 0. Note that when c = 0, (7.6) is reduced to (7.1). Indeed all results in Proposition 7.1
also hold for (7.6) as well.

7.2. Nicholson’s blowfly-type models

Consider the diffusive Nicholson’s Blowflies equation with nonlocal delay as follows [24]:
{

ut(x, t) = dΔu(x, t) − χu(x, t) + ϑ(g ∗ ∗u)(x, t)e−ν(g∗∗u)(x,t), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.
(7.7)

Here, χ is the per capita daily adult death rate, ϑ is the maximum per capita daily egg production
rate, 1/ν is the size at which the blowfly population reproduces at its maximum rate, and τ is the
generation time. From the equivalence relation shown in Sect. 2, the system (7.7) is equivalent to the
reaction–diffusion system:

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = dΔu(x, t) − χu(x, t) + ϑv(x, t)e−νv(x,t), x ∈ Ω, t > 0,

vt(x, t) = dΔv(x, t) +
1
τ

(u(x, t) − v(x, t)), x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,

(7.8)

whose steady-state solutions satisfy the following equations:
⎧
⎪⎪⎨

⎪⎪⎩

−dΔu(x) = −χu(x) + ϑv(x)e−νv(x), x ∈ Ω,

−dΔv(x) =
1
τ

(u(x) − v(x)), x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(7.9)

Let F (u, v) = −χu + ϑve−νv, H(u) = u. It is easy to compute that from (3.3),

a = Fu(0, 0) = −χ < 0, b = Fv(0, 0) = ϑ, k = H ′(0) = 1, H(0) = 0,

p = Fuu(0, 0) = 0, q = Fuv(0, 0) = 0, r = Fvv(0, 0) = −2ϑ2 < 0, l = H ′′(0) = 0.

By Theorems 3.1(2), 4.3(1) and 5.4, we obtain the following results:

Proposition 7.2. Suppose that χ, ν, τ > 0 and ϑ > χ, and denote

d∗ =
1

2λ1τ
(−χτ − 1 +

√
(−χτ + 1)2 + 4ϑτ). (7.10)
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1. System (7.8) has at least one positive steady-state solution (ud(x), vd(x)) for any d ∈ (0, d∗) and
has no positive steady-state solution for d > d∗; there is a connected component Σ1 of the set of
positive steady-state solutions of (7.8) such that PdΣ1 = (0, d∗); near d = d∗, Σ1 is a smooth curve
{(d, ud(·), vd(·)) : d∗ − ε < d < d∗} such that lim

d→(d∗)−
ud(·) = lim

d→(d∗)−
vd(·) = 0, and (ud(·), vd(·)) is

locally asymptotically stable for d ∈ (d∗ − ε, d∗).
2. The positive steady state (ud(x), vd(x)) satisfies ud(x), vd(x) ≤ ϑ/(νχe) for all 0 < d < d∗. Moreover,

if (ud(x), vd(x)) satisfies vd(x) ≤ 1/ν, then it is locally asymptotically stable.

Proof. 1. It is easy to verify that the conditions (A1)–(A3), (A1’) hold and according to (3.7), we have

d′(0) = − −ϑ2M2
∫

Ω
φ3

1(x)dx

λ1(1 + M2ϑτ)
∫

Ω
φ2

1(x)dx
< 0,

where

M =
2

−χτ + 1 + sqrt(−χτ + 1)2 + 4ϑτ
.

Then, the local bifurcation and stability of positive steady-state solutions of (7.8) follow from The-
orem 3.1 part 2 and Theorem 4.3 part 1. Let K1 = χ, K2 = ϑ, K3 = 1 and F2(v) = ϑve−νv.
Then, F (u, v) ≤ −K1u + F2(v) for (u, v) ∈ R̄+ × R̄+, F2(v) ≤ K2v for v ∈ R̄+, and H(u) ≤ K3u
for u ∈ R̄+. So (A5) is satisfied. Also F2(v) ≤ K4 = ϑ/(νe) for v ∈ R̄+ hence (A6a) is satisfied.
Then, by Theorem 5.4, (7.8) has at least one positive steady-state solution (ud(x), vd(x)) for any
d ∈ (0, d∗), and from Lemma 5.3 part 1, any positive steady state satisfies ud(x), vd(x) ≤ ϑ/(νχe).

To prove (7.8) has no positive steady-state solution for d > d∗, we notice that (7.9) implies
that ⎧

⎪⎪⎨

⎪⎪⎩

dΔu(x) − χu(x) + ϑv(x) ≥ 0, x ∈ Ω,

dΔv(x) +
1
τ

u(x) − 1
τ

v(x) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(7.11)

and on the other hand, (w, z) = (φ1,Mϑτφ1) satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d∗Δw(x) − χw(x) +
1
τ

z(x) = 0, x ∈ Ω,

d∗Δz(x) + ϑw(x) − 1
τ

z(x) = 0, x ∈ Ω,

w(x) = z(x) = 0, x ∈ ∂Ω,

(7.12)

where d∗ is defined in (7.10). Multiplying the two equations in (7.11) by w and z, integrating and
adding together, and subtracting the result of multiplying the two equations in (7.12) by u and v
and integrating and adding together, we obtain

0 < (d − d∗)
∫

Ω

(Δw · u + Δz · v)dx = −(d − d∗)λ1

∫

Ω

(wu + zv)dx,

which implies that d < d∗ as u, v, w, z > 0.
2. Assume that a positive steady-state solution (ud(x), vd(x)) of (7.8) satisfies vd(x) ≤ 1/ν. The lin-

earized eigenvalue problem of (7.8) at (ud, vd) is
⎧
⎪⎪⎨

⎪⎪⎩

dΔξ1(x) − χξ1(x) + ϑe−νvd(x)(1 − νvd(x))ξ2(x) = −μξ1(x), x ∈ Ω,

dΔξ2(x) +
1
τ

ξ1(x) − 1
τ

ξ2(x) = −μξ2(x), x ∈ Ω,

ξ1(x) = ξ2(x) = 0, x ∈ ∂Ω.

(7.13)
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Fig. 2. Numerical simulations of (7.7) with χ = 0.8, ϑ = 1, ν = 0.6, τ = 0.5, Ω = (0, π) and η(x, t) = 0.1 sin x, t ∈ (−∞, 0).
a d = 0.2, the solution converges to the trivial solution u ≡ 0; b d = 0.1, the solution converges to a positive steady-state
solution

Since vd(x) ≤ 1/ν, the system (7.13) is cooperative in the sense that Fv(ud(x), vd(x)) = ϑe−νvd(x)(1−
νvd(x)) > 0 and Gu(ud(x), vd(x)) = 1/τ > 0 (here G(u, v) = (1/τ)(u − v)). Also the system (7.13)
is sublinear as

F (ud, vd) − udFu(ud, vd) − vdFv(ud, vd) = ϑνv2
de−νvd > 0,

G(ud, vd) − udGu(ud, vd) − vdGv(ud, vd) = 0.

Then, from Theorem 2.3 of [13], the positive steady-state solution (ud(x), vd(x)) is locally asymp-
totically stable.

�

In Proposition 7.2, the stability of positive steady state holds when the condition vd(x) ≤ 1/ν is
satisfied. This is true when d is close to d∗ (the bifurcation point), but it is not expected to be true when
d approaches 0. And the condition vd(x) ≤ 1/ν is also referred as the “monotone” case for the Nicholson’s
blowfly model, while the “non-monotone” case is the more complicated one.

As a numerical example, we consider (7.7) with χ = 0.8, ϑ = 1, ν = 0.6, τ = 0.5, Ω = (0, π) and
choose the initial condition η(x, t) = 0.1 sin x, t ∈ (−∞, 0). When d = 0.2 > d∗ = 0.1362, the zero
solution u ≡ 0 is asymptotically stable, illustrated in Fig. 2a. However, when the d = 0.1 < d∗ = 0.1362,
the zero solution loses its stability and a positive steady-state solution appears to be asymptotically stable
as shown in Fig. 2b.

A variant of the model (7.7) is
{

ut(x, t) = dΔu(x, t) − χu(x, t) + ϑ(g ∗ ∗(ue−νu)(x, t)), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
(7.14)

and it is equivalent to
⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = dΔu(x, t) − χu(x, t) + ϑv(x, t), x ∈ Ω, t > 0,

vt(x, t) = dΔv(x, t) +
1
τ

(u(x, t)e−νu(x,t) − v(x, t)), x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0.

(7.15)

In this case, our theory in previous sections can also be applied with F (u, v) = χu+ϑv and H(u) = ue−νu,
which satisfy (A1)–(A3), (A1’), (A5) and (A6b). We can similarly prove

Proposition 7.3. Suppose that χ, ν, τ > 0 and ϑ > χ, and let d∗ be defined as in (7.10). Then, results in
Proposition 7.2 hold for (7.15) except that the positive steady state (ud(x), vd(x)) satisfies ud(x) ≤ ϑ/(χν)
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and vd(x) ≤ 1/ν for all 0 < d < d∗, and if (ud(x), vd(x)) satisfies ud(x) ≤ 1/ν, then it is locally
asymptotically stable.

Finally, if we replace the Ricker-type growth function ue−νu in (7.8) or (7.15) by a Monod-type
(Holling type II) growth function u/(A + u), much stronger results on the uniqueness and stability of
positive steady-state solution can be obtained. We use the model (7.8) as an example. Consider

⎧
⎨

⎩

ut(x, t) = dΔu(x, t) − χu(x, t) +
ϑ(g ∗ ∗u)(x, t)

A + (g ∗ ∗u)(x, t)
, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
(7.16)

where A > 0, and it is equivalent to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut(x, t) = dΔu(x, t) − χu(x, t) +
ϑv(x, t)

A + v(x, t)
, x ∈ Ω, t > 0,

vt(x, t) = dΔv(x, t) +
1
τ

(u(x, t) − v(x, t)), x ∈ Ω, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0.

(7.17)

Proposition 7.4. Suppose that χ,A, τ > 0 and ϑ > χ, and let d∗ be defined as in (7.10). Then, system
(7.17) has a unique positive steady-state solution (ud(x), vd(x)) for any d ∈ (0, d∗) and has no positive
steady-state solution for d > d∗; the positive steady state (ud(x), vd(x)) satisfies ud(x), vd(x) ≤ ϑ/χ for
all 0 < d < d∗; all positive steady-state solutions of (7.17) are on a curve Σ1 = {(d, ud(·), vd(·)) : 0 <
d < d∗} such that lim

d→(d∗)−
ud(·) = lim

d→(d∗)−
vd(·) = 0, and (ud(·), vd(·)) is globally asymptotically stable for

d ∈ (0, d∗).

Proof. We only prove the uniqueness and global stability of positive steady-state solution as the other
parts can be proved in a similar way as the proof of Proposition 7.2. Indeed in this case, the system (7.17)

is cooperative as Fv(u, v) =
ϑA

(A + v)2
> 0 and Gu(u, v) = 1/τ > 0, so the solutions of (7.17) generate a

semi-flow which is strongly monotone. The system (7.17) is also sublinear (sub-homogeneous) as

F (u, v) − uFu(u, v) − vFv(u, v) = ϑ
v2

(A + v)2
> 0, G(u, v) − uGu(u, v) − vGv(u, v) = 0.

It is also easy to show the solutions of (7.17) are ultimately uniformly bounded. Therefore, from [48,
Theorem 2.3.2], (7.17) has a unique positive steady state that is globally attractive. �
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