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Abstract
Diffusion has been widely applied to model animal movement that follows Brownian
motion. However, animals typically move in non-Brownian ways due to their percep-
tual judgment. Spatial memory and cognition recently have received much attention
in characterizing complicated animal movement behaviours. Explicit spatial memory
is modeled via a distributed delayed diffusion term in this paper. The distributed time
represents the memory growth and decay over time, and the spatial nonlocality reflects
the dependence of spatialmemory on location.When the temporal delay kernel isweak
under the assumption that animals can immediately acquire knowledge and memory
decays over time, the equation is equivalent to a Keller–Segel chemotaxis model. For
the strong kernel with learning and memory decay stages, rich spatiotemporal dynam-
ics, such as Turing and checker-board patterns, appear via spatially non-homogeneous
steady-state and Hopf bifurcations.
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1 Introduction

The diffusion equation has been popularly used to model random movements of
both macroscopic and microscopic substances. Though, in general, diffusion has an
averaging and smoothing effect on the distribution of the density function, different
diffusion rates of different species may lead to spatial pattern formation as a result
of Turing instabilities (Turing 1952). However, animal movement usually follows
non-Brownian motion in nature. For instance, there are some kinds of biased animal
movement in predator-prey systems: the prey-taxis or predator-taxis effect (Kareiva
and Odell 1987; Lee et al. 2009; Wu et al. 2016; Tao 2010) which describes the
repulsive or attractive animal movement due to the fear of the predation risk or the
attraction of a predator to prey. These examples all ignore the delay effect caused by
the memory of animals. Recently, it has been recognized that spatial memory and cog-
nition are important factors for determining animals’ diffusive movement with bias
(Fagan et al. 2013).

Cognitive processes play a significant role in animals’ movement decisions, and
animal movement modeling can be complicated because of different perceptual mech-
anisms (Golledge 1998; O’Keefe and Nadel 1978). Although specific mechanisms are
still debatable, most modelers believe that perception (information acquisition) and
memory (the retention of information) play dominant roles in interpreting complicated
animal movement behaviors. Generally speaking, memory is the storage, encoding,
and recalling of information. Spatial memory is the memory of spatial locations in a
living organism landscape. A strong motivation for the significance of spatial memory
in animal movements is the empirical evidence of blue whale migrations presented
by Abrahms et al. (2019) and discussed by Fagan (2019). Much progress has been
made in incorporating spatial cognition or memory implicitly, such as home range
analysis (Moorcroft et al. 1999; Moorcroft and Lewis 2006), scent marks (Lewis
and Murray 1993), taxis-driven pattern formation (Potts and Lewis 2019, 2016),
information gaining through the last visit to locations (Schlägel and Lewis 2014),
perceptual ranges (Fagan et al. 2017), and delayed resource-driven movement (Foss-
Grant 2017). Among these models, the closest one to ours is the model proposed
in Potts and Lewis (2019), where there is a drift term depending on the spatially
averaged population density at the current time. The model was used to study terri-
torial pattern formation in Potts and Lewis (2016). However, this model ignores the
delay effect induced by spatial memory. In Schlägel and Lewis (2014), the authors
demonstrated that animals may gain information through the last visit to locations.
Moreover, they explored themovement patterns inducedby the interactions of informa-
tion gained via past visits and environmental information. Fagan et al. (2017) proposed
a resource-driven movement model for studying perceptual ranges and foraging suc-
cess, and the delay effect was later considered in the resource-driven movement model
in Foss-Grant (2017).

We formulate a partial differential equationmodel for a single species animalmove-
ment with the explicit incorporation of spatial memory via a distributed spatiotemporal
delayed diffusion. Throughout the paper, we use u(x, t) to denote the population den-
sity of species in spatial location x at time t . It is also assumed that the population is in
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a spatial habitat �, an open, bounded, and connected subset of Rm with m = 1, 2, 3.
The boundary ∂� is smooth. Then, the population density u(x, t) satisfies

⎧
⎪⎨

⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t > 0,

∂nu(x, t) = 0, x ∈ ∂�, t > 0,

u(x, t) = η(x, t), x ∈ �, t ∈ (−∞, 0],
(1.1)

where the function v(x, t) is defined by

v(x, t) = g ∗ G ∗ u(x, t) =
∫ t

−∞

∫

�

G(x, y, t − s)g(t − s)u(y, s)dyds. (1.2)

Here the parameters d1 > 0 and d2 ∈ R are the random diffusion coefficient and
the memory-based diffusion coefficient, respectively; the function f describes the
biological birth/death of the population; the function u(x, t) satisfies a Neumann type
boundary condition ∂nu(x, t) = 0 (∂nu is the outer normal derivative of u at x ∈ ∂�),
which makes the system mass-preserved with properly chosen kernel function G; and
η(x, t) ≥ 0 is the initial condition.

In this model, the memory-based distribution function v(x, t) depends on time and
location, as we assume that animals have knowledge of their prior spatial distribu-
tions from knowledge transfer, which is different from the assumption in Schlägel and
Lewis (2014) that the information gaining comes from past visiting experiences. In
(1.2), the spatial weighting function G(x, y, t) measures the familiarity of the ani-
mals at location y for the environmental information of location x and describes how
the accumulated information in animals’ mind depends on space. Here we choose the
Green’s function of the diffusion equationwith homogeneousNeumann boundary con-
dition as the spatiotemporal kernel function G(x, y, t), which preserves the biomass.
From the boundary condition that ∂nG(x, ·, t) = 0 where ∂nG(x, ·, t) is the outer
normal derivative of G with respect to x , one can obtain that ∂nv(x, t) = 0 holds for
x ∈ ∂�. Together with ∂nu(x, t) = 0, we have d1∂nu(x, t) + d2u(x, t)∂nv(x, t) = 0
on the boundary of �. Hence the Neumann boundary condition in (1.1) is equivalent
to a no-flux boundary condition for u. Under the above assumption, we have

G(x, y, t) =
∞∑

j=0

e−d1λ j tφ j (x)φ j (y), (1.3)

where λ j satisfying 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λ j ≤ · · · → +∞, as j → ∞, are
the eigenvalues of the eigenvalue problem

{
−�φ(x) = λφ(x), x ∈ �,

∂nφ(x) = 0, x ∈ ∂�,
(1.4)
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and φ j (x) are the normalized corresponding eigenfunctions of λ j . Equivalently, the
function G(x, y, t) satisfies (for fixed y)

⎧
⎪⎨

⎪⎩

Gt (x, y, t) = d1�xG(x, y, t), x ∈ �, t > 0,

∂nG(x, y, t) = 0, x ∈ ∂�, t > 0,

G(x, y, 0) = δ(x − y).

Here δ(x) is the Dirac delta measure on �.
The temporalweighting function g(t) shows the distributionofmemorydependence

on the past time. In our model, we choose the Gamma distribution function of order
k (with k ∈ N ∪ {0}):

gk(t) = tke−t/τ

τ k+1
(k + 1)
. (1.5)

In particular, wemainly consider the following two specific caseswhich are commonly
employed in the biological modeling (Cooke and Grossman 1982; Gourley and Ruan
2000; Macdonald 1987):

g0(t) = gw(t) = 1

τ
e− t

τ , g1(t) = gs(t) = t

τ 2
e− t

τ . (1.6)

These are referred to as the weak kernel and the strong kernel, respectively. The weak
kernel function gw(t) is strictly decreasing in t , which biologically reflects one of
the common ways of memory decay: the longer time goes by, the dimmer memories
become. While the strong kernel gs(t) is increasing first and then decreasing, which
indicates the knowledge acquisition phase and the knowledge decay phase. The mean
and variance of g j (·) are given by E(g j (·)) = ( j + 1)τ and Var(g j (·)) = ( j + 1)τ 2,
both of which depend on τ , hence τ is related to the average of delay kernels. In this
sense, we take τ as the parameter to measure the influence of spatial memory on the
dynamics.

Moreover,G : �×�×(0,∞) → R
+ is a (generalized)measure and g : [0,∞) →

R
+ is a probability distribution function satisfying

∫

�

G(x, y, t)dx = 1, y ∈ �, t > 0, and
∫ ∞

0
g(t)dt = 1. (1.7)

Hence the function v(x, t) is a spatiotemporal average of the past population den-
sity, and it is reasonable to call v(x, t) the memory function of the population. In the
model (1.1), we also assume that while moving around, animals collect information
about the global situation with the spatial weighting function G (knowledge depend-
ing on space) and the temporal weighting function g (knowledge growth and decay
over time); at their current position, the gradient of the past accumulated weighted
spatial information of the population serves as the velocity in the advection term;
and apart from advection, the random diffusion term describes the unbiased motion
of animals. Similar to the classical diffusion equation, the model (1.1) describes the
average behavior of all individuals in a group by ignoring individual behaviors.
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The movement of population in (1.1)–(1.2) can be derived from mass conservation
law and a modified Fick’s law following Shi et al. (2020):

J(x, t) = −d1∇xu(x, t) − d2w(x, t) · u(x, t),

where w(x, t) is a vector field indicating animal movement direction and strength. In
(1.1), we assume that

w(x, t) = ∇x

(∫ t

−∞

∫

�

G(x, y, t − s)g(t − s)u(y, s)dyds

)

. (1.8)

In addition to the random diffusion with the coefficient d1, the flux is proportional to
the negative gradient of a weighted average historic density distribution. In Shi et al.
(2020) and Shi et al. (2019), it is assumed that

w(x, t) = ∇xu(x, t − τ),

which indicates the flux is proportional to the negative gradient of historic density
function at a fixed past time. However, it is more realistic to use a nonlocally and
temporally distributed average of spatial memory because the temporal and spatial
distributed delay reflects that the decay of spatial memory depends on time and the
distance of past animal distributions from the decision-making individual. Such non-
local delay v(x, t) defined in (1.2) was first used in Britton (1990) for an unbounded
domain and in Gourley and So (2002) for a bounded domain, see also (Chen and Yu
2016; Zuo and Song 2015; Zuo and Shi 2021) for related work. In all existing work,
the nonlocal delay always appears in the reaction term (growth, etc.) of the population,
while in our model (1.1), the nonlocal delay appears in the diffusion term of the pop-
ulation. Eq. (1.8) represents a nonlocal flux, and another type of nonlocal advection
effect is considered in (Ducrot et al. 2018; Hillen and Buttenschön 2020) but for a
totally different context.

In this paper the dynamic properties and pattern formation mechanisms of (1.1)–
(1.2) are extensively studied via bifurcation analysis. To be more specific, we provide
the conditions on the diffusion coefficients d1, d2 and the kernel functions for the
spatial patterns (non-constant steady states) or spatiotemporal patterns (spatially non-
homogeneous time periodic orbits) to be generated by the system (1.1)–(1.2). When
the spatiotemporal kernel functionG(x, y, t) is given by (1.3) and the delay-dependent
kernel function g(t) is given by (1.6), system (1.1)–(1.2) is equivalent to a system of
reaction–diffusion equations with a chemotactic term (Gourley and So 2002; Zuo and
Shi 2021). For example, with the weak kernel gw(t), the equation of u in (1.1) with v

given by (1.2) is equivalent to a system of two reaction–diffusion equations:

⎧
⎪⎨

⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t > 0,

vt (x, t) = d1�v(x, t) + 1
τ (u(x, t) − v(x, t)), x ∈ �, t > 0,

∂nu(x, t) = ∂nv(x, t) = 0, x ∈ ∂�, t > 0.

(1.9)
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Our theoretical results on the pattern formation are mainly derived from the bifur-
cation theory for the equivalent system (1.9) and the corresponding one for the strong
kernel. It is also a surprising coincidence that system (1.9) is the same as a rescaled
Keller–Segel chemotaxis model with growth (Bellomo et al. 2015; Hillen and Painter
2009; Keller and Segel 1970; Tello and Winkler 2007):

⎧
⎪⎨

⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t > 0,

vt (x, t) = d3�v(x, t) + au(x, t) − bv(x, t), x ∈ �, t > 0,

∂nu(x, t) = ∂nv(x, t) = 0, x ∈ ∂�, t > 0.
(1.10)

Typically u(x, t) in (1.10) is the population density of cells, and v(x, t) is the density
of a chemical signaling molecule. In model (1.10), d1 and d3 are the random diffusion
rates for u and v respectively, d2 is the biased taxis-driven diffusion rate, a and b are the
rates of production and degradation of the chemical signal v (Hillen and Painter 2009).
When the growth function f (u) = 0, Eq. (1.10) is the so-called minimal Keller–Segel
model proposed by the seminal work of Keller and Segel (1970). The dynamics of
(1.10) with growth rate has been studied in, for example, (Winkler 2010, 2014b, a,
2017). The chemotaxis coefficient d2 in the original Keller–Segel model is negative
since cells are usually attracted to the chemical signals’ higher density location. Still,
the repulsive chemotaxis effect (with positive d2) has also been considered (Tao 2013;
Wang and Zhao 2013). The above discussion provides an alternative derivation of the
Keller–Segel chemotaxis model, but the variable v is now interpreted as the “memory”
which is a nonlocal and temporal distributed average of historic densities, instead of as
a current chemical signaling function in the classical Keller–Segel model. On the other
hand, our new model based on nonlocal delayed memory can also be understood as a
chemotaxis model in which the population is either attracted to (d2 < 0) or repelled
by (d2 > 0) its past tracks (Shi et al. 2020). Naturally, animals escape from high
density due to the limitation of resources. Thus the animals will flee from the high-
density area in their memory, so we have d2 > 0. However, some social animals have
aggregations, such as starling flocks and insects, for group defense or group working
(van Schaik 2010; Kappeler 2010). Such group behavior will impel the animals to be
attracted to the high-density area, which leads to d2 < 0. Potentially, some animals
may use optimal mixed strategies of social behaviors according to the environmental
conditions. For instance, theymay select tomove to locationwith higher density where
resources are abundant, and they need to work together, but they may select to move
to location with lower density next time when resources are limiting. In this case, we
have the switching between d2 > 0 and d2 < 0 when some environmental conditions
change. However, we shall not consider such generalizations here, and for simplicity,
we focus on pure strategies where d2 attains a constant.

Throughout the paper, we assume that the nonlinear function f and diffusion coef-
ficients satisfy

(H1) f : U → R is continuously differentiable, where U is an open interval; and
there exists θ ∈ U such that f (θ) = 0 and f ′(θ) < 0;

(H2) d1 > 0, d2 ∈ R.
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Our main interest is the stability of the constant equilibrium u = θ with respect to
(1.10) (or the equivalent system), and the instability often leads to the existence of
spatial or spatiotemporal patterns. Our main results can be summarized as follows:

1. for the weak kernel case: there exists d∗
2 < 0 such that the constant equilibrium

is locally asymptotically stable when d2 ≥ d∗
2 , and it is unstable when d2 < d∗

2 .
Moreover steady-state bifurcations occur at a sequence of values d2 = dw

2,n (≤ d∗
2 )

to give rise to spatial patterns;
2. for the strong kernel case: there exist d∗

2,S < 0 and d∗
2,H > 0 such that

(a) when d∗
2,S ≤ d2 ≤ d∗

2,H , the constant equilibrium is locally asymptotically
stable;

(b) when d2 > d∗
2,H , the constant equilibrium is unstable, and a family of Hopf

bifurcations occur at a sequence of values d2 = dH
2,n (≥ d∗

2,H ) and spatially
non-homogeneous periodic orbits arise;

(c) when d2 < d∗
2,S , the constant equilibrium is unstable, and a family of steady-

state bifurcations occur at d2 = dS
2,n (≤ d∗

2,S) and spatially non-homogeneous
steady states arise.

These results are similar to diffusion-induced Turing instability in the sense that the
non-homogeneous patterns result from linear instability of the constant equilibrium.
In comparison, a large repulsive memory-based movement can produce time-periodic
patterns that do not exist for the Turing mechanism in the strong kernel case. The
results above also reveal the subtle difference of the weak and strong kernels on
the pattern formation: for both weak and strong kernels, a strong attractive memory-
based movement (i.e., d2 > 0 and |d2| is large) induces spatial patterns; but only
for the strong kernel, a strong repulsive memory-based movement (i.e., d2 < 0 and
|d2| is large) can induce spatiotemporal patterns through Hopf bifurcations. It should
be noted that the weak kernel case (Keller–Segel chemotaxis model with growth)
has been studied extensively in recent years (Kuto et al. 2012; Ma and Wang 2015;
Mimura and Tsujikawa 1996; Painter and Hillen 2011; Tello and Winkler 2007). Not
only non-homogeneous steady-state solutions have been found analytically through
bifurcationmethods, but non-homogeneous periodic orbits and even chaotic dynamics
have also been found numerically (Kuto et al. 2012; Painter and Hillen 2011). Here we
rigorously show the existence of spatial and temporal doubly-periodic orbits (checker-
board patterns) for the strong kernel and repulsive case, which is also interesting for
the chemotaxis model as repulsive chemotaxis is usually thought to be a stabilizing
force (Tao 2013; Wang and Zhao 2013). Spatially non-homogeneous time-periodic
orbits for chemotaxis models were also found in (Liu et al. 2013) for an attractive-
repulsive Keller–Segel model and in (Zuo and Song xxx) for a predator-prey system
with indirect prey-taxis.

This paper is organized as follows.We derive the equivalent systems of Eq. (1.1) for
the weak and strong kernel cases, respectively in Sect. 2. In Sect. 3, for the weak kernel
case, we study the stability of the constant equilibrium of the equivalent system and
provide a detailed bifurcation analysis and give the conditions for pattern formation.
The bifurcation analysis of the strong kernel case is given in Sect. 4. We apply our
general results to a logistic growth model in Sect. 5, and the bifurcation direction and
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stability of the steady-state are determined. Finally, we conclude and discuss our work
in Sect. 6, and some detailed proofs and calculations are given in the “Appendix”.

In the paper the space of measurable functions for which the p-th power of the
absolute value is Lebesgue integrable defined on a bounded and smooth domain � ⊆
R
m is denoted by L p(�) and we use Wk,p(�) to denote the real-valued Sobolev

space based on L p(�) space. Denote X = {u ∈ W 2,p(�) : ∂nu = 0, x ∈ ∂�} and
Y = L p(�), where p > m. We denote by N the set of all the positive integers, and
N0 = N ∪ {0}.

2 Equivalence of systems

In this section, we establish the equivalence between the scalar Eq. (1.1) and
chemotactic-diffusive systems without nonlocal delay. By a similar method in The-
orems 2.3 and 2.4 in (Zuo and Shi 2021), we have the following results on the
equivalence of the two systems under weak or strong kernel.

Lemma 1 Suppose that kernel g(t) is given by theweak kernel function gw(t) = 1
τ
e− t

τ ,
and define

v(x, t) = (gw ∗ G ∗ u)(x, t) =
∫ t

−∞

∫

�

G(x, y, t − s)gw(t − s)u(y, s)dyds. (2.1)

1. If u(x, t) is the solutionof (1.1)andv(x, t) is definedby (2.1), that (u(x, t), v(x, t))
is the solution of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t > 0,

vt (x, t) = d1�v(x, t) + 1
τ (u(x, t) − v(x, t)), x ∈ �, t > 0,

∂nu(x, t) = ∂nv(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = η(x, 0), x ∈ �,

v(x, 0) = 1
τ

∫ 0
−∞

∫

� G(x, y,−s)e
s
τ η(y, s)dyds, x ∈ �.

(2.2)
2. If (u(x, t), v(x, t)) is a solution of

⎧
⎪⎨

⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t ∈ R,

vt (x, t) = d1�v(x, t) + 1
τ (u(x, t) − v(x, t)), x ∈ �, t ∈ R,

∂nu(x, t) = ∂nv(x, t) = 0, x ∈ ∂�, t ∈ R.

(2.3)
Then u(x, t) satisfies Eq. (1.1) such that η(x, s) = u(x, s) for −∞ < s < 0. In
particular, if (u(x), v(x)) is a steady state solution of (2.3), then u(x) is a steady
state solution of (1.1); and if (u(x, t), v(x, t)) is a periodic solution of (2.3), then
u(x, t) is a periodic solution of (1.1).

For the strong kernel case, we can similarly obtain the following equivalence.
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Lemma 2 Suppose that kernel g(t) is given by the strong kernel function gs(t) =
t
τ 2
e− t

τ , and define

v(x, t) = gs ∗ G ∗ u(x, t) =
∫ t

−∞

∫

�

G(x, y, t − s)gs(t − s)u(y, s)dyds. (2.4)

1. If u(x, t) is the solution of (1.1) and v(x, t) is defined as in (2.4), then
(u(x, t), v(x, t), w(x, t)) is the solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t > 0,

vt (x, t) = d1�v(x, t) + 1
τ
(w(x, t) − v(x, t)), x ∈ �, t > 0,

wt (x, t) = d1�w(x, t) + 1
τ
(u(x, t) − w(x, t)), x ∈ �, t > 0,

∂nu(x, t) = ∂nv(x, t) = ∂nw(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = η(x, 0), x ∈ �,

v(x, 0) = ∫ 0
−∞

∫

�
G(x, y,−s)−s

τ 2
e

s
τ η(y, s)dyds, x ∈ �,

w(x, 0) = ∫ 0
−∞

∫

�
G(x, y,−s) 1

τ
e

s
τ η(y, s)dyds, x ∈ �.

(2.5)
2. If (u(x, t), v(x, t), w(x, t)) is a solution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t ∈ R,

vt (x, t) = d1�v(x, t) + 1
τ
(w(x, t) − v(x, t)), x ∈ �, t ∈ R,

wt (x, t) = d1�w(x, t) + 1
τ
(u(x, t) − w(x, t)), x ∈ �, t ∈ R,

∂nu(x, t) = ∂nv(x, t) = ∂nv(x, t) = 0, x ∈ ∂�, t ∈ R,

(2.6)
Then u(x, t) satisfies Eq. (1.1) with the strong kernel gs(t) such that η(x, s) =
u(x, s) for −∞ < s < 0. In particular, if (u(x), v(x), w(x)) is a steady
state solution of (2.6), then u(x) is a steady state solution of (1.1); if
(u(x, t), v(x, t), w(x, t)) is a periodic solution of (2.6), then u(x, t) is a peri-
odic solution of (1.1).

From Lemmas 1 and 2, one can see the existence of steady states and periodic
solutions of Eq. (1.1) with Gamma temporal distribution function and diffusion spa-
tiotemporal kernel function. Next we show the equivalence of the stability of the
constant equilibrium with respect to the two systems. From the assumption (H1), Eq.
(1.1) has a positive constant equilibrium u = θ . The linearization of Eq. (1.1) at u = θ

is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψt (x, t) = d1�ψ(x, t) + d2θ�

(∫

�

∫ t

−∞
G(x, y, t − s)g(t − s)ψ(y, s)dyds

)

+ f ′(θ)ψ, x ∈ �, t > 0,

∂nψ(x, t) = 0, x ∈ ∂�, t > 0.

(2.7)
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By assuming that ψ(x, t) = eμtϕ(x), the eigenvalue problem of Eq. (2.7) is given by

μϕ = d1�ϕ + d2θ�

(∫

�

∫ t

−∞
G(x, y, t − s)g(t − s)eμsϕ(y)dyds

)

+ f ′(θ)ϕ,

(2.8)
where μ ∈ C and ϕ ∈ X\{0}.
Lemma 3 μ ∈ C is an eigenvalue of Eq. (2.8) if and only if there exist some n ∈ N0
such that μ is a root of the following equation:

μ + d1λn + d2θλn

(1 + d1λnτ + μτ)m+1 − f ′(θ) = 0, (2.9)

where λn and φn are the eigenvalues and the corresponding eigenfunctions of (1.4),
and m = 0 for the weak kernel and m = 1 for the strong kernel.

Proof We take the weak kernel as an example to demonstrate the calculation. First,
we substitute (1.3), (1.6) and ϕ(x) = φn(x) into Eq. (2.8) and obtain

μφn(x)e
μt = −d1λnφn(x)e

μt + d2θ

τ

(∫

�

∫ t

−∞

∞∑

n=1

e−d1λn (t−s)φn(x)φ
2
n (y)e

−(t−s)/τ eμsdyds

)

− f ′(θ)φn(x)e
μt

= −d1λnφn(x)e
μt + d2θ

τ

∫ 0

−∞
e(d1λn+1/τ)seμsds

∫

�

φ2
n (y)dyφn(x)e

μt

− f ′(θ)φn(x)e
μt

= −d1λnφn(x)e
μt + d2θ

1 + d1λnτ + μτ
φn(x)e

μt − f ′(θ)φn(x)e
μt .

Eliminating φn(x)eμt from both sides, we obtain the characteristic Eq. (2.9) when
m = 0 for the weak kernel case. The calculation for the strong kernel case is similar.

Theorem 1 For Eq. (1.1) with the spatial kernel G taken as (1.3) and temporal kernel
g taken as (1.6), the constant equilibrium u = θ is locally asymptotically stable
(unstable) when the equilibrium of the equivalent system (2.3) or (2.6) is locally
asymptotically stable (unstable).

Proof Herewe still demonstrate the weak kernel case. FromLemma 3, the eigenvalues
of the linear equation of Eq. (1.1) with weak kernel satisfy

μ + d1λn + d2θλn

1 + d1λnτ + μτ
− f ′(θ) = 0. (2.10)

By the method of separation of variables for classical linear reaction–diffusion equa-
tions, it is easy to obtain the characteristic equation for its equivalent two-component
system (2.2):

(μ + d1λn − f ′(θ))

(

μ + d1λn + 1

τ

)

+ d2θλn

τ
= 0. (2.11)
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A direct calculation shows that Eqs. (2.10) and (2.11) are completely equivalent to
each other. A similar procedure can be applied to the strong kernel case, and even
Gamma functions with a larger m.

Remark 1 1. Eq. (1.1) with the spatial kernel G taken as (1.3) and temporal kernel
g as the general Gamma distribution function of order n in (1.5) is equivalent to
a system of (n + 1) reaction–diffusion equations, and the system consists of one
equation with chemotaxis and n linear equations.

2. The equivalence of stability in Lemma 3 and Theorem 1 also hold for general
Gamma distribution function of order n, and the characteristic equation is (2.9)
for m = n.

3 Weak kernel case

From Theorem 1, the stability of the constant equilibrium u = θ with respect to (1.1)
for the weak kernel case can be equivalently obtained through analyzing the following
reaction–diffusion-taxis system:

⎧
⎪⎨

⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t > 0,

vt (x, t) = d1�v(x, t) + 1
τ
(u(x, t) − v(x, t)), x ∈ �, t > 0,

∂nu(x, t) = ∂nv(x, t) = 0, x ∈ ∂�, t > 0,
(3.1)

which admits a constant equilibrium (θ, θ). Here we analyze the stability of (θ, θ)

with respect to (3.1) and associated bifurcations of non-constant steady states. Similar
stability analysis and bifurcation results have also been obtained in, for example,
(Painter and Hillen 2011; Ma and Wang 2015). We will provide a detailed calculation
of the bifurcation direction and the stability of the bifurcating steady state.

First we linearize Eq. (3.1) at (θ, θ), and the stability of (θ, θ) with respect to (3.1)
is determined by the following eigenvalue problem

⎧
⎪⎨

⎪⎩

d1�ϕ + d2θ�ψ + f ′(θ)ϕ = μϕ, x ∈ �,

d1�ψ + 1
τ
(ϕ − ψ) = μψ, x ∈ �,

∂nϕ = ∂nψ = 0, x ∈ ∂�.

(3.2)

By using the results of Lemma 3.1 in Shi et al. (2020), the eigenvalues of (3.2) are the
eigenvalues of Jacobian matrix

Jw
n =

( −d1λn + f ′(θ) −d2θλn
1
τ

−d1λn − 1
τ

)

, (3.3)

where λn are the eigenvalues of (1.4) for n ∈ N0. Hence we have the characteristic
equations:

μ2 + Tnμ + Dn = 0, n ∈ N0, (3.4)
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with

Tn = 2d1λn + 1

τ
− f ′(θ), Dn = d21λ

2
n +

(
d1 + d2θ

τ
− d1 f

′(θ)

)

λn − f ′(θ)

τ
. (3.5)

Note that Tn = Trace(Jw
n ) and Dn = Det(Jw

n ).
From (H1) we have f ′(θ) < 0, hence Tn > 0 holds for all n ∈ N0. However, the

necessary condition for a Hopf bifurcation which is Tn = 0 cannot be satisfied. If
instead we have f ′(θ) > 1/τ > 0, Hopf bifurcations are possible but the bifurcating
periodic solutions are unstable as the equilibrium u = θ is unstable. For steady-state
bifurcations we have the following results for Eq. (3.4).

Lemma 4 For n ∈ N, define

dw
2,n = ( f ′(θ) − d1λn)(d1λnτ + 1)

θλn
, d∗

2 = max
n∈N dw

2,n (3.6)

Then the following results hold:

(i) Eq. (3.4) has no purely imaginary roots for any d2 ∈ R;
(ii) μ = 0 is a root of Eq. (3.4) if and only if d2 = dw

2,n;
(iii) when d2 > d∗

2 , all the eigenvalues of Eq. (3.4) have negative real parts; and when
d2 < d∗

2 , (3.4) has at least one eigenvalue with positive real part.

Proof Since f ′(θ) < 0, λn > 0 and limn→∞ λn = ∞, we have dw
2,n < 0 for n ∈ N

and limn→∞ dw
2,n = −∞. Hence d∗

2 = maxn∈N dw
2,n = supn∈N dw

2,n < 0 exists.
The conclusion (i) can be easily seen as Tn > 0 for all n ∈ N ∪ {0} and any

d2 ∈ R, while Tn = 0 is the necessary condition for Eq. (3.4) to have purely imaginary
roots. Taking d2 as the bifurcation parameter, we immediately obtain the steady-state
bifurcation points d2 = dw

2,n satisfying Dn(dw
2,n) = 0 such that Eq. (3.4) has a zero

eigenvalue. This proves (ii). Part (iii) is a direct consequence of the definition of d∗
2 .

Based on Lemma 4, we obtain the following results for the stability of (θ, θ) of
Eq. (3.1).

Theorem 2 Suppose that d1, d2, f satisfy (H1) and (H2), and let d∗
2 be defined in

Lemma 4. Then, (θ, θ) is locally asymptotically stable if d2 ≥ d∗
2 and it is unstable if

d2 < d∗
2 .

Next, we show the bifurcation of the non-constant steady-state solutions following
(Crandall and Rabinowitz 1971; Shi 1999; Shi and Wang 2009). A steady state of
Eq. (3.1) is a solution of the elliptic system:

⎧
⎪⎨

⎪⎩

d1�u + d2div(u∇v) + f (u) = 0, x ∈ �,

d1�v + 1
τ
(u − v) = 0, x ∈ �,

∂nu = ∂nv = 0, x ∈ ∂�.

(3.7)

In the following, we prove the occurrence of steady-state bifurcations in system (3.7).
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Theorem 3 Suppose that d1, d2 and f satisfy (H1) and (H2), and let d∗
2 , d

w
2,n be

defined in Lemma 4.

(i) Suppose that λn is a simple eigenvalue of (1.4), and dw
2,n �= dw

2,k for any k ∈ N

and k �= n. Then d2 = dw
2,n is a bifurcation point for (3.7). More precisely, near

(dw
2,n, θ, θ), there is a smooth curve 
n of positive solutions of (3.7) bifurcating

from the line of constant solutions {(d2, θ, θ) : d2 > 0} with the following form:


n = {(d2,n(s),Un(s, x), Vn(s, x)) : −δ < s < δ}, (3.8)

where δ is a positive constant and

Un(s, x) = θ + sφn(x) + sz1,n(s, x), Vn(s, x) = θ + s
φn(x)

d1λnτ + 1
+ sz2,n(s, x),

with smooth functions d2,n(s), z1,n(s, ·), z2,n(s, ·) satisfying d2,n(0) = dw
2,n

and z1,n(0, ·) = 0, z2,n(0, ·) = 0;
(ii) If in addition, � is one-dimensional and � = (0, lπ), then d ′

2,n(0) = 0 and

d ′′
2,n(0) = f ′′′(θ)

4θλnhn
+ 2( f ′′(θ) − dw

2,nλnhn)�
0
1 + f ′′(θ)�2

1 − 2dw
2,nλn�

2
2 + dw

2,nλnhn�
2
1

2θλnhn
,

(3.9)
where �0

1, �2
1, �2

2 are given by

�0
1 = − f ′′(θ)

2 f ′(θ)
, �2

1 = (4dw
2,nλnhn − f ′′(θ))(1 + 4d1λnτ)

2[( f ′(θ) − 4d1λn)(1 + 4d1τλn)2 − 4dw
2,nθλn] ,

�2
2 = 4dw

2,nλnhn − f ′′(θ)

2[( f ′(θ) − 4d1λn)(1 + 4d1τλn)2 − 4dw
2,nθλn] ,

(3.10)
and λn = n2/l2, hn = 1/(1+ d1λnτ). Let dw

2,N = d∗
2 . If d

′′
2,N (0) < 0, the bifur-

cation at d2 = d∗
2 = dw

2,N is supercritical and the bifurcating steady states are
locally asymptotically stable; if d ′′

2,N (0) > 0, the bifurcation at d2 = d∗
2 = dw

2,N
is subcritical and the bifurcating steady states are unstable; all other bifurcating
steady states from dw

2,n with n �= N are unstable.

The proof of Theorem 3 is given in the Appendix. From Theorems 2 and 3, d2 =
d∗
2 < 0 is a critical diffusion rate where the constant steady state (θ, θ) changes
stability, and it is rigorously shown that small amplitude stable non-homogeneous
steady state solutions could bifurcate from the constant ones at d2 = d∗

2 .

Remark 2 1. Theorem 3 is a local bifurcation result as the nonlinear function f is
only defined in a neighborhood of u = θ . One may obtain a global bifurcation
diagram by the abstract bifurcation theorem in (Shi andWang 2009) for a globally
defined nonlinearity f (u), but this is not pursued here.

2. In the discrete delay model considered in (Shi et al. 2020), a necessary condition
for pattern formation is that |d2| > d1/θ . In the case of (1.1) with weak kernel, a
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necessary condition for pattern formation is d2 < d∗
2 ≤ −(

√−τ f ′(θ) + 1)2d1/θ
which implies that d2 < −d1/θ . Thus, we see that |d2| > d1/θ is still necessary for
the pattern formation in the distributed delay case, but the delay value τ increases
the threshold |d∗

2 | = |d∗
2 (τ )|. To achieve pattern formation, the magnitude of the

memory-based diffusion needs to be larger in the distributed delay case than in the
discrete delay case.

3. The average delay value τ also affects the pattern selection. Let N be the dominant
wave numberwhich satisfies dw

2,N = d∗
2 as in Theorem3. Then N is non-increasing

with respect to τ . Indeed one can observe that when we consider dw
2,n as a function

of continuous variable p = λn in (3.6), it reaches it maximum at p =
√

− f ′(θ)

τd21
.

Hence

λN = N 2

l2
≈

√
− f ′(θ)

τd21
, (3.11)

which implies that N is non-increasing with respect to τ .

4 Strong kernel case

From Theorem 1, the stability of the constant equilibrium u = θ with respect to (1.1)
for the strong kernel case can be equivalently obtained through analyzing the following
reaction–diffusion system with chemotaxis:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + f (u(x, t)), x ∈ �, t > 0,

vt (x, t) = d1�v(x, t) + 1
τ
(w(x, t) − v(x, t)), x ∈ �, t > 0,

wt (x, t) = d1�w(x, t) + 1
τ
(u(x, t) − w(x, t)), x ∈ �, t > 0,

∂nu(x, t) = ∂nv(x, t) = ∂nw(x, t) = 0, x ∈ ∂�, t > 0,
(4.1)

which admits a constant equilibrium (θ, θ, θ). Linearizing Eq. (4.1) at (θ, θ, θ), the
stability of (θ, θ, θ) is determined by the following eigenvalue problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1�φ + d2θ�ψ + f ′(θ)φ = μφ, x ∈ �,

d1�ψ + 1
τ
(ϕ − ψ) = μψ, x ∈ �,

d1�ϕ + 1
τ
(φ − ϕ), x ∈ �,

∂nφ = ∂nψ = ∂nϕ, x ∈ ∂�.

(4.2)

Similar to the weak kernel case, the eigenvalues of (4.2) are the eigenvalues of the
Jacobian matrix

J sn =
⎛

⎝
−d1λn + f ′(θ) −d2θλn 0

0 −d1λn − 1
τ

1
τ

1
τ

0 −d1λn − 1
τ

⎞

⎠ ,
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where λn is the eigenvalues of (1.4) for n ∈ N0. Hence we have the characteristic
equations

μ3 + Anμ
2 + Bnμ + Cn = 0, n ∈ N0, (4.3)

with

An = 3d1λn + 2

τ
− f ′(θ),

Bn =
(

d1λn + 1

τ

)2

+ 2(d1λn − f ′(θ))

(

d1λn + 1

τ

)

,

Cn = d31λ
3
n +

(
2d21
τ

− f ′(θ)d21

)

λ2n +
(
d1 + d2θ

τ
− 2 f ′(θ)d1

τ

)

λn − f ′(θ)

τ 2
.

(4.4)
Note that An = −Trace(J sn ) and Cn = −Det(J sn ). By the Routh-Hurwitz stability
criterion, the matrix J sn is stable (all eigenvalues have negative real parts) if and only
if

An > 0, Cn > 0, AnBn − Cn > 0. (4.5)

From (H1), the condition An > 0 always holds. Hence the matrix J sn may lose the
stability either viaCn = 0 (which implies a zero eigenvalue of J sn ) or via AnBn−Cn =
0 (which implies a pair of purely imaginary eigenvalues ±√

Bni of J sn ). Also we can
observe that Bn > 0 always holds so Cn = 0 and AnBn −Cn = 0 cannot occur in the
same time.

To study these two kinds of instability, we define continuous functions A(p), B(p),
C(p) for p ∈ [0,∞) so that A(λn) = An , B(λn) = Bn and C(λn) = Cn . Then

C(p) := d31 p
3 + a1 p

2 + b1 p + c1,

Q(p) := A(p)B(p) − C(p) = 8d31 p
3 + a2 p

2 + b2 p + c2,
(4.6)

where

a1 = 2d21
τ

− f ′(θ)d21 , b1 = d1 + d2θ

τ 2
− 2 f ′(θ)d1

τ
, c1 = − f ′(θ)

τ 2
,

a2 = 16d21
τ

− 8 f ′(θ)d21 , b2 = 10d1 − d2θ

τ 2
− 12d1 f ′(θ)

τ
+ 2d1( f

′(θ))2,

c2 = 2

τ

(
1

τ
− f ′(θ)

)2

.

Taking d2 as the bifurcation parameter,we obtain the steady-state bifurcation points:

dS
2,n := dS

2 (λn), with dS
2 (p) = ( f ′(θ) − d1 p)(d1 pτ + 1)2

θ p
, (4.7)
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and Hopf bifurcation points:

dH
2,n := dH

2 (λn), with dH
2 (p) = 2(d1τ p + 1)(2d1τ p − f ′(θ)τ + 1)2

θτ p
. (4.8)

Note that d2 = dS
2 (p) is solved from setting C(p) = 0, so dS

2,n satisfies C(λn) = 0.

Similarly d2 = dH
2,n is solved from setting Q(p) = 0, so dH

2,n satisfies Q(λn) = 0.

Some basic properties of functions dS
2 (p) and dH

2 (p) are stated in the following
lemma.

Lemma 5 For dS
2 (p) and dH

2 (p) defined in (4.7) and (4.8), we have

(i) there exists p∗ > 0 such that dS
2 (p) is increasing for p ∈ (0, p∗) and decreasing

for p ∈ (p∗,+∞), and dS
2 (p) attains its global maximum value d∗

2,S < 0 at

p = p∗. Moreover, we have lim
p→0

dS
2 (p) = −∞ and lim

p→+∞ dS
2 (p) = −∞.

(ii) there exists p∗ > 0 such that dH
2 is decreasing for p ∈ (0, p∗) and increasing for

p ∈ (p∗,+∞), and dH
2 (p) attains its global minimum value d∗

2,H > 0 at p = p∗.
Moreover, we have lim

p→0
dH
2 (p) = +∞ and lim

p→+∞ dH
2 (p) = +∞.

Proof With the expression of dS
2 (p) given in (4.7), we calculate the derivative of dS

2 (p)
with respect to p and obtain

d

dp
dS
2 (p) = (d1 pτ + 1)H(p)

θ2 p2
, (4.9)

with
H(p) = −2d21τθ p2 + d1τθ f ′(θ)p − f ′(θ)θ.

From Eq. (4.9), we can see that the sign of the derivative of dS
2 (p) is the same as the

one of H(p) which is a quadratic function with a unique positive root p∗. Thus, we
have H(p) > 0 for p ∈ (0, p∗) and H(p) < 0 for p ∈ (p∗,+∞). The limits of dS

2
when p → 0 and p → +∞ can be attained through a direct calculation. This proves
part (i). Part (ii) can be proved in a similar way.

We obtain the stability of (θ, θ, θ) for Eq. (4.1) as follows.

Proposition 1 Suppose that d1, d2, f satisfy conditions (H1) and (H2) and τ > 0.
Define

d∗
2,S := max

n∈N

{
dS
2,n

}
, d∗

2,H := min
n∈N

{
dH
2,n

}
, (4.10)

where dS
2,n and dH

2,n are defined in (4.7) and (4.8).

(i) when d∗
2,S < d2 < d∗

2,H , all the eigenvalues of Eq. (4.3) have negative real parts,
and (θ, θ, θ) is locally asymptotically stable with respect to (4.1);

(ii) when d2 > d∗
2,H , (θ, θ, θ) is unstable and μ = ±iω0 (ω0 > 0) is a pair of purely

imaginary roots of Eq. (4.3) if d2 = dH
2,n;
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(iii) when d2 < d∗
2,S, (θ, θ, θ) is unstable and μ = 0 is a root of Eq. (4.3) if d2 = dS

2,n.

Proof From Lemma 5, λn > 0 and lim
n→∞ λn = ∞, d∗

2,S and d
∗
2,H exist and d∗

2,S < 0 <

d∗
2,H . From Lemma 5, when d∗

2,S < d2 < d∗
2,H , we have C(p) > 0 and Q(p) > 0 for

all p > 0 so all the eigenvalues of J sn have negative real parts for n ∈ N0 thus (θ, θ, θ)

is locally asymptotically stable. When d2 < dS
2,n , we have Cn < 0 so the matrix J sn

has at least one eigenvalue with positive real part, and when d2 = dS
2,n , J

s
n has a zero

eigenvalue. This implies (θ, θ, θ) when d2 < d∗
2,S . When d2 > dH

2,n , we have An > 0,

Cn > 0 but AnBn − Cn < 0, so the matrix J sn is unstable, and when d2 = dH
2,n , J

s
n

has a pair of complex eigenvalues with zero real part.

From Proposition 1, Eq. (4.3) has a pair of purely imaginary eigenvalues
±iω0 (ω0 > 0) when d2 = dH

2,n . We show that the eigenvalue transversality con-

dition holds at d2 = dH
2,n .

Lemma 6 Let dH
2,n be defined in (4.8). Then, Eq. (4.3) has a pair of roots in the form of

μ = α(d2) ± iω(d2) when d2 is near dH
2,n such that α

(
dH
2,n

)
= 0 and α′

(
dH
2,n

)
> 0.

Proof We only need to show that α′
(
dH
2,n

)
< 0. Take derivative of both sides of Eq.

(4.3) with respect to d2 (we denote d2 temporarily by β to avoid the confusion in
notation), we have

3μ2 dμ

dβ
+ d An

dβ
μ2 + 2Anμ

dμ

dβ
+ dBn

dβ
μ + Bn

dμ

dβ
+ dCn

dβ
= 0. (4.11)

From the expressions of An, Bn, Cn in Eq. (4.3), it is straightforward to see that

d An

dβ
= 0,

dBn

dβ
= 0,

dCn

dβ
= θλn

τ
. (4.12)

Substituting (4.12), μ = iω0, Bn = ω2
0 and β = dH

2,n into Eq. (4.11), we obtain

dμ

dβ

∣
∣
∣
β=dH

2,n

= − θλn

2τω0(−ω2
0 + iω0An)

,

thus

α′(d2) = Re

(
dμ

dβ

∣
∣
∣
β=dH

2,n

)

= θλn

2τ(ω2
0 + A2

n)
> 0.

Nowby theHopf bifurcation Theorem for quasilinear systems of reaction–diffusion
equations (Amann 1991), Proposition 1 and Lemma 6, we obtain the following result
of Hopf bifurcations in Eq. (4.1).

Theorem 4 Suppose that d1, d2, and f satisfy conditions (H1) and (H2), and let dH
2,n

be defined in (4.8). Suppose that λn is a simple eigenvalue of (1.4), and dH
2,n �= dH

2,k
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for any k ∈ N and k �= n, then a Hopf bifurcation occurs at d2 = dH
2,n for Eq. (4.1)

and there exist a family of periodic orbits in form of

{(
Un(x, t, s), Tn(s), d

(n)
2 (s)

)
: s ∈ (0, δ)

}
,

where Un(x, t, s) = (un(x, t, s), vn(x, t, s), wn(x, t, s)) is a Tn(s) periodic solution
of Eq. (4.1) with d2 = d(n)

2 (s) satisfying

d(n)
2 (0) = dH

2,n, lim
s→0

Un(x, t, s) = (θ, θ, θ), lim
s→0

Tn(s) = 2π√
Bn

,

where Bn is given in (4.4). Moreover, the bifurcating periodic orbits are spatially
non-homogeneous with spatial profile φn(x).

At d2 = d∗
2,H = min

n∈N dH
2,n , the bifurcating periodic orbits could be locally asymptoti-

cally stable, and if dH
2,M = d∗

2,H for some M ∈ N, then the stable bifurcating periodic
orbits have the spatial profile φM (x) and are temporally oscillating with period TM (s).

We can also prove the steady-state bifurcations for (4.1) at d2 = dS
2,n similar to the

weak kernel case. The steady states of (4.1) satisfy the following elliptic system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1�u(x) + d2div(u(x)∇v(x)) + f (u(x)) = 0, x ∈ �,

d1�v(x) + 1
τ
(w(x) − v(x)) = 0, x ∈ �,

d1�w(x) + 1
τ
(u(x) − w(x)) = 0, x ∈ �,

∂nu(x) = ∂nv(x) = ∂nw(x) = 0, x ∈ ∂�,

(4.13)

and (θ, θ, θ) is a constant solution for system (4.13). Then we have the following
results.

Theorem 5 Suppose that d1, d2, and f satisfy conditions (H1) and (H2), and let dS
2,n

be defined in (4.7).

(i) Suppose that λn is a simple eigenvalue of (1.4), and dS
2,n �= dS

2,k for any k ∈ N

and k �= n. Then d2 = dS
2,n is a bifurcation point for (4.13). More precisely, near

(dS
2,n, θ, θ, θ), there is a smooth curve 
̃n of positive solutions of (4.13) bifurcating

from the line of constant solutions {(d2, θ, θ, θ) : d2 > 0}with the following form:


̃n =
{(

d̃2,n(s),U
n(s, x), V n(s, x),Wn(s, x)

)
: −δ < s < δ

}
, (4.14)

where
Un(s, x) = θ + sφn(x) + sg1,n(s, x),

V n(s, x) = θ + 1

(1 + d1λnτ)2
sφn(x) + sg2,n(s, x),

Wn(s, x) = θ + 1

1 + d1λnτ
sφn(x) + sg3,n(s, x),
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and d̃2,n(s), gi,n(s, ·)(i = 1, 2, 3) are smooth functions defined for s ∈ (0, δ)
such that d̃2,n(0) = dS

2,n, and gi,n(0, ·) = 0 (i = 1, 2, 3);

(ii) If in addition, � is one-dimensional and � = (0, lπ), then d̃ ′
2,n(0) = 0 and

d̃ ′′
2,n(0) = f ′′′(θ)

4λnhnθ
+ 2( f ′′(θ) − dS

2,nλnhn)�
0
1) + f ′′(θ)�2

1 − 2dS
2,nλn�

2
2 + dS

2,nλnhn�
2
1

2θλnhn
,

(4.15)
where �0

1, �2
1, �2

2 are given by

�0
1 = − f ′′(θ)

2 f ′(θ)
, �2

1 = (4dS
2,nλnhn − f ′′(θ))(1 + 4d1λnτ)

2[( f ′(θ) − 4d1λn)(1 + 4d1τλn)2 − 4dS
2,nθλn]

,

�2
2 = 4dS

2,nλnhn − f ′′(θ)

2[( f ′(θ) − 4d1λn)(1 + 4d1τλn)2 − 4dS
2,nθλn]

,

(4.16)
and λn = n2/l2, hn = 1/(1+d1λnτ)2. Let dS

2,N = d∗
2,S. If d̃

′′
2,N (0) < 0, the bifur-

cation at d2 = d∗
2,S = dS

2,N is supercritical and the bifurcating steady states are

locally asymptotically stable; if d̃ ′′
2,N (0) > 0, the bifurcation at d2 = d∗

2,S = dS
2,N

is subcritical and the bifurcating steady states are unstable; all other bifurcating
steady states from dS

2,n with n �= N are unstable.

The proof of Theorem 5 is basically the same as the one for Theorem 3, so we omit it.

Remark 3 1. From Lemma 5, it is clear that all steady-state bifurcation points satis-
fies dS

2,n < 0 and all Hopf bifurcation points satisfies dH
2,n > 0 for n ∈ N. These

conditions implies that steady-state bifurcations only occur for negative d2 (attrac-
tive chemotaxis case), and Hopf bifurcations only occur for positive d2 (repulsive
chemotaxis case). Thus there is no interaction between steady-state bifurcations
and Hopf bifurcations in this model.

2. From (4.7), we can obtain that dS
2,n < −d1/θ , thus d∗

2,S < −d1/θ . Similarly, we
have d∗

2,H > 2d1/θ . Therefore, we can draw the conclusion that |d2| > d1/θ is
still a necessary condition for pattern formation in the distributed delay case with
strong kernel.

3. Again the average delay value τ affects the pattern selection for both steady-
state and Hopf bifurcations. If positive integer N and M satisfy dS

2,N = d∗
2,S and

dH
2,M = d∗

2,H , then N and M both are non-increasing with respect to τ .

5 An example: logistic growth

When the growth function f (u) is taken as the logistic growth, Eq. (1.1) becomes

{
ut = d1�u + d2div(u∇v) + u(1 − u), x ∈ �, t > 0,

∂nu = 0, x ∈ ∂�, t > 0,
(5.1)
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where u = u(x, t) and v = v(x, t) is defined as (1.2). It is clear that Eq (5.1) has two
constant equilibria: u = 0 and u = 1.

5.1 Weak kernel case

For the weak kernel case, (5.1) is equivalent to

⎧
⎪⎨

⎪⎩

ut = d1�u + d2div(u∇v) + u(1 − u), x ∈ �, t > 0,

vt = d1�v + 1
τ
(u − v), x ∈ �, t > 0,

∂nu = ∂nv = 0, x ∈ ∂�, t > 0.

(5.2)

The trivial equilibrium (0, 0) is unstable. For the positive equilibrium (1, 1), we can
apply Theorems 2 and 3 to obtain the stability of non-homogeneous steady states of
system (5.2) as f ′(θ) = −1 so (H1) is satisfied. The steady-state bifurcation points
are

d2 = dw
2,n = − (1 + d1λn)(1 + d1λnτ)

θλn
, (5.3)

and for the bifurcation curves of one-dimensional domain � = (0, lπ), we have
d ′
2,n(0) = 0 and

d ′′
2,n(0) = (1 + d1λnτ)(5 − 2d21λ

2
nτ − 5d1λn + 28d31λ

3
nτ + 10d1λnτ − 2d21λ

2
n)

6λn(1 − 4d21λ
2
nτ)

.

At the dominant wave number N satisfying d∗
2 = dS

2,N where d∗
2 is the maximum of

steady-state bifurcation points dS
2,n , we have the approximating formula (3.11) which

now becomes d1λN = 1/
√

τ . Using this yields

d ′′
2,N (0) = −

d1
√

τ(1 + √
τ)

(
10

√
τ + 23√

τ
− 2

τ
+ 3

)

18
< 0,

for any τ > 0. This implies that the bifurcation direction at the dominant wave
number is most likely to be supercritical and the bifurcating steady states are locally
asymptotically stable.

In Fig. 1, for a fixed τ , when d2 varies from right to left, the constant equilibrium
(1, 1) loses its stability at the first Turing bifurcation curve d2 = dw

2,n(τ ) as defined in
(5.3). One can observe that, when τ decreases, the dominant wave number N changes
from N = 2 to N = 3 then N = 4. For example, when τ = 4, the stability switch
occurs at mode-2 Turing line, and the constant equilibrium is stable when d2 = −0.86
(P1) and unstable when d2 = −0.93 (P2) (Fig. 2 top row); when τ = 1.5, the stability
switch occurs at mode-3, and the constant equilibrium is stable when d2 = −0.45
(P3) and unstable when d2 = −0.52 (P4) (Fig. 2 middle row). In the stable case, the
solution of (5.2) converges to the constant equilibrium, while in the unstable case, the
solution converges to a mode-N non-homogeneous steady state. When τ is chosen to
be a smaller value, we also observe spatially non-homogeneous time-periodic patterns
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Fig. 1 The bifurcation diagram in parameter (d2, τ ) of system (5.2) when d1 = 0.1 and � = (0, π), and
the bifurcation curves d2 = dw

2,n(τ ) are plotted for n = 1, 2, 3, 4. The points are parameter values for the
numerical simulations and they are: P1 (−0.86, 4.0), P2 (−0.93, 4.0), P3 (−0.45, 1.5), P4 (−0.52, 1.5),
P5 (−0.56, 1.0) and P6 (−0.8, 1.0)

shown in Fig. 2 bottom row, which are “wandering” and “drifting” periodic patterns
also observed in previous work of Keller–Segel model with growth (Painter and Hillen
2011; Ma and Wang 2015). These patterns are not a result of Hopf bifurcations from
the constant equilibrium as we show that situation is impossible in Sect. 3.

5.2 Strong kernel case

When the distribution kernel is taken as the strong one, the equivalent system of Eq.
(5.1) is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = d1�u + d2div(u∇v) + u(1 − u), x ∈ �, t > 0,

vt = d1�v + 1
τ
(w − v), x ∈ �, t > 0,

wt = d1�w + 1
τ
(u − w), x ∈ �, t > 0,

∂nu = ∂nv = ∂nw = 0, x ∈ ∂�, t > 0.

(5.4)

The trivial equilibrium (0, 0, 0) is unstable, we can apply Theorems 5 and 4 for the
stability of the positive equilibrium (1, 1, 1) and the bifurcation of non-homogeneous
steady states and periodic orbits of system (5.4). The steady-state bifurcations occur
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Fig. 2 Numerical simulations of system (5.2) when parameters are d1 = 0.1 and � = (0, π). In each
figure, the color indicates the value of u(x, t) according to colorbar

at

d2 = dS
2,n := − (1 + d1λn)(1 + d1λnτ)2

θλn
< 0, (5.5)

and the Hopf bifurcations occur at
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Fig. 3 The bifurcation diagram in parameter (d2, τ ) of system (5.4) when d1 = 0.1 and � = (0, π), and
the steady-state bifurcation curves d2 = dS2,n(τ ) (for d2 < 0) and Hopf bifurcation curves d2 = dH2,n(τ )

(for d2 > 0) are plotted for n = 1, 2, 3. The points are parameter values for the numerical simulations and
they are: P1 (−2.5, 4.5), P2 (−2.2, 4.5), P3 (−1.35, 2.0), P4 (1.0, 2.0), P5 (10.5, 2.0), P6 (−0.5, 0.5), P7
(1.0, 0.5) and P8 (4.0, 0.5)

d2 = dH
2,n = 2(d1τλn + 1)(2d1τλn + τ + 1)2

θτλn
> 0. (5.6)

Figure3 shows the bifurcation diagram of system (5.4) in parameters d2 and τ ,
where d1 = 0.1 and � = (0, π). For a fixed τ , when d2 varies from right to left
starting from d2 = 0, the constant equilibrium (1, 1, 1) loses its stability at the first
Turing bifurcation curve d2 = dS

2,n(τ ) as defined in (5.5) to generate a spatial pattern;
and similarly when d2 varies from left to right starting from d2 = 0, the constant
equilibrium (1, 1, 1) loses its stability at the first Hopf bifurcation curve d2 = dH

2,n(τ )

as defined in (5.6) to generate a spatiotemporal pattern.
Again one can observe that when τ decreases, the dominant wave number N (for

steady-state bifurcation) or M (for Hopf bifurcation) increases. When τ = 4.5, the
only possible spatial patterns are Turing type (Fig. 4 top row): the constant steady
state is stable (see (a)) if d2 = −2.2 > dS

2,1, while mode-1 Turing patterns emerge

if d2 = −2.5 < dlS2,1 (see (b) and (c)). When τ = 2.0, from the figures in the
middle row of Fig. 4, one observes a spatially non-homogeneous mode-2 steady state
at d2 = −1.35, a homogeneous pattern at d2 = 1, and a spatially non-homogeneous
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Fig. 4 Numerical simulations of system (5.4) when parameters are d1 = 0.1 and � = (0, π). In each
figure, the color indicates the value of u(x, t) according to colorbar

mode-2 time-periodic pattern at d2 = 10.5 (Fig. 4 middle row). For τ = 0.5, similar
sequence of patterns appear with mode-3 (Fig. 4 bottom row). One can also observe
the spatially non-homogeneous time-periodic patterns at P5 or P7 are spatially and
temporally periodic with expected spatial modes, and they are of “checker-board” type
similar to the ones observed in the discrete delay version of spatial memory models
in (Shi et al. 2019, 2020).

6 Discussion

In the past decade, spatial memory and cognition attracted much attention in the
mechanistic modeling of animal movements (Morales et al. 2010; Fagan et al. 2013).
We recently proposed a novel diffusive animal movement model with explicit spatial
memory (Shi et al. 2020) by assuming that animals have information gained via their
long-distance sight or social communications with their conspecifics (Schlägel and
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Lewis 2014). Based on this recentwork,we formulate a reaction–diffusion scalar equa-
tion with a distributed memory-based diffusion term to model the diffusive movement
of animals who canmemorize past information. In Shi et al. (2020), thememory-based
diffusion is related to the memory of a particular moment in the past, which induces
the discrete delay. It is also mentioned that a distributed delay for memory growing
and decaying is more realistic since highly developed animals can remember the his-
toric distribution or clusters of the species in space, but these spatial memories are
decaying in their brains over time. Such decays may include decreases in intensity and
spatial precision (Fagan et al. 2013; Shi et al. 2020). Therefore, this new distributed
memory-based model (1.1) provides a more realistic quantitative framework for char-
acterizing complicated memory waning and gaining processes in a relatively simple
self-contained way.

The delay kernel plays a vital role in the modeling of distributed delay. In our case,
we consider the spatial memory related to the memorized information during all the
past times and the spatial distribution of the species. Thus, we need to choose proper
delay kernels both in space and in time. For the spatial delay kernel, we use the Green’s
function of the diffusion equation that has been employed bymany researchers to study
the distributed delay effect (Gourley and So 2002; Chen and Yu 2016; Zuo and Song
2015). The temporal distribution of memory is modeled by the weak and strong kernel
functions (two special cases of the Gamma distribution function) that have clear bio-
logical meanings. Under such settings, we transform the scalar population model (1.1)
with the weak kernel into a two-species system (2.2) in which one of the “species” is
thememory of the other one. Similarly, a three-species reaction–diffusion system (2.5)
is obtained when the strong kernel is applied to the model. The method to establish the
equivalence between the scalar reaction–diffusion equation with distributed delayed
diffusion and reaction–diffusion system without delay is beneficial for us to gain a
deep understanding of the original delayed model (1.1). Moreover, we prove that the
eigenvalue problem of the original scalar Eq. (1.1) is exactly the same as the one for
the equivalent system, which implies the equivalence of the stability of the constant
steady state.

It is a pleasant surprise that Eq. (1.1) with the weak kernel is equivalent to the
Keller–Segel chemotaxis model with growth (Keller and Segel 1970; Tello and Win-
kler 2007; Painter and Hillen 2011; Ma and Wang 2015), which means that another
mechanism for this well-known model is established. In this case, the occurrence of
steady-state bifurcations from the constant equilibrium can be theoretically proved,
so non-homogeneous steady states exist. Through numerical simulations, we also
observed spatially non-homogeneous time-periodic patterns. However, it is still an
open problem to explain some drifting andwandering periodic patterns (see Fig. 2). For
the strong kernel case, steady-state bifurcations and spatially non-homogeneous Hopf
bifurcations from the positive constant equilibrium lead to spatially non-homogeneous
steady states and non-homogeneous time-periodic patterns (see Fig. 4).

In our bifurcation analysis,weuse thememory-baseddiffusion rated2 as the focused
parameter. Also, we obtain the conditions for pattern formation: d2 < d∗

2 for the weak
kernel case and d2 ∈ (−∞, d∗

2,S) ∪ (d∗
2,H ,+∞) for the strong kernel case, which

both satisfy |d2| > θd1, where θ is the positive constant steady state. Therefore, we
can conclude that |d2| > θd1 is a necessary condition for pattern formation in system
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(1.1). This result is consistent with the necessary condition obtained in Shi et al. (2020)
for pattern formation of the discrete delayed spatial memory model. We also want to
emphasize the significance of average time delay τ in the diversity of spatial patterns.
From the bifurcation diagrams Figs. 1 and 3, we observe that the first bifurcation curve
could be any mode as τ varies, which implies that diverse spatial patterns can emerge.
In Fig. 4, it is clear that the spatial structure of the non-homogeneous steady states and
time-periodic solutions is changing for different τ values.

Cognitive mapping is “a series of psychological transformations for acquiring,
coding, storing, recalling and decoding spatial and attribute information in memory”
(Fagan et al. 2013). We assumed a specific form of cognitive maps in our mod-
eling efforts with explicit spatial memory. This heuristic model provides a simple
self-contained theoretical framework for the future development of animal movement
models with spatial memory. Our model can potentially be applied to quantitatively
describe the spatiotemporal dynamics of animal movements in either terrestrial or
aquatic ecosystems. It is natural to extend the modeling idea to interacting species in
an ecosystem, for instance, spatial memory of resource distribution by consumers and
spatial memory of predator distribution by prey. The aggregated research efforts in
this direction will contribute to the ecological theory of cognitive animal movements.
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Appendix

Proof of Theorem 3 We apply Theorem 1.7 of Crandall and Rabinowitz (1971) for the
local bifurcation. Fixing d1, τ > 0,we define a nonlinearmapping F : R+×X2 → Y 2

by

F(d2, u, v) =
(

d1�u + d2div(u∇v) + f (u)

d1�v + 1
τ
(u − v)

)

. (7.1)

It is clear that F(d2, θ, θ) = 0 for any d2 > 0. The Fréchet derivative of F with
respect to (u, v) is

F(u,v)

(
dw
2,n, θ, θ

) [ϕ,ψ] =
(

d1�ϕ + dw
2,nθ�ψ + f ′(θ)ϕ

d1�ψ + 1
τ
(ϕ − ψ)

)

:= L[ϕ,ψ]. (7.2)

Step 1. First we determine the null space of L . From Lemma 4, we have Dn(dw
2,s) = 0

so μ = 0 is an eigenvalue of Jw
n defined in (3.3) thus also an eigenvalue of (3.2) and

there exists q = (ϕ, ψ)T = (1, hn)φn ∈ N (L). Moreover as Tn(dw
2,s) > 0, μ = 0 is a

simple eigenvalue of Jw
n ; and since λn is a simple eigenvalue of (1.4), and dw

2,n �= dw
2,k

for any k ∈ N and k �= n, then μ = 0 is as simple eigenvalue of L and

N (L) = Span {q = (1, hn)φn} ,
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with hn = 1/(d1λnτ + 1), thus dim (N (L)) = 1.
Step 2.We next consider the range spaceR(L) of L . We can verify thatR(L) is given
by {( f1, f2) ∈ Y 2 : 〈q∗, ( f1, f2)〉 = 0} where q∗ ∈ N (L∗) and L∗ is the adjoint
operator of L and defined by

L∗ [ϕ,ψ] =
(

d1�ϕ + f ′(θ)ϕ + 1
τ
ψ

d1�ψ + dw
2,nθ�ϕ − 1

τ
ψ

)

. (7.3)

Since N (L∗) = Span
{
q∗ = (1, rn)T φn

}
, where rn = τ(d1λn − f ′(θ)). We obtain

R(L) =
{

( f1, f2) ∈ Y 2 :
∫

�

( f1 + rn f2) φndx = 0

}

,

and codim (R(L)) = 1.
Step 3. We show that Fd2(u,v)(dw

2,n, θ, θ)[q] /∈ R(L). From (7.1), we have

Fd2(u,v)

(
dw
2,n, θ, θ

) [q] = (θhn�φn, 0)
T = (−θλnhnφn, 0)

T . (7.4)

Since ∫

�

(−θλnhnφn + 0) φndx = −θλnhn

∫

�

φ2
ndx < 0,

thus Fd2(u,v)

(
dw
2,n, θ, θ

)
[q] /∈ R(L) by the definition ofR(L). From Step 1, 2 and 3,

now we can apply Theorem 1.7 of Crandall and Rabinowitz (1971) to obtain part (i).
Step 4. Now we consider the bifurcation direction and stability of the bifurcating
solutions in 
n . To obtain more detailed information of the bifurcation, we use one-
dimensional domain � = (0, lπ). In this case, it is known that φn = cos(nx/l) and
λn = n2/l2, so that q = (1, hn)T cos(nx/l). From Shi (1999), we have

d ′
2,n(0) = −〈l, F(u,v)(u,v)(dw

2,n, θ, θ)[q, q]〉
2〈l, Fd2(u,v)(dw

2,n, θ, θ)[q]〉 ,

where l ∈ Y satisfies N (l) = R(L) and can be calculated as

〈l, ( f1, f2)〉 =
∫ lπ

0
( f1 + rn f2) cos

(nx

l

)
dx .

By (7.4) and the definition of l, we have

〈
l, Fd2(u,v)

(
dw
2,n, θ, θ

) [q]〉 = −λnhnθ
∫ lπ

0
cos2

(nx

l

)
dx = −λnhnθlπ

2
.

From (7.1), it can be obtained that

F(u,v)(u,v)(d2, u, v)[ϕ,ψ][ϕ,ψ] =
(
2d2ϕ

′ψ ′ + 2d2ϕψ ′′ + f ′′(u)ϕ2, 0
)T

. (7.5)
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This implies that

F(u,v)(u,v)

(
dw
2,n, θ, θ

) [q, q] =
(

f ′′(θ)

2
+

(
f ′′(θ)

2
− 2dw

2,nhnλn

)

cos

(
2nx

l

)

, 0

)T

,

(7.6)
and thus

〈
l, F(u,v)(u,v)

(
dw
2,n, θ, θ

) [q, q]〉

=
∫ lπ

0

(
f ′′(θ)

2
+

(
f ′′(θ)

2
− 2dw

2,nhnλn

)

cos

(
2nx

l

))

cos
(nx

l

)
dx = 0.

Therefore d ′
2,n(0) = 0.

Next we calculate d ′′
2,n(0) to determine the bifurcation direction by modifying the

calculation in Jin et al. (2013). From Shi (1999), d ′′
2,n(0) takes the form:

d ′′
2,n(0) = −

〈
l, F(u,v)(u,v)(u,v)

(
dw
2,n, θ, θ

)
[q, q, q]

〉
+ 3

〈
l, F(u,v)(u,v)

(
dw
2,n, θ, θ

)
[q,�]

〉

3
〈
l, Fd2(u,v)(dw

2,n, θ, θ)[q]
〉 ,

where � = (�1,�2) is the unique solution of

F(u,v)(u,v)

(
dw
2,n, θ, θ

) [q, q] + F(u,v)

(
dw
2,n, θ, θ

) [�] = 0. (7.7)

From (7.5), we have

F(u,v)(u,v)(u,v) (d2, u, v) [ϕ,ψ][ϕ,ψ][ϕ,ψ] = ( f ′′′(u)ϕ3, 0)T ,

thus

〈l, F(u,v)(u,v)(u,v)

(
dw
2,n, θ, θ

) [q, q, q]〉 =
∫ lπ

0
f ′′′(θ) cos4

(nx

l

)
dx = 3lπ

8
f ′′′(θ).

(7.8)

In the following, we show the calculation of
〈
l, F(u,v)(u,v)

(
dw
2,n, θ, θ

)
[q,�]

〉
. By

(7.6) and (7.7), we may assume � = (�1,�2) has the following form

�1 = �0
1 + �2

1 cos

(
2nx

l

)

, �2 = �0
2 + �2

2 cos

(
2nx

l

)

, (7.9)
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since F(u,v)(u,v)

(
dw
2,n, θ, θ

)
consists of only constant and cos

( 2nx
l

)
terms. Substituting

(7.9) into (7.7), we obtain

( −4d1λn�2
1 cos

( 2nx
l

) − 4dw
2,nθλn�

2
2 cos

( 2nx
l

) + f ′(θ)
(
�0

1 + �2
1 cos

( 2nx
l

))

−4d1λn�2
2 cos

( 2nx
l

) + 1
τ
[�0

1 − �0
2 + (�2

1 − �2
2) cos

( 2nx
l

)]
)

= −
(

f ′′(θ)

2
+

(
f ′′(θ)

2
− 2dw

2,nλnhn

)

cos

(
2nx

l

)

, 0

)T

.

(7.10)
Form Eq. (7.10), we can solve � as in (3.10). Thus, we obtain

〈
l, F(u,v)(u,v)

(
dw
2,n, θ, θ

) [q,�]〉

=2dw
2,nλn(�

2
2 + hn�

2
1)

∫ lπ

0
sin

(
2nx

l

)

sin
(nx

l

)
cos

(nx

l

)
dx

+ (
f ′′(θ) − dw

2,nλnhn
)
�0

1

∫ lπ

0
cos2

(nx

l

)
dx

+
(
f ′′(θ)�2

1 − dw
2,nλnhn�

2
1 − 4dw

2,nλn�
2
2

)
�2

1

∫ lπ

0
cos

(
2nx

l

)

cos2
(nx

l

)
dx

= lπ

2
dw
2,n(�

2
2 + hn�

2
1λn) + lπ

2

(
f ′′(θ) − dw

2,nλnhn
)
�0

1

+ lπ

4
( f ′′(θ)�2

1 − 4dw
2,nλn�

2
2 − dw

2,nλnhn�
2
1).

Using all above we obtain d ′′
2,n(0) in Eq. (3.9).

Step 5. By applying Corollary 1.13 and Theorem 1.16 of Crandall and Rabinowitz
(1973) or Theorem 5.4 of Liu and Shi (2018), the stability of the bifurcating non-
constant steady states can be determined by the sign of μ(s) which satisfies

lim
s→0

−sd ′
2,n(s)m

′(dw
2,n)

μ(s)
= 1, (7.11)

where m(d2) and μ(s) are the eigenvalues defined as

F(u,v)(d2, θ, θ)[ϕ(d2), ψ(d2)] = m(d2)K [ϕ(d2), ψ(d2)],
for d2 ∈ (dw

2,n − ε, dw
2,n + ε),

F(u,v)(d2,n(s),Un(s), Vn(s))[�(s),�(s)] = μ(s)K [�(s),�(s)], for s ∈ (−δ, δ),

with K : X → Y is the inclusion map K (u) = u, m
(
dw
2,n

)
= μ(0) = 0 and

(
ϕ

(
dw
2,n

)
, ψ

(
dw
2,n

))
= (�(0),�(0)) = (1, hn) cos

( nx
l

)
.

Now consider the bifurcation at d2 = dw
2,N = d∗

2 . From Lemma 4, (θ, θ) is stable
and m(d2) < 0 when d2 > dw

2,N , and it is unstable and m(d2) > 0 when d2 < dw
2,N .
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One can calculate that

m(d2) =
−TN +

√

T 2
N − 4DN

2
,

where TN , DN are defined in (3.5), and this implies thatm′(dw
2,N ) = −θλN/(TN τ) <

0. If d ′′
2,N (0) < 0, then d ′

2,N (s) < 0 for s ∈ (0, δ) and d ′
2,N (s) > 0 for s ∈ (−δ, 0).

Hence −sd ′
2(s)m

′(dw
2,N ) < 0 for s ∈ (−δ, δ)\{0}, and consequently μ(s) < 0

by(7.11) and the bifurcating solutions are locally asymptotically stable. Similarly
when d ′′

2,N (0) > 0, the bifurcating solutions are unstable. For any other bifurcation at
d2 = dw

2,n < d∗
2 , the trivial solution (θ, θ) is already unstable at the bifurcation point,

hence all bifurcating solutions are also unstable.
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