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Abstract. The global stability of the nonhomogeneous positive steady state
solution to a diffusive Holling-Tanner predator-prey model in a heterogeneous
environment is proved by using a newly constructed Lyapunov function and
estimates of nonconstant steady state solutions. The techniques developed here
can be adapted for other spatially heterogeneous consumer-resource models.

1. Introduction

In this paper we study the global dynamics of the following diffusive Holling-
Tanner predator-prey model in a heterogeneous environment:

(1.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = d1(x)Δu+ u
(
a(x)− u− bv

1+ru

)
, x ∈ Ω, t > 0,

vt = d2(x)Δv + μv
(
1− v

u

)
, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

Here u(x, t) and v(x, t) are the density functions of prey and predator respectively,
and Ω is a bounded domain in R

n with a smooth boundary ∂Ω; a no-flux boundary
condition is imposed on ∂Ω so that the ecosystem is closed to exterior environment.
d1(x) and d2(x) are the spatially dependent diffusion coefficient functions of prey
and predator respectively; a(x) is the spatially heterogeneous resource function,
and other parameters b, r and μ are assumed to be constants. The non-spatial
version of (1.1) was introduced in [12, 24] as one of prototypical mathematical
models describing predator-prey interactions.

For the non-spatial ODE model corresponding to (1.1), it is known that for
certain parameter range the unique positive steady state is globally asymptotically
stable, while in other parameter range a unique limit cycle exists [8,9]. The spatial
model (1.1) in a homogeneous environment (assuming di, a are constants) was first
studied in [19]. The global stability of the positive constant steady state solution
for the homogeneous case was proved in [2, 20, 23] under different conditions on
parameters, and spatiotemporal pattern formation for the homogeneous system
(1.1) was considered in [11]. When r = 0 in (1.1), the system becomes to the
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Leslie-Gower predator-prey model. The global and local stability for that case
including delay effect was investigated in [3, 5, 21, 22] when a and di are constants,
see also [4, 13, 15, 16] for related work.

We define the nonlinearities in (1.1) to be

(1.2) f(y, u, v) := u

(
y − u− bv

1 + ru

)
, g(u, v) := μv

(
1− v

u

)
,

and we also denote

(1.3) ā := max
Ω

a(x), a := min
Ω

a(x).

Our results on the global dynamics of (1.1) are as follows:

Theorem 1.1. Let μ > 0 and r ≥ 0 be constants. Suppose that a, di ∈ Cα(Ω) for
some 0 < α < 1, and a(x) > 0, di(x) > 0 on Ω; and the initial functions u0 ∈ C(Ω)
and v0 ∈ C(Ω) satisfy u0 ≥, �≡ 0 and v0 ≥, �≡ 0 on Ω. Assume that

0 < b < a/ā :=
minΩ a(x)

maxΩ a(x)
.(1.4)

(i) There exists a unique positive solution (u∞, ū∞, v∞, v̄∞) to the system of
equations:

f(ā, ū∞, v∞) = 0, f(a, u∞, v̄∞) = 0, g(ū∞, v̄∞) = 0, g(u∞, v∞) = 0.

(ii) Let (u(x, t), v(x, t)) be the positive solution of problem (1.1). Then{
u∞ ≤ lim inft→∞ u(x, t) ≤ lim supt→∞ u(x, t) ≤ ū∞,
v∞ ≤ lim inft→∞ v(x, t) ≤ lim supt→∞ v(x, t) ≤ v̄∞.

(1.5)

(iii) If in addition,

b < (1 + 2ru∞ − ra)

[
min d1(x)min d2(x)

max d1(x)max d2(x)

]1/2(
u∞
ū∞

)5/2

,(1.6)

then the problem (1.1) has a unique positive steady state solution (u∗, v∗),
and limt→∞ u(x, t) = u∗(x) and limt→∞ v(x, t) = v∗(x) in C2(Ω).

Remark 1.2.

(1) If the reaction function g(u, v) in the equation of predator is changed to
g̃(u, v) := μ(1 − v/(k + u)) for some constant k ≥ 0, and ā > a, one can
similarly show the conclusions in Theorem 1.1 with the condition b < a/ā
replaced by b < a/(ā+ k) and the condition(1.6) replaced by

b <

(
1+2ru∞ − ra+

rbk

1+ru∞

)[
min d1(x)min d2(x)

max d1(x)max d2(x)

]1/2(
u∞+k

ū∞+k

)2(
u∞
ū∞

)1/2

,

respectively.
(2) The global stability of the positive steady state solution of (1.1) in the

heterogeneous environment in Theorem 1.1 also holds for r = 0 which is
the Leslie-Gower predator-prey model, and in that case, the condition (1.6)
is simplified to

b <

[
min d1(x)min d2(x)

max d1(x)max d2(x)

]1/2(
min a(x)− bmax a(x)

max a(x)− bmin a(x)

)5/2

.
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If d1, d2 and a are all constants, then the problem (1.1) admits a unique positive
constant steady state which can be solved as

u∞ = u∞= ū∞=v∞= v̄∞=
−(b+ 1− ar) +

√
(b+ 1− ar)2 + 4ar

2r
, when r > 0,

u∞ = u∞ = ū∞ = v∞ = v̄∞ =
a

1 + b
, when r = 0.

(1.7)

Then the global stability of the constant steady state (u∞, u∞) in Theorem 1.1
holds under the assumption b < 1, which is the earlier result of [2]. In this case
(1.6) is not needed as part (ii) already implies the global stability. Part (iii) of
Theorem 1.1 shows the global stability in the heterogeneous environment, and the
condition (1.6) depends on the level of heterogeneity of a(x) and di(x). Indeed
(1.6) can be satisfied when a is nearly constant or when b is sufficiently small (see
Remark 2.7). We also remark that the global stability of the positive constant
steady state of (1.1) is proved in [22, 23] with weaker condition on b but constant
a and d1 = d2.

The proof of global stability combines the upper-lower solution method used in [2,
23] and a newly developed Lyapunov functional method. For spatially homogeneous
case, the upper-lower solution method alone can prove the global stability of the
constant steady state of (1.1), but in the spatially heterogeneous case, it only proves
that the solutions are attracted into a rectangle defined as in (1.5). The Lyapunov
function we use inside the attraction zone takes the form∫

Ω

∫ u(x,t)

u∗(x)

u∗(x)

d1(x)

s− u∗(x)

s
dsdx+

∫
Ω

∫ v(x,t)

v∗(x)

v∗(x)

d2(x)

s− v∗(x)

s
dsdx

where (u∗(x), v∗(x)) is a positive steady state solution of (1.1). The form of the
Lyapunov function when di and a are constants is well-known, and here we use
a spatially heterogenous form with weigh functions u∗(x)/d1(x) and v∗(x)/d2(x)
which is first used in [14] for proving the global stability of positive steady state
of diffusive Lotka-Volterra competition system in the heterogeneous environment.
It turns out that the weight functions encode the spatial heterogeneity of the en-
vironment so a non-constant steady state is achieved asymptotically. The new
Lyapunov function developed here may be a useful tool to explore more general
diffusive predator-prey models in the nonhomogeneous environment [4, 6].

2. Proof of main results

2.1. Existence of positive solutions. In the subsection, we show the existence
and uniqueness of the solution to (1.1), and the existence of positive solution to the
corresponding steady state problem:

(2.1)

⎧⎪⎪⎨
⎪⎪⎩
−d1(x)Δu = u

(
a(x)− u− bv

1+ru

)
, x ∈ Ω,

−d2(x)Δv = μv
(
1− v

u

)
, x ∈ Ω,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω.

We recall that the system (1.1) is called to be uniformly persistent (see, e.g., [7,
Page 390]) if all positive solutions satisfy lim inft→∞ u(x, t)>0 and lim inft→∞ v(x, t)
> 0 for all x ∈ Ω̄, and it is permanent (see, e.g., [1, 10]) if they also satisfy
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lim supt→∞ u(x, t) ≤ M and lim supt→∞ v(x, t) ≤ M for some M > 0. The fol-
lowing result shows the basic dynamics of (1.1).

Proposition 2.1. Let b > 0, μ > 0 and r ≥ 0 be constants. Suppose that a,
di ∈ Cα(Ω) for some 0 < α < 1, and a(x) > 0, di(x) > 0 on Ω. The initial
functions u0 ∈ C(Ω) and v0 ∈ C(Ω) satisfy u0 ≥, �≡ 0 and v0 ≥, �≡ 0 on Ω.

(1) The problem (1.1) has a unique globally-defined solution (u(x, t), v(x, t))
satisfying u(x, t) > 0, v(x, t) > 0 for (x, t) ∈ Ω× (0,∞).

(2) For any given small ε1 > 0, there exist a constant T1 > 0 determined by ε1
and a constant ε2 ∈ (0, ε1] depending on initial functions such that

ε2 ≤ u(x, t), v(x, t) ≤ ā+ ε1, ∀ x ∈ Ω, t ≥ T1,(2.2)

which implies that the problem (1.1) is permanent. Moreover the problem
(1.1) has a positive steady state solution (u∗(x), v∗(x)) lying in [ε2, ā+ ε1]×
[ε2, ā+ ε1].

(3) There exits a constant C = C(ε2) > 0 such that

max
t≥T1

‖u(·, t)‖C2+α(Ω), max
t≥T1

‖v(·, t)‖C2+α(Ω) ≤ C.(2.3)

Proof. (1) We will use the upper and lower solutions method to prove the existence
and uniqueness of positive solution of problem (1.1). Clearly, the problem (1.1) is
a mixed quasi-monotone system in the domain {u > 0, v ≥ 0}. Denote

M = max

{
ā, max

x∈Ω
u0(x), max

x∈Ω
v0(x)

}
.

Let v(x, t) = 0, ū(x, t) = v̄(x, t) ≡ M , and let u(x, t) be the unique positive solution
of ⎧⎪⎪⎨

⎪⎪⎩
ut = d1(x)Δu+ u

(
a(x)− u− bM

1+ru

)
, x ∈ Ω, t > 0,

∂u
∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Then (ū(x, t), v̄(x, t)) and (u(x, t), v(x, t)) are a pair of coupled ordered upper and
lower solutions of the problem (1.1). Hence (1.1) has a unique global solution
(u(x, t), v(x, t)) satisfying

0 < u(x, t) ≤ u(x, t) ≤ M, 0 ≤ v(x, t) ≤ M, ∀ x ∈ Ω, t ≥ 0.(2.4)

Moreover, by the strong maximum principle we also have v(x, t) > 0 for x ∈ Ω and
t > 0.

(2) From the first equation of (1.1), u(x, t) satisfies⎧⎪⎨
⎪⎩

ut ≤ d1(x)Δu+ u (maxx∈Ω̄ a(x)− u) , x ∈ Ω, t > 0,
∂u
∂ν = 0, x ∈ ∂Ω, t ≥ 0,

u(x, 0) = u0(x) > 0, x ∈ Ω.

It is deduced by the comparison principle of parabolic equations that

lim sup
t→∞

max
Ω

u(x, t) ≤ max
x∈Ω̄

a(x) = ā.

Thus, for any given ε > 0, there is a T > 0 such that u(x, t) < ā+ε for x ∈ Ω, t ≥ T .
From the second equation of (1.1), v(x, t) satisfies

vt ≤ d2Δv + μv
(
1− v/(ā+ ε)

)
, x > Ω, t > T.
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Thanks to the boundary condition ∂v
∂ν = 0, we could use the comparison principle

of parabolic equations to conclude that lim supt→∞ maxΩ v(x, t) ≤ ā + ε. The
arbitrariness of ε implies

lim sup
t→∞

max
Ω

v(x, t) ≤ ā.

Hence, for a small fixed ε1 > 0 satisfying

b < (a− ε1)/(ā− ε1),(2.5)

there exists a T1 > 0 such that the following estimates hold

u(x, t), v(x, t) ≤ ā+ ε, x ∈ Ω, t ≥ T1.

Since u(x, T1), v(x, T1) > 0 on Ω, we can choose a small constant ε2 > 0 belonging
to (0, ε1] such that u(x, T ), v(x, T ) > ε2 on Ω. Denote

ū1 := ā+ ε1, u1 := ε2, v̄1 := ā+ ε1, v1 := ε2.

Then from ε2 ≤ ε1 and (2.5), we obtain that

(2.6)

⎧⎪⎨
⎪⎩
a(x)− ū1 − bv1

1+rū1
≤ a(x)− (ā+ ε1) < 0,

a(x)− u1 − bv̄1
1+rū1

≥ a(x)− ε1 − b(ā+ ε1) > 0,

1− v1/u1 = 1− v̄1/ū1 = 0,

which indicates that (ū1, u1, v̄1, v1) is a pair of coupled ordered upper and lower
solutions of the problem (1.1) with initial density (u(x, T1), v(x, T1)). Hence (2.2)
holds. A simple calculation shows that (ū1, u1, v̄1, v1) is also the coupled ordered
upper and lower solutions of the problem (2.1). Thus the problem (2.1) has a
positive solution (u∗, v∗) in the region [u1, ū1] × [u1, ū1]. For (3), recalling that
u(x, t), v(x, t) > ε2 for x ∈ Ω̄, t ≥ T1, we could show (2.3) by the similar arguments
as [25, Theorem 2.1]. The proof is completed. �

2.2. Estimates for positive solutions and steady state solutions. From
Proposition 2.1, under the assumption (1.4) every positive solution of (1.1) has
a positive lower bound which may depend on its initial value. In this subsection,
a uniform lower bound for positive solutions of (1.1) is obtained. Moreover, by
an iterating process using the idea of [18], we obtain more accurate estimates for
positive solutions and steady solutions of problem (1.1).

Denote

ū1 = v̄1 := ā+ ε1, u1 = v1 := ε2, Q := [u1, ū1]× [v1, v̄1].(2.7)

where ε1 and ε2 are given by Proposition 2.1. It is clear that

(2.8)

⎧⎪⎨
⎪⎩
fy(y, u, v) ≥ 0, fv(y, u, v) ≤ 0, gu(y, u, v) ≥ 0, y, u, v > 0,

|f(y, u1, v1)− f(y, u2, v2)| ≤ K(|u1 − u2|+ |v1 − v2|), y ≥ 0, (u, v) ∈ Q,

|g(u1, v1)− g(u2, v2)| ≤ K(|u1 − u2|+ |v1 − v2|), (u, v) ∈ Q,

for some K > 0. With u1, ū1, v1 and v̄1 given by (2.7), we define the following
iterative sequences:{

ūi+1 = ūi +
1
K f(ā, ūi, vi), ui+1 = ui +

1
K f(a, ui, v̄i), i = 1, 2, · · · ,

v̄i+1 = v̄i +
1
K g(ūi, v̄i), vi+1 = vi +

1
K g(ui, vi), i = 1, 2, · · · ,

The iterative sequence defined above satisfy the following monotonicity and con-
vergence properties.
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Lemma 2.2. Suppose that (1.4) holds.
(i) The sequences of constants {ūi}∞i , {ui}∞i=1, {v̄i}∞i=1 and {ui}∞i=1 satisfy{

0 < u1 ≤ · · · ≤ ui ≤ ui+1 ≤ · · · ≤ ūi+1 ≤ ūi · · · ≤ ū1,
0 < v1 ≤ · · · ≤ vi ≤ vi+1 ≤ · · · ≤ v̄i+1 ≤ v̄i · · · ≤ v̄1.

(ii) Denote ū∞ := limi→∞ ūi, u∞ := limi→∞ ui, v̄∞ := limi→∞ v̄i and v∞ :=
limi→∞ vi. Then

f(ā, ū∞, v∞) = 0, f(a, u∞, v̄∞) = 0, g(ū∞, v̄∞) = 0, g(u∞, v∞) = 0.(2.9)

Proof. (i) We prove the monotonicity of ui, ūi, vi and v̄i with respect to i induc-
tively. First, we show that

u1 ≤ u2 ≤ ū2 ≤ ū1, v1 ≤ v2 ≤ v̄2 ≤ v̄1.(2.10)

From (2.6),

(2.11)

{
u1 ≤ ū1, v1 ≤ v̄1,

f(ā, ū1, v1) ≤ 0, f(a, u1, v̄1) ≥ 0, g(ū1, v̄1) ≤ 0, g(u1, v1) ≥ 0.

Then the definitions of u2, ū2, v2 and v̄2 give u1 ≤ u2, ū2 ≤ ū1, v1 ≤ v2 and
v̄2 ≤ v̄1. From ā ≥ a and (2.8), we derive

ū2 − u2 = ū1 +
1

K
f(ā, ū1, v1)− u1 −

1

K
f(a, u1, v̄1)

≥ ū1 − u1 +
1

K
f(a, ū1, v̄1)−

1

K
f(a, u1, v̄1) ≥ 0.

Similarly, we obtain v̄2 ≥ v2. Therefore, (2.10) holds. Suppose that for i ∈ N, we
have

u1 ≤ u2 ≤ · · · ≤ ui ≤ ūi · · · ≤ ū2 ≤ ū1, v1 ≤ v2 ≤ · · · ≤ vi ≤ v̄i · · · ≤ v̄2 ≤ v̄1.

From (2.8), it follows

ūi+1 − ui+1 = ūi +
1

K
f(ā, ūi, vi)− ui −

1

K
f(a, ui, v̄i),

≥ ūi − ui +
1

K
f(a, ūi, v̄i)−

1

K
f(a, ui, v̄i) ≥ 0,

ūi+1 − ūi = ūi +
1

K
f(ā, ūi, vi)− ūi−1 −

1

K
f(ā, ūi−1, vi−1)

≤ ūi − ūi−1 +
1

K
f(ā, ūi, vi−1)−

1

K
f(ā, ūi−1, vi−1) ≤ 0.

Similarly, we can show that ui+1 ≥ ui, vi+1 ≥ vi, v̄i+1 ≥ vi+1 and v̄i+1 ≤ v̄i.
Therefore the conclusion in (i) holds.

(ii) The formulas in (i) imply that the sequences {ūi}∞i , {ui}∞i=1, {v̄i}∞i=1 and
{ui}∞i=1 converge to some constants, respectively. Then (2.9) follows from the defi-
nitions of ūi, v̄i, ui and vi. The proof is completed. �

The above lemma states that the system of equations (2.9) admits a positive
solution. We next show that the positive solution of (2.9) is unique, which in fact
is the conclusion of Theorem 1.1 (i).

Proof of Theorem 1.1 (i). From the definition of f and g, every possible positive
solution (u, ū, v, v̄) of (2.9) satisfies v̄ = ū, v = u and

(ā− ū)(1 + rū) = bu, (a− u)(1 + ru) = bū,(2.12)
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which is equivalent to

h(u) = 0 for u ∈ (0, a) and ū = (a− u)(1 + ru)/b,(2.13)

where

h(τ ) :=[bā− (a− τ )(1 + rτ )][b+ r(a− τ )(1 + rτ )]− b3τ

=b2ā+ (bār − b)(a− τ )(1 + rτ )− r(a− τ )2(1 + rτ )2 − b3τ.

Case 1. r > 0.
Making use of bā < a (see (1.4)) and a ≤ ā, we get

h(0) = (bā− a)(b+ ar) < 0,

h(a) = b2ā− b3a = b2(ā− ba) > 0.

Note lim|τ |→∞ h(τ ) = −∞. We see that the equation h(τ ) = 0 in τ ∈ [0, a] either
admits a unique zero or has at least two zeros. In the later case, h satisfies

h′(τ ) ≥ 0 for all τ ≤ 0,(2.14)

which will be excluded in the following discussion.
Direct calculation yields

h′(τ ) =(bār − b)(ar − 1− 2rτ )− 2r(a− τ )(1 + rτ )(ar − 1− 2rτ )− b3

=[(bār − b)− 2r(a− τ )(1 + rτ )](ar − 1− 2rτ )− b3.

If ar ≥ 1, then from bā < a,

h′(0) = (bār − b− 2ra)(ar − 1)− b3 < (−b− ar)(ar − 1) ≤ 0.

On the other hand, if ar < 1, then (ar − 1)/(2r) < 0 and

h

(
ar − 1

2r

)
= −b3 < 0.

Thus, (2.14) is impossible for any r > 0. Consequently, h(τ ) = 0 has only one zero
in τ ∈ [0, a].

Case 2. r = 0.
Clearly, h(τ ) = [bā− (a− τ )]b− b3τ = b[bā− a+ (1− b2)τ ], and from (2.13),

u∞ = u∞ =
a− bā

1− b2
, ū∞ = ū∞ =

ā− ba

1− b2
.(2.15)

The proof is completed. �
Remark 2.3. For any given k ≥ 0, if b < a/(ā+ k) and ā > a, then the equations

(ā− ū)(1 + rū) = bu+ bk, (a− u)(1 + ru) = bū+ bk(2.16)

with ū > u still admit a unique positive solution. In fact, the existence of solutions
of (2.16) can be obtained by the similar arguments as Lemma 2.2. For the case of
r = 0, the proof of uniqueness is quite straightforward by just using (2.16). For
r > 0, by defining

h̃(τ ) := [bā+ bk − (a− τ )(1 + rτ )][b− bkr + r(a− τ )(1 + rτ )]− b3τ − b3k,

one can easily verify that h̃(0) < 0 and h̃(τ∗) > 0 with τ∗ a positive constant

satisfying (a − τ∗)(1 + rτ∗) = bτ∗ + bk, and also h̃′(c) < 0 for some c ≤ 0, which

allows us to similarly obtain the existence and uniqueness of solutions of h̃ in [0, τ∗].
We claim that u < τ∗, otherwise (a− u)(1 + ru)− bk = bū ≤ bu which contradicts
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with ū > u. Hence, ū and u satisfy h̃(u) = 0, u < τ∗ and ū = [(a−u)(1+ru)−bk]/b.
This leads to the uniqueness of solution of (2.16).

We call that (us(x), ūs(x), vs(x), v̄s(x)) is a pair of quasi-solution of problem
(2.1) if (us(x), ūs(x), vs(x), v̄s(x)) satisfies us(x) ≤ ūs(x), vs(x) ≤ v̄s(x) and⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−d1(x)Δūs = f(x, ūs(x), vs(x)), x ∈ Ω,

−d1(x)Δus = f(x, us(x), v̄s(x)), x ∈ Ω,

−d2(x)Δv̄s = g(ūs, ūs), x ∈ Ω,

−d2(x)Δvs = g(us, us), x ∈ Ω,
∂ūs

∂ν =
∂us

∂ν = ∂v̄s
∂ν =

∂vs

∂ν = 0, x ∈ ∂Ω.

Proposition 2.4. Suppose (1.4) holds.
(i) Let (us(x), ūs(x), vs(x), v̄s(x)) with us(x), ūs(x) ∈ [u1, v̄1], and vs(x), v̄s(x) ∈

[v1, ū1] be a positive quasi-solution of problem (2.1). Then

u∞ ≤ us(x) ≤ ūs(x) ≤ ū∞, v∞ ≤ vs(x) ≤ v̄s(x) ≤ v̄∞,(2.17)

where u∞, v∞, ū∞, v̄∞ are defined by Lemma 2.2.
(ii) Let (u(x, t), v(x, t)) be the positive solution of problem (1.1), and let (u∗(x),

v∗(x)) be a positive steady state solution of (1.1). Then the following estimates
hold
(2.18){

u∞ ≤ lim inft→∞ u(x, t) ≤ lim supt→∞ u(x, t) ≤ ū∞, u∞ ≤ u∗(x) ≤ ū∞,

v∞ ≤ lim inft→∞ v(x, t) ≤ lim supt→∞ v(x, t) ≤ v̄∞, v∞ ≤ v∗(x) ≤ v̄∞.

Proof. (i) By Lemma 2.2, in order to prove (2.17), it is sufficient to show that

ui ≤ us(x) ≤ ūs(x) ≤ ūi, vi ≤ vs(x) ≤ v̄s(x) ≤ v̄i, ∀ i = 1, 2, · · ·(2.19)

The proof is by induction on i. Since ū1 = v̄1 = ā + ε1 and u1 = v1 = ε2, the
inequalities in (2.19) hold for i = 1. Assuming the inequalities in (2.19) hold for
i ≤ j0 where j0 ≥ 2 is an integer, we will prove it for i = j0 + 1. Making use of
(2.8), we deduce that

− d1(x)Δūj0+1 +Kūj0+1 −Kus − f(x, ūs, vs)

=Kūj0+1 −Kus − f(x, ūs, vs) = Kūj0 + f(ā, ūj0 , vj0)−Kus − f(x, ūs, vs)

≥Kūj0 −Kus + f(x, ūj0 , vs)− f(x, ūs, vs) ≥ 0.

Denote w(x) = ūj0+1 − ūs(x). Then w satisfies −d1(x)Δw + Kw ≥ 0 in Ω with
∂νw = 0 on ∂Ω. It is derived by the maximum principle of elliptic equations that
w ≥ 0. Ans so ūj0+1 ≥ ūs(x) on Ω̄. Similarly, we can prove that uj0+1 ≤ us(x),
vj0+1 ≤ vs(x) and v̄s(x) ≤ v̄j0+1. Thus the inequalities in (2.19) hold.

(ii) If the initial densities u0, v0 lie in the region [ε2, ā+ε1], by (2.17) and Theorem
3.2 in [17], the solution (u(x, t), v(x, t)) satisfies the estimates in (2.18). Recalling
(2.2), we obtain that any positive solution (u(x, t), v(x, t)) of (1.1) satisfies the
estimates in (2.18).
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For any positive steady state solution (u∗(x), v∗(x)) of (1.1), (u∗(x), u∗(x), v∗(x),
v∗(x)) is a pair of positive quasi-solution of problem (2.1). Combining this fact with
(2.2) and (2.17), we obtain the estimates for (u∗(x), v∗(x)) in (2.18). The proof is
completed. �

We remark that the conclusions of Proposition 2.4 hold for some general functions
f and g satisfying (2.8) and (2.11).

Proof of Theorem 1.1 (ii). It is clear that Theorem 1.1 (ii) follows directly from
Proposition 2.4. �

2.3. Global stability of positive steady state solution. To prove the global
stability of positive steady state solution of (1.1), we need the following two lemmas.

Lemma 2.5 ([26, Theorem 1.1] or [14, Lemma 2.2]). Let δ > 0 be a constant,
and let the two functions ψ, h ∈ C([δ,∞)) satisfy ψ(t) ≥ 0 and

∫∞
δ

h(t)dt < ∞,

respectively. Assume that ϕ ∈ C1([δ,∞)) is bounded from below and satisfies

ϕ′(t) ≤ −ψ(t) + h(t) in [δ,∞).

If one of the following conditions holds:

(i) ψ is uniformly continuous in [δ,∞),
(ii) ψ ∈ C1([δ,∞)) and ψ′(t) ≤ K in [δ,∞) for some constant K > 0,
(iii) ψ ∈ Cβ([δ,∞)) with 0 < β < 1, and for τ > 0 there exists K > 0 just

depending on τ such that ‖ψ‖Cβ([x,x+τ ]) ≤ K for all x ≥ δ,

then limt→∞ ψ(t) = 0.

Lemma 2.6 ([14, Lemma 2.3]). Let w, w∗ ∈ C2(Ω) be two positive functions. If
∂w
∂ν = 0 and ∂w∗

∂ν = 0 on ∂Ω, then

∫
Ω

w∗[w − w∗]

w

(
Δw − w

w∗
Δw∗

)
dx ≤ −

∫
Ω

w2
∣∣∣∇w∗

w

∣∣∣2dx ≤ 0.(2.20)

With the help of the above results, we now show the global stability of positive
steady state solution of (1.1) using Lyapunov functional method.

Proof of Theorem 1.1 (iii). Let (u(x, t), v(x, t)) be the solution of (1.1). Define a
function G : [0,∞) → R by

G(t) :=

∫
Ω

∫ u(x,t)

u∗(x)

u∗(x)

d1(x)

s− u∗(x)

s
dsdx+ η

∫
Ω

∫ v(x,t)

v∗(x)

v∗(x)

d2(x)

s− v∗(x)

s
dsdx
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with η > 0 to be determined later. Then G(t) ≥ 0 for t ≥ 0. Making use of (2.20),
we deduce

dG(t)

dt
=

∫
Ω

u∗(u− u∗)

d1u
utdx+ η

∫
Ω

v∗(v − v∗)

d2v
vtdx

=

∫
Ω

(
u∗(u− u∗)

d1u
[d1Δu+ f(x, u, v)] + η

v∗(v − v∗)

d2v
[d2Δv + g(u, v)]

)
dx

=

∫
Ω

u∗(u− u∗)

d1u

(
d1Δu+ f(x, u, v)− u

u∗
d1Δu∗ −

u

u∗
f(x, u∗, v∗)

)
dx

+ η

∫
Ω

v∗(v − v∗)

d2v

(
d2Δv + g(u, v)− v

v∗
d2Δv∗ −

v

v∗
g(u∗, v∗)

)
dx

=

∫
Ω

[
u∗(u− u∗)

u

(
Δu− u

u∗
Δu∗

)
+
u∗(u− u∗)

d1

(
f(x, u, v)

u
− f(x, u∗, v∗)

u∗

)]
dx

+ η

∫
Ω

[
v∗(v − v∗)

v

(
Δv − v

v∗
Δv∗

)
+
v∗(v − v∗)

d2

(
g(u, v)

v
− g(u∗, v∗)

v∗

)]
dx

≤
∫
Ω

u∗(u− u∗)

d1

(
f(x, u, v)

u
− f(x, u∗, v∗)

u∗

)
dx

+ η

∫
Ω

v∗(v − v∗)

d2

(
g(u, v)

v
− g(u∗, v∗)

v∗

)
dx.

By the definition of f and g in (2.7), we derive

dG(t)

dt
≤
∫
Ω

u∗(u− u∗)

d1

(
−u− bv

1 + ru
+ u∗ +

bv∗
1 + ru∗

)
dx

+

∫
Ω

η
v∗(v − v∗)

d2
μ

(
−v

u
+

v∗
u∗

)
dx

=

∫
Ω

−u∗[(1+ru)(1+ru∗)−brv∗](u−u∗)
2 − bu∗(1+ru∗)(u−u∗)(v−v∗)

d1(1+ru)(1+ru∗)
dx

+

∫
Ω

ημv2∗(u− u∗)(v − v∗)− ημu∗v∗(v − v∗)
2

d2uu∗
dx

=

∫
Ω

E

d1d2uu∗(1 + ru)(1 + ru∗)
dx,

with

E :=− d2uu
2
∗[(1+ru)(1+ru∗)−brv∗](u−u∗)

2−bd2uu
2
∗(1+ru∗)(u−u∗)(v−v∗)

+ d1(1 + ru)(1 + ru∗)[ημv
2
∗(u− u∗)(v − v∗)− ημu∗v∗(v − v∗)

2]

=A(u− u∗)
2 +B(u− u∗)(v − v∗) + C(v − v∗)

2,

where

A :=− d2uu
2
∗[(1 + ru)(1 + ru∗)− brv∗], C := −d1ημu∗v∗(1 + ru)(1 + ru∗),

B :=− bd2uu
2
∗(1 + ru∗) + d1ημv

2
∗(1 + ru)(1 + ru∗).
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Next we choose a suitable η > 0 such that 2
√
AC > |B|, which then yields

dG(t)

dt
≤ −
∫
Ω

δ(u− u∗)
2 + δ(v − v∗)

2

d1d2uu∗(1 + ru)(1 + ru∗)
dx =: ψ(t) ≤ 0,(2.21)

for some 0 < δ 
 1. Denote d̄i = maxx∈Ω di(x), di = minx∈Ω di(x) and

η =

√
d2d̄2(u∞ − ε)(ū∞ − ε)u3

∞ū∞
d1d̄1v∞v̄3∞

b

μ[1 + r(u∞ − ε)]

for some small ε > 0. From (2.18), there exists T > 1 such that u(x, t) ≥ u∞ − ε
and v(x, t) ≥ v∞ − ε for all t ≥ T . A simple calculation gives

2
√
AC − |B| ≥ 2

√
AC − [bd2uu

2
∗(1 + ru∗) + d1ημv

2
∗(1 + ru)(1 + ru∗)]

=2
√
d1d2ημuu3

∗v∗(1 + ru)(1 + ru∗)[(1 + ru)(1 + ru∗)− brv∗]

− [bd2uu
2
∗(1 + ru∗) + d1ημv

2
∗(1 + ru)(1 + ru∗)]

=(1 + ru)(1 + ru∗)
√
d1d2uu3

∗v∗

[
2

√
ημ− bημrv∗

(1 + ru)(1 + ru∗)

−
(
b

√
d2uu∗
d1v∗

1

1 + ru
+ ημ

√
d1v3∗
d2uu3

∗

)]

= : E1

[
2

√
ημ− bημrv∗

(1 + ru)(1 + ru∗)
−
(
b

√
d2uu∗
d1v∗

1

1 + ru
+ ημ

√
d1v3∗
d2uu3

∗

)]
.

Taking advantages of (2.18), v∞ = u∞, v̄∞ = ū∞ and the definition of η, we derive
that for t ≥ T ,

2
√
AC − |B| ≥ E1

[
2

√
ημ− bημrv̄∞

[1 + r(u∞ − ε)](1 + ru∞)

−

⎛
⎝b
√

d̄2(ū∞ − ε)ū∞
d1v∞

1

1 + r(u∞ − ε)
+ ημ

√
d̄1v̄3∞

d2(u∞ − ε)u3
∞

⎞
⎠]

=E1

⎛
⎜⎝2
√
ημ− bημrv̄∞

[1+r(u∞−ε)](1 + ru∞)
−2

√√√√ bημ

1+r(u∞−ε)

√
d̄1d̄2(ū∞−ε)ū∞v̄3∞
d1d2(u∞−ε)u3

∞v∞

⎞
⎟⎠

=E1

⎛
⎜⎝2
√
ημ− bημrū∞

[1+r(u∞−ε)](1+ru∞)
−2

√√√√ bημ

1+r(u∞−ε)

√
d̄1d̄2(ū∞−ε)ū4

∞
d1d2(u∞ − ε)u4

∞

⎞
⎟⎠ .

Then 2
√
AC−B > 0 follows from (1.6) (with ε → 0) and (a−u)(1+ ru) = bū (See

(2.12)). Thus (2.21) holds for t ≥ T .
Next we show the global stability of the positive steady state solution (u∗, v∗).

By (2.3) and the definition of ψ(t), we see that |ψ′(t)| < C1 in t ∈ [T,∞) for some
C1 > 0. Then it follows from Lemma 2.5 that

lim
t→∞

ψ(t) = −
∫
Ω

δ(u− u∗)
2 + δ(v − v∗)

2

d1d2uu∗
dx = 0.
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Recalling that u(t, x) ≥ ε2 > 0 for t ≥ T1 by (2.2), we have

lim
t→∞

u(x, t) = u∗(x), lim
t→∞

v(x, t) = v∗(x) in L2(Ω).(2.22)

The estimate (2.3) also implies that the set {u(·, t) : t ≥ 1} is relatively compact in
C2(Ω). Therefore, we may assume that

‖u(x, tk)− ũ(x)‖C2(Ω), ‖v(x, tk)− ṽ(x)‖C2(Ω) → 0 as tk → ∞

for some functions ũ, ṽ ∈ C2(Ω). Combining this with (2.22), we could conclude
that ũ(x) ≡ u∗(x) and ṽ(x) ≡ v∗(x) for x ∈ Ω. Thus limt→∞ u(x, t) = u∗(x) and
limt→∞ v(x, t) = v∗(x) in C2(Ω). The proof is finished. �

Remark 2.7. The condition (1.6) for the global stability of positive steady state is an
implicit one as the quasi-steady state (ū∞, u∞, v̄∞, v∞) cannot be solved explicitly
except when r = 0 (see (1.7)). We observe that (1.6) holds in the following cases:

(1) b > 0 is sufficiently small. In fact, from (2.12) we see ū∞ ≈ ā− u∞
(1+rū∞)b → ā

and u∞ ≈ a− ū∞
(1+ru∞)b → a as b → 0 since ū∞, u∞ ∈ [0, ā]. Hence,

(1 + 2ru∞ − ra)

(
u∞
ū∞

)5/2

→ (1 + ra) (a/ā)
5/2

as b → 0,

which immediately implies that (1.6) is satisfied for small b > 0.
(2) aA = ā − a is sufficiently small. For any M > 1, there exists ã > 0 such

that when 0 < aA < ã, we have ū∞/u∞ < M . Then (1.6) holds if b satisfies

b < (1 + 2ru∞ − ra)

[
min d1(x)min d2(x)

max d1(x)max d2(x)

]1/2
M−5/2.(2.23)

Remark 2.8. A condition for the global stability of positive steady state solution
of (1.1) weaker than (1.6) is possible. In the proof of Theorem 1.1 (iii), we use
|B| ≥ bd2uu

2
∗(1+ ru∗)+d1ημv

2
∗(1+ ru)(1+ ru∗). By applying |B| = |− bd2uu

2
∗(1+

ru∗) + d1ημv
2
∗(1 + ru)(1 + ru∗)|, one may derive a weaker restriction on b. In fact,

a similar calculation as above yields,

2
√
AC−|B|=E1

[
2

√
ημ− bημrv∗

(1 + ru)(1 + ru∗)
−
∣∣∣∣∣−b

√
d2uu∗
d1v∗

1

1 + ru
+ημ

√
d1v3∗
d2uu3

∗

∣∣∣∣∣
]

=E1
√
η

[
2

√
μ− bμrv∗

(1 + ru)(1 + ru∗)
− μ

√
d1v3∗
d2uu3

∗

∣∣∣∣− bd2uu
2
∗

μd1v2∗(1 + ru)

1
√
η
+
√
η

∣∣∣∣
]
> 0,

for large t > 0, if

b < 8
D1 +D2

(D2 −D1)2
min d2(x)

max d1(x)

(1 + 2ru∞ − ra)u4
∞

(1 + ru∞)ū3
∞

,(2.24)

with

D1 :=
u3
∞ min d2(x)

ū2
∞(1 + rū∞)max d1(x)

, D2 :=
ū3
∞ max d2(x)

u2
∞(1 + ru∞)min d1(x)

,

where we have used the fact that (a − u)(1 + ru) = bū (see (2.12)) and for any
μ > 0,

inf
k>0

max
D∈[D1,D2]

∣∣∣∣k − bD/μ

k

∣∣∣∣ = bD2/μ− bD1/μ√
2(bD1/μ+ bD2/μ)

=
√

b/μ
D2 −D1√
2(D1 +D2)

.
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Clearly, D1−D2 = 0 if di and m are constants, and hence (2.24) holds if 1+2ru∞−
ra > 0 which is weaker than (1.6). Thus (2.24) is a good alternative for (1.6) when
ā− a, max di −min di and r are small.
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