
Journal of Mathematical Biology (2020) 80:655–686
https://doi.org/10.1007/s00285-019-01437-1 Mathematical Biology

Model of pattern formation in marsh ecosystems
with nonlocal interactions

Sofya Zaytseva1,3 · Junping Shi2 · Leah B. Shaw2

Received: 16 April 2019 / Revised: 23 September 2019 / Published online: 12 October 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Smooth cordgrass Spartina alterniflora is a grass species commonly found in tidal
marshes. It is an ecosystemengineer, capable ofmodifying the structure of its surround-
ing environment through various feedbacks. The scale-dependent feedback between
marsh grass and sediment volume is particularly of interest. Locally, the marsh vege-
tation attenuates hydrodynamic energy, enhancing sediment accretion and promoting
further vegetation growth. In turn, the diverted water flow promotes the formation of
erosion troughs over longer distances. This scale-dependent feedback may explain
the characteristic spatially varying marsh shoreline, commonly observed in nature.
We propose a mathematical framework to model grass–sediment dynamics as a sys-
tem of reaction–diffusion equations with an additional nonlocal term quantifying the
short-range positive and long-range negative grass–sediment interactions. We use a
Mexican-hat kernel function to model this scale-dependent feedback. We perform a
steady state biharmonic approximation of our system and derive conditions for the
emergence of spatial patterns, corresponding to a spatially varying marsh shoreline.
We find that the emergence of such patterns depends on the spatial scale and strength of
the scale-dependent feedback, specified by thewidth and amplitude of theMexican-hat
kernel function.
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1 Introduction

Tidal marshes are among the richest and most productive ecosystems, supporting a
variety of wildlife, serving as storm and erosion buffers, and playing an important
role in improving water quality (Perry and Atkinson 2009; Fagherazzi et al. 2013;
Fagherazzi 2014). The global loss of these ecosystems in the recent decades has
motivated much research to understand their dynamics and aid in their restoration and
management (Deegan et al. 2012; Priestas et al. 2015). Marsh evolution is dynamic
and complex, combining various biological and morphological processes happening
not only in the marsh itself, but also in the tidal flat that borders it. As a result of these
forces and interactions, a sharp scarp separating the marsh and tidal flat becomes a
characteristic feature (Mariotti and Fagherazzi 2010). The processes that take place on
this scarp (i.e., marsh edge) influence whether the marsh recedes or expands (Tonelli
et al. 2010). Various configurations of the marsh edge can be observed in nature,
ranging fromauniform to amore jaggedy, sinusoidal shoreline (Fig. 1).While previous
ecogeomorphic models have carefully considered the effects of sea-level rise, marsh
vegetation colonization,wave activity, sedimentfluxes, andunderlyinghydrodynamics
(Mariotti andFagherazzi 2010; Tonelli et al. 2010; Fagherazzi et al. 2012; Schile 2014),
most of these have been numerical, computationally intensive models. We propose a
simpler, phenomenological model to describe the large-scale evolution of the marsh
in the horizontal direction in terms of two-way interactions between marsh vegetation
and sedimentation. In particular, we are interested in the scale-dependent feedback
present betweenmarsh vegetation and sedimentation andwhether this scale-dependent
feedback can explain the spatially varying marsh shoreline, observed in nature.

Scale-dependent feedbacks are characterized by the presence of positive and nega-
tive interactions that happen at different spatial scales. In particular, scale-dependent
feedbacks involving long-range negative interactions and short-range positive inter-
actions are thought to be crucial for pattern development (Gierer and Meinhardt 1972;
Green and Sharpe 2015; Hiscock and Megason 2015), explaining spatially varying
patterns in chemical (Castets et al. 1990; Rovinsky and Menzinger 1993), biological
(Nakamasu et al. 2009; Raspopovic et al. 2014) and ecological systems (Rietkerk
and van de Koppel 2008). In ecological systems, such scale-dependent feedbacks are
thought to explain patterns in arid savannas, mussel beds, coral and oyster reefs, mud-
flats and other ecosystems (Rietkerk and van de Koppel 2008; van der Heide et al.
2012; Dibner et al. 2015; de Jager et al. 2017; Pringle and Tarnita 2017; Barbier et al.
2008). Previously, we proposed amathematical framework to investigate the evolution
of the marsh edge as a result of scale-dependent interactions between sedimentation
dynamics and two common marsh species, ribbed mussels (Geukensia demissa) and
smooth cordgrass (Spartina alterniflora) (Zaytseva et al. 2018), whose facilitatory
nature and positive feedbacks have a significant effect on marsh development and pro-
liferation (Bertness 1984; Bertness and Grosholz 1985; Watt et al. 2010; Altieri et al.
2007). While mussels are commonly found in tidal marshes, that is not always the
case. Since we are interested in the marsh edge dynamics in the absence of mussels,
in this paper we focus on the related model without the mussel population. The goal
is to understand which conditions lead to a spatially varying marsh shoreline (Fig. 1a)

123



Model of pattern formation in marsh ecosystems 657

Fig. 1 a Self-organization on the marsh edge in the York River, a tributary of the Chesapeake Bay. Credit:
Romuald N. Lipcius, Chris Neill. b Uniform marsh edge. Credit: NOAA National Ocean Service (color
figure online)

versus a spatially uniform marsh shoreline (Fig. 1b) and what may be the implications
of this spatial heterogeneity.

In general, there are three classes of deterministicmodels that explain pattern forma-
tion as a result of scale-dependent feedbacks: Turing-style activator–inhibitor models,
kernel-based models and differential flow models (Borgogno et al. 2009). In Turing-
style activator–inhibitor models, the pattern formation arises as a result of differences
in the diffusion coefficients of the activator and inhibitor species (Turing 1952; White
1998; Parshad et al. 2014). Kernel-based models are typically integro-differential
equations where the pattern formation arises from the spatial interactions modeled
using a kernel function, describing the nature of the short-range and long-range inter-
actions (Britton 1990; Gourley et al. 2001; Murray 2001; Billingham 2003; Ninomiya
et al. 2017). This kernel-based approach is a common feature in neural models (Amari
1977), and has also been used in models of vegetation patterns in arid and semi-arid
climates (D’Odorico et al. 2006; Borgogno et al. 2009; Merchant and Nagata 2011;
Martínez-García et al. 2013, 2014; Martínez-García and Lopez 2018). Finally, differ-
ential flow models are similar to Turing models but the pattern formation now arises
not just from the differences in diffusion coefficients, but also from the differences in
the flow rates of the species, reflected in the additional advection terms (Rovinsky and
Menzinger 1993; Siero et al. 2015; Klausmeier 1999).
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The model we propose here combines elements of both the Turing-model and
the kernel-based model and includes both diffusion terms and a kernel function
that describes the short-range and long-range interactions between marsh grass and
sediment volume. On a local scale, marsh grass attenuates hydrodynamic energy,
enhancing sediment accretion and promoting further vegetation growth while the
diverted water flow promotes formation of erosion troughs over longer distances
(Bouma et al. 2007; Balke et al. 2012; Schwarz et al. 2015). We model this scale-
dependent feedback using a Mexican-hat kernel function that quantifies the strength
of positive andnegative feedbacks neighboring individuals exert on eachother (Fuentes
et al. 2003; D’Odorico et al. 2006; Borgogno et al. 2009; Siebert and Schöll 2015).
Similar kernel-based approaches have been used to model nonlocal interactions in
the context of predator–prey and competition dynamics (Merchant and Nagata 2011;
Bayliss and Volpert 2015; Banerjee and Volpert 2016). The interactions in our system
are mostly cooperative and the impact of nonlocal interactions in such systems have
not been studied in depth. Given the importance of facilitation in ecosystem dynam-
ics (Bertness and Callaway 1994; Halpern et al. 2007; Silliman et al. 2015; He et al.
2013), it therefore becomes imperative to study nonlocal interactions in cooperative
systems. In addition, cooperative systems are likely to display bistable dynamics and
the phenomenon of hysteresis (Kéfi et al. 2016; van de Koppel et al. 2001). This makes
such systems especially prone to collapsing to an irreversible state as environmental
conditions gradually worsen and a tipping point is reached (Dakos et al. 2011; Kéfi
et al. 2014, 2016). Pattern formation has previously been suggested as a possible cop-
ing mechanism, allowing such systems to escape degradation past their tipping point
(Chen et al. 2015). Due to the reported degradation of tidal marsh habitats around the
world, the study of pattern formation in these systems becomes particularly important
and can provide more insight into the possible pattern forming mechanism and its
implication for the system’s resilience and adaptation to environmental changes.

Our paper is organized as follows: in Sect. 2, we introduce the nonlocal reaction–
diffusion model and the background from ecological literature. Section 3 includes
analysis and simulation results. By approximating our model using a steady state
biharmonic approximation, we are able to derive conditions for the emergence of
spatial patterns in our system. We then use numerical simulations to confirm our
theoretical findings. Some concluding remarks are made in Sect. 4.

2 Model

We consider the two-way interactions between marsh grass and sediment (Fig. 2).
Marsh grass binds sediment, stabilizes the marsh edge and attenuates wave energy,
helping to mitigate effects of erosion (Gleason et al. 1979; Gedan et al. 2011; Ysebaert
et al. 2011; Möller et al. 2014). As a consequence of reduced erosion, the increased
sediment levels promote vegetation growth by decreasing tidal currents (Nyman et al.
1993; van de Koppel et al. 2005b). Along with these local interactions, there is a non-
local interaction that occurs betweenmarsh vegetation and sediment (vanWesenbeeck
et al. 2008; Schwarz et al. 2015; Bouma et al. 2009; Van Hulzen et al. 2007). Over
short distances, marsh vegetation enhances sediment accretion through the attenuation
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Fig. 2 Diagram of grass–sediment interactions adapted from (Bertness 1984) (color figure online)

of hydrodynamic energy, contributing to short-range activation. However, as the water
gets diverted to the surrounding areas, those areas erode more quickly, contributing
to long-range inhibition (Bouma et al. 2007; Balke et al. 2012; Bouma et al. 2013;
Fagherazzi et al. 2013; Fagherazzi 2014).

Incorporating all the abovementioned interactions, we obtain the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τ Ĝ = D̂Ĝ∂2x Ĝ + Ĝ
(
F̂(Ŝ) − cĜ

)

︸ ︷︷ ︸
Logistic growth

, x ∈ R, τ > 0,

∂τ Ŝ = D̂Ŝ∂2x Ŝ + η
︸︷︷︸

Deposition

− Ŝ L̂(Ĝ)
︸ ︷︷ ︸
Erosion

+ λ̂Ŝ
∫ ∞
−∞

P(x ′)Ĝ(x − x ′)dx ′
︸ ︷︷ ︸

Nonlocal deposition/erosion

, x ∈ R, τ > 0,

Ĝ(x, 0) = Ĝ0(x, 0) ≥ 0, Ŝ(x, 0) = Ŝ0(x, 0) ≥ 0, x ∈ R.

(2.1)

where

F̂(Ŝ) = p∗(Ŝ − l1)

Ŝ + l∗1
, L̂(Ĝ) = ψ(Ĝ + ksg)

Ĝ + ks
,

with
p∗, c, l1, l∗1 , ψ, ks, g, η, λ̂ ≥ 0.

Weconsider the change in grass shoot density Ĝ(x, t) (shoots/m2) and sediment height
Ŝ(x, t) (m) on an infinite domain with x ∈ R, which represents the one-dimensional
horizontal cross-section of the marsh edge (see Fig. 3a). We assume logistic growth
for the grass equation and make an adjustment for the obligatory nature of grass–
sediment interactions. This is reflected in the functional form of F̂(Ŝ), which describes
the intrinsic growth rate of grass as a function of sediment height. A biologically
realistic assumption is that a certain minimum amount of sediment/soil is necessary
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Fig. 3 Illustration of a the cross-section of marsh edge used to model the marsh dynamics, b Mexican-hat
kernel and scale-dependent feedback adapted from (Rietkerk and van de Koppel 2008) (color figure online)

for plants to grow. Therefore, the term F̂(Ŝ) ensures that for sediment heights less than
some threshold l1, grass cannot persist and the growth rate becomes negative. For the
sediment equation, we include the baseline sediment deposition η (van de Koppel et al.
2005a; Liu et al. 2012, 2014). The erosion term L̂(Ĝ) is assumed to be a decreasing
function of grass density Ĝ, decaying to some non-zero erosion rate ψ for very large
grass densities. The parameter g > 1 controls the erosion intensity with the erosion
rate ψg corresponding to the maximum erosion rate in the total absence of grass. This
is consistent with previous findings where erosion was greatest in the absence of grass
(Mariotti and Fagherazzi 2010; Silliman et al. 2012). This choice of the function L̂(Ĝ)

ensures the non-negativity of the erosion rate and accounts for a biologically realistic
scenario of a persistent baseline erosion rate. In addition, each equation also includes
a diffusion term to quantify spread along the shoreline with diffusion coefficients D̂Ĝ

and D̂Ŝ . To model the scale-dependent interactions, we use a convolution term with a
Mexican-hat kernel function P(x):

P(x) = 1√
2π

[
1

σ1
exp

(

− x2

2σ 2
1

)

− 1

σ2
exp

(

− x2

2σ 2
2

)]

, σ1 < σ2. (2.2)

The choice of the kernel function is appropriate given the nature of the scale-dependent
feedback with short-range positive interactions and long-range negative interactions
(Fig. 3b). There are three main parameters that control the shape of the kernel: λ̂,
which modulates the amplitude and variances σ 2

1 and σ 2
2 , which specify the scale of

the excitatory and inhibitory interactions, respectively. Further, the kernel function
P(x) is symmetric and satisfies the following property:

∫ ∞

−∞
P(x)dx = 0. (2.3)

For mathematical simplification, we non-dimensionalize system (2.1) by using the
following rescaling:

t = p∗τ, G = c

p∗ Ĝ, S = ψg

η
Ŝ.
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Then the original system (2.1) becomes:
⎧
⎪⎪⎨

⎪⎪⎩

∂t G = DG∂2x G + G
(
F(S) − G

)
, x ∈ R, t > 0,

∂t S = DS∂2x S + φ
(

− L(G)S + 1
)

+ λS
∫ ∞
−∞ P(x ′)G(x − x ′)dx ′, x ∈ R, t > 0,

G(x, 0) = G0(x, 0) ≥ 0, S(x, 0) = S0(x, 0) ≥ 0, x ∈ R.

(2.4)

with

F(S) = S − e1
S + p1

, L(G) = δG + e3
G + e3

, (2.5)

and P(x) still defined as before. The new parameters are all positive with the following
rescaling:

e1 = ψgl1
η

, p1 = ψgl∗1
η

, e3 = ksc

p∗ , δ = 1

g

φ = ψg

p∗ , DG = D̂G

p∗ , DS = D̂S

p∗ , λ = λ̂

c
.

Not only does this rescaling simplify the notation, but it also allows for an easier
interpretation of the functional forms of F(S) and L(G) (see Fig. 10 in “Appendix”
section). The scaled intrinsic growth rate of grass is now between 0 and 1, and we
can think of the threshold e1 as the minimum amount of sediment necessary for the
persistence of grass. Similarly, the erosion term given by L(G) is scaled to be between
δ and 1 for ease of interpretation.

3 Results

In classic Turing models, spatially patterned solutions result from symmetry-breaking
instability in which an otherwise stable spatially uniform steady state can become
destabilized by the addition of diffusion and lead to the emergence of spatial patterns.
The condition for the emergence of spatial patterns is contingent on the idea that the
species in the model diffuse at significantly different rates, with the activator species
diffusing much more slowly than the inhibitor species. The conditions for such a
Turing-instability can be derived by performing a linear stability analysis around the
positive steady state to obtain conditions under which the addition of diffusion acts to
destabilize the system. Our model differs from the classic Turing model in that it lacks
the classic activator–inhibitor dynamics and includes an additional kernel function
term that models the scale-dependent feedback between grass and sediment volume.
Assuming that the kernel function has a limited effect at relatively large distances, we
can perform a biharmonic approximation of our system and decompose the integral
term into two terms involving just partial derivatives, corresponding to short-range
positive interactions and long-range negative interactions.We can then performa linear
stability analysis around the positive steady state and derive conditions under which
this state is destabilized and leads to the emergence of a spatially periodic solution.
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Therefore, we first consider the spatially independent dynamics of our model and
derive conditions under which the positive steady state is stable in the corresponding
system of ODEs and then use these results to understand the spatial dynamics of the
full model.

3.1 Spatially homogeneousmodel

Let’s assume that G and S do not vary and are spatially constant. Then, we can use
the property in (2.3) and drop both the diffusion and integral terms. In this way, we
are left with the following spatially independent system:

{
dG
dt = G

(
F(S) − G

)
, t > 0,

dS
dt = φ(− L(G)S + 1), t > 0.

(3.1)

We look for spatially uniform steady states (G∗, S∗) of (3.1) which satisfy dG
dt = 0

and dS
dt = 0. There are two such types of steady states: the degraded (grass-free)

state ES = (0, 1) and the coexistence state EGS = (G∗, 1
L(G∗) ) with both grass

and sediment present, where G∗ satisfies G = F( 1
L(G)

). Since we are interested in
physically realistic positive steady states, the coexistence state EGS exists if and only
if 1

L(G∗) > e1.
We first consider the degraded state ES = (0, 1) and its stability. This result is

summarized below.

Proposition 3.1 Thedegraded steady state ES = (0, 1) is locally asymptotically stable
with respect to (3.1) if e1 > 1 and is unstable with respect to (3.1) if e1 < 1.

Proof The Jacobian matrix J of (3.1) evaluated at ES = (0, 1) is given by:

JES =
[

F(1) 0

−φ dL
dG −φL(0)

]

.

The two corresponding eigenvalues areλ1 = F(1) = 1−e1
1+p1

andλ2 = −φL(0) = −φ.

It is clear that λ2 is always negative. Further, λ1 = 1−e1
p1+1 is negative for e1 > 1.

Therefore, the steady state ES is locally asymptotically stable for e1 > 1 and unstable
for e1 < 1. �	

The parameter e1 is the minimal steady state sediment elevation needed for the
persistence of grass. For the trivial steady state ES = (0, 1), as long as e1 > 1, its
value will exceed the steady state value of sediment, leading to a negative growth rate
for grass and a stable trivial state.

We now consider the positive coexistence steady state EGS =
(
G∗, 1

L(G∗)

)
where

G∗ satisfies G = F
(

1
L(G)

)
and obtain the following theorem:
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Theorem 3.2 Suppose that p1, e1, e3, φ > 0 and 0 < δ < 1. Let

A = 1 + p1δ, B = − 1 + e3 + p1e3. (3.2)

1. (Case I) If B + δ < 0, then there exists a saddle-node bifurcation point e1 =
e∗
1 > 1 such that (3.1) has one positive steady state (G∗+, 1

L(G∗+)
) for 0 < e1 ≤ 1

and e1 = e∗
1 , two positive steady states (G∗±, 1

L(G±)
) for 1 < e1 < e∗

1 , and no
positive steady state for e1 > e∗

1 . The bifurcation point e
∗
1 is defined as follows:

e∗
1 =

2e3A(δ2 + Bδ − Ae3) + (2Ae3 − Bδ)

√

A2e23 − Ae3δ(B + δ)

δ2
√

A2e23 − Ae3δ(B + δ)

. (3.3)

2. (Case II) If B+δ ≥ 0, then there exists a unique positive steady state (G∗+, 1
L(G∗+)

)

for all 0 < e1 < 1, and no positive steady state for e1 ≥ 1.

Proof We can rewrite G = F( 1
L(G)

) as

G =
1

L(G)
− e1

1
L(G)

+ p1

�⇒ e1 = 1 − G

L(G)
− p1G

�⇒ e1 = e3 − BG − AG2

Gδ + e3
:= K (G), (3.4)

where A and B are defined as in (3.2). The function K (G) from (3.4) crosses the
horizontal axis at

G±
K = −B ± √

B2 + 4e3A

2A
. (3.5)

Since A ≥ 0, the roots in (3.5) have to be of opposite sign. Therefore, the graph of
K (G) has one positive and one negative root. Note that the vertical asymptote of K (G)

is irrelevant as it is located where G is negative and outside of the physically realistic
range.

Differentiating K (G) in (3.4) with respect to G yields:

K ′(G) = −B − 2AG − δK (G)

δG + e3
= −AG(2e3 + δG) − e3(B + δ)

(δG + e3)2

= −L(G) − L ′(G)(1 − G)

L(G)2
− p1,

(3.6)
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1

e∗
1

Grass

K(G)

Case I

(a)

1

Grass

K(G)

Case II

(b)

Fig. 4 Schematics representations of parameter regimes for the positive coexistence steady state EGS . Case
I corresponds to the scenario where marsh vegetation is very efficient at reducing erosion and e3 < 1−δ

1+p1
.

The horizontal values represent various values of e1. We see that for e1 > 1, we have two real, positive
steady states. They eventually collide and disappear in a saddle node bifurcation e∗1. For Case II, the case
of less efficient vegetation, we see that for e1 ≥ 1, there are no positive steady states and for e1 < 1, there
is only one

and

K (0) = 1, K ′(0) = −(B + δ)

e3
, (3.7)

Further, we can set K ′(G) = 0 to obtain the maximum and minimum points of the
function:

G̃± =
−e3 ±

√

e23 − e3δ(B+δ)
A

δ
. (3.8)

We then have two cases arising depending on the sign of K ′(0) in (3.7) (Fig. 4).

Case IThefirst case corresponds to B+δ < 0 and amore physically realistic parameter
regime where grass is more effective at attenuating erosion. In this parameter regime,
δ is smaller and therefore, the erosion rate decays faster as a function of grass. From
(3.8), it is clear that G̃− < 0 < G̃+ and there exists only one peak for positive values
of G, given by the value of G̃+. Further, since K (0) = 1, this means that for e1 < 1,
there exists only one positive steady state and for e1 > 1, there exist two positive
steady states (Fig. 4a). The two positive steady states collide and annihilate each other
at the saddle-node bifurcation point e∗

1, given by:

e∗
1 = K (G̃+) =

2e3A(δ2 + Bδ − Ae3) + (2Ae3 − Bδ)

√

A2e23 − Ae3δ(B + δ)

δ2
√

A2e23 − Ae3δ(B + δ)

.

Case IICase II corresponds to B+δ ≥ 0, a parameter regime inwhich cordgrass is less
effective at attenuating sediment erosion. From (3.8), it is clear that G̃− < G̃+ < 0
and there exist no peaks for positive values of G. Therefore, since K (0) = 1, for
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e1 < 1, we have one positive steady state, while for e1 > 1 there is no positive steady
state (Fig. 4b). �	

Now that we know how many positive steady states can be expected, we evaluate
their stability and obtain the following theorem:

Theorem 3.3 Suppose that p1, e1, e3, φ > 0, 0 < δ < 1 and let A and B be defined
as in (3.2). For the positive steady states EGS = (G∗±, S∗±) defined as:

G∗± = −(e1δ + B) ± √
(e1δ + B)2 − 4Ae3(e1 − 1)

2A
,

S∗± = G∗± + e3
δG∗± + e3

,

(3.9)

we have the following cases:

1. (Case I) Let B + δ < 0. For 1 < e1 < e∗
1 where e

∗
1 is defined as in (3.3), the high

density positive steady state (G∗+, 1
L(G∗+)

) is locally asymptotically stable and the

low density positive steady state (G∗−, 1
L(G∗−)

) is unstable. For 0 < e1 ≤ 1, there

is only one positive steady state (G∗+, 1
L(G∗+)

) which is locally asymptotically

stable.
2. (Case II) Let B + δ ≥ 0. Then, for all 0 < e1 < 1, the unique positive steady

state (G∗+, 1
L(G∗+)

) is locally asymptotically stable.

Proof We first evaluate the Jacobian matrix J of system (3.1) at the positive steady
state EGS . This is given by:

J(EGS) =
[

−G∗ G∗F ′( 1
L(G∗) )

−φ 1
L(G∗) L

′(G∗) −φL(G∗)

]

.

This is just the general form of the Jacobian evaluated at the positive steady state type.
From Theorem 3.2, we can have either two such positive states (high and low) or just
one, depending on the parameter regime. We will consider both cases in this proof.
We note the special form of the Jacobian matrix, reflecting the cooperative nature of
our system:

J =
[− +
+ −

]

.

From J, we can define the trace and determinant as follows:

Tr J = −G∗ − φL(G∗),

Det J = φG∗L(G∗) + φ
1

L(G∗)
G∗L ′(G∗)F ′( 1

L(G∗)

)
.
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In order for EGS to be locally asymptotically stable, we need Tr J < 0 and Det J > 0.
Since L(G∗) ≥ 0 and G∗ is a positive quantity, the trace of J is always negative. Note
that since Tr J < 0, a Hopf bifurcation cannot occur from the positive steady state.
Therefore, to assess stability, we need to determine the sign of Det J. Using (3.4) and
(3.6), we can rewrite Det J in terms of K ′(G) to obtain:

Det J = φG∗(L(G∗) + 1

L(G∗)
L ′(G∗)F ′( 1

L(G∗)

))

= φG∗(L(G∗) + 1

L(G∗)
L ′(G∗) p1 + e1

(
1

L(G∗) + p1
)2

)

= φG∗(L(G∗) + 1

L(G∗)
L ′(G∗)

p1 + 1−G∗
L(G∗) − p1G∗

(
1

L(G∗) + p1
)2

)

= φG∗(L(G∗) + L ′(G∗)(1 − G∗)
1 + L(G∗)p1

)

= φG∗(−K ′(G∗)L2(G∗)
1 + L(G∗)p1

)
.

From Eq. (3.4), we can solve the steady states explicitly as in (3.9). We now consider
two cases from Theorem 3.2. For Case I, both low and high steady states (G∗+, S∗+) and
(G∗−, S∗−) are positive, while for Case II, only the high positive steady state (G∗+, S∗+)

is positive. These are the steady states we consider and assess their stability.
Case I For Case I (B + δ < 0), we have the following scenarios:

• (i) For 1 < e1 < e∗
1, there are two positive steady states (G∗+, S∗+) and (G∗−, S∗−).

From the definitions of the steady states in (3.9), it follows that

−e1δ − B >
√

(e1δ + B)2 − 4Ae3(e1 − 1) > 0,

(e1δ + B)2 > 4A(e1e3 − e3).
(3.10)

Evaluating K ′(G) from Eq. (3.6) at G = G∗+ and G = G∗− yields:

K ′(G∗+) = −2δ(− e1δ − B)2 − 2δ(− e1δ − B)C + 8δAe3(e1 − 1) − 4Ae3C

4A(δG∗+ + e3)2
,

K ′(G∗−) = −2δ(− e1δ − B)2 + 2δ(− e1δ − B)C + 8δAe3(e1 − 1) + 4Ae3C

4A(δG∗− + e3)2
,

(3.11)

with
C =

√
(e1δ + B)2 − 4Ae3(e1 − 1) > 0.
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Using conditions from (3.10), we can show:

K ′(G∗+) = −2δ(− e1δ − B)2 − 2δ(− e1δ − B)C + 8δAe3(e1 − 1) − 4Ae3C

4A(δG∗+ + e3)2

<
−2δ(− e1δ − B)2 − 2δ(− e1δ − B)C + 2δ(e1δ + B)2 − 4Ae3C

4A(δG∗+ + e3)2

= −2δ(− e1δ − B)C − 4Ae3C

4A(δG∗+ + e3)2
< 0, (3.12)

and

K ′(G∗−) = −2δ(− e1δ − B)2 + 2δ(− e1δ − B)C + 8δAe3(e1 − 1) + 4Ae3C

4A(δG∗− + e3)2

>
−2δ(− e1δ − B)2 + 2δC2 + 8δAe3(e1 − 1) + 4Ae3C

4A(δG∗− + e3)2

= 4Ae3C

4A(δG∗− + e3)2
> 0. (3.13)

Therefore, since K ′(G) < 0 on the (G∗+, S∗+) branch, Det J evaluated at (G∗+, S∗+)

is positive and (G∗+, S∗+) is locally asymptotically stable. Similarly, since K ′(G) >

0 on the (G∗−, S∗−) branch, Det J evaluated at (G∗−, S∗−) is negative and (G∗−, S∗−)

is unstable.
• (ii) For 0 < e1 ≤ 1, there is only one positive steady state branch corresponding
to (G∗+, 1

L(G∗+)
). Further, we can show that

0 < −δ − B < −e1δ − B.

From (3.11), it then follows that K ′(G∗+) < 0. Since Det J evaluated at (G∗+, S∗+)

is positive, (G∗+, S∗+) is locally asymptotically stable.

Case II For Case II (B + δ ≥ 0), there is a unique positive steady state branch
corresponding to (G∗+, S∗+). From Eq. (3.6) it is clear that K ′(G) < 0 for all positive
values of G. Therefore, since Det J evaluated at (G∗+, S∗+) is positive, the steady state
(G∗+, S∗+) is locally asymptotically stable. �	

The results from Proposition 3.1, Theorems 3.2 and 3.3 are summarized in Fig. 5.
In Case I, the system displays bistability for values 1 < e1 < e∗

1, where both the high
positive steady state and the trivial steady state are stable, separated by an unstable
positive steady state branch. The two positive steady states thenmerge in a saddle-node
bifurcation at e∗

1, after which only the stable trivial steady state ES remains. Bistability
is not surprising given the highly cooperative nature of this system and large role that
the grass plays in erosion mitigation. In Case II, which corresponds to the scenario
where grass is less effective at attenuating erosion, the unique stable positive state
gradually decreases and eventually undergoes a transcritical bifurcation at e1 = 1 at
which it exchanges stability with the trivial steady state ES . Note that the positive
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Fig. 5 Bifurcation diagrams plotted using MatCont (Dhooge et al. 2008) for Case I with a saddle-node
(SNB) bifurcation happening at e1 = 1.16 and a transcritical (TB) bifurcation happening at e1 = 1 and
Case II with only a transcritical bifurcation happening at e1 = 1. Parameters used in Case I: p1 = 3.5, φ =
0.14, e3 = 0.1140, δ = 1/7. Parameters used in Case II: p1 = 0.5, φ = 0.14, e3 = 0.5, δ = 0.3 (color
figure online)

steady state in Case II ceases to exist for smaller values of e1 than in Case I. This is
intuitive as Case I corresponds to a more cooperative parameter regime that makes
population persistence more possible.

3.2 Generalized cooperative systemwith nonlocal interactions

We now consider the spatially extended system to investigate the emergence of a
patterned solution. Given the complexity of the spatially extended system (2.4), we
carry out a steady state biharmonic approximation of this system, allowing us to
perform linear stability analysis on the approximated system and gain insight into the
dynamics of the original system (2.4) (Murray 2001; D’Odorico et al. 2006; Borgogno
et al. 2009).

Let’s consider the following general form of our system (2.4):

⎧
⎪⎨

⎪⎩

∂t u = d11∂2x u + f (u, v), x ∈ R, t > 0,

∂tv = d22∂2x v + g(u, v) + λv
∫ ∞
−∞ P(x − x ′)u(x ′)dx ′, x ∈ R, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ R.

(3.14)

where P(x) is defined the same as in (2.2), and f , g are general smooth functions.
Following standard procedure, we assume the kernel has a limited effect at relatively
large distances and perform a Taylor’s expansion of the integral term around x ′ = x
(Murray 2001, pp. 482–489):

∫ ∞

−∞
P(x − x ′)u(x ′)dx ′ =

∫ ∞

−∞
P(z)u(x − z)dz

=
∫ ∞

−∞
P(z)

[
u(x) − z

∂u(x)

∂x
+ z2

2!
∂2u(x)

∂x2
− z3

3!
∂3u(x)

∂x3
+ z4

4!
∂4u(x)

∂x4
− · · ·

]
dz.
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This is a reasonable assumption in the context of our model as the scale-dependent
grass–sediment feedback is thought to occur on a relatively small spatial scale (1–4m).
We can then define the moments Pm in the following way:

Pm = 1

m!
∫ ∞

−∞
zm P(z)dz, m = 0, 1, 2, . . .

Given the symmetry of the kernel P(x), the odd-power moments vanish, as does P0
since

∫ ∞
−∞ P(x ′)dx ′ = 0. From the specific form of the Mexican-hat kernel in (2.2),

we can obtain exact expressions for P2 and P4 in term of the variances σ1 and σ2 of
the excitatory and inhibitory effects, respectively:

P2 = σ 2
1 − σ 2

2

2
< 0, P4 = σ 4

1 − σ 4
2

8
< 0. (3.15)

To account for both short-range and long-range cross-diffusion, we truncate the
expansion at the fourth partial derivative. The original system (3.14) can now be
approximated by the following biharmonic system (Bates and Ren 1996, 1997;
Couteron and Lejeune 2001):

⎧
⎪⎨

⎪⎩

∂t u = d11∂
2
x u + f (u, v), x ∈ R, t > 0,

∂tv = d22∂
2
x v + g(u, v) + λv(P2∂

2
x u + P4∂

4
x u), x ∈ R, t > 0,

u(x, 0) = u0(x, 0) ≥ 0, v(x, 0) = v0(x, 0) ≥ 0, x ∈ R.

(3.16)

In this way, the evolution of u and v now depends not only on their own diffusion
as in the classic reaction–diffusion system, but also on the additional short-range
cross-diffusion ∂2x u and long-range cross-diffusion ∂4x u terms. Here, λvP2 and λvP4
represent the corresponding cross-diffusion coefficients. We are interested in the con-
ditions that lead to the emergence of a spatially patterned solution in such a system. In
general, spatial patterns arise in such systems through Turing instability, a symmetry
breaking mechanism in which an otherwise stable spatially uniform steady state is
destabilized by the addition of diffusion and cross-diffusion terms. To derive condi-
tions for such an instability, we perform a classic Turing type linear stability analysis
on the approximated system (3.16).

We expand our system (3.16) about a spatially uniform positive steady state (u∗, v∗)
with u∗ > 0 and v∗ > 0. Substituting

u(x, t) = u∗ + w1(x, t), |w1(x, t)|  u∗,
v(x, t) = v∗ + w2(x, t), |w2(x, t)|  v∗,

into (3.16) and dropping any nonlinear terms, the resulting linearized system about
(u∗, v∗) becomes:

Wt = JW + D∇2W + H∇4W, (3.17)

123



670 S. Zaytseva et al.

with

W(x, t) =
(

w1(x, t)
w2(x, t)

)

, D =
(
d11 0
d21 d22

)

,

H =
(

0 0
h1 0

)

, J =
(

fu fv
gu gv

) ∣
∣
∣
∣
(u∗,v∗)

, (3.18)

where

d21 = λv∗P2 < 0, h1 = λv∗P4 < 0; d11, d22 > 0. (3.19)

Here, we consider a cooperative form of J with fu, gv < 0 and fv, gu > 0:

J =
(− +

+ −
)

, (3.20)

Note that this is different from the classic Turing model activator–inhibitor form of J
where fu and gv are of opposite sign.

Following standard convention, we let

W(x, t) =
(

w1(x, t)
w2(x, t)

)

=
(
a
b

)

eαt+ikx . (3.21)

Here, a and b are constants, and k is the corresponding wavenumber, with 1/k being
proportional to the wavelength of the emergent patterns. Since eikx is periodic and
bounded, the sign of α plays an important role in determining whether these small
perturbations away from the steady state will grow or decay.

Substituting (3.21) into (3.17) and looking for a nontrivial solution, we require

|αI − J + k2D − k4H| =
∣
∣
∣
∣

α + d11k2 − fu − fv
−gu + k2d21 − k4h1 α + d22k2 − gv

∣
∣
∣
∣ = 0. (3.22)

This yields the following dispersion relation:

α2 − b(k2)α + c(k2) = 0, (3.23)

where

b(k2) = Tr J − k2 Tr D,

c(k2) = (Det D − fvh1)k
4 − (d11gv + d22 fu − fvd21)k

2 + Det J.
(3.24)

Using this dispersion relation, we can then derive conditions for Turing type instability,
summarized in the following theorem:
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Theorem 3.4 Let (u∗, v∗) be a constant steady state solution of (3.16) with D defined
as in (3.18) with d11, d22 > 0 and P2 < 0 and P4 < 0 defined in (3.15). Also, let J be
defined as in (3.20) with fu, gv < 0 and fv, gu > 0. If

Det J > 0,

d11gv + d22 fu − fvλv∗P2 > 2
√
Det(D) − fvλv∗P4

√
Det(J) > 0,

(3.25)

then (u∗, v∗) is locally asymptotically stable with respect to the corresponding ODE
system, but is unstable with respect to system (3.16).

Proof The solution to (3.23) yields:

α±(k2) = b(k2) ± √[b(k2)]2 − 4c(k2)

2
. (3.26)

Note that k2 = 0 corresponds to the spatially homogeneous case. ForTuring instability,
we require the spatially homogeneous state (u∗, v∗) to be stable in the absence of
spatial variation (k2 = 0). Therefore, for k2 = 0, the eigenvalues given in (3.26)
have to be negative. This occurs when the trace of J is negative and the determinant
of J is positive. From the special form of our matrix J in (3.20), it is clear that the
trace of J is always negative, and from the first assumption in (3.25) know that the
determinant of J is positive. So (u∗, v∗) is locally asymptotically stable with respect
to the corresponding ODE system.

For the emergence of a non-constant spatially periodic solution, we further require
that for some k2 �= 0, Re(α+(k2)) > 0, guaranteeing that the perturbation will grow.
Since Tr D > 0 and Tr J < 0, a necessary but not sufficient condition is that

c(k2) < 0 for some k2 ∈ R+.

This happens as long as the following condition is satisfied:

d11gv + d22 fu − fvd21 > 0. (3.27)

Under the condition (3.27), the minimum of c(k2) is achieved at some k2 = k2m > 0.
Minimizing c(k2) with respect to k2 yields:

cmin = min
k2

c(k2) = c(km) = Det(J) − (d11gv + d22 fu − fvd21)2

4(Det(D) − fvh1)
,

k2m = d11gv + d22 fu − fvd21
2(Det(D) − fvh1)

.

(3.28)

Guaranteeing that cmin < 0, we then have the following final condition:

d11gv + d22 fu − fvd21 > 2
√
Det D − fvh1

√
Det J. (3.29)

�	
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Fig. 6 Parameter space of Turing-like instability satisfying conditions (3.34) for various values of P2 and
P4 with fixed λ. Note that increasing the value of λ, results in a larger parameter space. It is also clear
that patterns are possible even in the absence of the fourth order term (P4 = 0). The following parameters
are used: N = 0.06, M = − 0.13, det J = 0.004, det D = 0.024 derived from the original model with
e1 = 1.05, p1 = 3.5, φ = 0.14, e3 = 0.1140, δ = 1/7, DG = 0.04, DS = 0.6 (color figure online)

Now, the same range of wavenumbers k that makes c(k2) < 0 in (3.24) also
guarantees that Re(α(k2)) > 0. We can further calculate the relevant range of
wavenumbers k2− < k2 < k2+ by computing the zeros of the function c(k2) such
that c(k2−) = c(k2+) = 0. Then

k2− = B(J , D) − √
B(J , D)2 − 4Det J (Det D − fvh1)

2(Det D − fvh1)
< k2

<
B(J , D) + √

B(J , D)2 − 4Det J (Det D − fvh1)

2(Det D − fvh1)
= k2+,

(3.30)

where

B(J , D) = d11gv + d22 fu − fvλv∗P2 (3.31)

The spatial patterns that emerge have a corresponding wavelength ω, defined as

ω = 2π

km
,

with km defined in (3.28) in the interval (3.30) and the one for which the positive eigen-
value α+(k2) from (3.26) achieves a maximum, corresponding to the most unstable
and fastest growing mode.

We can gain further insight into the result from Theorem 3.4 by visualizing the
instability conditions in the P2P4-plane (Fig. 6). Letting

M = d11gv + d22 fu, N = fvv
∗, (3.32)

the second stability condition from Theorem 3.4 is equivalent to

(M − λN P2)
2 − 4Det(J)(Det(D) − λN P4) > 0. (3.33)
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Further rearrangement of (3.33) leads to the following condition for the instability of
the uniform solution:

P4 >
−P2

2 N
2λ2 + 2P2MNλ − (M2 − 4Det(J)Det(D))

4N Det(J)λ
. (3.34)

Additionally, we have

M2 − 4Det(D)Det(J) = (d11gv − d22 fu)
2 + 4d11d22 fvgu > 0. (3.35)

Note that the first stability condition from (3.25) in Theorem 3.4 is independent of
P2, P4 and λ. Therefore, given that this first condition holds, rearranging the other
instability condition in Theorem 3.4 in the form of (3.34) and using (3.35) as well as
the fact that M < 0 and N > 0, it is clear that the instability region corresponds to
the area to the left of the downward facing parabola defined on the right hand side
of (3.34) in the fourth quadrant of the P2P4-plane (Fig. 6). Without the activator–
inhibitor dynamics, a cooperative system cannot be destabilized by diffusion alone.
Theorem3.4makes it clear that the additional cross-diffusion terms given by P2 and P4
make spatial heterogeneous patterns possible in this cooperative system. In particular,
the cross-diffusion term with P2 plays a crucial role in the pattern forming mechanism
since in its absence (P2 = 0), the term c(k2) from the dispersion relation in (3.23) can
never be negative for any k2. Since the biharmonic parameter P4 acts as a stabilizing
force, we also note that as its absolute value increases, the window for spatial patterns
decreases (Fig. 6). Increasing the value of the strength parameter λ offsets the effect
of the biharmonic parameter P4 and increases the size of the window in which spatial
patterns are possible. We note that in the absence of the biharmonic long-range cross-
diffusion term (P4 = 0), the conditions for Turing instability can still be satisfied. In
this case, the system is reduced to a special case of the reaction–diffusion model with
cross-diffusion, for which Turing instability conditions have been previously derived
(Madzvamuse et al. 2015).

Previous results in this section took into consideration the system on an infinite
domain R. In such a system, we will always find an unstable mode k2 in the interval
(3.30) if the conditions in Theorem 3.4 are satisfied. Numerical simulations require
the choice of a finite domain with specific boundary conditions. Therefore, we now
consider the scenario on a bounded domain T = (− l, l) with periodic boundary
conditions, where the size of T also affects the pattern formation. This is a more
restrictive situation than the infinite domain scenario as the wavenumbers k are now
discrete and depend on the size of the domain. In this case, we shall understand that
the solution (u, v) on T are periodically extended to R so the integral terms in the
original system is still integrated on R.

The result for the bounded domain case is summarized in the following corollary:

Corollary 3.5 Consider (3.16) on a finite domain T = {x ∈ R : −l < x < l} and the
following periodic boundary conditions:

u(− l, t) = u(l, t), ux (− l, t) = ux (l, t),

v(− l, t) = v(l, t), vx (− l, t) = vx (l, t).
(3.36)
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Let (u∗, v∗) be a constant steady state solution of (3.16) with D defined as in (3.18)
with d11, d22 > 0 and P2 < 0 and P4 < 0 defined in (3.15). Also, let J be defined as
in (3.20) with fu, gv < 0 and fv, gu > 0. If

Det J > 0,

d11gv + d22 fu − fvλv∗P2 − 2
√
Det J(Det D − fvλv∗P4)

>
(π

l

)2
(Det D − fvλv∗P4),

(3.37)

then (u∗, v∗) is locally asymptotically stable with respect to the corresponding ODE
system, but is unstable with respect to system (3.16) on T with boundary condition
(3.36). Moreover the most unstable mode is given by n ∈ N such that

α(k2m) = α+
(
n2π2

l2

)

= max
i∈N α+

(
i2π2

l2

)

, (3.38)

where α+(k2) is defined in (3.26), and the corresponding wavelength isω = 2π/km =
2l/n.

Proof Thenon-constant eigenfunctions that satisfy the corresponding eigenvalue prob-
lem φ′′ + λφ = 0 on the domain (− l, l) with periodic boundary conditions are of the
following form

φi (x) = a1 sin

(
iπx

l

)

+ a2 cos

(
iπx

l

)

, i ∈ N,

and the corresponding eigenvalues are ki = (iπ/l)2 for i ∈ N. Now, when 0 < k2− <

k2i = (iπ/l)2 < k2+ for some i ∈ N, where k− and k+ are defined in (3.30), the
eigenvalue α+(k2i ) defined in (3.23) is positive for this i .

We thennote that the discretewavenumber k increases byπ/lwith each i . Therefore,
to guarantee that we have at least one k2 = (iπ/l)2 in the interval given by (k2−, k2+), it
is sufficient that the length of the interval (k−, k+) is larger than π/l (Shi et al. 2011).
Using

(k+ − k−)2 = (k2− + k2+) − 2k+
1 k

−
2 >

(π

l

)2
,

and the expressions of k− and k+ in (3.30), we obtain the second instability condition in
(3.37). Now, for an interval of length 2l, if the instability conditions (3.37) are satisfied,
then a spatially patterned solution will emerge with the corresponding wavenumber
k = iπ/l such that k2 ∈ (k2−, k2+). The most unstable wavenumber km is the one that
maximizes α+(k2) in (3.26). �	

The second instability condition in (3.37) also defines a minimal length lm for the
emergence of the spatial patterns:

l > lm = π

√
Det D − fvλv∗P4

d11gv + d22 fu − fvλv∗P2 − 2
√
Det J(Det D − fvλv∗P4)

.
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This implies that in numerical simulations, if one chooses l < lm , then no spatial
patterns can be observed. On the other hand, when the length l is large, then the
interval (k−, k+) may contain multiple unstable wavenumbers k = iπ/l, and the
spatial patterns with all these wavenumebrs are possible but the onewithmost unstable
wavenumber km is the one most likely to be observed.

3.3 Grass–sediment cooperative systemwith nonlocal interactions

We now apply these results to our Grass–Sediment system (2.4). The biharmonic
approximation yields the following approximated system:
⎧
⎪⎪⎨

⎪⎪⎩

∂tG = DG∂2x G + G
(
F(S) − G

)
, x ∈ R, t > 0

∂t S = DS∂
2
x S + φ(− L(G)S + 1) + λS(P2∂

2
x G + P4∂

4
x G), x ∈ R, t > 0

G(x, 0) = G0(x, 0) ≥ 0, S(x, 0) = S0(x, 0) ≥ 0, x ∈ R,

(3.39)

with F(S), L(G), P2 and P4 defined previously in Sects. 2 and 3.2. We note that the
homogeneous steady state (G∗+, S∗+) for the corresponding ODE in Sect. 3.1 is still a
solution of the corresponding spatially-explicit system (2.4) since

∫ ∞
−∞ P(x)dx = 0.

Therefore, following the biharmonic approximation, we can expand system (3.39)
around the positive steady state (G∗+, S∗+) defined in (3.9) (Sect. 3.1), yielding:

fu = −G∗+, fv = G∗+F ′
(

1

L(G∗+)

)

,

gu = −φ
1

L(G∗+)
L ′(G∗+), gv = −φL(G∗+).

Note that the cooperative form of this system with fv, gu > 0 and fu, gv < 0. For
numerical simulations, we consider this system on a finite domain T = (− l, l) and
the following periodic boundary conditions:

G(− l, t) = G(l, t), Gx (− l, t) = Gx (l, t),

S(− l, t) = S(l, t), Sx (− l, t) = Sx (l, t).

Using the results fromTheorem 3.4 andCorollary 3.5, we have the following condition
necessary for Turing instability on T :

DGgv + DS fu − fvλS
∗P2 − 2

√
Det(D) − fvλS∗P4

√
Det(J)

>
(π

l

)2
(Det D − fvλS

∗P4),
(3.40)

where

D =
(

DG 0
λS∗P2 DS

)

, J =
(

fu fv
gu gv

) ∣
∣
∣
∣
(G∗,S∗)

.
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Fig. 7 Spatial patterns produced through simulations of the biharmonic system (3.39) (a, b) and original
system (3.16) (c, d) with Case I parameters: DG = 0.04, DS = 0.6, λ = 40, e1 = 0.7, p1 = 3.5, f =
0.14, e3 = 0.1140, δ = 1

7 corresponding to the steady state values G∗ = 0.33, S∗ = 2.75. For the scale-
dependent parameters, we use σ1 = 0.43 and σ2 = .68 in the original model and corresponding values
of P2 = − 0.1388 and P4 = − 0.0225 for the biharmonic model. Both simulations are performed on a
bounded domain T = (− l, l) = (− 7π, 7π). All parameters are chosen to satisfy conditions from (3.40).
a, c Temporal evolution of the grass density while, b, d Final steady state of grass after 1000 time units.
The characteristic wavelength is accurately predicted as ω = 14π

7 (color figure online)

For Case I parameter regime from Sect. 3.1, we choose: e1 = 0.7, p1 = 3.5, f =
0.14, e3 = 0.1140, δ = 1/7. We then choose DG = 0.04, DS = 0.6, λ = 40 for our
nonlocal parameter values to satisfy the instability conditions (3.40) and numerically
integrate the biharmonic system (3.39) on T = (− l, l) = (− 7π, 7π). We find that a
spatially patterned solution emerges, as predicted (Fig. 7) and these simulations are
also consistent with numerical simulations of the original system (2.4), suggesting
that the theoretical results derived from the biharmonic system can be applied to the
original system to give insight regarding under what conditions a spatially patterned
solution emerges. The eigenvalue α+(k2) is given by:

α+(k2) = − 0.1893 − 0.32k2

+
√

(− 0.37858 − 0.64k2)2 − 0.44393k4 + 1.35564k2 − 0.03963

2
.

(3.41)
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Fig. 8 a Displays the final steady states of grass after 1800 time units in the biharmonic system (3.39) for
various values of P2, P4 and λ. Note that the value of λ has to be adjusted to offset increasing P4 in order
for patterns to emerge. Biologically realistic parameters are chosen such that conditions (3.40) are satisfied:
e1 = 1.05, p1 = 3.5, φ = 0.14, e3 = 0.1140, δ = 1/7, DG = 0.04, DS = 0.6. b Displays plots of kernel
functions in (2.2) corresponding to parameters P2 and P4 from panel a) with larger values of parameter P4
resulting in wider kernels (color figure online)

Furthermore, on the domain T = (− 7π, 7π), the range of wavenumbers for which
the corresponding eigenvalue α+(k2) is positive is given by:

k2− = 0.0295 < k2 =
(
iπ

7π

)2

< 3.0242 = k2+, i ∈ N. (3.42)

It can be calculated that for 2 ≤ i ≤ 12, (3.42) is satisfied, and when i = 7, α+(k2)
is maximized. Hence the characteristic wavelength of the emerging patterns is ω =
2l/7 = 2π . This is consistent with simulation results which show 7 peaks (Fig. 7).
Similar results are obtained for Case II parameter regime (see Fig. 11 in “Appendix”
section.)

Previously, we used biologically realistic parameters from Table 1 (see “Appendix”
section) to perform all numerical simulations, including realistic parameters for the
scale-dependent feedback (P2, P4, λ). Now, we are interested in how varying these
scale-dependent feedback parameters may affect the nature of the spatial patterns
in system (3.39). As predicted in Sect. 3.2, since the biharmonic term P4 acts as a
stabilizing force, as its value gets larger, the window for spatial patterns decreases and
a larger value of λ is necessary to offset its effect and allow spatial patterns to emerge
(Fig. 8a). In addition, choosing a larger value of P4 results in an overall increase in the
pattern wavelength (Fig. 8a). This result can also be interpreted in the context of how
the coefficients P2 and P4 are related to the shape of the kernel in (2.2) in the original
system (2.4) (Fig. 8b). The coefficient P2 measures the difference of the variances σ1
and σ2 of the excitatory and inhibitory interactions, respectively. The coefficient P4 is
related to kurtosis and controls the weight of the kernel’s tails while λ modulates the
amplitude of the Mexican-hat kernel. Since for a fixed value of P2, an increase in P4
results in a wider, flatter kernel shape, the wider the range of the long-range effects
given by P4, the stronger these interactions need to be (given by λ) to have a significant
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Fig. 9 We numerically integrate the fourth order biharmonic system (3.39) for different kernel widths
(P4) and kernel strengths (λ). Similarly, simulations of the original system (2.4) are performed for the
corresponding kernel parameters σ1 and σ2 calculated from (3.15). All simulations are run over the same
domain T = (− 7π, 7π)with the following parameters: DG = 0.04, DS = 0.6, e1 = 1.05, p1 = 3.5, φ =
0.14, e3 = 0.1140, δ = 1/7, P2 = − 0.05. The region of instability derived fromCorollary 3.5 corresponds
to the area above the dotted blue curve. The results shown in green correspond to the instances where spatial
patterns emerge for both the biharmonic system (3.39) and the original system (2.4), while the results in
yellow correspond to instances where patterns emerged only for the original system (2.4). It is clear that
the theoretical results from Corollary 3.5 (light blue curve) are consistent with the numerical simulations
of the biharmonic system (region in green) and less consistent with the original system (region in yellow).
Although these results are not as consistent, it is clear that the theoretical results can nonetheless be used
to predict the formation of patterns in the original system (2.4) (color figure online)

effect and lead to the formation of spatial patterns. This makes biological sense, since
the intensity of scale-dependent interactions tend to dissipate over larger distances
and therefore need to be amplified to have any effect on spatial heterogeneity over
longer ranges. In addition, we see that wider kernels result in wider spatial patterns
characterized by longer wavelengths. Again, this makes biological sense as one would
expect the scale of the spatial interactions to influence the resulting spatial patterns.

Finally, we compare our analytic results with numerical simulations of the approx-
imated biharmonic system (3.39) and the original system (2.4) (Fig. 9). The analytic
results from (3.40) are consistent with numerical simulations of the biharmonic system
and the original system. However, we note that the onset of patterns in the original
system occurs sooner than in the biharmonic system. Nonetheless, this result suggests
that using the biharmonic system can help find the relevant parameter regime in which
spatial patterns are possible in the original system and gain understanding into how the
nature of the scale-dependent feedbacks affects the development of spatial patterns.
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4 Discussion

We propose a phenomenological model to describe the dynamics of the marsh edge
in terms of two-way interactions between marsh grass Spartina alternifora and sed-
imentation. In nature, the marsh edge can frequently be observed in a number of
configurations ranging from a spatially uniform to a more wave-like shoreline. The
interest of this paper lies in understanding whether the well-known scale-dependent
(nonlocal) feedback between marsh vegetation and sedimentation can lead to spa-
tially variable shoreline configurations. Marsh grass promotes sediment accretion in
its immediate surroundings by slowing down current acts as a facilitation mechanism.
In turn, the diverted water flow contributes to increased erosion further away and acts
as an inhibitory mechanism. We propose a system of reaction–diffusion equations
with an additional integral term with a Mexican-hat kernel function that describes the
nature of this scale-dependent feedback. Our system is highly cooperative; as coopera-
tive systems often lack the classic activator–inhibitor mechanism necessary for pattern
formation, it becomes of interest how and under what conditions spatial patterns may
develop.

We perform a biharmonic approximation of our system and carry out analysis on the
simpler biharmonic system that expresses the kernel function as separate short-range
and long-range diffusion terms. Using the more mathematically tractable biharmonic
system, we are then able to derive general condition for the formation of spatial pat-
terns in a cooperative system such as ours. Further, using numerical simulations, we
confirm that the biharmonic model, while an approximation, is consistent with the
original model, and therefore we can apply the theoretical results from the biharmonic
system to help gain insight into the formation of patterns in the original system. We
parameterize the kernel function using a set of reasonable parameters from literature
and find that spatial patterns can develop, given that the scale-dependent interactions
between marsh vegetation and sediment dynamics are strong enough. The model thus
provides further evidence that the presence of scale-dependent interactions is essential
for pattern formation and that heterogeneous patterns cannot occur in the presence of
weak scale-dependent interactions. Not surprisingly, we find that the choice of wider
kernels tend to produce wider spatial patterns (characterized by longer wavelengths)
and vice versa. The nature and strength of the grass–sediment scale-dependent inter-
actions depends on many factors such as the underlying hydrodynamics and sediment
composition, the exact spatial scale (corresponding to the widths of the Mexican-hat
kernel) and relative strength of the scale-dependent feedback are difficult to estimate
in the field and can vary substantially. We use one possible set of biologically realistic
parameters for the kernel function (Table 1) and find that the patterns that emerge
in simulations occur on a spatial scale consistent with what can observed in nature
(4–10m between peaks) (Vandenbruwaene et al. 2011).

Furthermore, we find that there are two possible parameter regimes in the system.
The first regime is especially of interest as it corresponds to a more realistic scenario
where marsh vegetation is effective at attenuating erosion through the binding of
sediment and decreasing the effect of wave erosion. Given the strong facilitatory
nature of the grass–sediment interactions, bistability takes place in this parameter
regime. In general, bistable dynamics makes a system especially prone to collapsing
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to an irreversible state as environmental conditions gradually worsen and a tipping
point is reached (Dakos et al. 2011; Kéfi et al. 2014, 2016) through the phenomenon
of hysteresis. Pattern formation has previously been suggested as a possible coping
mechanism for systems close to degradation (Chen et al. 2015). The analysis in this
paper gives more insight into this previously reported phenomenon as we also find
this to be the case in our model (Zaytseva et al. 2018) where pattern formation allows
the marsh edge to cope with harsher erosion through spatial variation. One limitation
of our model is the lack of multiple spatial dimensions as only the dynamics on a
one-dimensional cross-section of the marsh edge were considered. Hence, we were
not able to observe the geometry of the protrusions. In addition, the model is meant to
be phenomenological in nature, omitting processes such as the effect and variation of
hydrodynamics and wave action, modeled in more detail previously (Fagherazzi et al.
2012). As a future direction, we may consider a 2-dimensional extension of the model
presented here in order to compare the 2-dimensional patterns produced by the model
with those observed in the field. One challenge is the choice of an appropriate kernel
for the 2-dimensional formulation as it is not immediately clear if the same kernel (but
extended in 2 dimensions) would be appropriate or if the scale-dependent feedback has
a preferential (lateral) direction across themarsh edge, inwhich case a one-dimensional
kernel would be more fitting. Despite the relatively simple dynamics of our one-
dimensional model, it is able to capture the pattern formation on the marsh edge as a
result of scale-dependent feedbacks between vegetation and sediment accumulation.
The agreement between the model simulations and field observations suggests that
important pattern-generating processes have been captured in the model and non-local
interactions between plants and sedimentation can drive the formation of shoreline
patterns. In addition, the results in this paper can be generalized to any cooperative
systemwith scale-dependent feedbacks in the form of short-range activation and long-
range inhibition, described using a Mexican-hat kernel function.

Acknowledgements This work is partially supported by NSF Grant DMS-1715651 and DMS-1313093.
We also thank Romuald N. Lipcius and Matthew L. Kirwan for helpful discussion.

5 Appendix

Figure 10 shows the plot of the functional forms of F(S) and L(G). Figure 11 shows
numerical simulations of both the biharmonic system (3.39) and the original system
(2.4) for the parameter regime inCase II fromSect. 3.1.We see that a spatially patterned
solution emerges if the instability conditions in (3.40) are satisfied. Table 1 shows the
biologically realistic parameters for the original system and their sources. We use the
parameter values from Table 1 to obtain the new re-scaled parameters from Sect. 2 to
use in all numerical simulations performed in this paper.

All numerical simulations in this paper are performed using MATLAB. We use
an implicit finite differencing scheme to numerically integrate the original equation.
Although this scheme is more computationally intensive, it is chosen because it is
always numerically stable and convergent. Because domain size plays an important
role in the system’s ability to form patterns, a large enough domain has to be chosen
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1

−e1
p1

e1 Sediment

F(S)
(a)

1

δ
Grass

L(G)(b)

Fig. 10 Functions a F(S), b L(G) from (2.5)

Fig. 11 Spatial patterns produced through simulations of the biharmonic system (3.39) (a, b) and original
system (3.16) (c, d) with Case II parameters: DG = 0.04, DS = 0.6, λ = 40, e1 = 0.7, p1 = 0.5, f =
0.14, e3 = 0.5, δ = 0.3. For the scale-dependent parameters, we use σ1 = 0.43 and σ2 = 0.68 in the
original model and corresponding values of P2 = − 0.1388 and P4 = − 0.0225 for the biharmonic model.
Both simulations are performed on a bounded domain T = (− 7π, 7π). All parameters are chosen to
satisfy conditions from (3.40). a, c Temporal evolution of the grass density while, b, d final steady state of
grass after 1000 time units. The characteristic wavelength is accurately predicted as ω = 14π

7 (color figure
online)

to be able to fit patterns with their characteristic wavelength. We evaluate all integrals
using the trapz function inMATLAB, which performs numerical integration using the
trapezoidal rule. For the convolution term, we evaluate the integral of the product of
the kernel and the periodically extended solution on the interval (− 3l, 3l), to make
sure an adequate number of kernels are considered in calculating the net effect. To
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numerically integrate the biharmonic system, we use an explicit finite differencing
scheme inMATLAB. This scheme is less computationally intensive, and is easier to
implement, given the extra biharmonic term. For both models, the numerical simula-
tions are performed on a spatial domain (− l, l) with l = 7π with periodic boundary
conditions. We apply Turing’s idea of diffusion driven instability and use a spatially
periodic perturbation of the stable steady state of the corresponding system of ODEs
as the initial condition for our simulations.

References

Adams J, Grobler A, Rowe C, Riddin T, Bornman T, Ayres D (2012) Plant traits and spread of the invasive
salt marsh grass, Spartina alterniflora Loisel., in the Great Brak estuary, South Africa. Afr J Mar Sci
34(3):313–322

Altieri AH, Silliman BR, Bertness MD (2007) Hierarchical organization via a facilitation cascade in inter-
tidal cordgrass bed communities. Am Nat 169(2):195–206

Amari S-I (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern
27(2):77–87

Balke T, Klaassen PC, Garbutt A, van der Wal D, Herman PMJ, Bouma TJ (2012) Conditional outcome of
ecosystem engineering: a case study on tussocks of the salt marsh pioneer Spartina anglica. Geomor-
phology 153:232–238

Banerjee M, Volpert V (2016) Prey–predator model with a nonlocal consumption of prey. Chaos Interdiscip
J Nonlinear Sci 26(8):083120

Barbier N, Couteron P, Lefever R, Deblauwe V, Lejeune O (2008) Spatial decoupling of facilitation and
competition at the origin of gapped vegetation patterns. Ecology 89(6):1521–1531

Bates PW, Ren X (1996) Transition layer solutions of a higher order equation in an infinite tube. Commun
Partial Differ Equ 21(1–2):109–145

Bates PW, Ren X (1997) Heteroclinic orbits for a higher order phase transition problem. Eur J Appl Math
8(02):149–163

Bayliss A, Volpert V (2015) Patterns for competing populations with species specific nonlocal coupling.
Math Model Nat Phenom 10(6):30–47

Bertness MD (1984) Ribbed mussels and Spartina alterniflora production in a New England salt marsh.
Ecology 65:1794–1807

Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9(5):191–193
Bertness MD, Grosholz E (1985) Population dynamics of the ribbed mussel, Geukensia demissa: the costs

and benefits of an aggregated distribution. Oecologia 67(2):192–204
Billingham J (2003) Dynamics of a strongly nonlocal reaction–diffusion population model. Nonlinearity

17(1):313
Borgogno F, D’Odorico P, Laio F, Ridolfi L (2009) Mathematical models of vegetation pattern formation

in ecohydrology. Rev Geophys 47(1):RG1005
Bouma T, Van Duren L, Temmerman S, Claverie T, Blanco-Garcia A, Ysebaert T, Herman PMJ (2007)

Spatial flow and sedimentation patterns within patches of epibenthic structures: combining field, flume
and modelling experiments. Cont Shelf Res 27(8):1020–1045

BoumaT, FriedrichsM,VanWesenbeeckB,TemmermanS,GrafG,HermanPMJ (2009)Density-dependent
linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica.
Oikos 118(2):260–268

Bouma T, Temmerman S, van Duren L, Martini E, Vandenbruwaene W, Callaghan D, Balke T, Biermans
G, Klaassen P, van Steeg P et al (2013) Organism traits determine the strength of scale-dependent bio-
geomorphic feedbacks: a flume study on three intertidal plant species. Geomorphology 180:57–65

BrittonN (1990) Spatial structures and periodic travellingwaves in an integro-differential reaction–diffusion
population model. SIAM J Appl Math 50(6):1663–1688

Castets V, Dulos E, Boissonade J, De Kepper P (1990) Experimental evidence of a sustained standing
Turing-type nonequilibrium chemical pattern. Phys Rev Lett 64(24):2953

Chen Y, Kolokolnikov T, Tzou J, Gai C (2015) Patterned vegetation, tipping points, and the rate of climate
change. Eur J Appl Math 26(6):945–958

123



684 S. Zaytseva et al.

Couteron P, Lejeune O (2001) Periodic spotted patterns in semi-arid vegetation explained by a propagation-
inhibition model. J Ecol 89(4):616–628

Dakos V, Kéfi S, Rietkerk M, Van Nes EH, Scheffer M (2011) Slowing down in spatially patterned ecosys-
tems at the brink of collapse. Am Nat 177(6):E153–E166

de Jager M, Weissing FJ, van de Koppel J (2017) Why mussels stick together: spatial self-organization
affects the evolution of cooperation. Evol Ecol 31:1–12

Deegan LA, JohnsonDS,Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S,WollheimWM (2012) Coastal
eutrophication as a driver of salt marsh loss. Nature 490(7420):388–392

Dhooge A, Govaerts W, Kuznetsov Y, Meijer H, Sautois B (2008) New features of the software Matcont
for bifurcation analysis of dynamical systems. Math Comput Model Dyn Syst 14(2):147–175

Dibner R, Doak D, Lombardi E (2015) An ecological engineer maintains consistent spatial patterning, with
implications for community-wide effects. Ecosphere 6(9):1–17

D’Odorico P, Laio F, Ridolfi L (2006) Patterns as indicators of productivity enhancement by facilitation
and competition in dryland vegetation. J Geophys Res Biogeosci 111(G3):1–7

Fagherazzi S (2014) Coastal processes: storm-proofing with marshes. Nat Geosci 7(10):701–702
Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D’Alpaos A, van de Koppel J,

Rybczyk JM, Reyes E, Craft C et al (2012) Numerical models of salt marsh evolution: ecological,
geomorphic, and climatic factors. Rev Geophys 50(1):RG1002

Fagherazzi S, Mariotti G, Wiberg P, McGlathery K (2013) Marsh collapse does not require sea level rise.
Oceanography 26(3):70–77

Fuentes M, Kuperman M, Kenkre V (2003) Nonlocal interaction effects on pattern formation in population
dynamics. Phys Rev Lett 91(15):158104

Gedan KB, KirwanML,Wolanski E, Barbier EB, Silliman BR (2011) The present and future role of coastal
wetland vegetation in protecting shorelines: answering recent challenges to the paradigm.ClimChange
106(1):7–29

Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Biol Cybern 12(1):30–39
Gleason ML, Elmer DA, Pien NC, Fisher JS (1979) Effects of stem density upon sediment retention by salt

marsh cord grass, Spartina alterniflora loisel. Estuaries 2(4):271–273
Goodman JE, Wood ME, Gehrels WR (2007) A 17-year record of sediment accretion in the salt marshes

of Maine (USA). Mar Geol 242(1–3):109–121
Gourley S, Chaplain MA, Davidson F (2001) Spatio-temporal pattern formation in a nonlocal reaction–

diffusion equation. Dyn Syst Int J 16(2):173–192
Green JB, Sharpe J (2015) Positional information and reaction–diffusion: two big ideas in developmental

biology combine. Development 142(7):1203–1211
Halpern BS, Silliman BR, Olden JD, Bruno JP, Bertness MD (2007) Incorporating positive interactions in

aquatic restoration and conservation. Front Ecol Environ 5(3):153–160
Hardaway CS Jr, Byrne RJ (1999) Shoreline management in Chesapeake Bay. Special report in Applied

Marine Science and Ocean Engineering No. 356, Virginia Institute of Marine Science, William &
Mary, VA, USA

He Q, Bertness MD, Altieri AH (2013) Global shifts towards positive species interactions with increasing
environmental stress. Ecol Lett 16(5):695–706

Hiscock TW, Megason SG (2015) Mathematically guided approaches to distinguish models of periodic
patterning. Development 142(3):409–419

Kéfi S, Guttal V, Brock WA, Carpenter SR, Ellison AM, Livina VN, Seekell DA, Scheffer M, van Nes EH,
Dakos V (2014) Early warning signals of ecological transitions: methods for spatial patterns. PLoS
ONE 9(3):e92097

Kéfi S, Holmgren M, Scheffer M (2016) When can positive interactions cause alternative stable states in
ecosystems? Funct Ecol 30(1):88–97

Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284(5421):1826–1828
Liu Q-X, Weerman EJ, Herman PMJ, Olff H, van de Koppel J (2012) Alternative mechanisms alter the

emergent properties of self-organization inmussel beds. ProcRSocLondBBiol Sci 279:rspb20120157
Liu Q-X, Herman PMJ, Mooij WM, Huisman J, Scheffer M, Olff H, van de Koppel J (2014) Pattern

formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat Commun
5:5234

Madzvamuse A, Ndakwo HS, Barreira R (2015) Cross-diffusion-driven instability for reaction–diffusion
systems: analysis and simulations. J Math Biol 70(4):709–743

123



Model of pattern formation in marsh ecosystems 685

Mariotti G, Fagherazzi S (2010) A numerical model for the coupled long-term evolution of salt marshes
and tidal flats. J Geophys Res Earth Surf 115(F1):F01004

Martínez-García R, Lopez C (2018) From scale-dependent feedbacks to long-range competition alone: a
short review on pattern-forming mechanisms in arid ecosystems. Preprint arXiv:1801.01399

Martínez-García R, Calabrese JM, Hernández-García E, López C (2013) Vegetation pattern formation in
semiarid systems without facilitative mechanisms. Geophys Res Lett 40(23):6143–6147

Martínez-García R, Calabrese JM, Hernández-García E, López C (2014) Minimal mechanisms for vegeta-
tion patterns in semiarid regions. Philos Trans R Soc A Math Phys Eng Sci 372(2027):20140068

Merchant SM, Nagata W (2011) Instabilities and spatiotemporal patterns behind predator invasions with
nonlocal prey competition. Theor Popul Biol 80(4):289–297

Möller I, Kudella M, Rupprecht F, Spencer T, Paul M, Van Wesenbeeck BK, Wolters G, Jensen K, Bouma
TJ, Miranda-Lange M et al (2014) Wave attenuation over coastal salt marshes under storm surge
conditions. Nat Geosci 7(10):727

Murray JD (2001) Mathematical biology. II spatial models and biomedical applications (Interdisciplinary
applied mathematics), vol 18. Springer, New York

Nakamasu A, Takahashi G, Kanbe A, Kondo S (2009) Interactions between zebrafish pigment cells respon-
sible for the generation of Turing patterns. Proc Natl Acad Sci 106(21):8429–8434

Ninomiya H, Tanaka Y, Yamamoto H (2017) Reaction, diffusion and non-local interaction. J Math Biol
75(5):1203–1233

Nyman JA, DeLaune RD, Roberts HH, Patrick W Jr (1993) Relationship between vegetation and soil
formation in a rapidly submerging coastal marsh. Mar Ecol Prog Ser 96:269–279

Parshad RD, Kumari N, Kasimov AR, Abderrahmane HA (2014) Turing patterns and long-time behavior
in a three-species food-chain model. Math Biosci 254:83–102

Perry JE, Atkinson RB (2009) York river tidal marshes. J Coast Res 57:40–49
Priestas AM, Mariotti G, Leonardi N, Fagherazzi S (2015) Coupled wave energy and erosion dynamics

along a salt marsh boundary, Hog Island Bay, Virginia, USA. J Mar Sci Eng 3(3):1041–1065
Pringle RM, Tarnita C (2017) Spatial self-organization of ecosystems: integrating multiple mechanisms of

regular-pattern formation. Ann Rev Entomol 62(1):359–377
Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Digit patterning is controlled by a Bmp-Sox9-Wnt

Turing network modulated by morphogen gradients. Science 345(6196):566–570
Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol

23(3):169–175
Rosen PS (1980) Erosion susceptibility of the Virginia Chesapeake Bay shoreline. Mar Geol 34(1–2):45–59
Rovinsky AB, Menzinger M (1993) Self-organization induced by the differential flow of activator and

inhibitor. Phys Rev Lett 70(6):778
Schile LM (2014) Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation,

sediment, and upland habitat in marsh resiliency. PLoS ONE 9(2):e88760
Schwarz C, Bouma T, Zhang L, Temmerman S, Ysebaert T, Herman PMJ (2015) Interactions between plant

traits and sediment characteristics influencing species establishment and scale-dependent feedbacks
in salt marsh ecosystems. Geomorphology 250:298–307

SheehanMR,Ellison JC (2015)Tidalmarsh erosion and accretion trends following invasive species removal,
Tamar estuary, Tasmania. Estuar Coast Shelf Sci 164:46–55

Shi J, Xie Z, Little K (2011) Cross-diffusion induced instability and stability in reaction–diffusion systems.
J Appl Anal Comput 1(1):95–119

Siebert J, Schöll E (2015) Front and Turing patterns induced by Mexican-hat-like nonlocal feedback.
Europhys Lett (EPL) 109(4):40014

Siero E, Doelman A, Eppinga M, Rademacher J D, Rietkerk M, Siteur K (2015) Striped pattern selection
by advective reaction–diffusion systems: resilience of banded vegetation on slopes. Chaos Interdiscip
J Nonlinear Sci 25(3):036411

Silliman BR, van de Koppel J, McCoy MW, Diller J, Kasozi GN, Earl K, Adams PN, Zimmerman AR
(2012) Degradation and resilience in louisiana salt marshes after the BP-Deepwater Horizon oil spill.
Proc Natl Acad Sci 109(28):11234–11239

Silliman BR, Schrack E, He Q, Cope R, Santoni A, van der Heide T, Jacobi R, Jacobi M, van de Koppel
J (2015) Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc Natl Acad Sci
112(46):14295–14300

Stumpf RP (1983) The process of sedimentation on the surface of a salt marsh. Estuar Coast Shelf Sci
17(5):495–508

123

http://arxiv.org/abs/1801.01399


686 S. Zaytseva et al.

Tonelli M, Fagherazzi S, Petti M (2010) Modeling wave impact on salt marsh boundaries. J Geophys Res
Oceans. https://doi.org/10.1029/2009jc006026

Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond BBiol Sci 237(641):37–
72

van de Koppel J, Herman PMJ, Thoolen P, Heip CH (2001) Do alternate stable states occur in natural
ecosystems? Evidence from a tidal flat. Ecology 82(12):3449–3461

van de Koppel J, Rietkerk M, Dankers N, Herman PMJ (2005a) Scale-dependent feedback and regular
spatial patterns in young mussel beds. Am Nat 165(3):E66–E77

van de Koppel J, van der Wal D, Bakker JP, Herman PMJ (2005b) Self-organization and vegetation collapse
in salt marsh ecosystems. Am Nat 165(1):E1–E12

van der Heide T, Eklöf JS, van Nes EH, van der Zee EM, Donadi S, Weerman EJ, Olff H, Eriksson BK
(2012) Ecosystem engineering by seagrasses interacts with grazing to shape an intertidal landscape.
PLoS ONE 7(8):e42060

Van Hulzen J, Van Soelen J, Bouma T (2007) Morphological variation and habitat modification are strongly
correlated for the autogenic ecosystem engineer Spartina anglica (common cordgrass). Estuar Coasts
30(1):3–11

van Wesenbeeck BK, van de Koppel J, Herman PMJ, Bouma TJ (2008) Does scale-dependent feedback
explain spatial complexity in salt-marsh ecosystems? Oikos 117(1):152–159

Vandenbruwaene W, Temmerman S, Bouma T, Klaassen P, De Vries M, Callaghan D, Van Steeg P, Dekker
F, Van Duren L, Martini E et al (2011) Flow interaction with dynamic vegetation patches: implications
for biogeomorphic evolution of a tidal landscape. J Geophys Res Earth Surf. https://doi.org/10.1029/
2010JF001788

Watt C, Garbary DJ, Longtin C (2010) Population structure of the ribbed mussel Geukensia demissa in salt
marshes in the southern gulf of St. Lawrence, Canada. Helgol Mar Res 65(3):275

White K (1998) Spatial heterogeneity in three species, plant–parasite–hyperparasite, systems. Philos Trans
R Soc B Biol Sci 353(1368):543

YangW,Wang Q, Pan X, Li B et al (2014) Estimation of the probability of long-distance dispersal: stratified
diffusion of Spartina alterniflora in the Yangtze river estuary. Am J Plant Sci 5(24):3642

Ysebaert T, Yang S-L, Zhang L, He Q, Bouma TJ, Herman PMJ (2011)Wave attenuation by two contrasting
ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone. Wetlands 31(6):1043–
1054

Zaytseva S, ShawLB,LipciusRN, Shi J,KirwanML (2018) Pattern formation inmarsh ecosystemsmodeled
through the interaction of marsh vegetation, mussels and sediment. Manuscript in preparation

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1029/2009jc006026
https://doi.org/10.1029/2010JF001788
https://doi.org/10.1029/2010JF001788

	Model of pattern formation in marsh ecosystems  with nonlocal interactions
	Abstract
	1 Introduction
	2 Model
	3 Results
	3.1 Spatially homogeneous model
	3.2 Generalized cooperative system with nonlocal interactions
	3.3 Grass–sediment cooperative system with nonlocal interactions

	4 Discussion
	Acknowledgements
	5 Appendix
	References




