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Abstract

The dynamics of a reaction-diffusion-advection benthic-drift population model that links changes in the 
flow regime and habitat availability with population dynamics is studied. In the model, the stream is divided 
into drift zone and benthic zone, and the population is divided into two interacting compartments, individu-
als residing in the benthic zone and individuals dispersing in the drift zone. The benthic population growth is 
assumed to be of strong Allee effect type. The influence of flow speed and individual transfer rates between 
zones on the population persistence and extinction is considered, and the criteria of population persistence 
or extinction are formulated and proved.
© 2020 Elsevier Inc. All rights reserved.

MSC: 92D25; 35K57; 35K58; 92D40

Keywords: Reaction-diffusion-advection; Benthic-drift; Strong Allee effect; Persistence; Extinction

1. Introduction

Streams and rivers are characterized by a variety of physical, chemical and geomorphological 
features such as unidirectional flow, pools and riffles, bends and waterfalls, floodplains, lateral 
inflow and network structure and many more. These complex structures provide a wide range 
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of qualitatively different habitat for aquatic species and organisms such as zooplankton, inverte-
brates, aquatic plant and fish. In [30], Müller proposed an important issue in stream ecology, the 
“drift paradox”, which asks how stream dwelling organisms can persist in a river/stream environ-
ment when continuously subjected to a unidirectional water flow. Mathematical models, such as 
reaction-diffusion-advection equations and integro-differential equations have been established 
to study the population dynamic in advective environment. For species following logistic type 
growth, a “critical flow speed” has been identified, below which can ensure the persistence of the 
stream population [15,19–21,24,25,29,39]. On the other hand, when the species following Allee 
effect type growth, population persistence for all initial conditions becomes not possible as the 
extinction state is always a stable state, and more delicate conditions are needed to ensure the 
population persistence [37,45,46]. The solution of stream population persistence/extinction not 
only leads to a better understanding of population dynamics in a stream environment, but also 
provides strategies for how to keep a native species persistent.

Stream hydraulic characteristics is another important factor in the ecology of stream popula-
tions. Of great importance is the presence of storage zones (zones of zero or near-zero flow) in 
stream channels. These zones are refuges for many organisms not adapted to high water velocity. 
And for some aquatic species, the individuals spend a proportion of their time immobile and a 
proportion of their time in an environment with a unidirectional current and do not reproduce 
there. Following [2,5], the river can be partitioned into two zones, drift zone and benthic zone, 
and the population is also split into two interacting compartments: individuals residing in the 
benthic zone and the ones dispersing in the drift zone. Assuming that longitudinal movement 
occurs only in the drift zone, a system of coupled reaction-diffusion-advection equation of drift 
population and equation of benthic population can be used to model the dynamic evolution of 
aquatic species that reproduce on the bottom of the river and release their larval stages into the 
water column, such as sedentary water plant, oyster and coral [24,31].

Assuming logistic growth for the benthic population, the population spreading, invasion and 
the propagation speed were studied in [24,31]; the population persistence criteria on a finite 
length river based on the net reproductive rate was investigated in [12]; the population persistence 
in two-dimensional depth-averaged river environment was considered in [14]; and the population 
dynamics of two competitive species in the river was studied in [18]. All these work assume lo-
gistic growth for the benthic population so the population persistence/extinction or spreading can 
be completely determined by a sharp threshold which is often expressed by a basic reproduction 
number or a critical advection rate. Benthic-drift models of algae and nutrient population have 
also been considered [7,10,11,42]. Other studies also consider the effect of river network struc-
ture [17,34,35,40], the effect of advection on competition [22,48–51] and meandering structure 
[16].

In this paper, we investigate how interactions between the benthic zone and the drift zone 
affect the population dynamics of a benthic-drift model, when the species follows a strong Allee 
effect population growth in the benthic zone. Our main findings on the dynamics of benthic-drift 
model with strong Allee effect type growth in the benthic population are

1. If the benthic population release rate is large, then for all the boundary conditions, extinction 
will always occur regardless of the initial conditions, the diffusive and advective movement 
and the transfer rate from the drift zone to the benthic zone;

2. If the benthic population release rate is small (but not zero), then for all the boundary con-
ditions, the population persists for large initial conditions and becomes extinct for small 
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initial conditions. Such a bistability in the system exists also independent of the diffusive 
and advective movement and the transfer rate from the drift zone to the benthic zone;

3. If the benthic population release rate is in the intermediate range, the persistence or extinction 
depends on the diffusive and advective movement. It is shown that for the closed environ-
ment, the population can persist under small advection rate and large initial condition.

These results are rigorously proved by using the theory of dynamical systems, partial differential 
equations, upper-lower solution methods, and numerical simulations are also included to verify 
or demonstrate theoretical results. Compared with the single compartment reaction-diffusion-
advection equation with a strong Allee effect growth rate [46], in which the advection rate q
plays an important role in the persistence/extinction dynamics, the benthic-drift model dynamics 
with strong Allee effect relies more critically on the strength of interacting between zones.

The dynamic behavior of the single compartment reaction-diffusion-advection equation mod-
eling a stream population with a strong Allee effect growth rate was investigated in [46]. Com-
pared to the well-studied logistic growth rate, the extinction state in the strong Allee effect case 
is always locally stable. It is shown that when both the diffusion coefficient and the advection 
rate are small, there exist multiple positive steady state solutions hence the dynamics is bistable 
so that different initial conditions lead to different asymptotic behavior. On the other hand, when 
the advection rate is large, the population becomes extinct regardless of initial condition under 
most boundary conditions. Corresponding dynamic behavior for weak Allee effect growth rate 
has been considered in [45]; and the role of protection zone on species persistence or spreading 
for species with strong Allee effect growth has [4,6].

The benthic-drift model has the feature of a coupled partial differential equation (PDE) for the 
drift population and an “ordinary differential equation” (ODE) for the benthic population. Note 
that the benthic population equation is not really one ODE but an ODE at each point of the spatial 
domain, or a reaction-diffusion equation with zero diffusion coefficient. Such degeneracy causes 
a noncompactness of the solution orbits in the function space, which brings an extra difficulty in 
analyzing the dynamics. Such PDE-ODE coupled systems have been also studied in the case of 
population that has a quiescent phase [47], or some species are immobile [27,43].

In Section 2, the benthic-drift model of stream population is established, and all model pa-
rameters and growth rate conditions are set up in a general setting. Some preliminary results are 
stated and proved in Section 3: the basic dynamics, global attractor, and linear stability problem. 
The main results on the population persistence and extinction are proved in Section 4, and some 
numerical simulations are shown in Section 5 to provide some more quantitative information of 
the dynamics. A few concluding remarks are in Section 6.

2. The model

Consider a population in which individuals live and reproduce in the storage zone, and occa-
sionally enter the water column to drift until they settle on the benthos again. We assume that 
advective and diffusive transport occur only in the main flowing zone, not the storage zone. So 
we neglect the movement in the benthic zone. While in the drifting water, we consider the in-
dividual’s movement as a combination of passive diffusion movement and advective movement 
which is from sensing and following the gradient of resource distribution (taxis) or a directional 
fluid/wind flow. Let u(x, t) be the population density in the drift zone and let v(x, t) be the 
population density in the benthic zone. The river environment is modeled by a one-dimensional 
interval [0, L] ⊂ R; the upstream endpoint is x = 0, and the downstream endpoint is x = L, 
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where L is the length of the river. A mathematical model that describes the dynamics of the 
population in a river is given by [12,24]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = duxx − qux + Ab(x)

Ad(x)
μv − σu − m1u, 0 < x < L, t > 0,

vt = vg(x, v) − m2v − μv + Ad(x)

Ab(x)
σu, 0 ≤ x ≤ L, t > 0,

dux(0, t) − qu(0, t) = buqu(0, t), t > 0,

dux(L, t) − qu(L, t) = −bdqu(L, t), t > 0,

u(x,0) = u0(x) ≥ 0, v(x,0) = v0(x) ≥ 0, 0 < x < L,

(2.1)

where d and q are the diffusion rate and advection rate of the population in the drifting zone, 
respectively; Ab(x) and Ad(x) are the cross-sectional areas of the benthic zone and drift zone, 
respectively; σ is the transfer rate of the drift population to the benthic one and μ is the transfer 
rate of the benthic population to the drifting one; m1 and m2 are the mortality rates of the drift 
and benthic population, respectively. Throughout the paper, we assume that the functions Ab(x)

and Ad(x) and parameters satisfy the following conditions:

(A1) Ab(x), Ad(x) ∈ C[0, L], Ab(x) > 0 and Ad(x) > 0 on x ∈ [0, L].
(A2) d > 0, q ≥ 0, μ > 0, σ > 0, m1 ≥ 0 and m2 ≥ 0.

The boundary conditions for the drift population in (2.1) is given in a flux form following [21,46]
(see also [12] for slightly different setting). Here the parameters bu ≥ 0 and bd ≥ 0 determine 
the magnitude of population loss at the upstream end x = 0 and the downstream end x = L, 
respectively. At the boundary ends x = 0 and x = L, if bu = 0 and bd = 0, that is the no-flux 
(NF) boundary condition dux(x, t) − qu(x, t) = 0, for instance, can be effectively used to study 
the sinking, self-shading phytoplankton model (see, e.g., [9,13]); bd = 1 gives the free-flow (FF) 
boundary condition ux(x, t) = 0, referred as the Danckwerts condition, can be applied to the 
situation like stream to lake (see [41]); and when bd becomes sufficiently large, i.e. bd → ∞, we 
have the hostile (H) boundary condition u(x, t) = 0, which can be used in the scenario of stream 
to ocean (see [39]).

The growth rate per capita g(x, v) satisfies the following general conditions as in [46] (see 
also [3,37]):

(g1) For any v ≥ 0, g(·, v) ∈ C[0, L], and for any x ∈ [0, L], g(x, ·) ∈ C1[0, L].
(g2) For any x ∈ [0, L], there exists r(x) ≥ 0, where 0 < r(x) < M and M > 0 is a constant, 

such that g(x, r(x)) = 0, and g(x, v) < 0 for v > r(x).
(g3) For any x ∈ [0, L], there exists s(x) ∈ [0, r(x)] such that g(x, ·) is increasing in [0, s(x)]

and non-increasing in [s(x), ∞]; and there also exists N > 0 such that g(x, s(x)) ≤ N .

Here r(x) is the local carrying capacity at x which has a uniform upper bound M ; v = s(x) is 
where g(x, ·) reaches the maximum value, and the number N is a uniform bound for g(x, v) at 
all (x, v). Moreover we assume that g(x, v) takes one of the following three forms: (see [37,46])

(g4a) Logistic: s(x) = 0, g(x, 0) > 0, and g(x, ·) is decreasing in [0, ∞);
(g4b) Weak Allee effect: s(x) > 0, g(x, 0) > 0, g(x, ·) is increasing in [0, s(x)], and is non-

increasing in [s(x), ∞); or
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Fig. 1. Growth rate per capita g(x, v) of Strong Allee effect.

(g4c) Strong Allee effect: s(x) > 0, g(x, 0) < 0, g(x, s(x)) > 0, g(x, ·) is increasing in [0, s(x)], 
and is non-increasing in [s(x), ∞). Hence there exists a unique h(x) ∈ (0, s(x)) such that 
g(x, h(x)) = 0 for all 0 < x < L (Fig. 1).

For later applications, we also define

gmax = max
x∈[0,L]g(x, s(x)) = max

x∈[0,L] max
v≥0

g(x, v),

gmin = min
x∈[0,L]g(x, s(x)) = min

x∈[0,L] max
v≥0

g(x, v).
(2.2)

The growth rate of the population is f (x, v) = vg(x, v), and we also define

fv = max
x∈[0,L] max

v≥0
fv(x, v). (2.3)

One can observe that gmax ≤ fv as maxv≥0 fv(x, v) = maxv≥0(g + vgv) ≥ g(x, s(x)) +
s(x)gv(x, s(x)) = g(x, s(x)) = maxv≥0 g(x, v) for x ∈ [0, L].

In the following we will study the extinction dynamics and the existence, multiplicity and 
stability of non-negative steady state solutions of system (2.1) under the conditions (A1)–(A2), 
(g1)–(g3) and (g4c) (strong Allee effect growth). The steady state solutions (u(x), v(x)) of (2.1)
satisfy:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duxx − qux + Ab(x)

Ad(x)
μv − σu − m1u = 0, 0 < x < L,

vg(x, v) − m2v − μv + Ad(x)

Ab(x)
σu = 0, 0 ≤ x ≤ L,

dux(0) − qu(0) = buqu(0),

du (L) − qu(L) = −b qu(L).

(2.4)
x d
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3. Basic properties of solutions

This section is devoted to establishing some basic properties of (2.1).

3.1. The well-posedness

We first study the well-posedness of the initial-boundary-value problem (2.1). Using the trans-

form u = eαxw, v = eαxz on the system (2.1), where α = q

d
, we obtain the following system of 

new variables (w, z):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt = dwxx + qwx + Ab(x)

Ad(x)
μz − σw − m1w, 0 < x < L, t > 0,

zt = zg(x, eαxz) − m2z − μz + Ad(x)

Ab(x)
σw, 0 ≤ x ≤ L, t > 0,

−dwx(0, t) + buqw(0, t) = 0, t > 0,

dwx(L, t) + bdqw(L, t) = 0, t > 0,

w(x,0) = e−αxu0(x) := w0(x) ≥ 0, x ∈ (0,L),

z(x,0) = e−αxv0(x) := z0(x) ≥ 0, x ∈ (0,L).

(3.1)

The boundary conditions of system (3.1) are either no-flux (bu = bd = 0), hostile (bu, bd → ∞) 
or Robin (bu, bd > 0) types. With bu ≥ 0 and bd ≥ 0, we have the following settings following 
similar ones in [11,12]. Let X = C([0, L], R) be the Banach space with the usual supremum 
norm ‖u‖∞ = max

x∈[0,L] |u(x)| for u ∈ X. Then the set of non-negative functions forms a solid cone 

X+ in the Banach space X. Suppose that T1(t) is the C0 semi-group associated with the following 
linear initial value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt = dwxx + qwx − m1w, 0 < x < L, t > 0,

−dwx(0, t) + buqw(0, t) = 0, t > 0,

dwx(L, t) + bdqw(L, t) = 0, t > 0,

w(x,0) = w0(x) ≥ 0, x ∈ (0,L).

(3.2)

From [38, Chapter 7], it follows that the solution of (3.2) is given by w(x, t) = T1(t)w0 and 
T1(t) : X → X is compact, strongly positive and analytic for any t > 0. We also define

(T2(t)ϕ)(x) = e−m2t ϕ,

for any ϕ ∈ X, t ≥ 0. Then T (t) := (T1(t), T2(t)) : X × X → X × X, t ≥ 0, defines a C0 semi-
group. Define the nonlinear operator B = (B1, B2) : X+ × X+ → X × X by

B1(φ)(x) = Ab(x)μ

Ad(x)
φ2 − σφ1,

B2(φ)(x) = φ2g(x, eαxφ2) + Ad(x)σ
φ1 − μφ2,

(3.3)
Ab(x)
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for x ∈ [0, L] and φ = (φ1, φ2) ∈ X+ × X+. Then system (3.1) can be rewritten as the following 
integral equation

U(t) = T (t)φ +
t∫

0

T (t − s)B(U(s))ds, (3.4)

where U(t) = (w(t), z(t)) and φ = (φ1, φ2) ∈ X+ × X+. By [28, Theorem 1 and Re-
mark 1.1], it follows that for any (w0, z0) ∈ X+ × X+, system (3.1) has a unique non-
negative mild solution (w(x, t; w0, z0), z(x, t; w0, z0)) with initial condition (w0, z0). Moreover, 
(w(x, t; w0, z0), z(x, t; w0, z0)) is a classical solution of system (3.1) for t > 0. Then, we can 
have the local existence and positivity of solutions of system (3.1) and (2.1).

Lemma 3.1. Suppose that Ab(x) and Ad(x) and parameters satisfy (A1)–(A2), g(x, u) satisfies 
(g1)–(g2), then system (2.1) has a unique solution for any initial value in X+ × X+ and the 
solutions to (2.1) remain non-negative on their interval of existence.

Next we discuss the global existence of the solutions of system (2.1). To achieve that, we start 
with the boundedness of the steady state solutions of system (2.1).

Proposition 3.2. Suppose that g(x, u) satisfies (g1)–(g2) and r(x) is defined in (g2). Let 
(u(x), v(x)) be a positive steady state solution of system (2.1), then for x ∈ [0, L],

u(x) ≤ eαxMθ1, v(x) ≤ eαxM max{1, θ1θ2}, (3.5)

where

M = max
y∈[0,L] r(y), α = q

d
, (3.6)

and

θ1 = max
y∈[0,L]

Ab(y)

Ad(y)

μ

σ + m1
, θ2 = max

y∈[0,L]
Ad(y)

Ab(y)

σ

μ + m2
. (3.7)

Proof. Using the transform u = eαxw and v = eαxz on system (2.4), we obtain the following 
system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dwxx + qwx + Ab(x)

Ad(x)
μz − σw − m1w = 0, 0 < x < L,

zg(x, eαxz) − m2z − μz + Ad(x)

Ab(x)
σw = 0, 0 ≤ x ≤ L,

−dwx(0) + buqw(0) = 0,

dwx(L) + bdqw(L) = 0.

(3.8)

Multiplying the second equation of (3.8) by 
Ab(x)

Ad(x)
and adding to the first equation of (3.8), we 

have
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dwxx + qwx − m1w + Ab(x)

Ad(x)
zg(x, eαxz) − Ab(x)

Ad(x)
m2z = 0. (3.9)

Let w(x0) = max
x∈[0,L]w(x) for x0 ∈ [0, L]. If x0 ∈ (0, L), then wxx(x0) ≤ 0 and wx(x0) = 0. Con-

sequently, from (3.9)

Ab(x0)

Ad(x0)
z(x0)g(x, eαxz(x0)) > 0. (3.10)

Now from (g2) and z(x0) > 0, eαx0z(x0) < r(x0), which implies that z(x0) < M0, where M0 =
max

y∈[0,L] e
−αyr(y) ≤ M . Using the first equation of system (3.8), and the fact that wxx(x0) ≤ 0, 

wx(x0) = 0, we have that for x ∈ [0, L],

max
y∈[0,L]

Ab(y)

Ad(y)
μM ≥ Ab(x0)

Ad(x0)
μz(x0) > (σ + m1)w(x0) ≥ (σ + m1)w(x),

which implies the estimate for u(x) in (3.5).
Now for the bound of z(x), if eαxz(x) ≤ M , then we can obtain z(x) ≤ Me−αx ≤ M ; or if 

eαxz(x) > M , from which we have g(x, eαxz(x)) ≤ 0. Then from the second equation of system 
(3.8), we know that

(μ + m2)z(x) ≤ [μ + m2 − g(x, eαxz(x))]z(x) = Ad(x)

Ab(x)
σw(x),

which implies that z(x) ≤ θ1θ2M where θ1, θ2 are defined in (3.7). Combining the two cases, 
we obtain the estimate for u(x) in (3.5). �

Now we have the following result on the global dynamics of (2.1).

Theorem 3.3. Suppose that g(x, u) satisfies (g1)–(g2), then (2.1) has a unique positive solution 
(u(x, t), v(x, t)) defined on t ∈ [0, ∞), and the solutions of (2.1) generates a dynamical system 
in X1, where

X1 ={(φ,ψ) ∈ W 2,2(0,L) × C(0,L) : φ(x) ≥ 0,ψ(x) ≥ 0,

dφ′(0) − qφ(0) = buqφ(0), dφ′(L) − qφ(L) = −bdqφ(L)}.
(3.11)

Furthermore, system (2.1) is point dissipative.

Proof. We consider the equivalent system (3.1) of (2.1). Assume that (u(x, t), v(x, t)) is a solu-
tion of system (2.1), then (w(x, t), z(x, t)) is a solution of system (3.1). We choose

M1 = max

{
M max{1, θ1, θ1θ2}, max

y∈[0,L] e
−αyu0(y), max

y∈[0,L] e
−αyv0(y)

}
, (3.12)

where θ1, θ2 are defined in (3.7). Then (M1, M1) is an upper solution of (3.1) and (0, 0) is a 
lower solution of (3.1). According to [33, Theorem 4.1], we obtain that
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0 ≤ w(x, t) ≤ w1(x, t), 0 ≤ z(x, t) ≤ z1(x, t),

where (w1(x, t), z1(x, t)) is the solution of (3.1) with initial condition w1(x, 0) = M1 and 
z1(x, 0) = M1. Moreover the solution (w1(x, t), z1(x, t)) is non-increasing in t and

lim
t→+∞(w1(x, t), z1(x, t)) = (wmax(x), zmax(x)) which is maximum steady state of (3.1) not 

larger than (M1, M1). From Proposition 3.2, we obtain that (u(x, t), v(x, t)) exists globally for 
t ∈ (0, ∞), stays positive and

lim sup
t→∞

u(x, t) ≤ eαxMθ1, lim sup
t→∞

v(x, t) ≤ eαxM max{1, θ1θ2}. (3.13)

So the system (2.1) is point dissipative. �
3.2. Global attractor

From Theorem 3.3, it follows that solutions of system (2.1) are uniformly bounded. Thus, 
for every initial value function φ = (φ1, φ2) ∈ X+ × X+, the system (2.1) has a unique solution 
(u(x, t; φ1), v(x, t; φ2)) define on [0, +∞) with (u(,̇0; φ1), v(,̇0; φ2)) = (φ1, φ2) and a semiflow 
�(t) : X+ × X+ → X+ × X+ generated by (2.1) which is defined by

�(t)φ =
(

u(t, ·, φ1(x))

v(t, ·, φ2(x))

)
∀φ = (φ1, φ2) ∈ X+ × X+, t ≥ 0. (3.14)

Notice that �(t) is not compact since the second equation in (2.1) has no diffusion term. Due to 
the lack of compactness, we need to impose the following condition

fv < m2 + μ, (3.15)

where fv is defined in (2.3), and recall that f (x, v) = vg(x, v). Recall that the Kuratowski mea-
sure of noncompactness (see [44, Chapter 1]), which is defined by the formula

α(K) := inf{r : K has a finite cover of diameter < r}, (3.16)

on any bounded set K ⊂ X+. And the diameter of the set is defined by the relation diamK =
sup{dist (x, y) : x, y ∈ K}. We set α(K) = ∞ whenever K is bounded. From the definition of 
α-contracting, we know that α(K) ≤ diamK , α(K) = 0 if and only if the closure K of K is 
compact and the set K is bounded if and only if α(K) < ∞.

Lemma 3.4. Suppose that g(x, u) satisfies (g1)–(g2) and (3.15), then �(t) is α-contracting in 
the sense that

lim
t→∞α(�(t)K) = 0, (3.17)

for any bounded set K ⊂ X+.
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Proof. The right hand side of the v-equation in (2.1) is represented by

H(u,v) = vg(x, v) − m2v − μv + Ad(x)

Ab(x)
σu. (3.18)

Then from (3.15), there exists a real number r > 0 satisfies

∂H(u, v)

∂v
= fv(x, v) − m2 − μ < −r < 0. (3.19)

With this inequality, the rest of the proof is similar to the one in Lemmas 3.2 and 4.1 in [10]. �
Now we are ready to show that solutions of system (2.1) converge to a compact attractor on 

X+ × X+ when t → ∞ under the condition (3.15).

Theorem 3.5. Suppose that g(x, u) satisfies (g1)–(g2), then �(t) admits a global attractor on 
X+ × X+ provided that (3.15) holds.

Proof. From Lemma 3.4 and Theorem 3.3, it follows that �(t) is α-contracting on X+ and 
system (2.1) is point dissipative. By Proposition 3.2, we also know that the positive orbits of 
bounded subsets of X+ for �(t) are uniformly bounded. Then according to [26, Theorem 2.6], 
�(t) has a global attractor that attracts every bounded set in X+. �

From the discussion above, we can obtain the convergence of the solutions to equilibria of 
system (2.1) by constructing a Lyapunov function.

Theorem 3.6. Suppose that g(x, u) satisfies (g1)–(g2) and (3.15), then for any (u0, v0) ∈ X1 and 
u0 �≡ 0, v0 �≡ 0, the ω-limit set ω((u0, v0)) ⊂ S, where S is the set of non-negative steady state 
solutions of (2.1).

Proof. We prove that the solution (u(x, t), v(x, t)) is always convergent. For that purpose, we 
define a function

E(u,v) =
L∫

0

e−αx

[
d

2
(ux)

2 − Ab(x)

Ad(x)
μuv + σ + m1

2
u2

]
dx

− μ

σ

L∫
0

e−αx A2
b(x)

A2
d(x)

[
F(x, v) − μ + m2

2
v2

]
dx + q

2
(1 + bu)u

2(0, t)

− q

2
(1 − bd)e−αLu2(L, t),

(3.20)

for (u, v) ∈ X1, where F(x, v) =
v∫

0

f (x, s)ds. Assume that (u(x, t), v(x, t)) is a solution of 

system (2.1), we have
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d

dt
E(u(·, t), v(·, t)) =

L∫
0

e−αx(duxuxt − Ab(x)

Ad(x)
μ(utv + uvt ) + (σ + m1)uut )dx

− μ

σ

L∫
0

e−αx A2
b(x)

A2
d(x)

(f vt − (μ + m2)vvt )dx

+ q(1 + bu)u(0, t)ut (0, t) − q(1 − bd)e−αLu(L, t)ut (L, t)

=[de−αxuxut ] |L0 +q(1 + bu)u(0, t)ut (0, t)

− q(1 − bd)e−αLu(L, t)ut (L, t) −
L∫

0

(de−αxux)xutdx

−
L∫

0

e−αx(
Ab(x)

Ad(x)
μ(utv + uvt ) − −(σ + m1)uutdx)

− μ

σ

L∫
0

e−αx A2
b(x)

A2
d(x)

(f vt − (μ + m2)vvt )dx

= −
L∫

0

e−αxut (duxx − qux + Ab(x)

Ad(x)
μv − σu − m1u)dx

−
L∫

0

e−αxvt

μA2
b(x)

σA2
d(x)

(f + Ad(x)

Ab(x)
σu − μv − m2v)dx

= −
L∫

0

e−αx(ut )
2dx − μ

σ

L∫
0

e−αx A2
b(x)

A2
d(x)

(vt )
2dx ≤ 0.

According to (g2), we have F(x, v) ≤ F(x, r(x)) and r(x) ≤ M . Hence when t > T for some 
T > 0 large, from (3.13),

E(u(·, t), v(·, t))

≥ − μ

L∫
0

e−αx Ab(x)

Ad(x)
uvdx − μ

σ

L∫
0

e−αx A2
b(x)

A2
d(x)

F (x, r(x))dx − q

2
e−αLu2(L, t)

≥ − max
y∈[0,L]

μAb(x)

Ad(x)
e2αLM2Lθ1 max{1, θ1θ2} − max

y∈[0,L]
μA2

b(x)

σA2
d(x)

M2L − qM2θ
2
1

2
eαL,

where M2 = max
y∈[0,L]F(y, r(y)). Therefore E(u(·, t), v(·, t)) is bounded from below. Notice 

d
E(u, v) = 0 holds if and only if u = 0 and v = 0, which also means that (u, v) is a steady 
dt
t t
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state solution of system (2.1). From Lemma 3.4, the solutions of orbits or (2.1) are pre-compact, 
then from the LaSalle’s Invariance Principle [8, Theorem 4.3.4], we have that for any initial con-
dition u0(x) ≥ 0 and v0(x) ≥ 0, the ω-limit set of (u0, v0) is contained in the largest invariant 
subset of S. If every element in S is isolated, then the ω-limit set is a single steady state. �

It is clear that the Lyapunov function constructed above decreases along the solution orbit of 
(2.1) even without the condition (3.15), but we cannot conclude that the solutions converge with-
out (3.15). The dynamic behavior of (2.1) without the condition (3.15) remains as an interesting 
question.

3.3. Eigenvalue problems

We consider the linear stability of steady state solutions of system (2.1). Suppose that (u∗, v∗)
is a non-negative steady state solution of system (2.1). Substituting u = eλtφ1 and v = eλtφ2, 
where φ = (φ1, φ2) ∈ X1, into system (2.1), we get the following associated eigenvalue problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λφ1 = d(φ1)xx − q(φ1)x + Ab(x)

Ad(x)
μφ2 − σφ1 − m1φ1, 0 < x < L,

λφ2 = fv(x, v∗)φ2 − m2φ2 − μφ2 + Ad(x)

Ab(x)
σφ1, 0 ≤ x ≤ L,

d(φ1)x(0) − qφ1(0) = buqφ1(0),

d(φ1)x(L) − qφ1(L) = −bdqφ1(L),

(3.21)

where fv(x, v∗) = g(x, v∗) + v∗gv(x, v∗). Let Y = C[0, L] × C[0, L] and denote the linearized 
operator L : X1 → Y of system (2.4) by

L =
⎛
⎝d

∂2

∂x2 − q
∂

∂x
0

⎞
⎠ +

⎛
⎜⎝−σ − m1

Ab(x)μ

Ad(x)
Ad(x)σ

Ab(x)
fv(x, v(x)) − μ − m2

⎞
⎟⎠ . (3.22)

The following proposition provides the information of the spectral set σ(L) of the linearized 
operator L, especially the principal eigenvalue of (3.21).

Proposition 3.7. Suppose that g(x, u) satisfies (g1)–(g3), d > 0 and q, bu, bd ≥ 0. Let 
(u∗(x), v∗(x)) be a non-negative steady state solution of (2.1). Then

1. The eigenvalue problem (3.21) has a simple principal eigenvalue λ1 with a positive eigen-
function φ = (φ1, φ2). Moreover, the principal eigenvalue λ1 satisfies

−λ1 = E1(ψ1,ψ2)

κ(ψ1,ψ2)
, (3.23)

where ψ = e−αxφ ∈ X2,



Y. Wang, J. Shi / J. Differential Equations 269 (2020) 7605–7642 7617
E1(ψ1,ψ2) =
L∫

0

eαx

[
d(ψ1)

2
x − 2

Ab(x)

Ad(x)
μψ1ψ2 + (σ + m1)ψ

2
1

]
dx

−μ

σ

L∫
0

eαx A2
b(x)

A2
d(x)

(fv(x, v∗) − μ − m2)ψ
2
2 dx + qbuψ

2
1 (0) + qbdeαLψ2

1 (L),

(3.24)

κ(ψ1,ψ2) =
L∫

0

eαx

(
ψ2

1 + A2
b(x)μ

A2
d(x)σ

ψ2
2

)
dx, (3.25)

α = q/d and X2 = H 1(0, L) × C(0, L).
2. The spectral set σ(L) of the linearized operator L consists of isolated eigenvalues and the 

set [ min
x∈[0,L]fv(x, v∗(x)) − m2 − μ, max

x∈[0,L]fv(x, v∗(x)) − m2 − μ].
3. If max

x∈[0,L]fv(x, v∗(x)) > m2 + μ, then (u∗(x), v∗(x)) is unstable.

4. If max
x∈[0,L]fv(x, v∗(x)) < m2 + m1μ

m1 + σ
, then (u∗(x), v∗(x)) is linearly stable.

Proof. 1. The existence of the simple eigenvalue λ1 with positive eigenfunction follows from 
[44, Lemma 4.1] (see also [12, Theorem 3]). Using the transform φ = eαxψ , system (3.21)
becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λψ1 = d(ψ1)xx + q(ψ1)x + Ab(x)

Ad(x)
μψ2 − σψ1 − m1ψ1, 0 < x < L,

λψ2 = fv(x, v∗)ψ2 − m2ψ2 − μψ2 + Ad(x)

Ab(x)
σψ1, 0 ≤ x ≤ L,

−d(ψ1)x(0) + buqψ1(0) = 0,

d(ψ1)x(L) + bdqψ1(L) = 0.

(3.26)

A direct calculation shows that a solution (ψ1, ψ2) of (3.26) satisfies (3.23). Let A =
min

x∈[0,L]fv(x, v∗(x)) and A = max
x∈[0,L]fv(x, v∗(x)). If λ /∈ [A − m2 − μ, A − m2 − μ], and λ is 

an eigenvalue of (3.21), then from the second equation in (3.21), we have

φ2 = −Ad(x)σφ1

Ab(x)(fv(x, v∗) − m2 − μ − λ)
, (3.27)

and the first equation of (3.21) becomes

dφ′′
1 − qφ′

1 − (σ + m1 + λ)φ1 − σμ

fv(x, v∗) − m2 − μ − λ
φ1 = 0. (3.28)

One can follow the arguments in [27, Section 4.4] to show that the set σ(L)\[A − m2 − μ, A −
m2 − μ] consists of isolated eigenvalues from the analytic Fredholm theorem (see [27, Theo-
rem 4.6]). On the other hand, by following the same proof as [27, Theorem 4.5], we can show 
that each point in [A − m2 − μ, A − m2 − μ] is in the continuous spectrum of L.
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3. If max
x∈[0,L]fv(x, v∗(x)) > μ + m2, then the set of continuous spectrum [A − m2 − μ, A −

m2 − μ] ∩ (0, ∞) �= ∅, so (u∗(x), v∗(x)) must be unstable. In addition we also prove that λ1 > 0
in this case. Assume that A = max

x∈[0,L]fv(x, v∗(x)) = fv(x0, v∗(x0)) for x0 ∈ [0, L]. From the 

second equation of (3.21), Ab(x0) > 0, Ad(x0) > 0 and φ1(x0) > 0, we have

λ1φ2(x0) > [fv(x0, v
∗(x0)) − m2 − μ]φ2(x0) = [A − m2 − μ]φ2(x0) > 0.

Hence λ1 > 0 as φ2(x0) > 0.

4. Since fv(x, v∗(x)) ≤ max
x∈[0,L]fv(x, v∗(x)) < m2 + m1μ

m1 + σ
, then

E1(ψ1,ψ2)

=
L∫

0

eαx[d(ψ1)
2
x(x) − 2

Ab(x)

Ad(x)
μψ1ψ2 + (σ + m1)ψ

2
1 ]dx

− μ

σ

L∫
0

eαx A2
b(x)

A2
d(x)

(fv(x, v) − μ − m2)ψ
2
2 dx + qbuψ

2
1 (0) + qbdeαLψ2

1 (L)

>

L∫
0

eαx[−2
Ab(x)

Ad(x)
μψ1ψ2 + (σ + m1)ψ

2
1 + A2

b(x)μ

A2
d(x)σ

(μ + m2 − fv(x, v))ψ2
2 ]dx

=
L∫

0

eαx(
Ab(x)μ

Ad(x)
√

σ + m1
ψ2 − √

σ + m1ψ1)
2dx

+
L∫

0

eαx A2
b(x)μ[(m1 + σ)(μ + m2) − μσ − (m1 + σ)fv]

A2
d(x)σ (σ + m1)

ψ2
2 dx > 0.

Then from (3.23) and κ(ψ1, ψ2) > 0, the principal eigenvalue λ1 < 0. On the other hand, since 
max

x∈[0,L]fv(x, v∗(x)) − m2 − μ < 0, then all continuous spectrum points are also negative. Hence 

the non-negative steady state solution (u∗(x), v∗(x)) is linearly stable as the spectral set σ(L)

lies in the negative complex half plane. �
Notice that (0, 0) is always a steady state solution of system (2.1) with strong Allee effect 

growth rate, then for the stability of the zero steady state (0, 0), we have the following result.

Corollary 3.8. Suppose that g(x, v) satisfies (g1)–(g3) and (g4c), bu ≥ 0 and bd ≥ 0, then the 
zero steady state (0, 0) of system (2.1) is linearly stable.

Proof. Since fv(x, 0) = g(x, 0) < 0, then we have max
x∈[0,L]g(x, 0) < 0 < m2 + μm1

m1 + σ
. Then 

from part 3 of Proposition 3.7, (0, 0) is always linearly stable. �
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Unlike the strong Allee effect case, the zero steady state (0, 0) of (2.1) is not always stable if 
the growth rate is logistic or weak Allee effect type. Here we show how the principal eigenvalue 
λ1 = λ1(q, m2) at the zero steady state defined in Proposition 3.7 varies with respect to q , which 
also implies the stability of the zero steady state. For scalar reaction-diffusion-advection equa-
tion, when the population follows a typical logistic growth, there often exists a critical parameter 
value (diffusion coefficient, advection coefficient, domain size, growth rate) for the population 
persistence or extinction [19,21,29]. Here we show a similar result holds for the benthic-drift 
model (2.1), following methods in [21,23] for scalar equation on a river.

Proposition 3.9. Suppose that g(x, u) satisfies (g1)–(g3) and (g4a) or (g4b), d > 0 and 
q, bu, bd ≥ 0. The corresponding eigenvalue problem at (0, 0) is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λφ1 = d(φ1)xx − q(φ1)x + Ab(x)

Ad(x)
μφ2 − σφ1 − m1φ1, 0 < x < L,

λφ2 = fv(x,0)φ2 − m2φ2 − μφ2 + Ad(x)

Ab(x)
σφ1, 0 ≤ x ≤ L,

d(φ1)x(0) − qφ1(0) = buqφ1(0),

d(φ1)x(L) − qφ1(L) = −bdqφ1(L).

(3.29)

The principal eigenvalue λ1(q, m2) of (3.29) satisfies

1. if bd > 0 and max
x∈[0,L]fv(x, 0) < m2 + m1μ

m1 + σ
, then lim

q→∞λ1(q, m2) = −∞;

2. if bd > 1/2, then λ1(q, m2) is strictly decreasing in q;
3. if bd > 0, then λ1(q, m2) is strictly decreasing in m2.

Proof. Using the transform φ = eαxψ , system (3.29) becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λψ1 = d(ψ1)xx + q(ψ1)x + Ab(x)

Ad(x)
μψ2 − σψ1 − m1ψ1, 0 < x < L,

λψ2 = fv(x,0)ψ2 − m2ψ2 − μψ2 + Ad(x)

Ab(x)
σψ1, 0 ≤ x ≤ L,

−d(ψ1)x(0) + buqψ1(0) = 0,

d(ψ1)x(L) + bdqψ1(L) = 0.

(3.30)

1. To prove this, we use a different characterization of λ1(q, m2). By using the transform 
(ψ1, ψ2) = e−δαx(ξ1, ξ2), where 0 < δ < min{1, bd}, then (3.23) becomes

−λ1(q,m2) = Eδ(ξ1, ξ2)

κδ(ξ1, ξ2)
,

where (ξ1, ξ2) is the corresponding eigenfunction,
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Eδ(ξ1, ξ2) =
L∫

0

e(1−2δ)αx[d(ξ1)
2
x − 2δqξ1(ξ1)x + dδ2α2ξ2

1 − 2
Ab(x)μ

Ad(x)
ξ1ξ2

+ (σ + m1)ξ
2
1 ]dx −

L∫
0

e(1−2δ)αx A2
b(x)μ

A2
d(x)σ

(fv(x,0) − μ − m2)ξ
2
2 dx

+ qbuξ
2
1 (0) + qbde(1−2δ)αLξ2

1 (L),

and

κδ(ξ1, ξ2) =
L∫

0

e(1−2δ)αx

(
ξ2

1 + A2
b(x)μ

A2
d(x)σ

ξ2
2

)
dx.

We can calculate that

Eδ(ξ1, ξ2) =
L∫

0

e(1−2δ)αx[d(ξ1)
2
x + δ(1 − 2δ)αqξ2

1 + dδ2α2ξ2
1 ]dx

+
L∫

0

e(1−2δ)αx

(√
σ + m1ξ1 − Ab(x)μ

Ad(x)
√

σ + m1
ξ2

)2

dx

+
L∫

0

e(1−2δ)αx A2
b(x)μ

A2
d(x)σ

ξ2
2

(
m1μ

σ + m1
+ m2 − fv(x,0)

)
dx

+ q(bu + δ)ξ2
1 (0) + q(bd − δ)e(1−2δ)αLξ2

1 (L)

>
q2

d
(δ − δ2)

L∫
0

e(1−2δ)αxξ2
1 dx − p∗

L∫
0

e(1−2δ)αx A2
b(x)μ

A2
d(x)σ

ξ2
2 dx,

(3.31)

where p∗ = max
x∈[0,L]fv(x, 0), and 

μm1

σ + m1
+ m2 − fv(x, 0) ≥ 0. Thus,

−λ1(q,m2) >

q2

d
(δ − δ2)I1

I1 + I2
− p∗, (3.32)

where

I1 =
L∫

0

e(1−2δ)αxξ2
1 dx, I2 =

L∫
0

e(1−2δ)αx A2
b(x)μ

A2
d(x)σ

ξ2
2 dx.

Therefore we obtain that
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q2

d
(δ − δ2)I1 + (λ1(q,m2) − p∗)(I1 + I2) < 0. (3.33)

From the second equation of (3.30), we know that

ξ2 = Ad(x)σ

Ab(x)(λ1(q,m2) + m2 + μ − p(x))
ξ1. (3.34)

Substituting it into (3.33), and after some calculations, we can get

L∫
0

e(1−2δ)αxξ2
1

[
q2

d
(δ − δ2) + λ1(q) − p∗ + μσ(λ1 − p∗)

(λ1 + m2 + μ − p∗)2

]
dx < 0. (3.35)

Therefore, we have

q2

d
(δ − δ2) + λ1(q) − p∗ + μσ(λ1 − p∗)

(λ1 + m2 + μ − p∗)2 < 0. (3.36)

When q → ∞, we have λ1(q, m2) − p∗ → −∞. Thus, we have lim
q→∞λ1(q, m2) = −∞.

2. Differentiating (3.30) with respect to q with λ = λ1(q, m2) and denote 
∂

∂q
=′, we obtain 

that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′
1ψ1 + λ1ψ

′
1 = d(ψ1)

′
xx + (ψ1)x + q(ψ1)

′
x + Ab(x)μ

Ad(x)
ψ ′

2 − (σ + m1)ψ
′
1,

0 < x < L,

λ′
1ψ2 + λ1ψ

′
2 = fv(x,0)ψ ′

2 − (m2 + μ)ψ ′
2 + Ad(x)σ

Ab(x)
ψ ′

1,

0 ≤ x ≤ L,

−d(ψ1)
′
x(0) + buψ1(0) + buqψ ′

1(0) = 0,

d(ψ1)
′
x(L) + bdψ1(L) + bdqψ ′

1(L) = 0.

(3.37)

Multiplying the first equation of (3.30) by eαxψ ′
1 and the first equation of (3.37) by eαxψ1, then 

integrating over [0, L] and subtracting the two equations, we have

d
[
ψ1e

αx(ψ1)
′
x − ψ ′

1e
αx(ψ1)x

] ∣∣∣L
0

+
L∫

0

eαx(ψ1)xψ1dx + q

L∫
0

eαx[(ψ1)
′
xψ1 − (ψ1)xψ

′
1]dx

+
L∫

0

Ab(x)μ

Ad(x)
eαx(ψ1ψ

′
2 − ψ2ψ

′
1)dx = λ′

1(q,m2)

L∫
0

eαxψ2
1 dx. (3.38)

The boundary terms together with the boundary conditions give

d[ψ1e
αx(ψ1)

′
x − ψ ′

1e
αxψx]

∣∣∣L = −bdeαLψ2
1 (L) − buψ

2
1 (0). (3.39)
0
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The first integral in equation (3.38) becomes

L∫
0

eαx(ψ1)xψ1dx =
L∫

0

eαx(
ψ2

1

2
)xdx = eαL ψ2

1 (L)

2
− ψ2

1 (0)

2
− α

L∫
0

eαx ψ2
1

2
dx. (3.40)

And

L∫
0

eαx[(ψ1)
′
xψ1 − (ψ1)xψ

′
1]dx = α

L∫
0

eαx[(ψ1)xψ
′
1 − (ψ1)

′
xψ1]dx, (3.41)

which gives

L∫
0

eαx[(ψ1)
′
xψ1 − (ψ1)xψ

′
1]dx = 0. (3.42)

Multiplying the second equation of (3.30) by eαxψ ′
2 and the second equation of (3.37) by eαxψ2, 

then subtracting the two equations and multiplying by 
A2

b(x)μ

A2
d(x)σ

, and integrating on [0, L], we 

have

L∫
0

Ab(x)μ

Ad(x)
eαx(ψ1ψ

′
2 − ψ2ψ

′
1)dx = −λ′

1(q,m2)

L∫
0

A2
b(x)μ

A2
d(x)σ

eαxψ2
2 dx. (3.43)

Together with (3.38), (3.39), (3.40), (3.42) and (3.43), if bd > 1/2, we have

λ′
1(q,m2) = −

(bd − 1

2
)eαLψ2

1 (L) + (bu + 1

2
)ψ2

1 (0) + α

2

L∫
0

eαxψ2
1 dx

L∫
0

eαxψ2
1 dx +

L∫
0

A2
b(x)μ

Ad(x)2σ
eαxψ2

2 dx

< 0. (3.44)

3. Differentiating (3.30) with respect to m2 with λ = λ1(q, m2) and denote in the following 
∂

∂m2
=′, we obtain that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ′
1ψ1 + λ1ψ

′
1 = d(ψ1)

′
xx + q(ψ1)

′
x + Ab(x)μ

Ad(x)
ψ ′

2 − (σ + m1)ψ
′
1, 0 < x < L,

λ′
1ψ2 + λ1ψ

′
2 = fv(x,0)ψ ′

2 − ψ2 − (m2 + μ)ψ ′
2 + Ad(x)σ

Ab(x)
ψ ′

1, 0 ≤ x ≤ L,

−d(ψ1)
′
x(0) + buqψ ′

1(0) = 0,

d(ψ )′ (L) + b qψ ′ (L) = 0.

(3.45)
1 x d 1
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By using similar calculation as part 2, we have

λ′
1(q,m2) = −bdeαLψ2

1 (L) + buψ
2
1 (0) + ∫ L

0 eαxψ2
2 dx

L∫
0

eαxψ2
1 dx +

L∫
0

A2
b(x)μ

Ad(x)2σ
eαxψ2

2 dx

< 0, (3.46)

then λ1(q, m2) is strictly decreasing in m2. �
Now we have the following result on the linear stability/instability of the zero steady state 

solution with respect to (2.1) when the growth rate function is of logistic or weak Allee effect 
type.

Corollary 3.10. Suppose that g(x, u) satisfies (g1)–(g3) and (g4a) or (g4b), d > 0 and bu ≥ 0, 
bd > 0. Then for any q ≥ 0, there exists a unique m∗

2(q) > 0 satisfying max
x∈[0,L]fv(x, 0) − μ <

m∗
2(q) < max

x∈[0,L]fv(x, 0) − m1μ

m1 + σ
such that λ1(q, m∗

2(q)) = 0; the extinction state (0, 0) is 

unstable when 0 < m2 < m∗
2(q) and it is linearly stable when m2 > m∗

2(q). Moreover, if bd >
1

2
, 

then m∗
2(q) is strictly decreasing in q .

Proof. Again we denote p∗ = max
x∈[0,L]fv(x, 0). From part 4 of Proposition 3.7, when m2 >

p∗ − m1μ

m1 + σ
, the zero steady state is linearly stable, and λ1(q, m2) < 0. From the proof 

of part 3 of Proposition 3.7, when m2 < p∗ − μ, λ1(q, m2) > 0. From part 3 of Proposi-
tion 3.9, λ1(q, m2) is strictly decreasing with respect to m2. Therefore there exists a unique 

m∗
2(q) ∈

(
p∗ − μ,p∗ − m1μ

m1 + σ

)
such that λ1(q, m∗

2(q)) = 0. For all m2 > p∗ − μ, the contin-

uous spectrum is always in the negative half plane. Hence the zero steady state (0, 0) is unstable 
when 0 < m2 < m∗

2(q) and it is linearly stable when m2 > m∗
2(q). From part 2 of Proposition 3.9, 

when bd >
1

2
, λ1(q, m2) is strictly decreasing in q . Hence m∗

2(q) is strictly decreasing in q if 

bd >
1

2
. �

Note that in [12], it is shown that the sign of the principal eigenvalue λ1 or R0 − 1 (where 
R0 is the basic reproduction number) is the indicator of persistence or extinction for (2.1) in 
the logistic case. Hence for the logistic case considered in [12], Corollary 3.10 provides a more 
specific criterion of persistence or extinction for (2.1) in terms of advection rate q and benthic 
population mortality rate m2.

4. Extinction dynamics and positive steady states

In this section, we consider the dynamical behavior of system (2.1) with strong Allee effect 
growth rate in the bethic population. Assume that (u(x), v(x)) is a positive solution of system 
(2.4), then from the second equation of system (2.4), we have
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Fig. 2. Parameter regions on μ − σ plane satisfying (H1), (H2) or (H3).

u(x) = Ab(x)v(x)

Ad(x)σ
(μ + m2 − g(x, v(x))), (4.1)

which implies that g(x, v(x)) < m2 + μ for every x ∈ [0, L]. This implies that the transfer rate 
μ from benthos to drift zone needs to be large to ensure the existence of positive steady state 
solutions. Notice that we consider the following three possible scenarios: (see Fig. 2)

(H1) μ > (gmax − m2)
σ + m1

m1
:= μ1,

(H2) μ3 := gmin − m2 < μ < (gmin − m2)
σ + m1

m1
:= μ2,

(H3) μ < gmin − m2 := μ3.

In the following, we will discuss the dynamical behavior of system (2.1) under (H1), (H2) or 
(H3), respectively. When (H1) is satisfied, we show in subsection 4.1 that system (2.1) has no 
positive steady state solutions, which indicates a global extinction of the population for all initial 
conditions. And in subsection 4.2, under the condition (H3), we prove the existence of multiple 
positive steady state solutions for any diffusion coefficient d and advection rate q , and the per-
sistence of population for all large initial conditions. Finally under the condition (H2), which is 
in between (H1) and (H3), we show the existence of multiple positive steady state solutions in 
closed environment when the advection rate q is small. This indicates that the extinction/persis-
tence of benthic-drift population in the intermediate parameter range (H2) is more complicated, 
and it depends on the movement parameters q, d and also boundary conditions. Note that when 
g(x, v) ≡ g(v) (spatially homogeneous), the conditions (H1), (H2) and (H3) completely par-
titions the positive parameter quadrant {(μ, σ) : μ, σ > 0}, but there is a gap between (H1) and 
(H2) when g(x, v) is spatially heterogeneous.

4.1. Extinction

First we prove the following nonexistence results of steady state solution (u(x), v(x)) to (2.1).
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Theorem 4.1. Suppose g(x, u) satisfies (g1)–(g3) and (g4c), d > 0 and q, bu, bd ≥ 0.

1. If (H1) is satisfied, then the system (2.1) has no positive steady state solutions.
2. The system (2.1) has no positive steady state solutions satisfying v(x) < h(x) for all x ∈

[0, L], where h(x) is defined in (g4c).

Proof. 1. Suppose that (u(x), v(x)) is a positive solution of (2.4). Substituting (4.1) into the first 
equation of (2.4), we obtain

⎧⎪⎪⎨
⎪⎪⎩

duxx − qux + Ab(x)

Ad(x)
v

[
μ − σ + m1

σ
(m2 + μ − g(x, v))

]
= 0, 0 < x < L,

dux(0) − qu(0) = buqu(0),

dux(L) − qu(L) = −bdqu(L).

(4.2)

Integrating (4.2), we get

−bdqu(L) − buqu(0) +
L∫

0

Ab(x)

Ad(x)
v(x)

[
μ − σ + m1

σ
(μ + m2 − g(x, v(x)))

]
dx = 0. (4.3)

Note that (H1) implies that the function

ṽ(x) = μ − σ + m1

σ
(μ + m2 − g(x, v(x))) (4.4)

is strictly negative. Since v(x) > 0 and bu, bd ≥ 0, we reach a contradiction with (4.3). Hence 
there is no positive steady state solutions of (2.1) when (H1) is satisfied.

2. Suppose that (u(x), v(x)) is a positive solution of (2.4). If 0 < v(x) < h(x), then 

g(x, v(x)) < 0 for all x ∈ [0, L] and consequently ṽ(x) < μ − σ + m1

σ
(μ + m2) < 0. This again 

leads to a contradiction. Therefore, there is no positive solution (u(x), v(x)) of (2.4) satisfying 
v(x) < h(x) for all x ∈ [0, L]. �

A direct corollary of Theorem 4.1 and Theorem 3.6 is the global extinction of population 
when the transfer rate μ of the benthic population to the drift population is too large.

Corollary 4.2. Suppose g(x, u) satisfies (g1)–(g3) and (g4c), d > 0 and q, bu, bd ≥ 0. If

μ > max

{
(gmax − m2)

σ + m1

m1
, fv − m2

}
, (4.5)

then for any initial condition (u0(x), v0(x)) ≥ 0, the solution (u(x, t), v(x, t) of (2.1) satisfies 
lim

t→+∞u(x, t) = 0 and lim
t→+∞v(x, t) = 0.

Proof. The condition (4.5) implies both (H1) and (3.15). Then from Theorem 3.6, the solution 
converges to a nonnegative steady state as t → ∞, and from Theorem 4.1, the trivial steady state 
is the only nonnegative steady state. Therefore lim u(x, t) = 0 and lim v(x, t) = 0. �
t→+∞ t→+∞
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The global extinction shown in Corollary 4.2 indicates that when the transfer rate μ of the 
benthic population to the drift population is too high, the benthic population becomes too low 
and the Allee effect drives it to extinction when the benthic population is below the threshold 
level. We conjecture that the global extinction described in Corollary 4.2 holds when (H1) is 
satisfied, and the condition (3.15) is not necessary. But it is not known whether the solution flow 
has sufficient compactness without (3.15).

From part 5 of Proposition 3.7, we know that the zero steady state solution is locally asymp-
totically stable. In the following proposition, we describe the basin of attraction of the zero steady 
state solution of system (2.1) for different boundary conditions.

Proposition 4.3. Suppose g(x, u) satisfies (g1)–(g3) and (g4c), d > 0 and q, bu, bd ≥ 0. Assume 
that the cross-section Ab(x) and Ad(x) are homogeneous. Let (u(x, t), v(x, t)) be the solution 
of (2.1) with initial condition (u0(x), v0(x)). Then

1. When bu ≥ 0 and bd ≥ 0, if 0 < u0(x) < θ1e
αx min

y∈[0,L] e
−αyh(y) and 0 < v0(x) <

eαx min
y∈[0,L] e

−αyh(y), then lim
t→+∞u(x, t) = 0 and lim

t→+∞v(x, t) = 0;

2. When bu ≥ 0 and bd ≥ 1, if 0 < u0(x) < θ1 min
y∈[0,L]h(y) and 0 < v0(x) < min

y∈[0,L]h(y), then 

lim
t→+∞u(x, t) = 0 and lim

t→+∞v(x, t) = 0.

Proof. 1. When bu ≥ 0 and bd ≥ 0, we set w1 = θ1 min
y∈[0,L] e

−αyh(y) and z1 = min
y∈[0,L] e

−αyh(y). 

Then we have

d(w1)xx + q(w1)x + Ab

Ad

μz1 − σw1 − m1w1 = 0,

and

z1g(x, eαxz1) − m2z1 − μz1 + Adσ

Ab

w1

≤z1g(x, eαxz1) − −(m2 + μ − σμ

σ + m1
)z1 ≤ min

y∈[0,L] e
−αyh(y)g(x, eαx min

y∈[0,L] e
−αyh(y))

≤ min
y∈[0,L] e

−αyh(y)g(x, eαxe−αxh(x)) = min
y∈[0,L] e

−αyh(y)g(x,h(x)) = 0,

and the boundary conditions −d(w1)x(0) + buqw1(0) ≥ 0, d(w1)x(L) + bdqw1(L) ≥ 0. Thus, 
(w1, z1) is an upper solution of system (3.8). Let (w1, z1) = (0, 0) to be the lower solution of sys-
tem (3.8). Now assume that 0 < w0(x) < θ1 min

y∈[0,L] e
−αyh(y) and 0 ≤ z0(x) ≤ min

y∈[0,L] e
−αyh(y), 

and let (w(x, t), v(x, t)) be the solution of (3.1). Then there exist solutions (W 1(x, t), Z1(x, t))
and (W 1(x, t), Z1(x, t)) of system (3.1),

W 1(x, t) ≤ w(x, t) ≤ W 1(x, t), Z1(x, t) ≤ z(x, t) ≤ Z1(x, t), (4.6)

where (W 1(x, t), Z1(x, t)) and (W 1(x, t), Z1(x, t)) are the solutions of system (3.1) with the ini-
tial condition (W 1(x, 0), Z1(x, 0)) = (w1, z1) and (W (x, 0), Z1(x, 0)) = (w1, z ). Moreover,
1 1
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lim
t→+∞(W 1(x, t),Z1(x, t)) = (wmax(x), zmax(x)),

lim
t→+∞(W 1(x, t),Z1(x, t)) = (wmin(x), zmin(x)),

(4.7)

where (wmax(x), zmax(x)), (wmin(x), zmin(x)) are the maximal and minimal solution of (3.8)
between (0, 0) and (w1, z1). From Proposition 4.1, there is no positive solution (u(x), v(x))

satisfying v(x) < h(x) for all x ∈ [0, L], hence zmin(x) = zmax(x) = 0. And consequently 
wmin(x) = wmax(x) = 0. This implies that lim

t→+∞u(x, t) = 0 and lim
t→+∞v(x, t) = 0;.

2. When bu ≥ 0 and bd ≥ 1, we apply the upper and lower solution method directly to 
(2.1), and we choose (u1(x), v1(x)) = (θ1 min

y∈[0,L]h(y), min
y∈[0,L]h(y)) to be the upper solution and 

(u1(x), v1(x)) = (0, 0) be the lower solution. We can follow the same argument in the above 
paragraph to reach the conclusion. �
4.2. The existence and multiplicity of positive steady-states

In this section, we provide some criteria for the population persistence of system (2.1) with 
strong Allee effect growth rate in the benthic population. Since system (2.1) is a cooperative sys-
tem, we can use upper-lower solution method to obtain the existence and multiplicity of positive 
steady-state solutions, despite one of equations in (2.1) has no diffusion term, see for exam-
ple, [32, Section 8.11] or [28]. We first show some properties of the set of positive steady state 
solutions of (2.4) if there exists any.

Proposition 4.4. Suppose g(x, u) satisfies (g1)–(g3), d > 0, q, bu, bd ≥ 0, and the cross-section 
Ab(x) and Ad(x) are homogeneous. If there exists a positive steady state solution of (2.1), then 
there exists a maximal steady state solution (umax(x), vmax(x)) such that for any positive steady 
state (u(x), v(x)) of system (2.1), (umax(x), vmax(x)) ≥ (u(x), v(x)).

Proof. We consider the equivalent steady state equation (3.8). Set

w2 = θ1 max
y∈[0,L] e

−αyr(y), z2 = max
y∈[0,L] e

−αyr(y).

From (g3), we have gv(x, v) ≤ 0 for v ≥ r(x). Hence

g(x, eαxz2) = g(x, eαx max
y∈[0,L] e

−αyr(y)) ≤ g(x, eαxe−αxr(x)) = g(x, r(x)) = 0.

Substituting (w2, z2) into system (3.8), we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d(w2)xx + q(w2)x + Ab

Ad

μz2 − σw2 − m1w2 = 0, 0 < x < L,

z2g(x, eαxz2) − m2z2 − μz2 + Adσ

Ab

w2 ≤ 0, 0 ≤ x ≤ L,

−dw′
2(0) + buqw2(0) ≥ 0,

dw′
2(L) + bdqw2(L) ≥ 0.

(4.8)

Thus (w2, z2) is an upper solution of system (3.8). Moreover from Proposition 3.2, any positive 
steady state solution (w(x), z(x)) of (3.8) satisfies (w(x), z(x)) ≤ (w2, z2). Since (u(x), v(x))
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is a positive steady state of (2.1), we can set the lower solution of (3.8) to be (w2(x), z2(x)) =
(e−αxu(x), e−αxv(x)). Then there exists a maximal solution (wmax(x), zmax(x)) of (3.8) satis-
fying (w2(x), z2(x)) ≤ (wmax(x), zmax(x)). Since (wmax(x), zmax(x)) is obtained through the 
monotone iteration process (see [1,32]) from the upper solution (w2, z2(x)) and any positive 
steady state solution (w(x), z(x)) of (3.8) satisfies (w(x), z(x)) ≤ (w2, z2(x)), we conclude that 
(wmax(x), zmax(x)) is the maximal steady state solution of (3.8). �

Next we show a monotonicity result for the maximal steady state solution.

Proposition 4.5. Suppose g(x, u) satisfies (g1)–(g3), g(x, v) ≡ g(v), that is g is spatially ho-
mogeneous and the cross-section Ab(x) and Ad(x) are also homogeneous. Then if bu ≥ 0 and 
0 ≤ bd ≤ 1, the maximal steady state solution (umax(x), vmax(x)) of equation (2.1) is strictly 
increasing in [0, L].

Proof. We prove that (umax)x > 0 and (vmax)x > 0 for x ∈ (0, L). From [36, Page 992], the max-
imal solution (umax, vmax) is semistable, and the corresponding eigenvalue problem is (3.21). 
From Proposition 3.7, the eigenvalue problem (3.21) has a principal eigenvalue λ1 ≤ 0 with pos-
itive eigenfunction φ = (φ1, φ2) > 0.

We first prove that umax and vmax always have the same sign for x ∈ [0, L]. Differentiating 
(2.4) with respect to x, we have

d(umax)xxx − q(umax)xx − (m1 + σ)(umax)x + Abμ

Ad

(vmax)x = 0, (4.9)

fv(vmax)(vmax)x − (m2 + μ)(vmax)x + Adσ

Ab

(umax)x = 0, (4.10)

where f (v) = vg(v). Multiplying equation (4.10) by φ2 and multiplying the first equation in 
(3.21) by (vmax)x , then subtracting, we obtain

Adσ

Ab

φ2(umax)x =
(

Adσ

Ab

φ1 − λ1φ2

)
(vmax)x. (4.11)

Then umax and vmax always have the same sign as φ1 > 0, φ2 > 0 and λ1 ≤ 0.
We prove the proposition by contradiction. Assuming that the maximal solution (umax, vmax)

is not increasing for all x ∈ [0, L]. From boundary conditions in (2.1) and the condition bu ≥ 0, 
0 ≤ bd ≤ 1, we have

(umax)x(0) = α(bu + 1)umax(0) > 0,

(umax)x(L) = α(−bd + 1)umax(L) ≥ 0.

Then (umax)x(x) has at least two zero points in (0, L]. We choose the two smallest zero points 
x1, x2 ∈ (0, L] (x1 < x2) such that (umax)x(x1) = (umax)x(x2) = 0, (umax)x(x) < 0 on (x1, x2). 
We claim that (umax)xx(x1) < 0 and (umax)xx(x2) > 0. Since (umax)x(x) < 0 on (x1, x2), then 
(umax)xx(x1) ≤ 0 and (umax)xx(x2) ≥ 0. If (umax)xx(x1) = 0, then from (umax)x(x1) = 0, we 
conclude that (umax)x(x) ≡ 0 near x = x1 from the uniqueness of solution of ordinary differential 
equation, which contradicts with the assumption that (umax)x(x) < 0 on (x1, x2). Hence we have 
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(umax)xx(x1) < 0, and similarly we can show that (umax)xx(x2) > 0. Since umax and vmax have 
the same sign, then we also have (vmax)x(x) < 0 on (x1, x2).

Multiplying equation (4.9) by e−αxφ1 and multiplying the first equation in (3.21) by 
e−αx(umax)x , then subtracting, we obtain

de−αx(−(umax)xφ1xx + (umax)xxxφ1) + qe−αx(−(umax)xxφ1 + (umax)xφ1x)

+ e−αx Abμ

Ad

((vmax)xφ1 − φ2(umax)x) = −λ1e
−αxφ1(umax)x.

(4.12)

Then solving (umax)xφ2 − (vmax)xφ1 from (4.11), substituting into (4.12), we have

de−αx(−(umax)xφ1xx + (umax)xxxφ1) + qe−αx(−(umax)xxφ1 + (umax)xφ1x)

= − λ1e
−αxφ1(umax)x − A2

bμ

A2
dσ

λ1e
−αxφ2(vmax)x.

(4.13)

Integrating (4.13) on [x1, x2], the right hand side becomes

−λ1

x2∫
x1

e−αx

[
φ1(umax)x + A2

bμ

A2
dσ

e−αxφ2(vmax)x

]
dx < 0, (4.14)

as (umax)x(x) < 0 and (vmax)x(x) < 0 on (x1, x2), φ1 > 0, φ2 > 0 and λ1 ≤ 0. On the other 
hand, the left hand side becomes

− d

x2∫
x1

[(e−αxφ1x)x(umax)x − (e−αx(umax)xx)xφ1]dx

= − de−αx(φ1x(umax)x − φ1(umax)xx)

∣∣∣x2

x1

= − de−αx1φ1(x1)(umax)xx(x1) + de−αx2φ1(x2)(umax)xx(x2) > 0,

(4.15)

as (umax)xx(x1) < 0 and (umax)xx(x2) > 0. So (4.14) and (4.15) are in contradiction. Thus the 
maximal solution (umax(x), vmax(x)) of (2.4) is increasing for x ∈ [0, L]. Moreover the strong 
maximum principle implies that (umax(x), vmax(x)) must be strictly increasing. �

Next we assume that the condition (H3) holds, i.e. gmin > m2 +μ. Then for every x ∈ [0, L], 
from (g3) and (g4c), there exist v1(x) and v2(x) such that v1(x) < v2(x) and g(x, vi(x)) = m2 +
μ, i = 1, 2. Moreover there also exist v3(x) and v4(x) such that v3(x) < v4(x), g(x, vi(x)) =
m2 + m1μ

σ + m1
, i = 3, 4. It is clear that h(x) < v3(x) < v1(x) < v2(x) < v4(x) < r(x). When 

(H2) is satisfied but (H3) is not, v3(x) and v4(x) still exist but not v1(x) and v2(x). When (H1)

is satisfied, then all vi(x) (i = 1, 2, 3, 4) do not exist (see Fig. 3).
We first prove the following lemma which will be used to construct a lower solution of the 

system (3.8).
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Fig. 3. Graph of g(x, v) under conditions (H1), (H2) or (H3). Upper left: (H1); Upper right: (H2); Lower: (H3).

Lemma 4.6. Let p(x) ∈ C[0, L] such that p(x) > 0 on [0, L] and d > 0, q ≥ 0. Then the system

⎧⎪⎨
⎪⎩

dwxx + qwx + p(x) − (σ + m1)w = 0, 0 < x < L,

−dwx(0) + buqw(0) = 0,

dwx(L) + bdqw(L) = 0,

(4.16)

has a unique positive solution wp(x).

Proof. Consider the following eigenvalue problem

⎧⎪⎨
⎪⎩

dφxx + qφx − (σ + m1)φ = λφ, 0 < x < L,

−dφx(0) + buqφ(0) = 0,

dφx(L) + bdqφ(L) = 0.

(4.17)

Then (4.17) has a principal eigenvalue λ1 satisfying

−λ1 = inf
φ∈H 1(0,L),φ �=0

∫ L

0 eαx(dφ2
x + (σ + m1)φ

2)dx∫ L
eαxφ2dx

(4.18)

0
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Then λ1 < 0 and the corresponding eigenfunction φ1 > 0. We use the upper-lower solution 

method to prove the existence of a positive steady state solution. Let W(x) = 1

σ + m1
max

x∈[0,L]p(x),

and W(x) = εφ1(x) where ε > 0 is small so that W(x) < W(x) and φ1 is the positive eigenfunc-
tion corresponding to λ1 of (4.17). Then it is easy to verify that W(x) and W(x) is a pair of 
upper-lower solution. From [33, Theorem 4.1], there exists a solution wp(x) of system (4.16)
satisfying W(x) ≤ wp(x) ≤ W(x). The uniqueness follows from the maximum principle: if 
w1(x) and w2(x) are two solutions of system (4.16), then w1(x) − w2(x) satisfies a boundary 
value problem of linear ODE, and w1(x) − w2(x) = 0 is the unique solution. Hence the solution 
of (4.16) is unique. �

Now we show that under condition (H3), the benthic-drift population system is always per-
sistent for large initial condition for any diffusion coefficient d > 0 and advection rate q ≥ 0, 
despite of strong Allee growth rate.

Theorem 4.7. Suppose that g(x, v) satisfies (g1)–(g3) and (g4c), d > 0 and q ≥ 0, bu ≥ 0 and 
bd ≥ 0. Assume that (H3) holds. Define

�1 = {(u(x), v(x)) ∈ X1 : u(x) ≥ eαxw1(x), v(x) ≥ v1(x)}, (4.19)

where v1(x) is the smaller root of g(x, v) = μ + m2 and w1(x) is the unique positive solution of 
the system

⎧⎪⎪⎨
⎪⎪⎩

dwxx + qwx + Ab(x)μ

Ad(x)
e−αxv1(x) − (σ + m1)w = 0, 0 < x < L,

−dwx(0) + buqw(0) = 0,

dwx(L) + bdqw(L) = 0.

(4.20)

Then �1 is a positive invariant set for system (2.1). Moreover, system (2.1) has a maximum steady 
state (umax(x), vmax(x)) ∈ �1, and at least another positive steady state.

Proof. Assume that (H3) is satisfied, we consider the equivalent system (3.1) of (2.1). From 
Lemma 4.6, system (4.20) has a unique solution w1(x). We set (w(x), z(x)) =
(w1(x), e−αxv1(x)). Then

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dwxx + qwx + Ab(x)μ

Ad(x)
z(x) − (σ + m1)w = 0, 0 < x < L,

zg(x, eαxz) − −(m2 + μ)z + Ad(x)σ

Ab(x)
w ≥ 0, 0 < x < L,

−dwx(0) + buqw(0) = 0,

dwx(L) + bdqw(L) = 0.

(4.21)

So (w(x), z(x)) is a lower solution of (3.8). On the other hand, from Proposition 4.4, 
(w(x), z(x)) = (θ1 max

x∈[0,L] e
−αxr(x), max

x∈[0,L] e
−αxr(x)) is an upper solution of (3.8). It is easy to 

check that z(x) = max e−αxr(x)) > e−αxv1(x) = z(x) and w(x) = θ1 max e−αxr(x) > w(x)

x∈[0,L] x∈[0,L]
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from the construction of w(x) in Lemma 4.6. So from [33, Theorem 4.1], there exists a positive 
solution (w(x), z(x)) of system (3.8) satisfying w(x) < w(x) < w(x) and z(x) < z(x) < z(x). 
From Proposition 4.4, there exists a maximal solution (umax(x), vmax(x)) ∈ �1. Since the solu-
tion of (3.1) with initial condition (w(x), z(x)) is increasing, then �1 is positively invariant for 
the dynamics of (2.1). The existence of another positive steady state follows from [1, Theorem 
14.2] and the existence of another pair of upper-lower solutions in the proof of Proposition 4.3
part 1. �

At the last we show that the persistence of population in the intermediate μ range (satisfying 
(H2)) may depend on the diffusion coefficient d and advection rate q . The following result on the 
existence of positive steady state solutions only holds for the closed environment (NF/NF bu =
bd = 0, which refers to no-flux type boundary condition at both upstream end and downstream 
end) case.

Theorem 4.8. Suppose that g(x, u) satisfies (g1)–(g3) and (g4c), d > 0 and q ≥ 0. Assume that 
(H2) holds, and the cross-section Ab(x) and Ad(x) are spatially homogeneous. Let v3(x) and 

v4(x) be the roots of g(x, v) = m2 + m1μ

σ + m1
satisfying v3(x) < v4(x), and assume that

max
y∈[0,L] e

−αyv3(y) < min
y∈[0,L] e

−αyv4(y). (4.22)

Then when bu = 0 and bd = 0, (2.1) has at least two positive steady state solutions. In particular 
the condition (4.22) is satisfied if

0 <
q

d
<

1

L
ln

(
miny∈[0,L] v4(y)

maxy∈[0,L] v3(y)

)
. (4.23)

Proof. Using transform u = eαxw and v = eαxz, the steady state equation in this case is of the 
form ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
dwxx + qwx + Ab

Ad

μz − σw − m1w = 0, 0 < x < L,

zg(x, eαxz) − m2z − μz + Ad

Ab

σw = 0, 0 ≤ x ≤ L,

wx(0) = 0, wx(L) = 0.

(4.24)

From Proposition 4.4, (w2, z2) = (θ1 max
y∈[0,L] e

−αyr(y), max
y∈[0,L] e

−αyr(y)) is an upper solution of 

(4.24). Set

w2 = θ1 max
y∈[0,L] e

−αyv3(y), z2 = max
y∈[0,L] e

−αyv3(y).

Then from (4.22),

g(x, eαxz2) =g(x, eαx max
y∈[0,L] e

−αyv3(y))

≥g(x, eαxe−αxv3(x)) = g(x, v3(x)) = m2 + μ − μσ
,

σ + m1
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we obtain that ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dw′′
2 + qw′

2 + Ab

Ad

μz2 − σw2 − m1w2 = 0, 0 < x < L,

z2g(x, eαxz2) − m2z2 − μz2 + Ad

Ab

σw2 ≥ 0, 0 ≤ x ≤ L,

w′
2(0) = 0, w′

2(L) = 0.

So (w2, z2) is a lower solution of (4.24), and we have w2 < w2, z2 < z2. Therefore (4.24) has 
at least one positive solution between (w2, z2) and (w2, z2). Moreover (w1, z1) = (0, 0) is a 
lower solution of (4.24), and from Proposition 4.3, (w1, z1) is an upper solution of (4.24), hence 
we have two pairs of upper and lower solutions which satisfy (w1, z1) < (w1, z1) < (w2, z2) <
(w2, z2). From [1, Theorem 14.2], (4.24) has at least three nonnegative solutions, which implies 
that there exist at least two positive solutions. The condition (4.23) can be derived from (4.22)
since max

y∈[0,L] e
−αyv3(y) ≤ max

y∈[0,L]v3(y), e−αL min
y∈[0,L]v4(y) ≤ min

y∈[0,L] e
−αyv4(y). �

5. Numerical simulations

In this section we show some numerical simulation results to demonstrate our theoretical 
results proved above and also provide some further quantitative information on the dynamical 
behavior of the system (2.1). In particular we show the effect of the transfer rate μ and advection 
q on the maximal steady states. In this section we always assume that

f (x, v) = vg(x, v) = v(1 − v)(v − 0.4), d = 0.02, L = 10,

m1 = m2 = 0.02, σ = 0.2, Ad(x) = Ab(x) = 1.
(5.1)

and we consider the special case of (2.1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = duxx − qux + Ab

Ad

μv − m1u, 0 < x < L, t > 0,

vt = v(1 − v)(v − h) − m2v − μv + Ad

Ab

σu, 0 ≤ x ≤ L, t > 0,

dux(0, t) − qu(0, t) = 0, t > 0,

dux(L, t) − qu(L, t) = −bdqu(L, t), t > 0,

u(x,0) = u0(x) ≥ 0, v(x,0) = v0(x) ≥ 0, x ∈ (0,L).

(5.2)

Fig. 4 shows the variation of total biomass of the maximal steady states for different bd and 
varying transfer rate μ from the benthic zone to the drift zone. It can be observed from the right 
panel that The total biomass of the benthic population is always decreasing with respect to μ
since it can be regarded as a loss of the benthic population. When μ = 0, the drift population 
does not have the source of growing and it cannot live. At the lower μ level, with the increase 
of transfer rate μ, the drift population becomes larger, but after an optimal intermediate μ value 
(about μ∗ ≈ 0.05), the drift population starts to decline with respect to μ for the drift population. 
We can calculate the two threshold values μ1 = μ2 = 0.77 and μ3 = 0.07, defined in the con-
ditions (H1)-(H3). One can observe that in (H3) regime (0 < μ < μ3), the population persists 
robustly for all boundary conditions (see Theorem 4.7); and in (H2) regime (μ3 < μ < μ2), 
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Fig. 4. The total biomass of the maximal steady state solution of (5.2) with respect to the transfer rate μ under different 
boundary conditions. The horizontal axis is μ, the vertical axis are ‖u(·, t)‖1 = ∫ L

0 u(x, t)dx (Left) and ‖v(·, t)‖1 =∫ L
0 v(x, t)dx (Right). Here the parameters satisfy (5.1), q = 0.2 and the initial condition is u0 = 0.2, v0 = 0.2.

the biomass is nearly zero for open environment and is larger than zero for closed environment 
(see Theorem 4.8 for a partial justification). Fig. 4 only shows the biomass up to μ = 0.4, and 
for 0.4 < μ < μ2, the biomass for even the NF/NF boundary condition becomes so small which 
cannot be distinguished from zero. For μ > μ2 ((H1) regime), the extinction of population is 
ensured in Theorem 4.1.

In Fig. 5, the maximal steady state solutions under three types boundary conditions (NF/H, 
NF/FF, NF/FF) and for varying transfer rate μ are plotted. For all boundary conditions, the ben-
thic population is decreasing in μ. The drift population is increasing in μ for 0 < μ < μ∗ (μ∗ is 
the peak transfer rate where the drift biomass reachs the maximum), and for μ∗ < μ < μ3, the 
drift population is decreasing in downstream part but increasing in upstream part. Similarly in 
Fig. 6, the maximal steady state solutions under three types boundary conditions (NF/H, NF/FF, 
NF/FF) and for varying advection rate q . One can observe that a larger advection rate leads to a 
larger benthic population for every point in the river, but for drift population, a larger advection 
rate decreases the downstream population and increases the upstream population.

Finally Fig. 7 demonstrates the bistable nature of system (5.2) under NF/FF (bu = 0 and 
bd = 1) boundary condition and (H3) is satisfied, and Fig. 8 describes the bistable phenomenon 
under NF/NF (bu = bd = 0) boundary condition and (H2) is satisfied. And when the cross-
sectional areas of the benthic zone Ab(x) and drift zone Ab(x) are spatially heterogeneous, then 
the bistable structure is shown in Fig. 9. The population becomes extinct when starting from 
small initial population (first panel in Fig. 7, 8 and 9); and the population reaches the maximal 
steady state when starting from relatively large initial population (third panel in Fig. 7, 8 and 
9). And the second panel in Fig. 7, 8 and 9 also shows a “stable” pattern with a transition layer. 
We conjecture that the transition layer solution is unstable and metastable (with a small positive 
eigenvalue), so the pattern can be observed for a long time in numerical simulation.

6. Conclusion

For an aquatic species that reproduce on the bottom of the river and release their larval stages 
into the water column, the longitudinal movement occurs only in the drift zone and individuals 
in the benthic zone in stream channel stays immobile. Through a benthic-drift model, we inves-
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Fig. 5. The dependence of maximal steady state solution of (5.2) on the varying transfer rate μ under three types boundary 
conditions. Here the parameters satisfy (5.1), q = 0.2, and the initial condition is u0 = 0.2, v0 = 0.2. Left: The drift 
population; Right: The benthic population.

tigated the population persistence and extinction regarding the strength of interacting between 
zones. Moreover, this benthic-drift model has the feature of a coupled partial differential equa-
tion (PDE) for the drift population and an “ordinary differential equation” (ODE) for the benthic 
population. This degenerate model causes a lack of the compactness of the solution orbits, which 
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Fig. 6. The dependence of maximal steady state solution of (5.2) on the varying advection rate q under three types 
boundary conditions. Here the parameters satisfy (5.1), μ = 0.04, and the initial condition is u0 = 0.2, v0 = 0.2. Left: 
The drift population; Right: The benthic population.

brings extra obstacles in the analysis. To overcome these difficulties, we turn to the Kuratowski 
measure of noncompactness in order to use the Lyapunov function.

For single compartment reaction-diffusion-advection equation, when the growth rate exhibits 
logistic type, it is well-known that the dynamics is either the population extinction or convergence 
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Fig. 7. Bistable dynamics for different initial conditions. Here the parameters satisfy (5.1), q = 0.11, μ = 0.04, bu = 0, 
bd = 1. The initial conditions from first row to thrid row are u0(x) = 0, v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.04
for x ∈ [L/2, L]; u0(x) = 0, v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.1 for x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0 for 
x ∈ [0, L/2] and v0(x) = 0.1 for x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0.4. Left: the drift population; Right: the benthic 
population. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 8. Bistable dynamics for different initial conditions. Here the parameters satisfy (5.1), q = 0.025, μ = 0.1, bu =
bd = 0. The initial conditions from first row to third row are u0(x) = 0, v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.08 for 
x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.4 for x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0.4. Left: 
the drift population; Right: the benthic population.

to a positive steady state (monostable). If the species follows a strong Allee effect growth, when 
both the diffusion coefficient and the advection rate are small, there exist multiple positive steady 
state solutions hence the dynamics is bistable so that different initial conditions lead to different 
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Fig. 9. Bistable dynamics for different initial conditions. Here the parameters satisfy (5.1) (except Ab(x) and Ad(x)), 
q = 0.025, μ = 0.1, Ad(x) = sin 2x + 2, Ad(x) = sin(2x − 10) + 2. The initial conditions from first row to third row are 
u0(x) = 0, v0(x) = 0 for x ∈ [0, L/2] and v0(x) = 0.1 for x ∈ [L/2, L]; u0(x) = 0.08, v0(x) = 0 for x ∈ [0, L/2] and 
v0(x) = 0.4 for x ∈ [L/2, L]; u0(x) = 0.1, v0(x) = 0.4. Left: the drift population; Right: the benthic population.

asymptotic behavior. On the other hand, when the advection rate is large, the population becomes 
extinct regardless of initial condition under most boundary conditions [46].

Unlike the single compartment reaction-diffusion-advection equation with a strong Allee 
effect growth rate, in which the advection rate q plays an important role in the persistence/extinc-
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tion dynamics, the benthic-drift model dynamics with strong Allee effect relies more critically 
on the strength of interacting between zones, especially the transfer rate from the benthic zone 
to the drift zone μ. In this paper, we show that how the transfer rates between benthic zone and 
drift zone influence the population dynamics. We divided the μ (transfer rate from benthic zone 
to drift zone) and σ (transfer rate from drift zone to benthic zone) parameter plane into regions 
and studied the dynamical behavior on these parameter regions. When we have a relatively large 
μ (in H1), population extinction will happen independent of the initial conditions, the bound-
ary condition, the diffusive and advective movement and the transfer rate from the drift zone to 
the benthic zone σ . For small μ (in (H3)), for large initial conditions, population persistence 
will happen regardless of the boundary condition, the diffusive and advective movement and the 
transfer rate from the drift zone to the benthic zone σ . Along with the locally stability of the 
zero steady state solution, bistable dynamical behavior can be confirmed. When the transfer rate 
μ is in the intermediate range (in (H2)), the persistence or extinction depends on the diffusive 
and advective movement. And under closed environment, a multiplicity result for the steady state 
solutions is also obtained for small advection rate.
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