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Abstract
A diffusive Lotka–Volterra competition model is considered and the combined effect of spa-
tial dispersal and spatial variations of resource on the population persistence and exclusion
is studied. A new Lyapunov functional method and a new integral inequality are developed
to prove the global stability of non-constant equilibrium solutions in heterogeneous envi-
ronment. The general result is applied to show that in a two-species system in which the
diffusion coefficients, resource functions and competition rates are all spatially heteroge-
neous, the positive equilibrium solution is globally asymptotically stable when it exists, and
it can also be applied to the system with arbitrary number of species under the assumption
of spatially heterogeneous resource distribution, for which the monotone dynamical system
theory is not applicable.

Mathematics Subject Classification 35K51 · 35B09 · 35B35 · 92D25

1 Introduction

The uneven distribution of resources due to the effect of geological and environmental charac-
teristics greatly enriches the diversity of ecosystems. In the past fewdecades, the phenomenon
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of spatial heterogeneity of resources has attracted the attention of many researchers from
both biology and mathematics, see [4,23,25,32], for example. The dynamical properties of
mathematical models with spatial heterogeneity are more complicated, especially the global
stability of non-constant equilibrium solutions.

In this paper we consider the global dynamics of the diffusive Lotka–Volterra competition
model of multiple species in a non-homogeneous environment:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t ui = di (x)�ui + ui

(

mi (x) −
k∑

j=1

ai j (x)u j

)

, x ∈ �, t > 0, 1 ≤ i ≤ k,

∂νui = 0, x ∈ ∂�, t > 0, 1 ≤ i ≤ k,

ui (x, 0) = ϕi (x) ≥, �≡ 0, x ∈ �, 1 ≤ i ≤ k,

(1.1)

where ui (x, t) is the population density of i th biological species,mi ∈ Cα(�), i = 1, . . . , k,
represent the densities of non-uniform resources, the nonnegative function ai j ∈ Cα(�) is
the strength of competition of species u j against ui at location x , and the function di (x) ≥ 0 is
the diffusion coefficient of ui at location x . The spatial habitat� ⊂ R

N is a bounded domain
with smooth boundary ∂� ∈ C2+α , ν is the outward unit normal vector over ∂�, and the
homogeneous Neumann boundary condition indicates that this system is self-contained with
zero population flux across the boundary.

If all of di ,mi and ai j are positive constants (so the environment is spatially homogeneous),
the global stability of positive constant equilibrium of (1.1) had been proved in the weak
competition case, see [2,8] and the references therein. Lyapunov functional methods are used
to prove the global stability of positive constant equilibrium of (1.1) in the homogeneous
case. However the spatial heterogeneity of the environment may change the outcome of the
competition, and it is an important biological question to understand how the spatially non-
homogeneous environment affects the competition between species. When k = 2, di are
constants, the two species u1 and u2 share the same spatially distributed resource m1(x) =
m2(x) and have the same competition coefficients ai j = 1, it was shown in [7] that the
species with smaller diffusion coefficient survives while the other one with larger diffusion
coefficient becomes extinct, that is, the slower diffuser prevails. The same question with
k ≥ 3 species remains as an open question. The global dynamics of the two-species case of
(1.1) was recently completely classified for the weak competition regime a11a22 > a12a21
in [12–14], assuming di and ai j are constants and mi (x) are spatially heterogeneous. It was
shown that there is always a globally asymptotically stable non-negative equilibrium for
the problem, and the dynamics can be completely determined according to the competition
strength ai j , the diffusion coefficients di and heterogeneous resource functions mi (x) by
using linear stability analysis and monotone dynamical system theory.

The role of spatial heterogeneity in diffusive two-species competition system (1.1) have
been explored in many work, see for example [3,5,10,11,18,19,22,25] and the references
therein, in which various methods and mathematical tools have been applied to analyze
the existence and stability of the equilibrium solutions. The additional effect of advection
on the diffusive two-species competition models have been considered in [26,36] and the
references therein, and the effect of nonlocal competition has been studied in [28]. Note
that the diffusive two-species Lotka–Volterra competition model (1.1) generates a monotone
dynamical system, so the powerful tools from monotone dynamical system theory can be
applied [16,31]. However, when k ≥ 3, the monotone dynamical system theory cannot be
applied to problem (1.1). Our approach here does not rely on themonotone dynamical system
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methods, and the global stability proved in Theorem3.6 for competitionmodelswith arbitrary
number of species is perhaps the first such result for spatially heterogeneous models.

The main results (see Theorem 3.6) in this paper are the global stability of positive non-
constant equilibrium solution or semi-trivial equilibrium solution of (1.1). For di > 0, to
show the global stability of positive equilibrium solution denoted by u∗ := (u∗

1, . . . , u
∗
k), the

following two assumptions are needed:

(i) (1.1) admits a positive equilibrium solution u∗;
(ii) for this (u∗

i ), there exist some positive constants ξi such that thematrix Q(x) = (qi j (x)+
q ji (x)) is positive definite for every x ∈ �, where

qi j (x) = ξi u∗
i (x)

di (x)
ai j (x)

The same idea can be applied to obtain the global stability of semi-trivial equilibrium solution
of (1.1) with di > 0. Moreover, in Theorem 3.6 we also consider the global stability of non-
homogeneous equilibrium solution in the case that some diffusion coefficients are degenerate,
namely di0 ≡ 0 for some i0 ∈ {1, . . . , k}. We also remark that the global stability results
in Theorem 3.6 still hold when the diffusion terms �ui are replaced by a divergence form
div(bi (x)∇ui ), and the homogeneous Dirichlet boundary condition are changed to Robin
boundary condition (see Remark 3.7 (i)), where bi (x) ∈ C1+α(�) with 1 ≤ i ≤ k are
positive functions.

A key ingredient of our work here is a new Lyapunov functional method. In [8,17],
the global stability of positive equilibrium solution of (1.1) for homogeneous environment
is proved using Lyapunov functional methods when di ,mi , ai j are all constants. A more
general equation, including Lotka–Volterra competitive models (the corresponding ODE
problem to (1.1)) and chemostat systems as particular cases, is investigated by utilizing
Lyapunov functional methods in [6]. The Lyapunov functional in [8,17] is constructed as

F1(t) =
∫

�

V (ui (x, t))dx , whereV (ui ) is theLyapunov function for the ordinary differential

equation model, and the equilibrium solution is a constant one. The integral form of the
Lyapunov functional can be viewed as an unweighted average of the ODELyapunov function
on the spatial domain. However this simple construction does not work for the spatially
heterogeneous situation, and the equilibrium solution in that case is a non-constant one. In

this work, we use a new Lyapunov functional in form of F2(t) =
∫

�

w∗(x)V (ui (x, t))dx ,

which is a weighted average of the ODE Lyapunov function on the spatial domain, and
the weight function w∗(x) depends on the non-homogeneous functions di ,mi , ai j and non-
constant equilibrium solution (assuming it exists). Such construction is motivated by the
method used in [24] for the the global stability of equilibrium solutions of coupled ordinary
differential equation models on networks (which is patchy environment or discrete spatial
domain). Such a Lyapunov function has also been used in [21] for a diffusive SIR epidemic
model. To demonstrate this new method, we first prove the global stability of a non-constant
equilibrium solution for a spatially heterogeneous diffusive logisticmodel (see Theorem 3.1).
That result is well-known but we give a new proof for the spatial heterogeneous case.

This paper is organized as follows. In Sect. 2, we give some preliminaries. In Sect. 3,
we apply Lyapunov functional method to show the main results Theorem 3.6 on the global
stability of the equilibrium solutions of (1.1). In Sect. 4, making use of upper and lower
solutions method, we present some applications of Theorem 3.6.
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2 Preliminaries

When using the Lyapunov functional method to investigate the global stability of equilibrium
of reaction–diffusion systems, the uniform estimates of solutions of parabolic equations play
an important role.We first recall the following results on the uniform estimates for the second
order parabolic equations.

Consider the initial-boundary value problem
⎧
⎨

⎩

ut + Lu = f (x, t, u), x ∈ �, t > 0,
B[u] = 0, x ∈ ∂�, t > 0,
u(x, 0) = ϕ(x), x ∈ �,

(2.1)

where the domain� ⊂ R
n is bounded with a smooth boundary ∂� ∈ C2+α with 0 < α < 1,

operators L and B have the forms:

L[u] = −ai j (x, t)Di j u + b j (x, t)Dju + c(x, t)u,

B[u] = u, or B[u] = ∂u

∂ν
+ b(x)u,

with b ∈ C1+α(∂�) and b ≥ 0. The initial condition ϕ ∈ W 2
p(�), p > 1 + n/2, satisfies

B[ϕ]∣∣
∂�

= 0.
Denote Q∞ = � × [0,∞). We make the following assumptions:

(L1) ai j , b j , c ∈ C(� × [0,∞)) and there are positive constants λ and 
 such that

λ|y|2 ≤
∑

1≤i, j≤n

ai j (x, t)yi y j ≤ 
|y|2, |b j (x, t)|, |c(x, t)| ≤ 


for all (x, t) ∈ Q∞, y ∈ R
n .

(L2) For any fixed m > 0, there exists a positive constant C(m) such that, for all k ≥ 1,

||ai j ||Cα,α/2(�×[k,k+m]), ||b j ||Cα,α/2(�×[k,k+m]), ||c||Cα,α/2(�×[k,k+m]) ≤ C(m).

(L3)

(i) f (x, 0, 0) = 0 on ∂� when B[u] = u, f ∈ L∞(Q∞ × [σ1, σ2]) for some σ1 < σ2,
(ii) there exists C(σ1, σ2) > 0 such that

| f (x, t, u) − f (x, t, v)| ≤ C(σ1, σ2)|u − v|, ∀ (x, t) ∈ Q∞, u, v ∈ [σ1, σ2]
and f (·, u) ∈ Cα,α/2(� × [h, h + 3]) uniformly for u ∈ [σ1, σ2] and h ≥ 0, i.e., there
exists a constant C > 0 so that

| f (x, t, u) − f (y, s, u)| ≤ C(|x − y|α + |t − s|α/2)

for all (x, t), (y, s) ∈ � × [h, h + 3], u ∈ [σ1, σ2] and h ≥ 0.

Under the above assumptions, we have the following boundedness result for a globally
defined solution u(x, t) of (2.1).

Theorem 2.1 Let u(x, t) be a solution of (2.1) and σ1 < u < σ2 for some σ1, σ2 ∈ R.
Assume that f satisfies (L3) (i) for these σ1, σ2, and ai j , b j and c satisfy the assumption
(L1). Then, for any given m > 0, there is a constant C1(m) > 0 such that

‖u‖W 2,1
p (�×[τ,τ+m]) ≤ C1(m), ∀ τ ≥ 1.
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If additionally the assumptions (L2) and (L3) (ii) hold, then, for any given m ≥ 1, there is a
constant C2(m) > 0 such that

max
x∈�

‖ut (x, ·)‖Cα/2([m,∞)) + max
t≥m

‖ut (·, t)‖C(�) + max
t≥m

‖u(·, t)‖C2+α(�) ≤ C2(m).

For the idea of proof to Theorem 2.1, the interested readers can refer to the proofs of [33,
Theorem 2.1] and [35, Theorem 2.2] for the details. We also recall the following calculus
lemma which will be used to prove the global stability of equilibrium solution.

Lemma 2.2 [34, Theorem 1.1] Let δ > 0 be a constant, and let the two functions ψ, h ∈
C([δ,∞)) satisfyψ(t) ≥ 0 and

∫ ∞

δ

h(t)dt < ∞, respectively. Assume that ϕ ∈ C1([δ,∞))

is bounded from below and satisfies

ϕ′(t) ≤ −ψ(t) + h(t) in [δ,∞).

If one of the following conditions holds:

(i) ψ is uniformly continuous in [δ,∞),
(ii) ψ ∈ C1([δ,∞)) and ψ ′(t) ≤ K in [δ,∞) for some constant K > 0,
(iii) ψ ∈ Cβ([δ,∞)) with 0 < β < 1, and for τ > 0 there exists K > 0 just depending on

τ such that ‖ψ‖Cβ ([x,x+τ ]) ≤ K for all x ≥ δ,

then lim
t→∞ ψ(t) = 0.

In fact, the conditions (ii) and (iii) appear to be stronger than (i), however for the convenience
of applicationwe still list them there since the uniformcontinuity of a function on a unbounded
domain may not be verified easily.

Another useful result concerning with convergence of function ψ(x) as x → ∞ is the
well known Barbalat’s Lemma [1].

Lemma 2.3 Suppose thatψ : [0,∞) → R is uniformly continuous and that lim
t→∞

∫ t

0
ψ(s)ds

exists. Then lim
t→∞ ψ(t) = 0 holds.

In order to use the Lyapunov functional method to study the global asymptotic stability
of spatially non-homogeneous equilibrium solutions, we now give a key integral inequality
which plays a crucial role in the later analysis.

Lemma 2.4 Let w, w∗ ∈ C2(�) be two positive functions, a ∈ C1(�) with a(x) ≥ 0 on �.
If �, g and h satisfy

(i) � ∈ C2,2(� × [0,∞)), �(x, 0) = 0 and �u(x, u) > 0 for x ∈ � and u > 0,

(ii) g ∈ C0,1(∂� × [0,∞)), and for any x ∈ ∂�, the function
g(x, u)

�(x, u)
is nonincreasing

for u ∈ [0,∞),
(iii) h ∈ C1([0,∞)) and h′(u) ≤ 0,

(iv)
∂�(x, w)

∂ν
= g(x, w),

∂�(x, w∗)
∂ν

= g(x, w∗) on ∂�,

then
∫

�

�(x, w∗)h
(

�(x, w∗)
�(x, w)

)(

div[a(x)∇�(x, w)] − �(x, w)

�(x, w∗)
div[a(x)∇�(x, w∗)]

)

dx

≤
∫

�

a(x)[�(x, w)]2h′
(

�(x, w∗)
�(x, w)

) ∣
∣
∣∇ �(x, w∗)

�(x, w)

∣
∣
∣
2
dx ≤ 0. (2.2)
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Proof It follows from Green’s Theorem that
∫

�

�(x, w∗)h
(

�(x, w∗)
�(x, w)

)(

div[a∇�(x, w)] − �(x, w)

�(x, w∗)
div[a∇�(x, w∗)]

)

dx

=
∫

�

h

(
�(x, w∗)
�(x, w)

)

div[a�(x, w∗)∇�(x, w) − a�(x, w)∇�(x, w∗)]dx

=
∫

∂�

h

(
�(x, w∗)
�(x, w)

)(

a�(x, w∗)
∂�(x, w)

∂ν
− a�(x, w)

∂�(x, w∗)
∂ν

)

dS

−
∫

�

a∇h

(
�(x, w∗)
�(x, w)

)

[�(x, w∗)∇�(x, w) − �(x, w)∇�(x, w∗)]dx

=
∫

∂�

h

(
�(x, w∗)
�(x, w)

)

a�(x, w)�(x, w∗)
(
g(x, w)

�(x, w)
− g(x, w∗)

�(x, w∗)

)

dS

+
∫

�

a[�(x, w)]2h′
(

�(x, w∗)
�(x, w)

) ∣
∣
∣∇ �(x, w∗)

�(x, w)

∣
∣
∣
2
dx

≤
∫

�

a[�(x, w)]2h′
(

�(x, w∗)
�(x, w)

) ∣
∣
∣∇ �(x, w∗)

�(x, w)

∣
∣
∣
2
dx ≤ 0.

The proof is finished. ��

A simple example of g, h and � is

�(x, τ ) = τ, g(x, τ ) = c(x) − b(x)τ, h(τ ) = 1 − τβ

for some constant β ≥ 1 and nonnegative function b ∈ C(�). Then (iv) becomes
∂w

∂ν
=

g(x, w),
∂w∗
∂ν

= g(x, w∗) on ∂�, and the estimate (2.2) reduces to

∫

�

w∗(wβ − w
β∗ )

wβ

(

div[a(x)∇w] − w

w∗
div[a(x)∇w∗]

)

dx

≤ −β

∫

�

a(x)w2
(w∗

w

)β−1∣∣
∣∇ w∗

w

∣
∣
∣
2
dx ≤ 0.

(2.3)

3 Main results

3.1 Scalar equation

In this subsection, we study the following scalar parabolic equation
⎧
⎨

⎩

ut = d(x)�u + u f (x, u), x ∈ �, t > 0,
∂νu = 0, x ∈ ∂�, t > 0,
u(x, 0) = ϕ(x) ≥�≡ 0, x ∈ �,

(3.1)

where d ∈ Cα(�) and f ∈ Cα,α(� × [0,∞)) satisfy
{
d(x) > 0 on �, f (x, τ ) is strictly decreasing for τ ≥ 0,

there exists K > 0 such that f (x, τ ) ≤ 0 for (x, τ ) ∈ � × [K ,∞).
(3.2)
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When d(x) ≡ 1, the global stability of the positive equilibrium solution u∗(x) (if exists)
of (3.1) has been shown in [4, Proposition 3.2] by using the Lyapunov functional

V (u) =
∫

�

(
1

2
|∇u|2 − F(x, u)

)

dx,

where F(x, u) =
∫ u

0
τ f (x, τ )dτ . Here we consider a more general case that d(x) > 0 on

�, and we use a different Lyapunov functional to prove the global stability of u∗ with respect
to (3.1).

Theorem 3.1 Assume that u0 ∈ C(�) and u0(x) ≥, �≡ 0. If d ∈ Cα(�) and f ∈ Cα,α(� ×
[0,∞)) satisfy (3.2), then the problem (3.1) has a unique positive solution u(x, t) for t ∈
(0,∞). Moreover, if (3.1) admits a positive equilibrium solution u∗, then lim

t→∞ u(x, t) =
u∗(x) in C2(�).

Proof Denote

M = max

{

K ,max
x∈�̄

u0(x)

}

,

where K is given by (3.2). Then (M, 0) is a pair of ordered upper and lower solutions of
problem (3.1). This implies that the problem (3.1) has a unique positive solution u(x, t)
satisfying 0 < u(x, t) ≤ M for (x, t) ∈ � × (0,∞). It then follows from Theorem 2.1 that
there exists a constant C > 0 such that

max
t≥1

‖ut (·, t)‖C(�) + max
t≥1

‖u(·, t)‖C2+α(�) ≤ C, (3.3)

since here the functions ai j (x) ≡ 0 for i �= j , aii (x) = d(x), and bi = c ≡ 0 satisfy (L1)
and (L2), and the function g(x, u) := u f (x, u) satisfies (L3) with σ1 = 0 and σ2 = M .

Define a function E : [0,∞) → R by

E(t) =
∫

�

∫ u(x,t)

u∗(x)

u∗(x)
d(x)

· s − u∗(x)
s

dsdx .

Then E(t) ≥ 0 for t ≥ 0. From (2.3), we obtain

dE(t)

dt
=
∫

�

u∗(u − u∗)
du

utdx =
∫

�

u∗(u − u∗)
du

[d�u + u f (x, u)] dx

=
∫

�

u∗(u − u∗)
du

(
d�u + u f (x, u) − u

u∗ d�u∗ − u

u∗ u
∗ f (x, u∗)

)
dx

=
∫

�

u∗(u − u∗)
du

(
d�u − u

u∗ d�u∗) dx +
∫

�

u∗(u − u∗)
d

[
f (x, u) − f (x, u∗)

]
dx

≤
∫

�

(

−u2
∣
∣
∣
∣∇

u∗

u

∣
∣
∣
∣

2

+ u∗(u − u∗)
d

[
f (x, u) − f (x, u∗)

]
)

dx

≤ −
∫

�

u∗(u − u∗)
d

[
f (x, u) − f (x, u∗)

]
dx =: ψ(t) ≤ 0.

Taking advantages of (3.3), we have ||ψ ′||C([1,∞)) < C1 for some C1 > 0. Then it follows
from Lemma 2.2 that

lim
t→∞ ψ(t) = −

∫

�

u∗(u − u∗)
d

[
f (x, u) − f (x, u∗)

]
dx = 0. (3.4)
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The estimate (3.3) also implies that the set {u(·, t) : t ≥ 1} is relatively compact in C2(�).
Therefore, we may assume that

‖u(x, tk) − u∞(x)‖C2(�) → 0 as tk → ∞
for some function u∞ ∈ C2(�). Combining this with (3.4), we can conclude that u∞(x) ≡
u∗(x) for x ∈ �. Thus lim

t→∞ u(x, t) = u∗(x) in C2(�). The proof is finished. ��
Assume f (x, u) = m(x) − φ(x)u with m and φ satisfying

m, φ ∈ Cα(�),

∫

�

m(x)

d(x)
dx ≥ 0, m(x) �≡ 0 and φ(x) > 0, x ∈ �. (3.5)

Then f (x, u) = m(x) − φ(x)u satisfies (3.2). Let θd,m,φ be the unique positive solution of
{
d(x)�θ + θ [m(x) − φ(x)θ ] = 0, x ∈ �,

∂νθ = 0, x ∈ ∂�.
(3.6)

Indeed the existence of θd,m,φ follows from [4, Proposition 3.2] and [10, Proposition 2.2],
and the uniqueness of θd,m,φ is a consequence of [4, Proposition 3.3].

Clearly, for the above defined f (x, u), we could directly apply Theorem 3.1 to obtain the
following conclusion.

Corollary 3.2 Assume that u0 ∈ C(�) and d ∈ Cα(�) with u0(x) ≥, �≡ 0, d(x) > 0 on
�. Let f (x, τ ) = m(x) − φ(x)τ with m and φ satisfying (3.5). Then the problem (3.1) has
a unique positive solution u(x, t) and a unique positive equilibrium solution θd,m,φ , and
lim
t→∞ u(x, t) = θd,m,φ(x) in C2(�).

Remark 3.3 For the quasilinear parabolic problem with nonlinear diffusion and nonlinear
boundary condition:

⎧
⎪⎨

⎪⎩

ut = d(x)div[a(x)∇�(x, u)] + f (x, u), x ∈ �, t > 0,
∂�(x, u)

∂ν
= g(x, u), x ∈ ∂�, t > 0,

u(x, 0) = ϕ(x) ≥�≡ 0, x ∈ �,

(3.7)

where g and � satisfy (i) and (ii) in Lemma 2.4, a ∈ C1+α(�), d ∈ Cα(�) with a(x) > 0
and d(x) > 0 on �, one may construct a similar Lyapunov functional

E(t) =
∫

�

∫ u(x,t)

u∗(x)

�(x, u∗)
d(x)

· �(x, s) − �(x, u∗)
�(x, s)

dsdx

to prove the uniqueness and global stability of the positive equilibrium solution u∗ with
respect to (3.7). For more results about the problem (3.7), readers can refer to [27,30] and
the references therein.

3.2 Competitionmodels

We consider a Lotka–Volterra competition model with k species
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ui
∂t

= di (x)�ui + ui

(

mi (x) −
k∑

j=1

ai j (x)u j

)

, x ∈ �, t > 0, 1 ≤ i ≤ k,

∂νui = 0, x ∈ ∂�, t > 0, 1 ≤ i ≤ k,

ui (x, 0) = ϕi (x) ≥, �≡ 0, x ∈ �, 1 ≤ i ≤ k,

(3.8)
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where di , ai j and mi satisfy

di , ai j ,mi ∈ Cα(�), ai j ≥ 0, aii > 0, di ≥ 0 in � (3.9)

for some 0 < α < 1.
In the following, we always assume that for each 1 ≤ i ≤ k, either inf x∈� di (x) > 0 or

di ≡ 0. Without loss of generality, we assume for some integer 1 ≤ i0 ≤ k,

inf
x∈�

di (x) > 0, i ∈ A1 := {1, . . . , i0},
di ≡ 0, i ∈ A2 := {1, . . . , k} \ A1.

Here i0 = k just means infx∈� di (x) > 0 for all 1 ≤ i ≤ k. For the case i0 < k, it is clear
that the species ui for i ∈ A2 is immobile in the habitat �.

We say that u∗ := (u∗
1, . . . , u

∗
k) with

u∗
i ∈ C2+α(�), u∗

j ∈ Cα(�) for i ∈ A1, j ∈ A2

is a positive equilibrium solution of (3.8) if u∗
i (x) > 0 for x ∈ �, 1 ≤ i ≤ k satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

di (x)�u∗
i + u∗

i

(

mi (x) −
k∑

j=1

ai j u
∗
j

)

= 0, x ∈ �, i ∈ A1,

mi (x) −
k∑

j=1

ai j u
∗
j = 0, x ∈ �, i ∈ A2,

∂νu
∗
i = 0, x ∈ ∂�, i ∈ A1.

(3.10)

Moreover wewill also consider the global stability of some semi-trivial equilibrium solutions
(v∗

i ) := (v∗
1 , . . . , v

∗
k ) of (3.8) with v∗

i satisfying

v∗
i ∈ C2+α(�), v∗

j ∈ Cα(�) for i ∈ A1, j ∈ A2

and

v∗
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

> 0, x ∈ �, i ∈ B1 ⊂ A1,

≡ 0, x ∈ �, i ∈ B2 ⊂ A1,

> 0, x ∈ �, i ∈ B3 ⊂ A2,

≡ 0, x ∈ �, i ∈ B4 ⊂ A2

and ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

di (x)�v∗
i + v∗

i

(

mi (x) −
∑

j∈B1∪B3

ai jv
∗
j

)

= 0, x ∈ �, i ∈ B1,

mi (x) −
∑

j∈B1∪B3

ai jv
∗
j = 0, x ∈ �, i ∈ B3,

∂νv
∗
i = 0, x ∈ ∂�, i ∈ B1,

(3.11)

where the index set Bi satisfy ∪4
i=1Bi = {1, . . . , k} and Bi ∩ Bj = ∅ for i �= j . Clearly,

B1 ∪ B2 = A1 = {1, . . . , i0} and B3 ∪ B4 = A2.
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If the resource functions mi and other coefficient functions di and ai j are all positive
constants, the global stability conclusions of the following ordinary differential equation

⎧
⎪⎪⎨

⎪⎪⎩

u′
i (t) = ui (t)

(

mi −
k∑

i=1

ai j ui (t)

)

, 1 ≤ i ≤ k,

ui (0) > 0,

(3.12)

are well known (see [8, Page 138]). For convenience of the reader, we recall it as follows.

Theorem 3.4 [8, Page 138] Assume that mi > 0, aii > 0 for 1 ≤ i ≤ k, and ai j ≥ 0 for
1 ≤ i, j ≤ k. If (3.12) has a positive equilibrium u∗ ∈ R

k and there exists a diagonal matrix
C with positive constant entries such that C A+ATC is positive definite where A = (ai j )k×k ,
then u∗ is globally asymptotically stable with respect to (3.12).

Moreover, a similar Lyapunov function as in [8] could be utilized to show the following
global stability results regarding the semi-trivial equilibrium of (3.12).

Corollary 3.5 Assume that mi > 0, aii > 0 for 1 ≤ i ≤ k, and ai j ≥ 0 for 1 ≤ i, j ≤ k. Let
i1 ∈ [1, k) be an integer. If
(i) the problem (3.12) has a semi-trivial equilibrium v∗ = (v∗

1 , . . . , v
∗
k ) ∈ R

k with v∗
i > 0

for 1 ≤ i ≤ i1 and v∗
i = 0 for i1 + 1 ≤ i ≤ k,

(ii) mi −
i1∑

j=1

ai jv
∗
j ≤ 0 for i1 + 1 ≤ i ≤ k,

(iii) there exists a diagonal matrix C := diag(c1, . . . , ck)with positive constant entries such
that C A + ATC is positive definite,

then v∗ is globally asymptotically stable with respect to (3.12), and
∫ ∞

0
u2i (t)dt < ∞ for

i1 + 1 ≤ i ≤ k.

Proof It is clear that the problem (3.12) admits a uniquenonnegative solution (u1(t), . . . , uk(t))
satisfying 0 < ui (t) ≤ mi/aii for t ∈ (0,∞). Define a function F : [0,∞) → R by

F(t) :=
i1∑

i=1

ci [ui (t) − v∗
i ln ui (t)] +

k∑

i=i1+1

ci ui (t).

DenoteU (t) := (u1(t)− v∗
1 , . . . , uk(t)− v∗

k ). Making use of (3.12) and (i)–(iii), we deduce

F ′(t) = −
k∑

i=1

k∑

j=1

ciai j (ui − v∗
i )(u j − v∗

j ) +
k∑

i=i1+1

ui

⎛

⎝mi −
i1∑

j=1

ai jv
∗
j

⎞

⎠

≤ −
k∑

i=1

k∑

j=1

ciai j (ui − v∗
i )(u j − v∗

j )

= − 1

2

k∑

i=1

k∑

j=1

(ciai j + ai j c j )(ui − v∗
i )(u j − v∗

j )

= − 1

2
U (CA + ATC)UT ≤ −ε

k∑

i=1

(ui − v∗
i )

2 ≤ 0

123



Global stability of nonhomogeneous equilibrium solution for… Page 11 of 28   132 

for some small ε > 0. Then the boundedness of u′
i (t) allows us to apply Lemma 2.2 to

conclude that
∑k

i=1
[ui (t) − v∗

i ]2 → 0 as t → ∞. Consequently, limt→∞ ui (t) = v∗
i .

Moreover, F(∞) := lim
t→∞ F(t) exists since F(t) is non-increasing and has a lower bound

for t ≥ 0. This combined with the following inequality

F ′(t) ≤ −ε

k∑

i=i1+1

(ui − v∗
i )

2 = −ε

k∑

i=i1+1

u2i (t)

implies that
∫ ∞

0
u2i (t)dt ≤ (F(0) − F(∞))/ε < ∞ for i1 + 1 ≤ i ≤ k. ��

The Lyapunov function in [8] is only for ordinary differential equation model without
diffusion, but the integral of this function over spatial domain can be used as a Lyapunov
function for reaction–diffusionmodels to prove the global stability of the constant equilibrium
solutions with respect to (3.8) when di , mi and ai j are all constants. On the other hand, if
one of the functions mi and ai j is not constant, then the equilibrium solutions of (3.8) may
not be constants which brings difficulties to study the global stability of these non-constant
equilibrium solutions if we use the same Lyapunov functions as that in [8].

Now we are ready to present our main result on the global stability.

Theorem 3.6 Let (3.9) be satisfied, and let the sets Ai , Bi be defined as above, and addi-
tionally initial function ϕi > 0 for i ∈ A2. Then the problem (3.8) admits a unique positive

solution (ui ) satisfying ui ∈ C(� × [0,∞)) ∩ C1+α, 1+α
2 (� × (0,∞)) for i ∈ A1 and

ui ∈ C(� × [0,∞)) for i ∈ A2, and for fixed constant T > 0 there exists a constant
M := M(T ) > 0 such that

⎧
⎪⎨

⎪⎩

sup
s≥1

||ui (·, ·)||C1+α,(1+α)/2(�×[s,s+T ]) ≤ M, i ∈ A1,

max
t≥1

||u j (·, t)||C(�), max
t≥1

||∂t u j (·, t)||C(�) ≤ M, j ∈ A2.
(3.13)

Moreover, we have the following global stability conclusions.

(1) (Global stability of positive equilibrium solution) Assume that

(i) (3.8) has a positive equilibrium solution u∗,
(ii) for this u∗, there exist some positive constants ξi with i ∈ A1 and some positive

functions ξi ∈ C(�) with i ∈ A2 such that the matrix Q(x) = (qi j (x) + q ji (x)) is
positive definite for every x ∈ �, where

qi j (x) =
⎧
⎨

⎩

ξi u∗
i (x)

di (x)
ai j (x), i ∈ A1,

ξi (x)ai j (x), i ∈ A2.

Then

lim
t→∞ ui (x, t) = u∗

i (x) in C1(�) for i ∈ A1,

lim
t→∞ ui (x, t) = u∗

i (x) in L2(�) for i ∈ A2,

which immediately implies that u∗ is the unique positive equilibrium solution of (3.8).
(2) (Global stability of semi-trivial equilibrium solution) Assume that
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(i) (3.8) has a semi-trivial equilibrium solution v∗ = (v∗
1 , . . . , v

∗
k ), and

mi (x) −
∑

1≤ j≤k

ai jv
∗
i (x) = mi (x) −

∑

j∈B1∪B3

ai jv
∗
i (x) < 0, i ∈ B2 ∪ B4, (3.14)

(ii) for this v∗, there exist some positive constants ξi with i ∈ B1 ∪ B2 = A1 and
some positive functions ξi ∈ C(�) with i ∈ B3 ∪ B4 = A2 such that the matrix
Q(x) = (qi j (x) + q ji (x)) is positive definite for every x ∈ �, where

qi j (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξi ai j (x)u∗
i (x)

di (x)
, i ∈ B1,

ξi ai j (x)

di (x)
, i ∈ B2,

ξi (x)ai j (x), i ∈ B3 ∪ B4.

Then

lim
t→∞ ui (x, t) = v∗

i (x) in C1(�) for i ∈ B1 ∪ B2 = A1,

lim
t→∞ ui (x, t) = v∗

i (x) in L2(�) for i ∈ B3 ∪ B4 = A2,

where v∗
i ≡ 0 for i ∈ B2 ∪ B4.

Proof By the similar arguments as Theorem 3.1, we could apply upper and lower solutions
method to show the existence and uniqueness of solution to the problem (3.8), and also

ui ≤ max

{

max
x∈�̄

mi (x)

aii (x)
,max
x∈�̄

ϕi (x)

}

.

Note that the growth rate per capita termmi (x)−
∑k

j=1
ai j u

∗
j in (3.8) is uniformly bounded

in � × [0,∞). Making use of Theorem 2.1 for each i ∈ A1, we obtain that for fixed T > 0,
p ≥ 1, there is a constant M1 = M1(p, T ) > 0 such that

‖ui‖W 2,1
p (�×[s,s+T ]) ≤ M1, ∀ s ≥ 1, i ∈ A1.

Then it follows from Sobolev embedding Theorem for large enough p that there is M =
M(T ) > 0 such that (3.13) holds for i ∈ A1. For i ∈ A2, the estimates in (3.13) are obvious
just from the equation of ∂t ui in (3.8).

(1) Define a function F : [0,∞) → R by

F(t) =
∑

i∈A1

ξi

∫

�

∫ ui (x,t)

u∗
i (x)

u∗
i (x)

di (x)
× s − u∗

i (x)

s
dsdx +

∑

i∈A2

∫

�

∫ ui (x,t)

u∗
i (x)

ξi (x)
s − u∗

i (x)

s
dsdx .

From (3.8) and (3.10), we obtain

dF

dt
=
∑

i∈A1

ξi

∫

�

[ui − u∗
i (x)]u∗

i (x)

di (x)ui
∂t uidx +

∑

i∈A2

∫

�

ξi (x)
ui − u∗

i (x)

ui
∂t uidx

=
∑

i∈A1

ξi

∫

�

u∗
i (ui − u∗

i )

diui

⎡

⎣di�ui + ui

(

mi −
k∑

j=1

ai j u j

)
⎤

⎦ dx

+
∑

i∈A2

∫

�

ξi (ui − u∗
i )

ui
ui

(

mi −
k∑

j=1

ai j u j

)

dx
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=
∑

i∈A1

ξi

∫

�

u∗
i (ui − u∗

i )

diui

⎡

⎣di�ui + ui

(

mi −
k∑

j=1

ai j u j

)
⎤

⎦ dx

−
∑

i∈A1

ξi

∫

�

u∗
i (ui − u∗

i )

diui

⎡

⎣
ui
u∗
i
di�u∗

i + ui
u∗
i
u∗
i

(

mi −
k∑

j=1

ai j u
∗
j

)
⎤

⎦ dx

+
∑

i∈A2

∫

�

ξi (ui − u∗
i )

(

mi −
k∑

j=1

ai j u j − mi +
k∑

j=1

ai j u
∗
j

)

dx

=
∑

i∈A1

ξi

∫

�

⎡

⎣
u∗
i (ui − u∗

i )

ui

(

�ui − ui
u∗
i
�u∗

i

)

− u∗
i (ui − u∗

i )

di

k∑

j=1

ai j (u j − u∗
j )

⎤

⎦ dx

−
∑

i∈A2

∫

�

ξi (ui − u∗
i )

k∑

j=1

ai j (u j − u∗
i )dx .

Making use of (2.3) and the definition of qi j , we deduce

dF

dt
≤ −

∫

�

(∑

i∈A1

ξi u
2
i

∣
∣
∣
∣∇

u∗
i

ui

∣
∣
∣
∣

2

+
∑

i∈A1,1≤ j≤k

ξi ai j u∗
i

di
(ui − u∗

i )(u j − u∗
j )

)

dx

−
∫

�

∑

i∈A2,1≤ j≤k

ξi ai j (ui − u∗
i )(u j − u∗

j )dx

≤ −
∫

�

⎛

⎝
∑

i∈A1,1≤ j≤k

ξi ai j u∗
i

di
(ui − u∗

i )(u j − u∗
j ) +

∑

i∈A2,1≤ j≤k

ξi ai j (ui − u∗
i )(u j − u∗

j )

⎞

⎠ dx

= −
∫

�

∑

1≤i, j≤k

qi j (ui − u∗
i )(u j − u∗

j )dx

= − 1

2

∫

�

∑

1≤i, j≤k

[(qi j + q ji )(ui − u∗
i )(u j − u∗

j )]dx .

Note that the matrix Q(x) = (qi j (x) + q ji (x)) is positive definite and every function qi j is
continuous for x ∈ �, there is a constant ε > 0 such that

dF

dt
< − ε

2

∫

�

∑

1≤i≤k

(ui − u∗
i )

2dx =: ψ(t) ≤ 0.

By (3.13), ψ(t) is uniformly continuous in t ∈ [1,∞). It then follows from Lemma 2.2 that

lim
t→∞ ||ui (·, t) − u∗

i (·)||L2(�) = 0, 1 ≤ i ≤ k. (3.15)

Clearly, it remains to show that for i ∈ A1, ui (·, t) converges to u∗
i in C1(�) as t → ∞.

Making use of (3.13), we see that {ui (·, t)}t≥1 is relatively compact in C1(�), and for any
convergent subsequence of {ui (·, t)}t≥1, denoted by {ui (·, tk)}∞k=1 with tk → ∞, there exists
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a ũ∗
i ∈ C1(�) such that

lim
tk→∞ ||ui (·, tk) − ũ∗

i (·)||C1(�) = 0, i ∈ A1.

Recalling (3.15), the uniqueness of the limit implies u∗
i = ũ∗

i . Therefore, lim
t→∞ ui (x, t) =

u∗
i (x) in C

1(�) for i ∈ A1.
(2) Define a function F : [0,∞) → R by

F(t) =
∑

i∈B1
ξi

∫

�

∫ ui (x,t)

v∗
i (x)

v∗
i (x)

di (x)
× s − v∗

i (x)

s
dsdx +

k∑

i∈B2
ξi

∫

�

ui (x, t)

di
dx

∑

i∈B3

∫

�

∫ ui (x,t)

v∗
i (x)

ξi (x)
s − v∗

i (x)

s
dsdx +

k∑

i∈B4

∫

�

ξi (x)ui (x, t)dx

=:�1 + �2 + �3 + �4.

Similar calculation as in (1) shows

d(�1 + �3)

dt
≤ −

∫

�

⎛

⎝
∑

i∈B1,1≤ j≤k

ξi ai jv
∗
i

di
(ui − v∗

i )(u j − v∗
j ) +

∑

i∈B3,1≤ j≤k

ξi ai j (ui − v∗
i )(u j − v∗

j )

⎞

⎠ dx

= −
∫

�

∑

i∈B1∪B3,1≤ j≤k

qi j (ui − v∗
i )(u j − v∗

j )dx,

where we have used v∗
j = 0 for j ∈ B2 ∪ B4. From (3.8) and (3.11), we deduce

d(�2 + �4)

dt
=
∑

i∈B2
ξi

∫

�

∂t ui
di

dx +
∑

i∈B4

∫

�

ξi∂t uidx

=
∑

i∈B2
ξi

∫

�

⎡

⎣�ui + 1

di
ui

⎛

⎝mi −
k∑

j=1

ai j u j

⎞

⎠

⎤

⎦ dx

+
∑

i∈B4

∫

�

ξi ui

⎛

⎝mi −
k∑

j=1

ai j u j

⎞

⎠ dx

=
∑

i∈B2

∫

�

ξi

di
ui

⎛

⎝mi −
k∑

j=1

ai jv
∗
j +

k∑

j=1

ai jv
∗
j −

k∑

j=1

ai j u j

⎞

⎠ dx

+
∑

i∈B4

∫

�

ξi ui

⎛

⎝mi −
k∑

j=1

ai jv
∗
j +

k∑

j=1

ai jv
∗
j −

k∑

j=1

ai j u j

⎞

⎠ dx .

Note that v∗
j = 0 for j ∈ B2 ∪ B4. In view of (3.14) and the definition of qi j , we deduce

d(�2 + �4)

dt
≤ −

∑

i∈B2

∫

�

ξi

di
ui

k∑

j=1

ai j (u j − v∗
j )dx −

∑

i∈B4

∫

�
ξi ui

k∑

j=1

ai j (u j − v∗
j )dx

= −
∑

i∈B2

∫

�

ξi

di

k∑

j=1

ai j (ui − v∗
i )(u j − v∗

j )dx −
∑

i∈B4

∫

�
ξi

k∑

j=1

ai j (ui − v∗
i )(u j − v∗

j )dx
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= −
∫

�

∑

i∈B2∪B4,1≤ j≤k

qi j (ui − v∗
i )(u j − v∗

j )dx .

Therefore,

dF

dt
≤ −

∫

�

∑

1≤i, j≤k

qi j (ui − v∗
i )(u j − v∗

j )dx = − 1

2

∫

�

∑

1≤i, j≤k

(qi j + qi j )(ui − v∗
i )(u j − v∗

j )dx .

By the similar arguments as (1), we obtain the desired conclusion. ��
Remark 3.7 (i) If the boundary condition of (3.8) is Robin boundary condition taking the
form ∂νui = b(x)ui + c(x) with nonnegative functions b, c ∈ Cα(�), one sees that by (2.3)
that the conclusions in Theorem 3.6 still hold.

(ii) If A2 = ∅, then the convergence conclusions in Theorem 3.6 could be enhanced, say
in C2(�). See also Proposition 3.8 below for a strengthened version.

(iii) In Theorem 3.6(1), we could rewrite the matrix Q as

Q = CA + ATC, (3.16)

where the matrices A and C are defined as A = (ai j (x)) and

C = diag

(
u∗
1

d1
ξ1, . . . ,

u∗
i0

di0
ξi0 , ξi0+1, . . . , ξk

)

.

Then the condition in Theorem 3.6 (1) (ii) becomes that CA + ACT is positive definite,
which coincides with the condition in Theorem 3.4.

Finally we show that when all diffusion coefficients are positive, the convergence to the
semi-trivial solution can be shown under a condition on an i1 × i1 matrix Q1 instead of on
the full k × k matrix Q.

Proposition 3.8 Assume that di > 0, ai j and mi satisfy (3.9). Let v∗
i = (vi ) with vi > 0 for

1 ≤ i ≤ i1 and vi ≡ 0 for i1 + 1 ≤ i ≤ k be a semi-trivial equilibrium solution of (3.8) for
some 1 ≤ i1 < k. Suppose

∫ ∞

0
||ui (·, t)||2L2(�)

dt < ∞, i1 + 1 ≤ i ≤ k (3.17)

and there exist some positive constants ξi for 1 ≤ i ≤ i1 such that the i1 × i1 matrix

Q1(x) = (qi j (x) + q ji (x)) with qi j (x) := ξi
v∗
i (x)
di (x)

ai j (x) is positive definite for every x ∈ �.

Then limt→∞ ui (x, t) = v∗
i (x) in C

2(�) for 1 ≤ i ≤ k.

Proof From (3.17) and the uniformly boundedness of ||ui (·, t)||C2+α(�) for t ≥ 1, we could
apply Babarlat’s Lemma to show that lim

t→∞ ||ui (·, t)||L2(�) = 0 for i1 + 1 ≤ i ≤ k. Then the

relative compactness of {ui (·, t) : t ≥ 1} in C2(�) implies

lim
t→∞ ||ui (·, t)||C2(�) = 0, i1 + 1 ≤ i ≤ k.

Define

F(t) =
i1∑

i=1

ξi

∫

�

∫ ui (x,t)

v∗
i (x)

v∗
i (x)

di (x)
× s − v∗

i (x)

s
dsdx .
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Denote qi j (x) = ξiv
∗
i (x)

di (x)
ai j (x) for 1 ≤ i ≤ i1 and i1 + 1 ≤ j ≤ k. Then by the similar

computation as Theorem 3.6 (1) with A2 = ∅, we obtain
dF

dt
≤ −

∫

�

i1∑

i=1

k∑

j=1

qi j (ui − v∗
i )(u j − v∗

j )dx .

Since Q1(x) = (qi j (x) + q ji (x)) with 1 ≤ i, j ≤ i1 is positive definite, then there is δ > 0
such that

−
∫

�

i1∑

i=1

i1∑

j=1

qi j (ui − v∗
i )(u j − v∗

j )dx ≤ −δ

∫

�

i1∑

i=1

(ui − v∗
i )

2dx,

and hence for ε = δ/(2k),

dF

dt
≤ −

∫

�

⎡

⎣
i1∑

i=1

δ(ui − v∗
i )

2 +
i1∑

i=1

k∑

j=i1+1

qi j (ui − v∗
i )(u j − v∗

j )

⎤

⎦ dx

≤ −
∫

�

⎡

⎣
i1∑

i=1

δ(ui − v∗
i )

2 −
i1∑

i=1

k∑

j=i1+1

(

ε(ui − v∗
i )

2 + q2i j
4ε

(u j − v∗
j )
2

)⎤

⎦ dx

≤ −
∫

�

⎡

⎣
i1∑

i=1

(δ − kε)(ui − v∗
i )

2 −
i1∑

i=1

k∑

j=i1+1

q2i j
4ε

(u j − v∗
j )
2

⎤

⎦ dx

= −
∫

�

i1∑

i=1

δ

2
(ui − v∗

i )
2dx +

∫

�

k∑

j=i1+1

(
i1∑

i=1

q2i j
4ε

)

(u j − v∗
j )
2dx =: −ψ(t) + h(t).

Making use of (3.17) and Lemma 2.2, we obtain limt→∞ ψ(t) = 0, and therefore
limt→∞ ||ui − v∗

i ||L2(�) = 0 for 1 ≤ i ≤ i1. Then the similar arguments as the proof
of Theorem 3.1 yield limt→∞ ui (x, t) = v∗

i (x) in C
2(�) for 1 ≤ i ≤ i1. ��

4 Applications

In this section, we consider the following two special cases of di and ai j :

Case 1 di (x) ≥ 0, ai j (x) ≥ 0 when k = 2,

Case 2 di > 0 and ai j ≥ 0 with aii = 1 are all constants, and mi j ≥ 0. (4.1)

To show the global stability of equilibrium solutions (u∗
i )with respect to (3.8), we need to find

some positive constants (or functions) ξi such that the matrix-valued function Q(x) defined
in Theorem 3.6 is positive definite. As Q depends on u∗

i , the estimates of the equilibrium
solution u∗

i are crucial to achieve this goal.With the help of upper and lower solutionsmethod,
we could obtain a rough estimate of the equilibrium solutions. And then, by verifying the
conditions in Theorem 3.6 we can show the global stability of equilibrium solutions of (3.8).

4.1 Two species

Theorem 4.1 Suppose that the functions di ,mi , ai j satisfy (3.9) with k = 2.
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(1) Suppose that infx∈� di (x) > 0. If (3.8) has a positive equilibrium solutionu∗ = (u∗
1, u

∗
2)

and there are two constants ξ1 > 0 and ξ2 > 0 such that

Q = CA + ATC is positive definite (4.2)

with A = (ai j ) and C := diag(ξ1u∗
1/d1, ξ2u

∗
2/d2), then limt→∞ ui (x, t) = u∗

i (x) in
C2(�).

(2) Suppose that infx∈� d1(x) > 0, d2(x) ≡ 0 and

0 < a12(x)a21(x) < a11(x)a22(x), x ∈ �̄. (4.3)

Then

(i) the positive equilibrium solution (u∗
1(x), u

∗
2(x)) of (3.8), if exists, is globally asymp-

totically stable, and lim
t→∞ u1(x, t) = u∗

1(x) in C1(�) and lim
t→∞ u2(x, t) = u∗

2(x) in

L2(�).
(ii) If

m2(x)

a21(x)
≤ θd1,m1,a11(x), x ∈ �̄, (4.4)

then lim
t→∞ u1(x, t) = θd1,m1,a11(x) in C

1(�) and lim
t→∞ u2(x, t) = 0 in L2(�), where

θd1,m1,a11 is defined as in (3.6).
(iii) If

a22(x)

a12(x)
≤ m2(x)

m1(x)
, x ∈ �̄, (4.5)

then lim
t→∞ u1(x, t) = 0 in C1(�) and lim

t→∞ u2(x, t) = m2(x)

a22(x)
in L2(�).

Proof (1) It follows from Theorem 3.6 (1) and Remark 3.7 that the statement in (1) is valid.

(2) Let ξ1 = 1 and ξ2(x) = a12(x)u∗
1(x)

a21(x)d1(x)
. Then it follows from (3.16) with i0 = 1 that

Q = CA + ATC =
(

2
ξ1u∗

1
d1

a11
ξ1u∗

1
d1

a12 + ξ2a21
ξ1u∗

1
d1

a12 + ξ2a21 2ξ2a22

)

=
(
2
u∗
1

d1
a11 2

u∗
1

d1
a12

2
u∗
1

d1
a12 2

a12u∗
1

a21d1
a22

)

=2
u∗
1

d1

(
a11 a12
a12

a12
a21

a22

)

Since a11 > 0, a22 > 0 and det Q = 2
u∗
1

d1
(a11a22a12/a21−a212) = 2

u∗
1a12

d1a21
(a11a22−a12a21) >

0 by (4.3), we easily see that Q is positive definite. Hence, by Theorem 3.6 (1), the conclusion
of (i) holds.

(ii) Clearly, (u∗
1, 0) is a semi-trivial equilibrium solution of (3.8), where u∗

1 = θd1,m1,a11
is the unique positive solution of (3.6). We also use the notations Bi and qi j as in Theorem
3.6. Then B1 = {1}, B2 = ∅, B3 = ∅ and B4 = {2}, and

qi j (x) =
⎧
⎨

⎩

ξ1u∗
1(x)

d1(x)
a1 j (x), i = 1,

ξ2(x)a2 j (x), i = 2.
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Let ξ1 = 1 and ξ2(x) = a12(x)u∗
1(x)

a21(x)d1(x)
. Then

Q =
(

2
ξ1u∗

1
d1

a11
ξ1u∗

1
d1

a12 + ξ2a21
ξ1u∗

1
d1

a12 + ξ2a21 2ξ2a22

)

= 2
u∗
1

d1

(
a11 a12
a12

a12
a21

a22

)

is positive definite by (4.3). In view of (4.4), we could apply Theorem 3.6 (2) to obtain the
conclusion (ii).

(iii) Clearly, (v∗
1(x), v

∗
2(x)) =

(

0,
m2(x)

a22(x)

)

is a semi-trivial equilibrium solution. Let Bi

and qi j be defined as in Theorem 3.6. Then B1 = ∅, B2 = {1}, B3 = {2} and B4 = ∅, and

qi j (x) =
⎧
⎨

⎩

ξ1

d1(x)
a1 j (x), i = 1,

ξ2(x)a2 j (x), i = 2,

Let ξ1 = 1 and ξ2(x) = a12(x)

d1(x)a21(x)
. Then

Q =
(

2 ξ1
d1
a11

ξ1
d1
a12 + ξ2a21

ξ1
d1
a12 + ξ2a21 2ξ2a22

)

= 2

d1

(
a11 a12
a12

a12
a21

a22

)

is positive definite by (4.3). This combined with (4.5) allows us to show the conclusion (iii)
by Theorem 3.6 (2). ��
Remark 4.2 (1) A simple calculation indicates that (4.2) is equivalent to aii > 0 and

a12(x)a21(x)

a11(x)a22(x)
<

4ξ̃1(x)ξ̃2(x)

[ξ̃1(x) + ξ̃2(x)]2
, x ∈ �,

where ξ̃i (x) = ξi u∗
i (x)/di (x).

(2) Clearly, when d2 ≡ 0, the problem (3.8) admits a positive equilibrium solution
(u∗

1(x), u
∗
2(x)) if and only if (u∗

1(x), u
∗
2(x)) satisfies

⎧
⎨

⎩

−d1(x)�u1 = u1

[

m1(x) − a12
a22

m2(x) −
(

a11 − a12a21
a22

)

u1

]

, x ∈ �,

∂νu1 = 0, x ∈ ∂�,

(4.6)

and u∗
2 = m2 − a21u∗

1

a22
> 0 on �. From [4, Proposition 3.2], [10, Proposition 2.2] and

[4, Proposition 3.3], one possible condition leading to the existence of (u∗
1(x), u

∗
2(x)) is

that
∫

�

a22(x)m1(x) − a12(x)m2(x)

d1(x)a22(x)
dx > 0, m2(x) − a21(x)θ(x) > 0, x ∈ �,

where θ := θd1,m1−a12/a22,a11−a12a21/a22 is defined as in (3.6).

Example 4.3 For the problem (3.8), let k = 2, d1(x) = rd2(x) > 0 for some constant r > 0.
If the positive constant vectors (ū1, ū2) and (u1, u2) are the upper and lower solution of
(3.10) [or the corresponding elliptic boundary value problem of (3.8)], and

max
x∈�

a12(x)a21(x)

a11(x)a22(x)
<

u1u2
ū1ū2

,
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then (3.10) has a unique positive equilibrium solution (u∗
1, u

∗
2) bounded by (u1, u2) and

(ū1, ū2), and lim
t→∞ ui (x, t) = u∗

i (x) in C
2(�).

4.2 k species

We assume that (4.1) holds throughout this subsection.

4.2.1 Positive equilibrium solution

For the simplicity of notations, we define, for 1 ≤ i ≤ k,
⎧
⎪⎨

⎪⎩

m−
i = min

x∈�

mi (x), m+
i = max

x∈�

mi (x),

m− = (m−
1 , . . . ,m−

k )T , m+ = (m+
1 , . . . ,m+

k )T ,

A = (ai j )k×k, B = A − Ik,

(4.7)

where Ik is the k× k identity matrix. Clearly, the diagonal entries of B are 0 because of (4.1)
and (4.7).

To study the global stability of positive equilibrium solution of the problem (3.8), we
make the following assumptions:

(F1) The determinant det [A(2Ik − A)] �= 0, and the algebraic equations
[
A 0
0 A

]

CT∗ =
[
m− + (2Ik − A)−1(m+ − m−)

m+ − (2Ik − A)−1(m+ − m−)

]

(4.8)

has a unique positive solution C∗ := (c̄1, . . . , c̄k, c1, . . . , ck) ∈ R
2k .

(F2) There exists a 2k × 2k diagonal matrix Q1 with positive constant entries such that
the matrix

Q1

[
Ik B
B Ik

]

+
[
Ik B
B Ik

]T

Q1 is positive definite.

(F3) There exists a k × k diagonal matrix Q2 with positive constant entries, such that
Q2(Ik − B − c1) + (Ik − B − c1)T Q2 is positive definite, where

c1 = diag

(
c̄1 − c1

c̄1
,
c̄2 − c2

c̄2
, . . . ,

c̄k − ck
c̄k

)

, (4.9)

and c̄i and ci are given by (F1).

For the assumptions (F2) and (F3), we have the following conclusion

(F3) implies (F2), (4.10)

which in fact is a direct consequence of Proposition 4.5. We recall that the system (3.8)
is uniformly persistent (see, e.g., [9, Page 390]) if all solutions satisfy lim inf

t→∞ ui (x, t) > 0

for all 1 ≤ i ≤ k and x ∈ �̄, and it is permanent (see, e.g., [5,20]) if it also satisfies
lim sup
t→∞

ui (x, t) ≤ M for some M > 0. Now we prove the following result which concerns

with the permanence property of (3.8), and also the global stability of the positive equilibrium
solution of (3.8).
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Theorem 4.4 Let (3.9), (4.1) and (F1) be satisfied.
(i) Assume (F2) holds. Then the problem (3.8) has a positive equilibrium solution

(u∗
1(x), . . . , u

∗
k(x)) which satisfies

0 < ci ≤ u∗
i (x) ≤ c̄i , ∀ x ∈ �, 1 ≤ i ≤ k, (4.11)

where C∗ = (c̄1, . . . , c̄k, c1, . . . , ck) ∈ R
2k is given by (F1). Moreover, the solution

(u1, . . . , uk) of (3.8) satisfies

0 < ci ≤ lim inf
t→∞ ui (x, t) ≤ lim sup

t→∞
ui (x, t) ≤ c̄i , ∀ x ∈ �, 1 ≤ i ≤ k, (4.12)

which immediately implies that the problem (3.8) is permanent.
(ii) If (F3) holds, then lim

t→∞ ui (x, t) = u∗
i (x) in C

2(�) for 1 ≤ i ≤ k.

Proof (i) From the assumption (F1), we know that c̄i > 0 and ci > 0. Next we show c̄i ≥ ci
and (4.12) by considering an auxiliary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ū′
i = ūi

(

m+
i − ūi −

∑

1≤ j≤k, j �=i

ai j u j

)

, t > 0, i = 1, . . . , k,

u′
i = ui

(

m−
i − ui −

∑

1≤ j≤k, j �=i

ai j ū j

)

, t > 0, i = 1, . . . , k,

ūi (0) = max
x∈�

ϕi (x), ui (0) = min
x∈�

ϕi (x), i = 1, . . . , k.

Denote U (t) = (ū1(t), . . . , ūk(t), u1(t), . . . , uk(t))
T . Then the above ordinary differential

equations could be rewritten as

U ′(t) =
([

m+
m−

]

−
[
Ik B
B Ik

])

U (t). (4.13)

Here, without loss of generality, we can assume ϕi (x) > 0 on � since the solution ui (x, t)
of (3.8) is positive for any t > 0 which can be easily obtained by applying upper and
lower solutions method [29, Theorem 8.1] and Hopf’s Lemma for parabolic equations. Then
(ū1(t), . . . , ūk(t)) and (u1(t), . . . , uk(t)) are a pair of coupled ordered upper and lower
solutions of (3.8) and so

0 < ui (t) ≤ ui (x, t) ≤ ūi (t), ∀ x ∈ �, t > 0. (4.14)

Note that (4.14) holds. In order to prove c̄i ≥ ci and (4.12), it suffices to show that

lim
t→∞ ūi (t) = c̄i , lim

t→∞ ui (t) = ci ,

which could be proved by using Theorem 3.4 and the assumption (F2) if C∗ =
(c̄1, . . . , c̄k, c1, . . . , ck) is a positive equilibrium of (4.13), namely, C∗ satisfies

[
Ik B
B Ik

]

CT∗ =
[
m+
m−

]

, (4.15)

where Ik , B, m− and m+ are given by (4.7). Denote

B1 =
[

(Ik − B)−1 −(Ik − B)−1 + Ik
−(Ik − B)−1 + Ik (Ik − B)−1

]

.
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It follows from det [(Ik + B)(Ik − B)] = det [A(2Ik − A)] �= 0 that det B1 = det(Ik −
B)−1 det(Ik + B) �= 0. Then multiplying the equation (4.15) by B1 on the left, we have

[
A 0
0 A

]

CT∗ =
[
m− + (Ik − B)−1(m+ − m−)

m+ − (Ik − B)−1(m+ − m−)

]

.

Thanks to det B1 �= 0 and (F1), we know that (4.15) holds and ci , c̄i > 0.
In the following, we show that (3.8) admits a positive equilibrium solution (u∗

1(x), . . . ,
u∗
k(x)) satisfying (4.11). Since (c̄1, . . . , c̄k, c1, . . . , ck) with ci ≤ c̄i is the unique posi-

tive equilibrium of (4.13), then (c̄1, . . . , c̄k) and (c1, . . . , ck) are a pair of coupled ordered
upper and lower solutions of (3.10) under the condition (4.1). It follows from [29, Theo-
rem 10.2, Page440] that the problem (3.10) has a positive solution u∗ which is a positive
equilibrium solution of (3.8), and also (4.11) holds.

(ii) Note that (F3) implies (F2) by (4.10). From (i), the problem (3.8) has a positive
equilibrium solution u∗ satisfying (4.11). In view of Theorem 3.6 (1) and Remark 3.7, we
just need to show that there are positive constants ξi such that

CA + ATC (4.16)

is positive definite, where C = diag
(
u∗
1

d1
ξ1, . . . ,

u∗
k

dk
ξk

)
. Let x1 = (x1, . . . , xk) ∈ R

k . Thanks

to (4.11), we deduce

x1(CA + ATC)xT1 = 2
k∑

i=1

k∑

j=1

u∗
i

di
ξi ai j xi x j ≥ 2

k∑

i=1

ci
di

ξi aii x
2
i − 2

∑

i �= j

c̄i
di

ξi ai j |xi x j |

= 2
k∑

i=1

k∑

j=1

c̄i
di

ξi ai j |xi x j | − 2
k∑

i=1

c̄i
di

(c̄i − ci )

c̄i
ξi aii x

2
i

= − x2[E(Ik − B − c1) + (Ik − B − c1)T E]xT2
where c1 is defined as in (4.9), and

x2 = (|x1|, . . . , |xk |), E = diag

(
c̄i
d1

ξ1, , . . . ,
c̄k
dk

ξk

)

.

Choose suitable ξi > 0 such that E = Q2, where Q2 is given by (F3). Then CA + ATC is
positive definite by (F3), and the desired conclusion follows directly from Theorem 3.6. ��
Proposition 4.5 If one of the following holds,

(iii) there exist two k × k diagonal matrices Q3, Q4 with positive constant entries such that
both Q3 and 4Q4 − (Q4B + BT Q3)Q3

−1(BT Q4 + Q3B) are positive definite,
(iii) there exists a k×k diagonal matrix Q5 with positive constant entries, such that Q5(Ik −

B) + (Ik − B)T Q5 is positive definite,

then (F2) is satisfied.

The proof of Proposition 4.5 is placed in “Appendix”. Clearly, (4.10) can be shown directly
by Proposition 4.5.

Note that the condition (F2) is weaker than (F3). With the condition (F2), the system (3.8)
is permanent and has a positive equilibrium, but it is not clearwhether the positive equilibrium
is unique and globally asymptotically stable. The condition (F3) ensures the uniqueness and
global stability of the positive equilibrium. We give an application of Theorem 4.4 to more
specific resource functions.
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Corollary 4.6 Assume mi (x) = 1 + ε fi (x) with fi ∈ Cα(�) satisfies | fi (x)| ≤ 1 on �. If

(i) there is a k× k diagonal matrix Q with positive constant entries, such that Q(Ik − B)+
(Ik − B)T Q is positive definite,

(ii) The vector A−1vT has positive entries, where v = (1, 1, . . . , 1) ∈ R
n.

Then there exists a positive constant ε0 such that for any 0 < ε < ε0, the problem (3.8) has
a unique positive equilibrium solution which is globally asymptotically stable.

Proof From (i) and Proposition 4.5, we see that (F2) holds. Next we show that (F1) holds
for small ε > 0. By (i), we know

Q(Ik + B) + (Ik + B)T Q is positive definite, (4.17)

which leads to det(Ik − B) �= 0 and det(A) = det(Ik + B) �= 0. In fact, in the proof of
Corollary 5.2 (see “Appendix”) we will verify (4.17). Since Ik −B and A are non-degenerate,
there is a unique C∗ := (c̄1, . . . , c̄k, c1, . . . , ck) ∈ R

2k such that (4.8) holds. It remains to
show that

c̄i > 0, ci > 0, 1 ≤ i ≤ k.

Denote c̄ = (c̄1, . . . , c̄k), c = (c1, . . . , ck) and C∗ = (c̄, c). From (4.8), we deduce

[
A 0
0 A

]

CT∗ =
[
m− + (Ik − B)−1(m+ − m−)

m+ − (Ik − B)−1(m+ − m−)

]

=
[ 1
2 (m

+ + m−) − 1
2 (m

+ − m−) + (Ik − B)−1(m+ − m−)

1
2 (m

+ + m−) + 1
2 (m

+ − m−) − (Ik − B)−1(m+ − m−)

]

= 1

2

[
m+ + m− + A(Ik − B)−1(m+ − m−)

m+ + m− − A(Ik − B)−1(m+ − m−)

]

,

and so
⎧
⎪⎪⎨

⎪⎪⎩

c̄ = 1
2 A

−1(m− + m+) + 1
2 (Ik − B)−1(m+ − m−),

c = 1
2 A

−1(m− + m+) − 1
2 (Ik − B)−1(m+ − m−),

c̄ − c = (Ik − B)−1(m+ − m−).

(4.18)

Since mi (x) = 1 + ε fi (x) with −1 ≤ fi (x) ≤ 1 on �, we have m+ = (1 + ε)vT ,
m− = (1 − ε)vT , where v = (1, 1, . . . , 1). Then by (4.18),

⎧
⎨

⎩

c̄ = A−1vT + ε(Ik − B)−1vT ,

c = A−1vT − ε(Ik − B)−1vT ,

c̄ − c = 2ε(Ik − B)−1vT .

(4.19)

Clearly, the condition (ii) implies that c̄i > 0 and ci > 0 for small ε. Thus, (F1) is satisfied.
Furthermore, we see from Theorem 4.4 (i) that

ci ≤ c̄i , ∀ 1 ≤ i ≤ k, (4.20)

as (F2) holds, and (3.8) has a positive equilibrium solution (u∗
1(x), . . . , u

∗
k(x)) satisfying

(4.11). Moreover, (4.20) implies that the vector (Ik − B)−1vT also has positive entries.
In the following, we apply Theorem 4.4 to show the global stability of (u∗

1(x), . . . , u
∗
k(x)).

Clearly, we just need to verify (F3). Using (4.19) and (4.20), we see that c̄i − ci > 0 and c̄i
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for 1 ≤ i ≤ k are linear increasing with respect to ε > 0. Meanwhile, it can be verified that
c̄i − ci

c̄i
for 1 ≤ i ≤ k are linear increasing with respect to ε > 0. Recalling that the matrix

Q(Ik − B) + (Ik − B)T Q is positive definite, by (5.1) we get the positive definiteness of the
matrix Q(Ik − B − c1) + (Ik − B − c1)T Q for 0 < ε < ε0 provided ε0 > 0 small, where
c1 is defined in (4.9). Therefore (F3) holds. ��

The global stability of the positive coexistence stated in Corollary 4.6 is achieved under
a weak competition condition on the competition matrix A and the resource function being
a small perturbation from homogeneous one. We end this subsection by giving another two
examples of competition with 2 and 4 species.

Example 4.7 Let k = 2 and

A =
[
1 a12
a21 1

]

, B =
[
0 a12
a21 0

]

, m− =
(
m−

1
m−

2

)

, m+ =
(
m+

1
m+

2

)

.

Then the conclusions in Theorem 4.4 hold if

a12 <
m−

1

m+
2

≤ m+
1

m−
2

<
1

a21
, (4.21)

a12a21 <

(

1 − m+
1 − m−

1 + a12(m
+
2 − m−

2 )

m+
1 − a12m

−
2

)(

1 − a21(m
+
1 − m−

1 ) + m+
2 − m−

2

m+
2 − a21m

−
1

)

.

(4.22)

We verify (F1) and (F3) under the conditions (4.21) and (4.22). A simple calculation gives

A−1 = 1

1 − a12a12

[
1 −a12

−a21 1

]

, (I2 − B)−1 = 1

1 − a12a21

[
1 a12
a21 1

]

.

Then from (4.18), we see

c̄ = 1

1 − a21a12
(m+

1 − a12m
−
2 ,m+

2 − a21m
−
1 )T ,

c = 1

1 − a21a12
(m−

1 − a12m
+
2 ,m−

2 − a21m
+
1 )T ,

c̄ − c = 1

1 − a21a12
(m+

1 − m−
1 + a12(m

+
2 − m−

2 ), a21(m
+
1 − m−

1 ) + m+
2 − m−

2 )T .

By (4.21), any element in the vectors c̄, c is positive, and each element in c̄−c is nonnegative,
which implies that (F1) holds. Using the above formulas, we deduce

Ik − B − c1 =

⎡

⎢
⎢
⎢
⎣

1 − m+
1 − m−

1 + a12(m
+
2 − m−

2 )

m+
1 − a12m

−
2

−a12

−a21 1 − a21(m
+
1 − m−

1 ) + m+
2 − m−

2

m+
2 − a21m

−
1

⎤

⎥
⎥
⎥
⎦

,

where c1 is defined in (4.9). Clearly, (F3) holds if and only if (4.22) is satisfied.
If bothm1 andm2 are positive constants, then the two conditions (4.21) and (4.22) become

a12 <
m1

m2
<

1

a21
which coincides with the weak competition condition in the two species

diffusive competitive problem in an homogeneous environment [2,8]. On the other hand, for
the nonhomogeneous environment case, the result here is not as optimal as the ones in [12],
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but our proof is completely different: we use Lyapunov functional method, and we do not
use the monotone dynamical system method.

Example 4.8 Suppose that mi (x) for 1 ≤ i ≤ k satisfy the condition in Corollary 4.6. If
k = 4 and

A =

⎡

⎢
⎢
⎣

1 0.2 0.1 0.1
0.2 1 0.2 0.15
0.1 0.2 1 0.1
0.1 0.15 0.1 1

⎤

⎥
⎥
⎦ ,

then for 0 < ε ≤ 0.1, the results in Corollary 4.6 hold true.

4.2.2 Semi-trivial equilibrium solution

We investigate the global stability of the semi-trivial equilibrium solution v∗ := (v∗
1 , . . . , v

∗
k )

with

v∗
i > 0 for 1 ≤ i ≤ i1, and v∗

i ≡ 0 for i1 + 1 ≤ i ≤ k,

where i1 ∈ [1, k) is an integer.
For the simplicity of notations, similarly to (4.7), we denote

Ã = (ai j )i1×i1 , B̃ = Ã − Ii1 , m̃− = (m−
1 , . . . ,m−

i1
)T , m̃+ = (m+

1 , . . . ,m+
i1
)T ,

(4.23)

where Ii1 is the i1 × i1 identity matrix. The diagonal entries of B̃ are 0.
To study the global stability of the semi-trivial equilibrium solution v∗ of the problem

(3.8), we make the following assumptions:

(G1) The determinant det[ Ã(2Ii1 − Ã)] �= 0, and the algebraic equations
[
Ã 0
0 Ã

]

(c∗
i1)

T =
[
m̃− + (Ii1 − B̃)−1(m̃+ − m̃−)

m̃+ − (Ii1 − B̃)−1(m̃+ − m̃−)

]

(4.24)

has a unique positive solution c∗
i1

:= (c̄1, . . . , c̄i1 , c1, . . . , ci1), and

m+
i −

i1∑

j=1

ai j ci ≤ 0, m−
i −

i1∑

j=1

ai j c̄i ≤ 0, ∀ i1 + 1 ≤ i ≤ k, (4.25)

where Ii1 , Ã, B̃, m̃
− and m̃+ are given by (4.23).

(G2) There exists an i1 × i1 diagonal matrix Q6 with positive constant entries such that
Q6(Ii1 − B̃ − c2) + (Ii1 − B̃ − c2)T Q6 is positive definite, where

c2 = diag

(
c̄1 − c1

c̄1
,
c̄2 − c2

c̄2
, . . . ,

c̄i1 − ci1
c̄i1

)

and c̄i , ci are given by (G1).

Theorem 4.9 Suppose that (3.9), (4.1) and the assumptions (G1), (F2) hold.
(i) The problem (3.8) has a semi-trivial solution v∗ = (v∗

1 , . . . , v
∗
k ) which satisfies

ci ≤ v∗
i (x) ≤ c̄i , ∀ x ∈ �, 1 ≤ i ≤ i1, (4.26)
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and v∗
i ≡ 0 for i1 + 1 ≤ i ≤ k, and the solution of (3.8) satisfies

⎧
⎨

⎩

ci ≤ lim inf
t→∞ ui (x, t) ≤ lim sup

t→∞
ui (x, t) ≤ c̄i , ∀ x ∈ �, 1 ≤ i ≤ i1,

lim
t→∞ ui (x, t) = 0 uniformly on �, ∀ i1 + 1 ≤ i ≤ k.

(4.27)

(ii) Moreover, if (G2) is satisfied, then
⎧
⎨

⎩

lim
t→∞ ui (x, t) = u∗

i (x) in C1(�), 1 ≤ i ≤ i1,

lim
t→∞ ui (x, t) = 0 in C1(�), i1 + 1 ≤ i ≤ k.

(4.28)

Proof (i) From (G1), we know that c̄i > 0 and ci > 0 for 1 ≤ i ≤ i1. Next we show that
c̄i ≥ ci and

lim
t→∞ ūi = c̄i , lim

t→∞ u1 = ci , (4.29)

where (ū1, . . . , ūk, u1, . . . , uk)
T is the solution of (4.13), and the positive constants c̄i , ci

for 1 ≤ i ≤ i1 are given by (G1), and c̄i = ci = 0 for i1 + 1 ≤ i ≤ k. As (G1) holds, by the
similar arguments as Theorem 4.4 (i) we know that (c̄1, . . . , c̄k, c1, . . . , ck) is a semi-trivial
equilibrium of (4.13). Then we could apply Corollary 3.5 to prove (4.29) since (4.25) and
(F2) hold. Moreover, (4.29), combined with (4.14), gives (4.27).

Clearly, (c̄1, . . . , c̄i1) and (c1, . . . , ci1) are a pair of coupled ordered upper and lower
solutions of (3.10) with A1 = {1, . . . , i1} and A2 = ∅. By [29, Theorem 10.2, Page440] we
know that the problem (3.10) has a positive solution (v∗

1(x), . . . , v
∗
i1
(x)) and (4.26) holds.

Moreover, v∗ = (v∗
1 , . . . , v

∗
k ) with v∗

i ≡ 0 for i1 + 1 ≤ i ≤ k is a semi-trivial equilibrium
solution of (3.8).

(ii) Note that
∫∞
0 ū2i (t)dt < ∞ for i1 + 1 ≤ i ≤ k by Corollary 3.5. We see that

∫ ∞

0
||ui (·, t)||2L2(�)

dt ≤ |�|2
∫ ∞

0
ū2i (t)dt < ∞, i1 + 1 ≤ i ≤ k.

Moreover,we can show that the i1×i1 matrix Q(x) = (qi j (x)+q ji (x)) defined in Proposition
3.8 is positive definite for every x ∈ � by using (G2) and the similar calculation as Theorem

4.4, where qi j (x) = ξi ai j
v∗
i (x)
di

for 1 ≤ i, j ≤ i1. Thus, (4.28) holds from Proposition 3.8. ��

5 Appendix

Before giving the proof of Proposition 4.5, we recall some preliminary results about matri-
ces. For any k × k matrices M , N , P and R, the following results hold (see, e.g., [15,
Page 104 and 149–150]):

det
[M N
P R

]
= det(M) det(R − PM−1N ) = det(R) det(M − N R−1P),

[M N
NT R

]
is positive definite ⇐⇒ both M and R − NT M−1N are positive definite,

If M is positive definite, then xMxT ≥ εxxT f or all x ∈ R
k and some ε > 0. (5.1)

Moreover, we have the following elementary conclusion.
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Lemma 5.1 Let M and N be two k × k symmetric matrices. Then M + N and M − N are

positive definite if and only if H =
[M N
N M

]
is positive definite.

Proof (i) Suppose that M + N and M − N are positive definite. We will show that H is
positive definite. Set x1, x2 ∈ R

k , X = (x1, x2) and X �= 0, then we have

XHXT = x1MxT1 + x2MxT2 + 2x1NxT2
= x1(M + N )xT1 + x2(M + N )xT2 + 2x1NxT2 − x1NxT1 − x2NxT2
= x1(M + N )xT1 + x2(M + N )xT2 + x1N (x2 − x1)T + (x1 − x2)NxT2
= x1(M + N )xT1 + x2(M + N )xT2 − (x2 − x1)N (x2 − x1)T

= x1
M + N

2
xT1 + x2

M + N

2
xT2 − 2x1

M + N

2
xT2 + x1

M + N

2
xT1

+x2
M + N

2
xT2 + 2x1

M + N

2
xT2 − (x2 − x1)N (x2 − x1)T

= (x2 − x1)
M + N

2
(x2 − x1)T + (x2 + x1)

M + N

2
(x2 + x1)T

−(x2 − x1)N (x2 − x1)T

= (x2 − x1)
M − N

2
(x2 − x1)T + (x2 + x1)

M + N

2
(x2 + x2)T > 0.

(ii) Assume that the matrix H is positive definite. Suppose on the contrary that M + N
or M − N is not positive definite. Without loss of generality, we assume that M − N is not
positive definite. Then there exists 0 �=Qx ∈ R

k such that x̃(M−N )x̃T ≤ 0. Let X̃ = (−x̃, x̃).
From (5.2) we have

X̃H X̃T = (x̃ + x̃)
M − N

2
(x̃ + x̃)T + (x̃ − x̃)

M + N

2
(x̃ − x̃)T

= 4x̃
M − N

2
x̃T ≤ 0,

which contradicts to the fact that H is positive definite. Thus M + N and M − N are positive
definite. The proof is finished. ��

Corollary 5.2 If there is a k × k diagonal matrix Q1 with positive constant entries such that

Q1(Ik − B) + (Ik − B)T Q1 is positive definite, then Q2

[ Ik B
B Ik

]
+
[ Ik B
B Ik

]T

Q2 is positive

definite, where Q2 =
[ Q1 0

0 Q1

]
.

Proof Denote x := (x1, . . . , xn), x̂ := (|x1|, . . . , |xn |) and x �= 0. Then

xQ1(I + B)xT + x(I + B)T Q1xT = 2xQ1xT + xQ1BxT + xBT Q1xT

≥ 2xQ1xT − x̂Q1Bx̂T − x̂BT Q1x̂T

= x̂Q1(I − B)x̂T + x̂(I − B)T Q1x̂T > 0.

This, combined with Lemma 5.1, gives the desired conclusion. ��
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Proof of Proposition 4.5 When (i) holds, let Q =
[ Q3 0

0 Q4

]
. Then Q is a 2k × 2k diagonal

matrix with positive constant entries. The direct calculation yields

E := Q

[
Ik B
B Ik

]

+
[
Ik B
B Ik

]T

Q =
[

2Q3 Q3B + BT Q4

Q4B + BT Q3 2Q4

]

.

By (5.1), we obtain that the matrix E is positive definite.
When (ii) holds, the desired conclusion follows immediately from Corollary 5.2. ��
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