
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2020 Society for Industrial and Applied Mathematics
Vol. 80, No. 3, pp. 1247–1271
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Abstract. The effect of diffusion rates on the basic reproduction number of a general com-
partmental reaction-diffusion epidemic model in a heterogeneous environment is considered. It is
shown that when the diffusion rates tend to zero, the limit of the basic reproduction number is the
maximum value of the local reproduction number on the spatial domain. On the other hand, when
the diffusion rates tend to infinity, the basic reproduction number tends to the spectral radius of the
“average” next generation matrix. These asymptotic limits of basic reproduction number hold for a
class of general spatially heterogeneous compartmental epidemic models, and they are applied to a
wide variety of examples.
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1. Introduction. In mathematical modeling of infectious diseases, the basic
reproduction number R0 is a key indicator for disease transmission. When R0 < 1, the
disease declines and eventually vanishes, and when R0 > 1, the disease spreads in the
population, and an outbreak is possible [4]. Roughly speaking, the basic reproduction
number R0 is the average number of healthy people infected by one contagious person
over the course of the infectious period. In more mathematically rigorous terms, for
ODE epidemic models that are nonspatial, R0 is defined as the spectral radius of
the next generation matrix [13, 43], which is established in a general framework of
compartmental disease transmission models. This definition is also generalized to
epidemic models with infinite-dimensional state space [41].

As the environment in which the disease spreads is spatially heterogeneous, the
transmission and spreading of the infectious disease is inevitably affected by the spatial
structure and heterogeneity of the environment. These factors can be incorporated
into underlying mathematical models to show the effect of spatial heterogeneity on
the disease transmission. The spatial structure and heterogeneity can be modeled in
a discrete space using an ODE patch model [1, 5, 29, 42], or they can be modeled in a
continuous space using a reaction-diffusion-advection PDE model [2, 11, 45, 48]. The
notion of the basic reproduction number is also extended to both classes of models.
In particular, a theory of basic reproduction numbers for general reaction-diffusion
compartmental disease transmission models was recently developed in [45].
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1248 SHANSHAN CHEN AND JUNPING SHI

For spatially heterogeneous reaction-diffusion epidemic models, the basic repro-
duction numberR0 usually depends on the diffusion rates of populations. For example,
in the reaction-diffusion SIS epidemic model considered in [2],

It = dI∆I + β(x) SI
S+I − γ(x)I, x ∈ Ω, t > 0,

St = dS∆S − β(x) SI
S+I + γ(x)I, x ∈ Ω, t > 0,

∂νI = ∂νS = 0, x ∈ ∂Ω, t > 0,

where β(x) is the transmission rate, γ(x) is the removal rate, and dI , dS are the
diffusion rates of infectious and susceptible populations, respectively. It was shown
that the basic reproduction number is defined as

(1.1) R0 = sup

{ ∫
Ω
βφ2dx∫

Ω
(dI |∇φ|2 + γφ2) dx

: φ ∈ H1(Ω), φ 6= 0

}
.

Moreover, it was shown in [2] that R0 has the following asymptotic profiles with
respect to the infectious population diffusion rate dI :

(1.2) lim
dI→0

R0 = max
x∈Ω

β(x)

γ(x)
, lim
dI→∞

R0 =

∫
Ω
βdx∫

Ω
γdx

.

Notice that the quantity β(x)/γ(x) is the local basic reproduction number at x when
there is no spatial movement; hence, the global basic reproduction number tends to
the maximum of local one as the diffusion rate tends to zero. On the other hand, the
limit of the basic reproduction number for a large diffusion rate is the ratio of the
average transmission rate and the average removal rate. Similar asymptotic profiles
for R0 were also obtained in [32, 40] for several kinds of other spatially heterogeneous
epidemic reaction-diffusion models. The results in [32] are based on the fact that R0

equals the spectral radius of the product of the local basic reproduction number and
strongly positive compact linear operators with spectral radii one.

In this paper, we aim to characterize limiting profiles of the basic reproduction
number R0 for general spatially heterogeneous reaction-diffusion compartmental epi-
demic models for small or large diffusion rates.

We consider the reaction-diffusion compartmental epidemic model

(1.3)

{
∂ui/∂t = di∆ui + fi(x, u), x ∈ Ω, t > 0, 1 ≤ i ≤ n,
∂νui = 0, x ∈ ∂Ω, t > 0, 1 ≤ i ≤ n,

which was proposed in [45]. Here ui is the density of the population in the ith
compartment, di > 0 is constant and represents the diffusion coefficient of population
ui, Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, ν is the
outward unit normal vector at x ∈ ∂Ω, and fi(x, u) is the reaction term in the ith
compartment. Moreover,

fi(x, u) = Fi(x, u)− Vi(x, u),

where Fi(x, u) is the input rate of newly infected individuals in the ith compartment,
Vi(x, u) = V−i (x, u)−V+

i (x, u), V+
i (x, u) is the rate of transfer of individuals into the

ith compartment by all other means, and V−i (x, u) is the rate of transfer of individuals
out of the ith compartment. More biological explanations of model (1.3) can be found
in [45]. In this paper, we will show the asymptotic profiles of R0 for model (1.3)
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as (d1, . . . , dn) → (0, . . . , 0) and (d1, . . . , dn) → (∞, . . . ,∞). Our results indicate
that the trend set in [2, 32] holds true for epidemic models in a much more general
setting: In the small diffusion limit, the global basic reproduction number tends to
the maximum of the local basic reproduction number, and in the large diffusion limit,
the global basic reproduction number tends to some kind of spatial average of the
local basic reproduction number.

There are extensive results on reaction-diffusion epidemic models. The asymptotic
profiles of the endemic steady states were considered in [2, 35, 37, 48] and references
therein, and the global dynamics of the epidemic models can be found in [8, 12, 23,
25, 27, 31, 36, 46]. The effect of diffusion and advection rates on R0 and the stability
of the disease-free steady state for a reaction-diffusion-advection epidemic model was
considered in [11]; see also [10, 18, 22, 33] for reaction-diffusion-advection epidemic
models. The definition of R0 for time-periodic reaction-diffusion epidemic models was
given in [6, 26, 49], and the global dynamics for a time-periodic or almost time-periodic
reaction-diffusion SIS epidemic model was studied in [38, 44]. The reaction-diffusion
epidemic models with free boundary conditions were investigated in [9, 16, 28] and
references therein, and reaction-diffusion epidemic models with time delays were also
studied extensively; see, e.g., [7, 30, 47].

Throughout the paper, we use the following notations. For n ≥ 1,

Rn+ = {u = (u1, . . . , un) : ui ≥ 0 for any i = 1, . . . , n},
C
(
Ω,Rn+

)
= {(u1(x), . . . , un(x)) : ui(x)

(
∈ C(Ω,R)

)
≥ 0 for 1 ≤ i ≤ n}.

(1.4)

For a closed and linear operator A, we denote the spectral radius of A by r(A), the
spectral set of A by σ(A), and the spectral bound of A by

s(A) := sup{Reλ : λ ∈ σ(A)}.

Let P = (Pij)1≤i,j≤l and Q = (Qij)1≤i,j≤l be l × l (l ≥ 1) real-valued matrices, and
let Q(x) = (Qij(x))1≤i,j≤l be an l × l matrix-valued function.

P ≥ Q means Pij ≥ Qij for each 1 ≤ i, j ≤ l.
P > Q means Pij > Qij for each 1 ≤ i, j ≤ l.
limx→x0

Q(x) = Q means limx→x0
Qij(x) = Qij for each 1 ≤ i, j ≤ l.

The matrix P is called positive if all entries of P are nonnegative and there exists
at least one positive entry.

The matrix P is called zero if all entries of P are zero.
The matrix P is called cooperative (or quasi-positive) if all off-diagonal entries of

P are nonnegative, i.e., Pij ≥ 0 for i 6= j.
Moreover, (d1, . . . , dn)→ (0, . . . , 0) means max1≤j≤n dj → 0.
(d1, . . . , dn)→ (∞, . . . ,∞) means min1≤j≤n dj →∞.
The remaining part of the paper is organized as follows. In section 2, we show some

preliminaries for further applications. In sections 2 and 3, we show the asymptotic pro-
files of R0 for model (1.3) as (d1, . . . , dn)→ (0, . . . , 0) and (d1, . . . , dn)→ (∞, . . . ,∞),
respectively. In section 4, we apply the theoretical results to some concrete examples.

2. Some preliminaries. In this section, we recall the definition of basic re-
production number for reaction-diffusion epidemic models in [45]. Assume that the
population u = (u1, . . . , un)T of model (1.3) is divided into two types: infected
compartments, labeled by i = 1, 2, . . . ,m, and uninfected compartments, labeled by
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1250 SHANSHAN CHEN AND JUNPING SHI

i = m+ 1, . . . , n. We set

uI = (u1, . . . , um)T , uS = (um+1, . . . , un)T ,

dI = (d1, . . . , dm)T , dS = (dm+1, . . . , dn)T ,

dI∆uI = (d1∆u1, . . . , dm∆um)T , dS∆uS = (dm+1∆um+1, . . . , dn∆un)T ,

fI(x, u) = (f1(x, u), . . . , fm(x, u))
T
, fS(x, u) = (fm+1(x, u), . . . , fn(x, u))

T
.

(2.1)

Let

Us := {u ≥ 0 : ui = 0 for any i = 1, . . . ,m},

denote the set of all disease-free states of (1.3), and assume that model (1.3) has a
disease-free steady state

(2.2) u0(x) =
(
0, . . . , 0, u0

m+1(x), . . . , u0
n(x)

)T
,

where u0
i (x) > 0 for any i = m+ 1, . . . , n and x ∈ Ω. Define the three matrices

F (x, u) = (Fij(x, u))1≤i,j≤m =

(
∂Fi(x, u)

∂uj

)
1≤i,j≤m

,

V (x, u) = (Vij(x, u))1≤i,j≤m =

(
∂Vi(x, u)

∂uj

)
1≤i,j≤m

,

M(x, u) = (Mij(x, u))1≤i,j≤n−m =

(
∂fi+m(x, u)

∂uj+m

)
1≤i,j≤n−m

,

(2.3)

and let

(2.4) Bu := dI∆u− V
(
x, u0(x)

)
u,

which is associated with the homogeneous Neumann boundary condition ∂νu = 0.
The following assumptions are imposed on model (1.3) (see assumptions (A1)–(A6)
in [45]):

(A1) For each 1 ≤ i ≤ n, functions Fi(x, u), V+
i (x, u), V−i (x, u) are nonnegative

and continuously differentiable on Ω× Rn+.
(A2) If ui = 0, then V−i = 0.
(A3) Fi = 0 for i > m.
(A4) If u ∈ Us, then Fi = V+

i = 0 for i = 1, . . . ,m.
(A5) M(x, u0(x)) is cooperative for any x ∈ Ω and

s
(
dS∆ +M(x, u0(x))

)
< 0.

(A6) −V (x, u0(x)) is cooperative for any x ∈ Ω and

s (B) = s(dI∆− V
(
x, u0(x)

)
) < 0.

Assumptions (A1)–(A6) are satisfied for most reaction-diffusion epidemic models.
Denote

(2.5) X = C
(
Ω,Rm

)
and X+ = C

(
Ω,Rm+

)
.
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X is an ordered Banach space, and X+ is a positive cone with nonempty interior.
Let T (t) be the semigroup generated by B on X; i.e., T (t) is the solution semigroup
associated with the following linear reaction-diffusion system:

(2.6)

{
∂uI/∂t = dI∆uI − V

(
x, u0(x)

)
uI , x ∈ Ω, t > 0,

∂νuI = 0, x ∈ ∂Ω, t > 0.

It follows from the comparison principle (see [41, Theorem 3.12]) and assumption
(A6) that B is resolvent-positive, T (t) is positive (i.e., T (t)X+ ⊂ X+ for all t > 0),
s(B) < 0, and −B−1φ =

∫∞
0
T (t)φdt for φ ∈ X. Note that F (x, u0(x)) is a positive

matrix, and it can also be viewed as a positive operator on C(Ω,Rm):

φ ∈ C
(
Ω,Rm

)
7→ F

(
x, u0(x)

)
φ.

Clearly, the linear operator B + F (x, u0(x)) is also resolvent-positive. Then the fol-
lowing holds from [45, section 3] (or [41, Theorem 3.5]).

Proposition 2.1. Assume that (A1)–(A6) hold. Then the basic reproduction
number is defined by

R0 = r
(
−F (x, u0(x))B−1

)
.

Moreover, the following statements hold:
(i) R0 − 1 has the same sign as s(B + F (x, u0(x))).

(ii) If R0 < 1, then u0(x) is locally asymptotically stable for system (1.3).

Next we recall several results which will be used later. First, we have the following
comparison principle.

Lemma 2.2. Assume that Pi(x) (i = 1, 2) are m×m cooperative matrices for any
x ∈ Ω, all entries of Pi(x) (i = 1, 2) are continuous, and P1(x) ≥ P2(x). Let Ti(t)
be the solution semigroup on X (defined in (2.5)) associated with the following linear
reaction-diffusion system:

(2.7)

{
∂uI/∂t = dI∆uI + Pi(x)uI , x ∈ Ω, t > 0,

∂νuI = 0, x ∈ ∂Ω, t > 0,

where dI∆uI is defined as in (2.1) and di > 0 for i = 1, . . . ,m. Then T1(t)φ ≥ T2(t)φ
for any φ ∈ X+ and t > 0.

Proof. Denote Ui(x, t) = Ti(t)φ for φ ∈ X+, and it follows from the comparison
principle of cooperative parabolic systems that Ui(x, t) ≥ 0 for any (x, t) ∈ Ω× (0,∞)
and i = 1, 2. Let W (x, t) = U1(x, t)− U2(x, t), and then W (x, t) satisfies

(2.8)


Wt = dI∆W + P2(x)W + (P1(x)− P2(x))U1, x ∈ Ω, t > 0,

∂νW = 0, x ∈ ∂Ω, t > 0,

W (x, 0) = 0, x ∈ Ω.

Note that P1(x) ≥ P2(x) and U1(x, t) ≥ 0 for any (x, t) ∈ Ω× (0,∞). Again it follows
from the comparison principle of cooperative parabolic systems that W (x, t) ≥ 0 for
any (x, t) ∈ Ω× (0,∞). This completes the proof.

D
ow

nl
oa

de
d 

05
/2

0/
20

 to
 1

28
.2

39
.9

9.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Second, we recall the Krein–Rutmann theorem (see [3, Theorems 3.1 and 3.2] or
[32, Theorem 2.5]).

Lemma 2.3.
(i) Suppose that T : X → X is a positive compact linear operator with positive

spectral radius r(T ). Then r(T ) is an eigenvalue of T with an eigenvector in
X+ \ {0}.

(ii) Suppose that T : X → X is a strongly positive compact linear operator.
Then r(T ) is positive and is a simple eigenvalue of T with an eigenvector in
Int(X+), and there is no other eigenvalue with a nonnegative eigenvector.
Moreover, if S : X → X is a linear operator such that S − T is strongly
positive, then r(S) > r(T ).

Based on the Krein–Rutmann theorem in Lemma 2.3, we have the following two
results.

Lemma 2.4. Let L1, L2 be bounded, positive linear operators on X (defined in
(2.5)). Assume that L1φ ≥ L2φ for any φ ∈ X+ and that L2 is compact with positive
spectral radius r(L2). Then r(L1) ≥ r(L2).

Proof. It follows from Lemma 2.3 that r(L2) is an eigenvalue of L2, and there
exists φ ∈ X+ \ {0} such that ‖φ‖∞ = 1 and L2φ = r(L2)φ. Then Ln1φ ≥ rn(L2)φ,
which implies that ‖Ln1‖ ≥ rn(L2). Therefore, r(L1) = limn→∞ ‖Ln1‖1/n ≥ r(L2).

Consider the following eigenvalue problem:

(2.9)

{
dI∆Φ− P (x)Φ + aQ(x)Φ = λΦ, x ∈ Ω,

∂νΦ = 0, x ∈ ∂Ω,

where

(2.10) Φ = (φ1, . . . , φm)T , dI∆Φ = (d1∆φ1, . . . , dm∆φm)T ,

a > 0, di > 0 for i= 1, . . . ,m, and P (x) = (Pij(x))1≤i,j≤m andQ(x) = (Qij(x))1≤i,j≤m
are m ×m matrices with continuous entries. Recall that an eigenvalue λ of (2.9) is
called the principal eigenvalue if λ ∈ R and that for any eigenvalue such that λ̃ 6= λ,
we have Reλ̃ < λ.

Lemma 2.5. Assume that −P (x) is cooperative, Q(x) is positive for any x ∈ Ω,
and for any a ∈ (0,∞) there exists xa ∈ Ω such that −P (xa) + aQ(xa) is irreducible.
Let λ(a) be the principal eigenvalue of (2.9). Then λ(a) is strictly increasing for
a ∈ (0,∞).

Proof. Since −P (x) + aQ(x) is cooperative for any x ∈ Ω and a > 0, it follows
from Lemma 2.3 that λ(a) is well defined and

λ(a) = sup{Reλ : λ is an eigenvalue of problem (2.9)}.

Let T a(t) be the solution semigroup associated with the linear parabolic system

(2.11)


Vt = dI∆V − P (x)V + aQ(x)V, t > 0, x ∈ Ω,

∂νV = 0, t > 0, x ∈ ∂Ω,

V (x, 0) = V0(x), x ∈ Ω.
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Then it follows from [39, Theorem 7.4.1] that T a(t) is strongly positive and compact
for any a > 0 and t > 0. Let a1 > a2, Φ ∈ X+ \ {0}, and

U1(x, t) =
(
U

(1)
1 (x, t), . . . , U

(m)
1 (x, t)

)T
= T a1(t)Φ,

U2(x, t) =
(
U

(1)
2 (x, t), . . . , U

(m)
2 (x, t)

)T
= T a2(t)Φ.

(2.12)

Then U1(x, t), U2(x, t) > 0 for any x ∈ Ω and t > 0. It follows from Lemma 2.2 that
U1(x, t) ≥ U2(x, t) for any x ∈ Ω and t > 0. Let W (x, t) = U1(x, t)−U2(x, t), and we
see that U(x, t) satisfies

(2.13)


Wt = dI∆W − P (x)W + a2Q(x)W + (a1 − a2)Q(x)U1, t > 0, x ∈ Ω,

∂νW = 0, t > 0, x ∈ ∂Ω,

W (x, 0) = 0, x ∈ Ω.

Note that Q(x) is positive for any x ∈ Ω and that U1(x, t) > 0 for any x ∈ Ω and

t > 0. Then there exist 1 ≤ i1 ≤ n and x0 ∈ Ω such that
∑n
j=1Qi1j(x0)U

(j)
1 (x0, t) > 0

for any t > 0, and consequently Wi1(x, t) > 0 for any x ∈ Ω and t > 0. Note that
there exists xa2 ∈ Ω such that −P (xa2) + a2Q(xa2) is irreducible. Then there exists
i2 6= i1 such that −Pi2i1(xa2) + a2Qi2i1(xa2) > 0, which implies that Wi2(x, t) > 0 for
any x ∈ Ω and t > 0. Following the above process, we could obtain that W (x, t) > 0
for any x ∈ Ω and t > 0, which implies that Ta1(t) − Ta2(t) is strongly positive for
any t > 0. It follows from Lemma 2.3 that

(2.14) r (Ta1(t)) > r (Ta2(t)) for any t > 0,

It follows from [21, section 2] that λ(a) is an eigenvalue of problem (2.9). Then we see
from the spectral mapping theorem [34, Theorem 2.2.4] that r(Ta(t)) = eλ(a)t. This,
combined with (2.14), implies that λ(a1) > λ(a2). This completes the proof.

3. The effect of diffusion rates. In this section, we show the asymptotic
profile of R0 for model (1.3) when all the diffusion rates are large or small.

3.1. Small diffusion rates. In this subsection, we consider the asymptotic pro-
file of R0 when (d1, . . . , dn) → (0, . . . , 0). We first impose an additional assumption
for this case:

(A7) The disease-free steady state (0, . . . , 0, u0
m+1(x), . . . , u0

n(x)) (defined in (2.2))
satisfies

lim
(dm+1,...,dn)→(0,...,0)

(u0
m+1(x), . . . , u0

n(x))

= (cm+1(x), . . . , cn(x)) in C
(
Ω,Rn−m

)
,

(3.1)

where ck(x) > 0 for any x ∈ Ω and k = m+ 1, . . . , n.
In the next section, we will show that this assumption is not restrictive, and it is
satisfied for many kinds of epidemic models. Denote

(3.2) c(x) = (0, . . . , 0, cm+1(x), . . . , cn(x)) ∈ C
(
Ω,Rn

)
,
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and denote, for sufficiently small ε (0 < ε < min{ci(x) : i = m+ 1, . . . , n, x ∈ Ω}),

Dcε = {(x, u1, . . . , un) : x ∈ Ω, ui = 0 for i = 1, . . . ,m,

ui ∈ [ci(x)− ε, ci(x) + ε] for i = m+ 1, . . . , n},

V cε =

(
min

(x,u)∈Dcε
Vij(x, u)

)
1≤i,j≤m

=

(
min

(x,u)∈Dcε

∂Vi(x, u)

∂uj

)
1≤i,j≤m

,

V
c

ε =

(
max

(x,u)∈Dcε
Vij(x, u)

)
1≤i,j≤m

=

(
max

(x,u)∈Dcε

∂Vi(x, u)

∂uj

)
1≤i,j≤m

,

F cε =

(
min

(x,u)∈Dcε
Fij(x, u)

)
1≤i,j≤m

=

(
min

(x,u)∈Dcε

∂Fi(x, u)

∂uj

)
1≤i,j≤m

,

F
c

ε =

(
max

(x,u)∈Dcε
Fij(x, u)

)
1≤i,j≤m

=

(
max

(x,u)∈Dcε

∂Fi(x, u)

∂uj

)
1≤i,j≤m

.

(3.3)

Since Dcε1 ⊂ D
c
ε2 for 0 ≤ ε1 < ε2, it follows that F

c

ε and V
c

ε are monotone increasing
for ε ≥ 0 and that F cε and V cε are monotone decreasing for ε ≥ 0. We will show that
these functions F

c

ε, V
c

ε, F
c
ε, and V cε are also continuous for ε ≥ 0 in the appendix.

Clearly, for ε = 0, we have

V c0 =

(
min
x∈Ω

Vij(x, c(x))

)
1≤i,j≤m

=

(
min
x∈Ω

∂Vi(x, c(x))

∂uj

)
1≤i,j≤m

,

V
c

0 =

(
max
x∈Ω

Vij(x, c(x))

)
1≤i,j≤m

=

(
max
x∈Ω

∂Vi(x, c(x))

∂uj

)
1≤i,j≤m

,

F c0 =

(
min
x∈Ω

Fij(x, c(x))

)
1≤i,j≤m

=

(
min
x∈Ω

∂Fi(x, c(x))

∂uj

)
1≤i,j≤m

,

F
c

0 =

(
max
x∈Ω

Fij(x, c(x))

)
1≤i,j≤m

=

(
max
x∈Ω

∂Fi(x, c(x))

∂uj

)
1≤i,j≤m

.

Now we show the asymptotic profile of R0 as (d1, . . . , dn)→ (0, . . . , 0), and the method
is motivated by the one in [32].

Theorem 3.1. Assume that (A1)–(A5) and (A7) hold,

(3.4) s
(
−V c0

)
< 0, s (−V c0) < 0 and r

((
V
c

0

)−1

F c0

)
> 0,

and that there exists ε0 > 0 such that −V cε0 is cooperative and F cε0 is positive, where

V cε, V
c

ε, and F cε are defined in (3.3). If the matrix −V (x, c(x)) + aF (x, c(x)) is
irreducible for any a > 0 and x ∈ Ω, where c(x) is defined in (3.2), then

(3.5) lim
(d1,...,dn)→(0,...,0)

R0 = Rc0 := max
x∈Ω

[
r
(
−V −1(x, c(x))F (x, c(x))

)]
.

Proof. Step 1. We show that there exist positive constants R0, R0, and C2 such
that R0 ∈ [R0, R0] for any d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2).

Since −V cε0 is cooperative and F cε0 is positive for any x ∈ Ω, it follows from the

monotonicity of F
c

ε, V
c

ε, F
c
ε, and V cε that −V cε and −V cε are cooperative and that

F
c

ε0 and F cε are positive for any ε ∈ [0, ε0]. Note that V cε and V
c

ε are continuous with
respect to ε (see Proposition A.1) and

lim
ε→0

V cε = V c0 and lim
ε→0

V
c

ε = V
c

0.
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It follows from [20, Theorem 2.5.1] that there exists ε1 ∈ (0, ε0) such that

s(−V cε) < 0, s(−V cε) < 0 for any ε ∈ (0, ε1].

Similarly, (V
c

ε)
−1F cε is continuous with respect to ε for ε ∈ (0, ε1), and there exists

ε2 ∈ (0, ε1) such that r((V
c

ε)
−1F cε) > 0 for any ε ∈ (0, ε2]. It follows from (A7) that,

for the above given ε2 > 0, there exists C2 > 0 such that

ci(x)− ε2 ≤ u0
i (x) ≤ ci(x) + ε2

for any x ∈ Ω, dm+1, . . . , dn ∈ (0, C2) and i = m+ 1, . . . , n. Denote by T
c

ε2(t), T cε2(t),

and T (t) the semigroups generated by dI∆−V
c

ε2 , dI∆−V cε2 , and dI∆−V (x, u0(x)),
respectively. Note that

(3.6) − V cε2 ≤ −V (x, u0(x)) ≤ −V cε2

for any d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2) and that −V cε2 is cooperative for

any x ∈ Ω. Then it follows from Lemma 2.2 that for any φ ∈ X+ (defined in (2.5)),
d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2),

(3.7) T
c

ε2(t)φ ≤ T (t)φ ≤ T cε2(t)φ.

Note that

s
(
dI∆− V cε2

)
= s(−V cε2) < 0, s

(
dI∆− V

c

ε2

)
= s

(
−V cε2

)
< 0.

This, combined with Lemma 2.3 and the spectral mapping theorem, implies that
r(T

c

ε2(t)), r(T cε2(t)) ∈ (0, 1). Therefore, for any d1, . . . , dm > 0 and dm+1, . . . , dn ∈
(0, C2), s(dI∆− V (x, u0(x))) < 0, which implies that assumption (A6) is satisfied for
any d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2). It follows from (3.7) that

F cε2

∫ ∞
0

T
c

ε2(t)φdt ≤ F (x, u0(x))

∫ ∞
0

T (t)φdt ≤ F cε2

∫ ∞
0

T cε2(t)φdt.

It follows from [45, Theorem 3.4] that

r

(
F cε2

∫ ∞
0

T
c

ε2dt(t)

)
= r

((
V
c

ε2

)−1

F cε2

)
> 0.

Note that F cε2 is positive and not zero for any x ∈ Ω. Then we see from Lemma 2.4
that, for any d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2),

r

((
V
c

ε2

)−1

F cε2

)
≤ R0 ≤ r

(
F
c

ε2

∫ ∞
0

T cε2(t)φdt

)
= r

((
V cε2
)−1

F
c

ε2

)
.

Let R0 = r((V
c

ε2)−1F cε2) and R0 = r((V cε2)−1F
c

ε2). This completes the proof for
Step 1.
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Step 2. For any x ∈ Ω, denote

Dx = {(u1, . . . , un) : ui = 0 for i = 1, . . . ,m,

ui ∈ [ci(x)− ε, ci(x) + ε] for i = m+ 1, . . . , n},

V xε =

(
min
u∈Dx

Vij(x, u)

)
1≤i,j≤m

=

(
min
u∈Dx

∂Vi(x, u)

∂uj

)
1≤i,j≤m

,

V
x

ε =

(
max
u∈Dx

Vij(x, u)

)
1≤i,j≤m

=

(
max
u∈Dx

∂Vi(x, u)

∂uj

)
1≤i,j≤m

,

F xε =

(
min
u∈Dx

Fij(x, u)

)
1≤i,j≤m

=

(
min
u∈Dx

∂Fi(x, u)

∂uj

)
1≤i,j≤m

,

F
x

ε =

(
max
u∈Dx

Fij(x, u)

)
1≤i,j≤m

=

(
max
u∈Dx

∂Fi(x, u)

∂uj

)
1≤i,j≤m

.

(3.8)

We show that, for sufficiently small ε > 0,

R̃0 := r
(

(dI∆− V xε )
−1
F
x

ε

)
→ R̃0

0 := max
x∈Ω

r
(

(V xε )
−1
F
x

ε

)
,

Ř0 := r

((
dI∆− V

x

ε

)−1

F xε

)
→ Ř0

0 := max
x∈Ω

r

((
V
x

ε

)−1

F xε

)
,

(3.9)

as dI = (d1, . . . , dm)→ (0, . . . , 0).
We can view matrices −V xε + aF

x

ε and −V xε + aF xε as matrix-valued functions of
(x, ε, a). Then −V xε +aF

x

ε and −V xε +aF xε are continuous and consequently uniformly
continuous on Ω× [0, ε2]× [1/R0, 1/R0] (see Proposition A.1). This implies that

lim
ε→0

(−V xε + aF
x

ε ) = −V (x, c(x)) + aF (x, c(x)) and

lim
ε→0

(−V xε + aF xε ) = −V (x, c(x)) + aF (x, c(x))
(3.10)

uniformly for (x, a) ∈ Ω × [1/R0, 1/R0]. Therefore, there exists ε3 < ε2 such that
for any ε ∈ (0, ε3), matrices −V xε + aF

x

ε and −V xε + aF xε are irreducible for any
a ∈ [1/R0, 1/R0] and x ∈ Ω. In this step, we always assume that ε ∈ (0, ε3]. Clearly,

(3.11) − V cε ≤ −V
x
ε ≤ −V

c
ε.

Noticing that s(−V cε), s(−V
c

ε) < 0 and −V xε is cooperative for any x ∈ Ω, we have
s(dI∆− V xε ) < 0.

Clearly, R̃0 ∈ [R0, R0] and R̃0 > 0. Let κ̃ = 1/R̃0, and it follows from Lemma 2.3

that R̃0 is an eigenvalue of (dI∆− V xε )
−1
F
x

ε with a nonnegative eigenvector φ̃ =
(φ̃1, . . . , φ̃m). Clearly, κ̃ can be viewed as a function of dI (or, respectively,
(d1, . . . , dm)) and

dI∆φ̃− V xε φ̃+ κ̃(d1, . . . , dm)F
x

ε φ̃ = 0.

Let δ = δ(d1, . . . , dm, a) be the principal eigenvalue of the auxiliary eigenvalue problem

(3.12)

{
dI∆φ− V xεφ+ aF

x

εφ = δφ, x ∈ Ω,

∂νφ = 0, x ∈ ∂Ω.

Note that V xε + κ̃(d1, . . . , dm)F
x

ε is irreducible. Then φ̃ > 0 and

δ(d1, . . . , dm, κ̃(d1, . . . , dm)) = 0.
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It follows from [24, Theorem 1.4] that

lim
(d1,...,dm)→(0,...,0)

δ(d1, . . . , dm, a) = max
x∈Ω

δ̂
(
−V xε + aF

x

ε

)
.

Here δ̂(Q) represents the eigenvalue of matrix Q with greatest real part. Define

δ(d1, . . . , dm, a) := max
x∈Ω

δ̂
(
−V xε + aF

x

ε

)
for (d1, . . . , dm) = (0, . . . , 0). Then, for each a ∈ [1/R0, 1/R0], δ(d1, . . . , dm, a) is
a continuous function of (d1, . . . , dm) on Int(Rm+ ) ∪ {(0, . . . , 0)}. It follows from
Lemma 2.5 that δ(d1, . . . , dm, a) is strictly increasing in a for each (d1, . . . , dm) >

(0, . . . , 0). Similarly, we see from Lemma 2.5 that, for each x ∈ Ω, δ̂(−V xε + aF
x

ε ) is
also strictly increasing in a. This implies that δ(d1, . . . , dm, a) is also strictly increasing
in a for (d1, . . . , dm) = (0, . . . , 0). Since for any x ∈ Ω,

V ε2 ≤ V
x
ε ≤ V ε2 , F ε2 ≤ F

x

ε ≤ F ε2 ,

it follows from Step 1 that

R0 ≤ r
(

(V xε )
−1
F
x

ε

)
≤ R0

for any x ∈ Ω and

(3.13) R̃0 = r
(

(dI∆− V xε )
−1
F
x

ε

)
∈ [R0, R0].

Noticing that, for each x ∈ Ω,

δ̂

−V xε +
1

r
(

(V xε )
−1
F
x

ε

)F xε
 = 0,

the monotonicity of δ̂(−V xε + aF
x

ε ) in a implies that, for any x ∈ Ω,

δ̂

(
−V xε +

1

R̃0
0

F
x

ε

)
≤ 0,

where R̃0
0 is defined as in (3.9) and the equality holds if and only if x achieves the

maximum point of r((V xε )−1F
x

ε ). Therefore, the monotonicity of δ(0, . . . , 0, a) implies
that the unique zero of

δ(0, . . . , 0, a) = max
x∈Ω

δ̂
(
−V xε + aF

x

ε

)
= 0

on [1/R0, 1/R0] is a = 1/R̃0
0.

Now we claim that the first equation of (3.9) holds. If it is not true, then

κ(d1, . . . , dm) 6→ 1/R̃0
0 as (d1, . . . , dn)→ (0, . . . , 0).

Noticing that κ(d1, . . . , dm) is bounded from (3.13), we see that there exists a sequence

{(d(j)
1 , . . . , d

(j)
m )}∞j=1 and κ0( 6= 1/R̃0

0) ∈ [1/R0, 1/R0] such that(
d

(j)
1 , . . . , d(j)

m

)
→ (0, . . . , 0), κn := κ

(
d

(j)
1 , . . . , d(j)

m

)
→ κ0 as j →∞.
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Without loss of generality, we assume that κ0 < 1/R̃0
0. Then there exist ε̃ and j0 such

that κ0 + ε̃ < 1/R̃0
0 and κj < κ0 + ε̃ for any j > j0. Then, for any j > j0,

0 = δ
(
d

(j)
1 , . . . , d(j)

m , κj

)
< δ

(
d

(j)
1 , . . . , d(j)

m , κ0 + ε̃
)
,

which yields

0 ≤ lim
j→∞

δ
(
d

(j)
1 , . . . , d(j)

m , κ0 + ε̃
)

= δ(0, . . . , 0, κ0 + ε̃) < 0.

This is a contradiction, and therefore the first equation of (3.9) holds. Similarly, we
can prove that the second equation of (3.9) holds.

Step 3. We show that

lim
(d1,...,dn)→(0,...,0)

R0 = max
x∈Ω

[
r
(
−V −1(x, c(x))F (x, c(x))

)]
.

Clearly, (V xε )−1F
x

ε can be viewed as a matrix-valued function of (x, ε), where
(x, ε) ∈ Ω × [0, ε3] and (V xε )−1F

x

ε is continuous on Ω × [0, ε3] (see Proposition A.1).
It follows from [20, section 2.5.7] that r((V xε )−1F

x

ε ) is continuous on Ω × [0, ε3] and
consequently that r((V xε )−1F

x

ε ) is uniformly continuous on Ω × [0, ε3]. This implies
that

lim
ε→0

r
(

(V xε )
−1
F
x

ε

)
= r

(
−V −1(x, c(x))F (x, c(x))

)
in C(Ω).

Then

lim
ε→0

R̃0
0 = lim

ε→0
max
x∈Ω

r
[(

(V xε )
−1
F
x

ε

)]
= Rc0 = max

x∈Ω

[
r
(
−V −1(x, c(x))F (x, c(x))

)]
.

Similarly, we can prove that
lim
ε→0

Ř0
0 = Rc0.

For any ε ∈ (0, ε3), there exists δ > 0 such that for any dm+1, . . . , dn < δ,

u0
i (x) ∈ [ci(x)− ε, ci + ε] for any i = m+ 1, . . . , n and x ∈ Ω.

Then

Ř0 = r

((
dI∆− V

x

ε

)−1

F xε

)
≤ R0 ≤ R̃0 = r

(
(dI∆− V xε )

−1
F
x

ε

)
for any d1, . . . , dm > 0 and dm+1, . . . , dn < δ. Therefore,

Ř0
0 ≤ lim inf

(d1,...,dn)→(0,...,0)
R0 ≤ lim sup

(d1,...,dn)→(0,...,0)

R0 ≤ R̃0
0.

Taking ε→ 0, we see that

lim
(d1,...,dn)→(0,...,0)

R0 = Rc0.

This completes the proof.

Remark 3.1. In Theorem 3.1, we assume that there exists ε0 > 0 such that, for
any x ∈ Ω, −V cε0 is cooperative and F cε0 is positive. In section 4, we will show that

in some concrete examples, any off-diagonal entry in V
c

ε, V
c

ε either equals zero or is
strictly positive and that any entry of F

c

ε or F cε is strictly positive. In that case we
only need to assume that −V c0 is cooperative and F c0 is positive to obtain results in
Theorem 3.1.
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3.2. Large diffusion rates. In this subsection, we consider the asymptotic
profile of R0 when (d1, . . . , dn)→ (∞, . . . ,∞). For this case, we impose an additional
assumption:

(A8) The disease-free equilibrium (0, . . . , 0, u0
m+1(x), . . . , u0

n(x)) (defined in (2.2))
satisfies

lim
(dm+1,...,dn)→(∞,...,∞)

(u0
m+1(x), . . . , u0

n(x))

= (ũm+1, . . . , ũn) in C
(
Ω,Rn−m

)
,

(3.14)

where ũk is a positive constant for k = m+ 1, . . . , n.
We will also show that this assumption is not restrictive and that it is satisfied for
many kinds of epidemic models in the next section. Denote

(3.15) ũ = (0, . . . , 0, ũm+1, . . . , ũn) ∈ Rn,

and denote, for given sufficiently small ε (0 < ε < min{ũi : i = m+ 1, . . . , n}),

D = {(u1, . . . , un) : ui = 0 for i = 1, . . . ,m,

ui ∈ [ũi − ε, ũi + ε] for i = m+ 1, . . . , n},

V ε =

(
min

x∈Ω,u∈D
Vij(x, u)

)
1≤i,j≤m

=

(
min

x∈Ω,u∈D

∂Vi(x, u)

∂uj

)
1≤i,j≤m

,

V ε =

(
max

x∈Ω,u∈D
Vij(x, u)

)
1≤i,j≤m

=

(
max

x∈Ω,u∈D

∂Vi(x, u)

∂uj

)
1≤i,j≤m

,

F ε =

(
min

x∈Ω,u∈D
Fij(x, u)

)
1≤i,j≤m

=

(
min

x∈Ω,u∈D

∂Fi(x, u)

∂uj

)
1≤i,j≤m

,

F ε =

(
max

x∈Ω,u∈D
Fij(x, u)

)
1≤i,j≤m

=

(
max

x∈Ω,u∈D

∂Fi(x, u)

∂uj

)
1≤i,j≤m

.

(3.16)

Similar to subsection 3.1, we could also prove that F ε and V ε are monotone increasing
for ε ≥ 0 and that F ε and V ε is monotone decreasing for ε ≥ 0. Moreover, when ε = 0,

V 0 =

(
min
x∈Ω

Vij(x, ũ)

)
1≤i,j≤m

=

(
min
x∈Ω

∂Vi(x, ũ)

∂uj

)
1≤i,j≤m

,

V 0 =

(
max
x∈Ω

Vij(x, ũ)

)
1≤i,j≤m

=

(
max
x∈Ω

∂Vi(x, ũ)

∂uj

)
1≤i,j≤m

,

F 0 =

(
min
x∈Ω

Fij(x, ũ)

)
1≤i,j≤m

=

(
min
x∈Ω

∂Fi(x, ũ)

∂uj

)
1≤i,j≤m

,

F 0 =

(
max
x∈Ω

Fij(x, ũ)

)
1≤i,j≤m

=

(
max
x∈Ω

∂Fi(x, ũ)

∂uj

)
1≤i,j≤m

.

Now we show the asymptotic profile of R0 as (d1, . . . , dn)→ (∞, . . . ,∞).

Theorem 3.2. Assume that (A1)–(A5) and (A8) hold,

(3.17) s
(
−V 0

)
< 0, s (−V 0) < 0 and r(V

−1

0 F 0) > 0,
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and that there exists ε0 > 0 such that −V ε0 is cooperative and F ε0 is positive, where

V ε, V ε and F ε are defined in (3.16). Let

V̌ =

(∫
Ω

Vij(x, ũ)dx

)
1≤i,j≤m

=

(∫
Ω

∂Vi(x, ũ)

∂uj
dx

)
1≤i,j≤m

,

F̌ =

(∫
Ω

Fij(x, ũ)dx

)
1≤i,j≤m

=

(∫
Ω

∂Fi(x, ũ)

∂uj
dx

)
1≤i,j≤m

,

(3.18)

where ũ is defined as in (3.15). If r(V̌ −1F̌ ) is the unique eigenvalue of V̌ −1F̌ with
an eigenvector in Rm+ \ {0}, then

lim
(d1,...,dn)→(∞,...,∞)

R0 = r
(
V̌ −1F̌

)
.

Proof. As in the Step 1 of Theorem 3.1, we could prove that there exist posi-
tive constants R0, R0, and C2 such that R0 ∈ [R0, R0] for any d1, . . . , dm > 0 and
dm+1, . . . , dn > C2. Let κ = 1/R0, and κ can be viewed as function of (d1, . . . , dn).
Since κ(d1, . . . , dn) is bounded for any d1, . . . , dm > 0 and dm+1, . . . , dn > C2, then, for

any sequence {(d(j)
1 , . . . , d

(j)
n )}∞j=1 satisfying (d

(j)
1 , . . . , d

(j)
n )→ (∞, . . . ,∞) as j →∞,

there exists a subsequence {(d(jk)
1 , . . . , d

(jk)
n )}∞j=1 such that limk→∞ κ(d

(jk)
1 , . . . , d

(jk)
n )

exists and is positive, which is denoted by κ∗. For convenience, we denote d
(jk)
i by d

(k)
i

for each k ≥ 1 and i = 1, . . . , n. Without loss of generality, we assume that d
(k)
i ≥ C2

for any k ≥ 1 and i = m+ 1, . . . , n.

Let φ̂(k) = (φ̂
(k)
1 , . . . , φ̂

(k)
m )T ≥ (0, . . . , 0)T be the corresponding eigenvector of

operator

−
(
dI∆− V (x, u0(x)

)−1
F (x, u0(x))

with respect to eigenvalue R0(d
(k)
1 , . . . , d

(k)
n ), where ‖φ̂(k)‖∞ = 1 for each k ≥ 1. That

is, for i = 1, . . . ,m,

∆φ̂
(k)
i +

1

d
(k)
i

− m∑
i=1

Vij(x, u
0(x))φ̂

(k)
j + κ

(
d

(k)
1 , . . . , d(k)

n

) m∑
j=1

Fij(x, u
0(x))φ̂

(k)
j

 = 0,

where u0(x) depends on (d
(k)
m+1, . . . , d

(k)
n ). Then it follows from the Lp theory that

there exists a subsequence {kl}∞l=1 such that liml→∞ φ̂
(kl)
i = c∞i in C(Ω,R) for each

i = 1, . . . ,m, where c∞i is a nonnegative constant and c∞ := (c∞1 , . . . , c
∞
m )T satisfies

‖c∞‖∞ = 1 and V̌ c∞ = κ∗F̌ c∞.

Then 1/κ∗ = r(V̌ −1F̌ ). This completes the proof.

Remark 3.2. We remark that there always exists a decomposition

{(Fi(x, u),Vi(x, u))}ni=1

of {fi(x, u)}ni=1 such that

fi(x, u) = Fi(x, u)− Vi(x, u) for i = 1, . . . , n and rank (F ) = 1.

Consequently, r(V̌ −1F̌ ) is the unique eigenvalue of V̌ −1F̌ with an eigenvector in
Rn+ \ {0}. Moreover, different decompositions of {fi(x, u)}∞n=1 will not change the
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portion of parameter space that the disease vanishes or spreads. Actually, if there
exist two decompositions{(

F (j)
i (x, u),V(j)

i (x, u)
)}n

i=1
(j = 1, 2),

then there exist two basic reproduction numbers R
(1)
0 and R

(2)
0 . It follows from [41,

Theorem 3.5] that R
(1)
0 − 1 and R

(2)
0 − 1 have the same signs.

Remark 3.3. In Theorem 3.2, we assume that there exists ε0 > 0 such that, for
any x ∈ Ω, −V ε0 is cooperative and F ε0 is positive. In section 4, we will show that

in some concrete examples, any off-diagonal entry in V ε, V ε equals zero or is strictly
positive and that any entry of F ε or F ε is strictly positive. Therefore, we only need
to show that −V 0 is cooperative and F 0 is positive to obtain results in Theorem 3.2.

3.3. Discussion. In this subsection, we show that if assumptions (A7) and (A8)
are both satisfied, we can obtain an additional asymptotic profile for R0 other than the
ones in Theorems 3.1 and 3.2. The proof is similar to the ones given in subsections 3.1
and 3.2, and here we omit the proof.

Proposition 3.3. Assume that (A1)–(A5), (A7)–(A8), and (3.17) hold and that
there exists ε0 > 0 such that −V ε0 is cooperative and F ε0 is positive, where V ε, V ε,
and F ε are defined in (3.16). If the matrix −V (x, ũ) + aF (x, ũ) is irreducible for any
a > 0 and x ∈ Ω, where ũ is defined in (3.15), then

lim
(d1,...,dm,dm+1,...,dn)→(0,...,0,∞,...,∞)

R0 = Rũ0 := max
x∈Ω

[
r
(
−V −1(x, ũ)F (x, ũ)

)]
,

where (d1, . . . , dm, dm+1, . . . , dn) → (0, . . . , 0,∞, . . . ,∞) means max1≤j≤m dj → 0
and minm+1≤j≤n dj →∞.

Proposition 3.4. Assume that (A1)–(A5), (A7)–(A8), and (3.4) hold and that
there exists ε0 > 0 such that −V cε0 is cooperative and F cε0 is positive, where V cε, V

c

ε,
and F cε are defined in (3.3). Let

V̌ c =

(∫
Ω

Vij(x, c(x)dx

)
1≤i,j≤m

=

(∫
Ω

∂Vi(x, c(x))

∂uj
dx

)
1≤i,j≤m

,

F̌ c =

(∫
Ω

Fij(x, c(x))dx

)
1≤i,j≤m

=

(∫
Ω

∂Fi(x, c(x))

∂uj
dx

)
1≤i,j≤m

,

(3.19)

where c(x) is defined in (3.2). If r((V̌ c)−1F̌ c) is the unique eigenvalue of (V̌ c)−1F̌ c

with an eigenvector in Rm+ \ {0}, then

lim
(d1,...,dm,dm+1,...,dn)→(∞,...,∞,0,...,0)

R0 = r
(
(V̌ c)−1F̌ c

)
,

where (d1, . . . , dm, dm + 1, . . . , dn) → (∞, . . . ,∞, 0, . . . , 0) means min1≤j≤m dj → ∞
and maxm+1≤j≤n dj → 0.

Finally, we will consider the effect of diffusion rates on the basic reproduction
number R0. It follows from [2] that R0 is monotone decreasing with respect to the
diffusion rates for an SIS epidemic model; that is, large dispersal could reduce the
spread of the disease. It is of interest that R0 is not always monotone decreasing
with respect to the diffusion rates; see [40] for an example of diffusive SEIRS model.
Motivated by [40], we show that under certain conditions, R0 is not always monotone
decreasing with respect to the diffusion rates for model (1.3).
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Proposition 3.5. Assume that (d1, d2, . . . , dn) = d(ε1, ε2, . . . , εn) and that all the
assumptions in Theorems 3.1 and 3.2 are satisfied. Then the following two statements
hold:

(i)

lim
d→0

R0(d) = Rc0 and lim
d→∞

R0(d) = r(V̌ −1F̌ ),

where Rc0 and r(V̌ −1F̌ ) are defined as in Theorems 3.1 and 3.2, respectively.
(ii) If

(3.20) Rc0 < r(V̌ −1F̌ ),

then there exist M2 > M1 > 0 such that for any d̃2 > M2 and d̃1 < M1,
R0(d̃2) > R0(d̃1).

We will show that (3.20) is satisfied for a concrete epidemic model in section 4.

4. Applications. In this section, we give some examples to show that the gen-
eral results in Theorems 3.1 and 3.2 can be applied to many different reaction-diffusion
epidemic models.

4.1. Vector-host epidemic models. We consider two vector-host epidemic
models. The first is given by [15] to model the outbreak of Zika in Rio de Janeiro:
(4.1)
∂Hi/∂t = δ1∆Hi − λ(x)Hi + σ1(x)Hu(x)Vi, x ∈ Ω, t > 0,

∂Vi/∂t = δ2∆Vi + σ2(x)VuHi − µ(x)(Vu + Vi)Vi, x ∈ Ω, t > 0,

∂Vu/∂t = δ3∆Vu − σ2(x)VuHi + β(x)(Vu + Vi)− µ(x)(Vu + Vi)Vu, x ∈ Ω, t > 0,

∂νHi = ∂νVi = ∂νVu = 0, x ∈ ∂Ω, t > 0,

where Hu(x), Hi(x, t), Vi(x, t), and Vu(x, t) are the densities of uninfected hosts,
infected hosts, infected vectors, and uninfected vectors at space x and time t, respec-
tively; Ω is a bounded domain with smooth boundary ∂Ω; ν is the outward unit normal
vector on ∂Ω; δ1, δ2, δ3 are positive constants; and λ(x), Hu(x), σi(x) (i = 1, 2), β(x),
and µ(x) are strictly positive and belong to Cα(Ω). The asymptotic properties of R0

for this model have been investigated in [32]; see also [31] for the global dynamics.
We revisit it to show that the main results in section 3 can be applied to this model
to determine the asymptotic behavior of basic reproduction number R0.

Letting
n = 3, m = 2 and (u1, u2, u3) = (Hi, Vi, Vu),

we could use the framework in section 3. It follows from [32] that model (4.1) has a
unique disease-free steady state u0(x) = (0, 0, V̂ (x)), where V̂ (x) satisfies

(4.2) lim
δ3→0

V̂ (x) =
β(x)

µ(x)
and lim

δ3→∞
V̂ (x) =

∫
Ω
β(x)dx∫

Ω
µ(x)dx

in C(Ω).

This implies that assumptions (A7) and (A8) are satisfied. For model (4.1),

(4.3) V (x, u) =

(
λ(x) −σ1(x)Hu(x)

0 µ(x)u3

)
, F (x, u) =

(
0 0

σ2(x)u3 0

)
,

where u = (u1, u2, u3)T , and

(4.4) B = (δ1∆, δ2∆)
T − V (x, u0(x)).
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Then the basic reproduction number is given by

(4.5) R0 = r
(
−F (x, u0(x))B−1

)
.

Moreover, for model (4.1),

ũ =

(
0, 0,

∫
Ω
βdx∫

Ω
µdx

)
and c(x) =

(
0, 0,

β(x)

µ(x)

)
,

and a direct computation implies that all the assumptions of Theorems 3.1 and 3.2
and Propositions 3.3 and 3.4 are satisfied. Then we have the following results.

Proposition 4.1. For model (4.1), the following statements hold:
(i)

lim
(δ1,δ2,δ3)→(∞,∞,∞)

R0 =

∫
Ω

σ1Hudx

∫
Ω

σ2dx∫
Ω

λdx

∫
Ω

µdx

,

(ii)

lim
(δ1,δ2,δ3)→(0,0,0)

R0 = max
x∈Ω

σ1(x)σ2(x)Hu(x)

λ(x)µ(x)
,

(iii)

lim
(δ1,δ2,δ3)→(∞,∞,0)

R0 =

∫
Ω

σ1Hudx

∫
Ω

σ2β

µ
dx∫

Ω

λdx

∫
Ω

βdx

,

(iv)

lim
(δ1,δ2,δ3)→(0,0,∞)

R0 = max
x∈Ω

σ1(x)σ2(x)Hu(x)

λ(x)µ(x)
.

Next we consider another vector-host epidemic model:

(4.6)



It = d1∆I + βs(x)SV − (b(x) + γ(x)) I, x ∈ Ω, t > 0,

Vt = d2∆V + βm(x)MI − c(x)V, x ∈ Ω, t > 0,

St = d3∆S + λ1(x)− b(x)S + γ(x)I − βs(x)SV, x ∈ Ω, t > 0,

Mt = d4∆M + λ2(x)− c(x)M − βm(x)MI, x ∈ Ω, t > 0,

∂νI = ∂νV = ∂νS = ∂νM = 0, x ∈ ∂Ω, t > 0,

where I(x, t), V (x, t), S(x, t), and M(x, t) are the densities of infected hosts, infected
vectors, susceptible hosts, and susceptible vectors at space x and time t, respectively;
Ω is a bounded domain with smooth boundary ∂Ω; ν is the outward unit normal vector
on ∂Ω; d1, d2, d3, d4 are positive constants; and λi(x) (i = 1, 2), βs(x), βm(x), b(x),
γ(x), and c(x) are strictly positive and belong to Cα(Ω). The model was originally an
ODE model (i.e., d1 = d2 = d3 = d4 = 0) proposed by Feng and Velasco-Hernández
[14], and R0 of the ODE model was obtained in [14, 43].

Letting
n = 4, m = 2 and (u1, u2, u3, u4) = (I, V, S,M),

we could use the framework in section 3. The model (4.6) has a unique disease-free
steady state

u0(x) = (0, 0, Ŝ(x), M̂(x)),
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where (Ŝ(x), M̂(x)) satisfies

lim
(d3,d4)→(0,0)

(
Ŝ(x), M̂(x)

)
=

(
λ1(x)

b(x)
,
λ2(x)

c(x)

)
lim

(d3,d4)→(0,0)

(
Ŝ(x), M̂(x)

)
=

(∫
Ω
λ1dx∫

Ω
bdx

,

∫
Ω
λ2dx∫

Ω
cdx

) in C(Ω,R2).(4.7)

This implies that assumptions (A7) and (A8) are satisfied. A direct computation
implies that, for model (4.6),

(4.8) F (x, u) =

(
0 βs(x)u3

βm(x)u4 0

)
, V (x, u) =

(
b(x) + γ(x) 0

0 c(x)

)
for u = (u1, u2, u3, u4)T , and

B = (d1∆, d2∆)
T − V (x, u0(x)).

Then the basic reproduction number is also given by (4.5). Finally, for model (4.6),

ũ =

(
0, 0,

∫
Ω
λ1dx∫

Ω
bdx

,

∫
Ω
λ2dx∫

Ω
cdx

)
and c(x) =

(
0, 0,

λ1(x)

b(x)
,
λ2(x)

c(x)

)
.

It is easy to check that all the assumptions of Theorems 3.1 and 3.2 and Proposi-
tions 3.3 and 3.4 are satisfied. Then we have the following results.

Proposition 4.2. For model (4.6), the following statements hold:
(i)

lim
(d1,d2,d3,d4)→(∞,∞,∞,∞)

R0 =

√√√√∫Ω λ1dx
∫

Ω
λ2dx

∫
Ω
βsdx

∫
Ω
βmdx∫

Ω
bdx

(∫
Ω
cdx
)2 ∫

Ω
(b+ γ)dx

,

(ii)

lim
(d1,d2,d3,d4)→(0,0,0,0)

R0 = max
x∈Ω

√
λ1(x)λ2(x)βs(x)βm(x)

b(x)c2(x)(b(x) + γ(x))
,

(iii)

lim
(d1,d2,d3,d4)→(∞,∞,0,0)

R0 =
1√∫

Ω
cdx

∫
Ω

(b+ γ)dx

√∫
Ω

βsλ1

b
dx

∫
Ω

βmλ2

c
dx,

(iv)

lim
(d1,d2,d3,d4)→(0,0,0,0)

R0 =

√∫
Ω
λ1dx

∫
Ω
λ2dx∫

Ω
bdx

∫
Ω
cdx

max
x∈Ω

√
βs(x)βm(x)

c(x)(b(x) + γ(x))
.

We remark that (3.20) can be satisfied for models (4.1) and (4.6). For example,
we consider model (4.1) and choose Ω = (ε, 1 − ε), where 0 < ε � 1. Let λ(x) ≡ λ̃,
µ(x) ≡ µ̃ and σ1(x) = σ̃1, where λ̃, µ̃, σ̃1 are positive constants, Hu(x) = x2, and
σ2(x) = 1− x. Then, for sufficiently small ε,

max
x∈Ω

σ1(x)σ2(x)Hu(x)

λ(x)µ(x)
<

∫
Ω

σ1Hudx

∫
Ω

σ2dx∫
Ω

λdx

∫
Ω

µdx
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Let (δ1, δ2, δ3) = d(ε1, ε2, ε3). Then we see from Proposition 3.5 that there exist
M2 > M1 > 0 such that for any d̃2 > M2 and d̃1 < M1, R0(d̃2) > R0(d̃1). Therefore,
large dispersal could promote the spread of the disease.

4.2. Staged progression model. In this subsection, we consider a staged pro-
gression model proposed in [19]. This model has a single uninfected compartment, and
the infected individuals could pass through several stages of the disease with changing
infectivity. It could be applied to model the transmission of many diseases, such as
HIV/AIDS; see [19]. The original model was an ODE model, and the reproduction
number was obtained in [17, 43]. Here we consider the associated reaction-diffusion
case:

∂I1/∂t = d1∆I1 + h(N) (
∑m
k=1 βk(x)SIk)− (ν1(x) + γ1(x))I1, x ∈ Ω, t > 0,

∂Ii/∂t = di∆Ii + νi−1(x)Ii−1 − (νi(x) + γi(x))Ii, x ∈ Ω, t > 0, 2 ≤ i ≤ m,
∂Im+1/∂t = dm+2∆Im+1 + νm(x)Im − γm+1Im+1, x ∈ Ω, t > 0,

∂S/∂t = dm+1∆S + λ(x)− b(x)S − h(N) (
∑m
k=1 βk(x)SIk) , x ∈ Ω, t > 0,

∂νS = ∂νIi = 0, x ∈ ∂Ω, t > 0, 1 ≤ i ≤ m,

where N = S +
∑m
i=1 Ii, h(N) = N−α with α ∈ [0, 1], S(x, t) is the density of the

susceptible individuals, Ii(i = 1, . . . ,m+ 1) is the density of the infected individuals
at stage i, Ω is a bounded domain with smooth boundary ∂Ω, ν is the outward unit
normal vector on ∂Ω, di (i = 1, . . . ,m+2) are positive constants, and λ(x), b(x), βi(x)
(i = 1, . . . ,m), νi(x) (i = 1, . . . ,m), and γi(x) (i = 1, . . . ,m+ 1) are strictly positive
and belong to Cα(Ω). Note that Im+1 decouples from the others, and consequently
we could consider the following model:
(4.9)

∂I1/∂t = d1∆I1 + h(N) (
∑m
k=1 βk(x)SIk)− (ν1(x) + γ1(x))I1, x ∈ Ω, t > 0,

∂Ii/∂t = di∆Ii + νi−1(x)Ii−1 − (νi(x) + γi(x))Ii, x ∈ Ω, t > 0, 2 ≤ i ≤ m,
∂S/∂t = dm+1∆S + λ(x)− b(x)S − h(N) (

∑m
k=1 βk(x)SIk) , x ∈ Ω, t > 0,

∂νS = ∂νIi = 0, x ∈ ∂Ω, t > 0, 1 ≤ i ≤ m.

Letting

n = m+ 1, (u1, . . . , um) = (I1, . . . , Im), and um+1 = S,

we could use the framework in section 3. The model (4.9) has a unique disease-free
steady state

u0(x) = (0, . . . , 0, Ŝ(x)),

where Ŝ(x) satisfies

(4.10) lim
dm+1→0

Ŝ(x) =
λ(x)

b(x)
and lim

dm+1→∞
Ŝ(x) =

∫
Ω
λdx∫

Ω
bdx

in C(Ω,R).

This implies that assumptions (A7) and (A8) are satisfied. For model (4.9),

V (x, u) = (Vij(u))1≤i,j≤m and F (x, u) = (Fij(x, u))1≤i,j≤m ,
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where for u = (u1, . . . , um)T ,

Fij(x, u) =


h
(∑m+1

k=1 uk

)
βj(x)um+1

+h′
(∑m+1

k=1 uk

)
(
∑m
k=1 βk(x)uk)um+1 i = 1, 1 ≤ j ≤ m,

0 otherwise,

Vij(x, u) =


νi(x) + γi(x) 1 ≤ i ≤ m, j = i,

−νi−1(x) 2 ≤ i ≤ m, j = i− 1,

0 otherwise,

and
B = (d1∆, . . . , dm∆)

T − V (x, u0(x)).

And the basic reproduction number is given by (4.5). Also, for model (4.9),

ũ =

(
0, . . . , 0,

∫
Ω
λdx∫

Ω
bdx

)
and c(x) =

(
0, . . . , 0,

λ(x)

b(x)

)
.

Since this model is more complex, we show that all the assumptions of Theorems 3.1
and 3.2 are satisfied.

Lemma 4.3. The following statements hold:
(i) For any a > 0 and x ∈ Ω, −V (x, c(x)) + aF (x, c(x)) is irreducible.

(ii) r(V̌ −1F̌ ) is the unique positive eigenvalue of V̌ −1F̌ , where V̌ −1 and F̌ are
defined as in (3.18).

Proof. Let Qij(x) = −Vij(x, c(x)) + aFij(x, c(x)). Then a direct computation
implies that

(4.11) Qij(x) =



aβ1(x)
λ(x)

b(x)
h

(
λ(x)

b(x)

)
− ν1(x)− γ1(x) i = 1, j = 1,

aβj(x)
λ(x)

b(x)
h

(
λ(x)

b(x)

)
i = 1, 2 ≤ j ≤ m,

−νi(x)− γi(x) 2 ≤ i ≤ m, j = i,

νi−1(x) 2 ≤ i ≤ m, j = i− 1,

0 otherwise.

For i = 1, 2 ≤ j ≤ m,

Q1j = aβj(x)
λ(x)

b(x)
h

(
λ(x)

b(x)

)
6= 0,

and for any 2 ≤ i ≤ m, j > i,

Qi(i−1) · · ·Q21Q1j = aνi−1(x) · · · ν1(x)βj(x)
λ(x)

b(x)
h

(
λ(x)

b(x)

)
6= 0.

Similarly, for 1 ≤ j ≤ m, i > j,

Qi(i−1)Q(i−1)(i−2) · · ·Q(j+1)j = νi−1(x) · · · νj(x) 6= 0.

Therefore, −V (x, c(x)) + aF (x, c(x)) is irreducible for any a > 0 and x ∈ Ω. This
completes the proof of part (i).
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Let V̌ −1 = (αij)1≤i,j≤m. From [43] and a direct computation, we see that

(4.12) αij =



0 1 ≤ i ≤ m, j > i,
1∫

Ω
(νi + γi)dx

1 ≤ i ≤ m, j = i,∏i−1
k=j

∫
Ω
νkdx∏i

k=j

∫
Ω

(νk + γk)dx
1 ≤ i ≤ m, j < i.

Let F̌ V̌ −1 = (α̃ij)1≤i,j≤m. Then ãij = 0 for any 2 ≤ i ≤ m and 1 ≤ j ≤ m and

(4.13) ã11 =

 m∑
j=1

∫
Ω
βjdx

∏j−1
k=1

∫
Ω
νkdx∏j

k=1

∫
Ω

(νk + γk)dx

 ∫Ω λdx∫
Ω
bdx

h

(∫
Ω
λdx∫

Ω
bdx

)
.

Therefore, r(V̌ −1F̌ ) = ã11 is the unique positive eigenvalue of V̌ −1F̌ . This completes
the proof of part (ii).

The other assumptions of Theorems 3.1 and 3.2 and Propositions 3.3 and 3.4 are
easy to verify, and we omit the proof. Then we have the following results.

Proposition 4.4. Let R0 be the basic reproduction number of model (4.9). Then
(i)

lim
(d1,...,dm+1)→(0,...,0)

R0 = max
x∈Ω

 m∑
j=1

βj(x)
∏j−1
k=1 νk(x)∏j

k=1(νk(x) + γk(x))

 λ(x)

b(x)
h

(
λ(x)

b(x)

)
,

(ii)

lim
(d1,...,dm+1)→(∞,...,∞)

R0 =

 m∑
j=1

∫
Ω
βjdx

∏j−1
k=1

∫
Ω
νkdx∏j

k=1

∫
Ω

(νk + γk)dx

 ∫Ω λdx∫
Ω
bdx

h

(∫
Ω
λdx∫

Ω
bdx

)
,

(iii)

lim
(d1,...,dm+1)→(0,...,0,∞)

R0 =

∫
Ω
λdx∫

Ω
bdx

h

(∫
Ω
λdx∫

Ω
bdx

)
max
x∈Ω

 m∑
j=1

βj(x)
∏j−1
k=1 νk(x)∏j

k=1(νk(x) + γk(x))

 ,

(iv)

lim
(d1,...,dm+1)→(∞,...,∞,0)

R0 =

 m∑
j=1

∫
Ω
βj

λ
b h
(
λ
b

)
dx
∏j−1
k=1

∫
Ω
νkdx∏j

k=1

∫
Ω

(νk + γk)dx

 .

Appendix A. In this part, we prove a result that verifies the continuity of
functions F cε, F

c

ε, V
c
ε, V

c

ε, F
x
ε , F

x

ε , V xε , and V
x

ε , which are defined in (3.3) and (3.8).

Proposition A.1. Let f(x, u) ∈ C(Ω × R,R) and c(x) ∈ C(Ω,R), where Ω is a
bounded domain in RN (N ≥ 1). Denote

Dcε = {(x, u) : x ∈ Ω, u ∈ [c(x)− ε, c(x) + ε]}, Dxε = {u : u ∈ [c(x)− ε, c(x) + ε]}

and
H(ε) = max

(x,u)∈Dcε
f(x, u), G(x, ε) = max

u∈Dxε
f(x, u).

Then H(ε) ∈ C([0, 1],R) and G(x, ε) ∈ C(Ω× [0, 1],R).
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Proof. We first consider the continuity of H(ε). Let

C1 := min
x∈Ω

c(x)− 2 and C2 =: max
x∈Ω

c(x) + 2.

The continuity of f(x, u) implies that f(x, u) is uniformly continuous on Ω× [C1, C2].
Then, for any given γ > 0, there exists δ > 0 such that, for any (x1, u1), (x2, u2) ∈
Ω× [C1, C2] satisfying |x1 − x2| < δ and |u1 − u2| < δ,

(A.1) |f(x1, u1)− f(x2, u2)| < γ.

Assume that 0 ≤ ε1 < ε2 ≤ 1 and ε2 − ε1 < δ. Clearly, H(ε1) ≤ H(ε2). Noticing that
Dcε2 is compact, we see that there exists (x0, u0) ∈ Dcε2 such that H(ε2) = f(x0, u0).
Then there exists (x0, u1) such that (x0, u1) ∈ Dcε1 and |u1 − u0| < δ. It follows from
(A.1) that f(x0, u0) < f(x0, u1) + γ, which implies that H(ε2) < H(ε1) + γ. Then,
exchanging the position of ε1 and ε2, we can also obtain that, for any 0 ≤ ε2 < ε1 ≤ 1
and ε1 − ε2 < δ,

H(ε2) ≤ H(ε1) ≤ H(ε2) + γ.

Therefore, for any given γ > 0, there exists δ > 0 such that, for any ε1, ε2 ∈ [0, 1]
satisfying |ε1 − ε2| < δ,

|H(ε1)−H(ε2)| < γ.

This implies that H(ε) ∈ C([0, 1],R).
Then we consider the continuity of G(x, ε). Note that c(x) is continuous. Then,

for the above δ, there exists δ1 ∈ (0, δ) such that, for any x1, x2 ∈ Ω satisfying
|x1 − x2| < δ1,

|c(x1)− c(x2)| < δ/2.

Clearly, if |ε1 − ε2| < δ/2 and |x1 − x2| < δ1, then

(A.2) |c(x2) + ε2 − c(x1)− ε1| < δ and |c(x2)− ε2 − c(x1) + ε1| < δ.

Choose (x1, ε1), (x2, ε2) ∈ Ω× [0, 1] satisfying

|x1 − x2|, |ε1 − ε2| < δ2,

where δ2 := min{δ/2, δ1}. Clearly, there exists u1 ∈ [c(x1)− ε1, c(x1) + ε1] such that
G(x1, ε1) = f(x1, u1). Then we claim that

G(x1, ε1) < G(x2, ε2) + γ,

and the proof is divided into two cases.
Case 1. u1 ∈ [c(x2)− ε2, c(x2) + ε2].

Since |x1 − x2| < δ2 < δ, it follows from (A.1) that

G(x1, ε1) = f(x1, u1) < f(x2, u1) + γ ≤ G(x2, ε2) + γ.

Case 2. u1 6∈ [c(x2)− ε2, c(x2) + ε2].
Then u1 > c(x2)+ ε2 or u1 < c(x2)− ε2. We only consider the case of u1 > c(x2)+ ε2,
and the other case could be proved similarly. Then c(x2)+ ε2 < u1 ≤ c(x1)+ ε1, This,
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combined with (A.2), implies that |c(x2) + ε2 − u1| < δ. Then it follows from (A.1)
that

G(x1, ε1) = f(x1, u1) < f (x2, c(x2) + ε2) + γ ≤ G(x2, ε2) + γ.

Then, exchanging the positions of (x1, ε1) and (x2, ε2), we also have G(x2, ε2) <
G(x1, ε1) + γ. This implies that for any given γ > 0, there exists δ2 > 0 such that, for
any (x1, ε1), (x2, ε2) ∈ Ω× [0, 1] satisfying |x1 − x2| < δ2 and |ε1 − ε2| < δ2,

(A.3) |G(x1, ε1)−G(x2, ε2)| ≤ γ.

This completes the proofs.
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