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Abstract: The bifurcation of an ordinary differential equation model describing interaction of the wild
and the released sterile mosquitoes is analyzed. It is shown that the model undergoes a sequence of
bifurcations including saddle-node bifurcation, supercritical Hopf bifurcation, subcritical Hopf bifur-
cation, homoclinic bifurcation and Bogdanov-Takens bifurcation. We also find that the model displays
monostable, bistable or tristable dynamics. This analysis suggests that the densities of the initial wild
mosquitoes and the released sterile ones determine the asymptotic states of both populations. This
study may give an insight into the estimation number of the released sterile mosquitoes.
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1. Introduction

Mosquitoes not only buzz around us, but also transmit various diseases by biting susceptible per-
sons. Diseases, such as Dengue fever, malaria, yellow fever, Zika viruses, West Nile virus and Japanese
encephalitis are carried and transmitted by mosquitoes [1, 2, 3, 4, 5, 6]. Mosquito-borne diseases have
been a considerable public health concern worldwide [7]. According to the estimate of WHO report,
2.5 billion of people are living in dengue risk area and 50 to 100 million cases of dengue occur every
year [8].

One of the ways to prevent the transmissions of mosquito-borne diseases is to control the number
of the wild mosquito population. An important effort to reduce or eradicate wild mosquitoes is insect
sterilization, also called sterile insect technique (SIT). The male mosquitoes are modified to be sterile
ones by the application of radical or other chemical/physical methods and then released into the en-
vironment to mate with wild mosquitoes. A wild female mosquito that mates with a sterile male will
either not reproduce, or produce eggs which will not hatch. Recently, a mosquito eradication project
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named “Debug Fresno” was carried out by the life sciences arm of Google’s parent company [9]. The
scientists released up to 20 million sterile male mosquitoes infected with Wolbachia and let them mate
with wild female mosquitoes to reduce the impact that disease-carrying mosquitoes have on human
health. The theoretical basis of project “Debug Fresno” is sterile insect technique since Wolbachia
bacteria can cause a form of conditional sterility.

Before SIT is carried out, it is critical to choose the optimal release strategies and estimate the
release number of sterile mosquitoes. Mathematical models have been proven to be useful in overcom-
ing such challenging problems in population dynamics and epidemiology. A number of mathematical
models have been formulated to investigate the interactive dynamics and the control of the wild and
sterile mosquito populations [10, 11, 12, 7, 13, 14, 15, 16, 17, 18, 19, 20]. Recently, other models are
also proposed to investigate the spreading dynamics by incorporating stage-structure [21, 22] or delay
in differential equations [23, 24, 25], spatial diffusion in reaction-diffusion equations [26, 27], and the
environmental heterogeneity in stochastic equations [28]. In [24], the number of released mosquitoes
is assumed to be a variable satisfying an independent dynamical equation. This new idea seems to
be the first in such a direction in the mathematical modeling of mosquito-borne diseases. It is found
that the model displays bistability with two stable steady-states and one unstable steady-state when
the abundance of released males is smaller than an exact value of the threshold releasing intensity.
Simulation also suggests the existence of one or more stable periodic solutions.

In [7], the authors proposed the following continuous-time ordinary differential equation model to
study the interactive dynamics of the wild and sterile mosquitoes:

dw
dt

=
(
C(N)

a0w
w + g

− (µ1 + ξ1(w + g))
)
w,

dg
dt

= R(w) − (µ2 + ξ2(w + g))g.
(1.1)

Here w(t) and g(t) are the numbers of wild and sterile mosquitoes at time t, respectively; C(N) is
the number of mating per individual per unit of time with N = w + g; a0 is the number of wild
offspring produced per mate; R(·) is the release rate of the sterile mosquitoes; µi and ξi, i = 1, 2, are
the density independent and dependent death rates of wild and sterile mosquitoes, respectively. In [7],
the authors focused on the impact of the different release strategies of the sterile insect technique on
disease transmission and consider the following three cases:

(i) C(N) = c, R(w) = b;

(ii) C(N) =
c0N

1 + N
, R(w) = bw;

(iii) C(N) =
c0N

1 + N
, R(w) =

bw
1 + w

.

Here, c, c0, b are all constants. In case (i), both the mating rate and the release rate are constants. In
case (ii), the release rate is a linear function, and in case (iii), the release rate form takes into account
an Allee effect as in [29, 7, 30]. The mating rate is a Holling-II type function both in case (ii) and (iii).
The authors explored the existence of all possible equilibria and the stability of these equilibria. They
found that the positive equilibrium is a stable node and the system (1.1) has no closed orbits in case (i).
An explicit threshold release value for b was also established for this case. For case (ii), they gave some
results about the stability of the positive equilibrium when µ1 ≤ µ2 and ξ1 ≤ 2ξ2. A threshold release
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value for b was also obtained implicitly because of the complexity of the system. They also gave some
results about the existence and stability of the positive equilibrium when µ1 = µ2 and ξ1 = ξ2 for case
(iii).

In the present paper, we will give a detailed follow-up work focused on the case (ii). Let a = a0c0,
the dynamics of the interacting mosquitoes in case (ii) is governed by the following system:

dw
dt

=
( aw
1 + w + g

− (µ1 + ξ1(w + g))
)
w,

dg
dt

= bw − (µ2 + ξ2(w + g))g.
(1.2)

We aim to investigate the impact of the mating rate and the release strategy on the dynamics of (1.2)
without the restriction ξ1 ≤ 2ξ2. Using a and b as the bifurcation parameters, we find that the system
(1.2) possesses rich dynamics in different parameter ranges.

This paper is organized as follows. In Section 2, we give some result about the existence, and local
stability of equilibria especially when ξ1 > 2ξ2. In Section 3, we show the existence of Hopf bifur-
cations and homoclinic bifurcations. The Bogdanov-Takens bifurcation analysis is given in Section 4.
We end with some discussions in Section 5.

2. Equilibria and stability

First, for the convenience of readers, we show some known results about the existence of a positive
equilibrium for model (1.2) which have been obtained in [7] and give some more comprehensive results
about its stability.

Define

F(N) =(1 + N)(µ1 + ξ1N)(b + µ2 + ξ2N) − aN(µ2 + ξ2N)
=ξ1ξ2N3 + (ξ1(b + µ2) + ξ2(µ1 + ξ2 − a))N2

+ (µ1ξ2 + b(µ1 + ξ1) + µ2(µ1 + ξ1 − a))N + µ1(b + µ2).
(2.1)

Then the system (1.2) admits a positive equilibrium if and only if F(N) = 0 admits a positive root.
Define

B(N) =
(aN − (1 + N)(µ1 + ξ1N))(µ2 + ξ2N)

(1 + N)(µ1 + ξ1N)
. (2.2)

Then F(N) = 0 admits a positive root if and only if there exists a positive solution N to the equation
b = B(N). It is useful to note that for any N > 0, there is at most one b > 0 which is b = B(N) such
that (w, g) is a positive equilibrium of (1.2), where

w =
(1 + N)(µ1 + ξ1N)

a
, g =

b(N)(1 + N)(µ1 + ξ1N)
(a(µ2 + ξ2N))

.

For the function b = B(N) defined in (2.2), if a > µ1 + ξ1 + 2
√
µ1ξ1, there is a unique N̄ = N̄(a) such

that B′(N̄) = 0. We define
b̄ = B(N̄). (2.3)

Then b̄ > 0 and we have the following results.
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Proposition 2.1. Suppose all parameters a, b, µ1, µ2, ξ1, ξ2 are positive and a > µ1 + ξ1 + 2
√
µ1ξ1. Let

F(N) and b̄ be defined as in (2.1) and (2.3), respectively. Then the equation F(N) = 0 has no positive
roots if b > b̄, one positive root N̄ if b = b̄ and two positive roots N± with N− < N+ if 0 < b < b̄.
Furthermore, N± depend on b continually, and N−

′

(b) > 0, N+′(b) < 0.

Proof. The first part of the proposition is obvious, and we only need to prove the last part. It is easy to
know that N− < N̄ < N+ whenever N± and N̄ exist. Define a two-variable function

F̃(N, b) = (1 + N)(µ1 + ξ1N)(b + µ2 + ξ2N) − aN(µ2 + ξ2N).

By the implicit function theorem on the intervals [N1, N̄] and [N̄,N2], two functions N− = N−(b) and
N+ = N+(b) satisfying N1 < N− < N̄ and N̄ < N+ < N2 can be obtained from the equation F̃(N, b) = 0,
where

N1,2 =
1

2ξ1

(
(a − µ1 − ξ1) ±

√
(a − µ1 − ξ1)2 − 4µ1ξ1

)
.

Then we have N′(b) = −∂F̃
∂b /

∂F̃
∂N . Simple calculations show that ∂F̃

∂b = (1 + N)(µ1 + ξ1N) > 0 for any
positive values of N and ∂F̃

∂N = F′(N). Note that F′(N−) < 0 and F′(N+) > 0. Then N−
′

(b) > 0 and
N+′(b) < 0. �

Then the existence and multiplicity of positive equilibria for system (1.2) follow immediately from
Proposition 2.1.

Lemma 2.2. Suppose all parameters a, b, µ1, µ2, ξ1, ξ2 are positive and a > µ1 + ξ1 + 2
√
µ1ξ1. Define

b̄ as in (2.3). Then

(1) If b > b̄, then the system (1.2) has no positive equilibria.
(2) If b = b̄, then the system (1.2) has a unique positive equilibrium (w̄, ḡ), where w̄ = (1 + N̄)(µ1 +

ξ1N̄)/a, ḡ = b̄(1 + N̄)(µ1 + ξ1N̄)/(a(µ2 + ξ2N̄)).
(3) If 0 < b < b̄, then the system (1.2) has two positive equilibria (w±, g±), where w± = (1 + N±)(µ1 +

ξ1N±)/a, g± = b(1 + N±)(µ1 + ξ1N±)/(a(µ2 + ξ2N±)).

Note that if b is regarded as a bifurcation parameter, then b = b̄ is a saddle-node bifurcation
point marked by bLP. From Lemma 2.2, the system (1.2) may have three nonnegative equilibria:
(0, 0), (w−, g−) and (w+, g+). In the following, (w+, g+) is referred as the higher wild mosquitoes state,
while (w−, g−) is the lower wild mosquitoes state.

Next we investigate the local stability of these equilibria. From [7], (0, 0) is locally asymptotically
stable and (w−, g−) is an unstable saddle whenever it exists. Then we only need to consider the stability
of (w+, g+). The associated Jacobian matrix at the equilibrium (w+, g+) is given by

J(w+, g+) =

 a(1+g+)w+

(1+N+)2 − ξ1w+ −
( aw+

(1 + N+)2 ξ1
)
w+

b − ξ2g+ −µ2 − ξ2(N+ + g+)

 .
Then we have

Det(J(w+, g+)) =
w+

1 + N+
F′(N+) > 0.
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and the trace of J(w+, g+) is given by

Trace(J(w+, g+)) =
a(1 + g+)w+

(1 + N+)2 − ξ1w+ − µ2 − ξ2(N+ + g+)

=
1
a

T (N+),

where T (N) is defined as

T (N) =ξ1(ξ2 − 2ξ1)N2 +
(
a(ξ1 − 2ξ2) + ξ1(ξ2 − ξ1) + µ1(ξ2 − 3ξ1)

)
N

+
(
a(µ1 − µ2) + µ1(ξ2 − ξ1 − µ1)

)
.

(2.4)

Then (w+, g+) is locally asymptotically stable if T (N+) < 0 and unstable if T (N+) > 0 [7].
In the present paper, we always assume that the sterile mosquitoes are prone to death for their

adaptability and competitive abilities are diminished as compared to the wild populations, i.e. µ1 ≤ µ2.
In [7], the authors have shown that the equilibrium (w+, g+) is locally asymptotically stable if ξ1 ≤ 2ξ2.
Now we will discuss the stability of (w+, g+) for the case ξ1 > 2ξ2.

Define

a0 =
ξ1(ξ1 − ξ2) + µ1(3ξ1 − ξ2)

ξ1 − 2ξ2
,

41 =
(
a(ξ1 − 2ξ2) + ξ1(ξ2 − ξ1) + µ1(ξ2 − 3ξ1)

)2
− 4ξ1(ξ2 − 2ξ1)

(
a(µ1 − µ2) + µ1(ξ2 − ξ1 − µ1)

)
.

(2.5)

Note that ξ2 − 2ξ1 < 0. Then if a < a0 or a > a0 and 41 > 0, we have T (N) < 0 which implies that the
equilibrium (w+, g+) is locally asymptotically stable. For the case that a > a0 and 41 > 0, the equation
T (N) = 0 has two positive roots, denoted by N∗ and N∗ with N∗ < N∗, where

N∗,N∗ =

(
a(ξ1 − 2ξ2) + ξ1(ξ2 − ξ1) + µ1(ξ2 − 3ξ1)

)
±
√
41

2ξ1(2ξ1 − ξ2)
. (2.6)

To discuss the stability of (w+, g+) for this case, we first give the following proposition.

Proposition 2.3. Suppose all parameters a, b, µ1, µ2, ξ1, ξ2 are positive and a > µ1 + ξ1 + 2
√
µ1ξ1,

µ1 ≤ µ2. Then the equilibrium (w+, g+) is locally asymptotically stable when b ≈ 0.

Proof. It is useful to note that aN+ = (1 + N+)(µ1 + ξ1N+) if b = 0. Then if b = 0, we have

T (N+) = a(µ1 − µ2) − (µ1 + ξ1N+)2 − ξ2N+ < 0, (2.7)

which implies that the equilibrium (w+, g+) is locally asymptotically stable if b = 0. By the continuity
of T (N+) with respect to b, we have T (N+) < 0 for b ≈ 0 which implies the local stability of (w+, g+)
when b ≈ 0. �

When 0 � b < b̄, the discussion is divided into the following cases:

(i) N2 < N∗ or N∗ < N̄ < N2. For these cases, we have T (N+) < 0 which implies that the equilibrium
(w+, g+) is locally asymptotically stable.

(ii) N∗ < N̄ < N∗ < N2. For this case, there exists b = b1 such that N+(b1) = N∗. Then T (N+) < 0
when 0 < b < b1 and T (N+) > 0 when b1 < b < b̄ which implies that the equilibrium (w+, g+) is
locally asymptotically stable when 0 < b < b1 and unstable when b1 < b < b̄.
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(iii) N̄ < N∗ < N∗ < N2. For this case, there exist b = b1 and b = b2 with b1 < b2 such that
N+(b1) = N∗ and N+(b2) = N∗. Then T (N+) < 0 when 0 < b < b1 or b2 < b < b̄, and T (N+) > 0
when b1 < b < b2, which implies that the equilibrium (w+, g+) is locally asymptotically stable
when 0 < b < b1 or b2 < b < b̄, and unstable when b1 < b < b2.

Then we have the following results about the stability of the equilibrium (w+, g+).

Theorem 2.4. Assume all parameters a, b, µ1, µ2, ξ1, ξ2 are positive and a > µ1 + ξ1 + 2
√
µ1ξ1, µ1 ≤ µ2.

Then the equilibrium (w+, g+) is locally asymptotically stable when ξ1 ≤ 2ξ2. When ξ1 > 2ξ2, define b̄ as
in (2.3), a0,41 as in (2.5), and N∗,N∗ as in (2.6). Then the equilibrium (w+, g+) is locally asymptotically
stable when a < a0 or a > a0 and 41 > 0. When a > a0 and 41 > 0, the following cases may occur:

(1) If N2 < N∗ or N∗ < N̄ < N2, then the equilibrium (w+, g+) is locally asymptotically stable.
(2) If N∗ < N̄ < N∗ < N2, then there exists b = b1 such that N+(b1) = N∗ and the equilibrium (w+, g+)

is locally asymptotically stable when 0 < b < b1 and unstable when b1 < b < b̄.
(3) If N̄ < N∗ < N∗ < N2, then there exist b = b1 and b = b2 with b1 < b2 such that N+(b1) = N∗

and N+(b2) = N∗. The equilibrium (w+, g+) is locally asymptotically stable when 0 < b < b1 or
b2 < b < b̄, and unstable when b1 < b < b2.

Now we give some examples to illustrate our results and show how the existence and stability of
the positive equilibrium (w+, g+) vary with b.

Example 2.5. Choosing the values of the parameters as µ1 = 1, µ2 = 1, ξ1 = 4, ξ2 = 0.51, a = 20, we
can numerically obtain N2 = 3.6821,N∗ = 0.1517,N∗ = 0.9882, N̄ = 0.6863 which satisfy N∗ < N̄ <

N∗ < N2. Furthermore, we have b̄ = 1.5841. According to Theorem 2.4, there exists b = b1 such that
N+(b1) = N∗. Actually, we obtain b1 = 1.5146. Then the equilibrium (w+, g+) is locally asymptotically
stable when 0 < b < 1.5146 and unstable when 1.5146 < b < 1.5841.

Example 2.6. Choosing the values of the parameters as µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a = 48, we
can numerically obtain N2 = 3.2448,N∗ = 0.2498,N∗ = 1.0207, N̄ = 0.3947 which satisfy N∗ < N̄ <

N∗ < N2. Furthermore, we have b̄ = 3.6646. For this case, b1 = 2.9187 and the equilibrium (w+, g+) is
locally asymptotically stable when 0 < b < 2.9187 and unstable when 2.9187 < b < 3.6646.

Example 2.7. Choosing the values of the parameters as µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a = 40,
we can numerically obtain N2 = 2.5092,N∗ = 0.3881,N∗ = 0.5680, N̄ = 0.3783 which satisfy N̄ <

N∗ < N∗ < N2. Furthermore, we have b̄ = 2.6593. According to Theorem 2.4, there exist b = b1 and
b = b2 with b1 < b2 such that N+(b1) = N∗ and N+(b2) = N∗. Actually, we obtain b1 = 2.5374 and
b2 = 2.6588. Then the equilibrium (w+, g+) is locally asymptotically stable when 0 < b < 2.5374 or
2.6588 < b < 2.6593 and unstable when 2.5374 < b < 2.6588.

3. Hopf bifurcations and numerical simulations

In this section, we mainly give a simulation illustration for Hopf bifurcations of system (1.2). From
the discussion in Section 2 there exist values of b such that the corresponding characteristic matrix of
(w+, g+) has a pair of complex roots, denoted by

σ(b) = α(b) ± iω(b),
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where

α(b) =
1

2a
T (N+), ω(b) =

√
w+

1 + N+
F′(N+) −

1
4a2 T 2(N+),

and F(N) and T (N) are defined as in (2.1) and (2.4), respectively. When b = bk, k = 1, 2, we have
T (N+) = 0. Then there are a pair of purely imaginary eigenvalues for J(w+, g+). This means that a
Hopf bifurcation may occur. Choosing b as a bifurcation parameter, the existence of Hopf bifurcations
could be obtained by algebraic and logical methods [31]. In fact, we have

α(bk) =

(
1
2a

T (N+)
)∣∣∣∣∣∣

b=bk

= 0, k = 1, 2,

and

α′(bk) =

(
1

2a
T (N+)

)′∣∣∣∣∣∣
b=bk

=

(
1

2a
T ′(N+)N+′(b)

)∣∣∣∣∣∣
b=bk

, 0, k = 1, 2.

Here, we use the facts that T ′(N+)|b=b1 = T ′(N∗) < 0, T ′(N+)|b=b2 = T ′(N∗) > 0 and N+′(bk) < 0 which
result in α′(b1) > 0 and α′(b2) < 0. Then we obtain the following result.

Theorem 3.1. Assume all parameters a, b, µ1, µ2, ξ1, ξ2 are positive and b = bk, k = 1, 2 are defined as
in Theorems 2.4. Then system (1.2) undergoes a Hopf bifurcation at b1 and b2 if b1 or b2 exists.

In order to determine the type of the Hopf bifurcation, the direction of the Hopf bifurcations at
b = b1 and b = b2 is calculated (see Appendix A for details). We focus on the exhibition of the
existence and the direction of the Hopf bifurcations by numerical simulation. The Hopf bifurcations
are classified into the following four different cases to show that the system (1.2) may admit one or
two Hopf bifurcation points and both supercritical and subcritical Hopf bifurcations may occur for
different parameter ranges. In all of the following bifurcation diagrams, the points labelled “H” denote
the points at which the trace of the corresponding characteristic equation equal to zero, and the points
labelled “LP” denote the limit points. In all of our phase portraits, the red points denote the equilibria
and the green curves are the stable and unstable manifolds of the positive equilibrium (w−, g−) which
is a saddle.

Case 1. Existence of a subcritical Hopf bifurcation and one unstable limit cycle

We choose the values of the parameters as µ1 = 1, µ2 = 1, ξ1 = 4, ξ2 = 0.51, a = 20 (see Example
2.5 in Section 2). In Figure 1 (a)-(c), the bifurcation diagram, the maximum and the minimum of the
cycles and the periods of limit cycles for different values of b are shown. Here the bifurcation diagram
(produced with MatCont) shows there exists a saddle-node bifurcation point at b = bLP, which is
labelled “LP” and one Hopf bifurcation points at b = b1 (labelled a black “H”) in Figure 1 (a). The
point (labelled a red “H”) represents a neutral saddle which is not a Hopf bifurcation point. Numerically
calculated first Lyapunov coefficients at the Hopf bifurcation point is positive which indicates that the
Hopf bifurcation point is subcritical. The branch of limit cycles from b1 is not a closed loop, but is an
“open-ended” one. Then from the global Hopf bifurcation theorem [32, 33], the period of the periodic
orbits on the bifurcating branch must be unbounded. In Figure 1 (c), one can observe that the period
of cycles is decreasing in b for the bifurcation diagram corresponding to (a). Furthermore, the period
approach to∞ when b tends to some b = bHL, which is a homoclinic bifurcation point where the limit
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Figure 1. Homoclinic bifurcation, saddle-node bifurcation, subcritical Hopf bifurcation and
the existence of one unstable limit cycle when µ1 = 1, µ2 = 1, ξ1 = 4, ξ2 = 0.51, a = 20. In
all diagrams, the horizontal axis is b. The black “H” mark indicates a Hopf bifurcation point;
the “LP” mark indicates a saddle-node bifurcation point. (a): Bifurcation diagram. (b): The
maximum and the minimum of the cycles. (c): Periods of the stable periodic orbits.
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Figure 2. Evolution of phase portraits of (1.2) for µ1 = 1, µ2 = 1, ξ1 = 4, ξ2 = 0.51, a = 20.
(a) b = 1; (b) b = 1.4964786; (c) b = 1.5; (d) b = 1.55.
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cycles converge to a homoclinic orbit based on the saddle equilibrium (w−, g−). This can be observed in
Figure 1 (b) as the limit of minimum of the cycles is the lower positive equilibrium. We have called this
bifurcation diagram a “lotus” in [34] with the Hopf bifurcation point as the base and the homoclinic
bifurcation point the top of the lotus.

Figure 2 shows the evolution of phase portraits of system (1.2) with µ1 = 1, µ2 = 1, ξ1 = 4, ξ2 =

0.51, a = 20 when b increases. One can numerically calculate that the bifurcation values b1 = 1.51462
(Hopf bifurcation point), and bLP = 1.584068 (saddle-node bifurcation point). Here the Hopf bifur-
cation point is subcritical so the bifurcating periodic orbits are unstable. Moreover the homoclinic
bifurcation point is bHL = 1.4964786. Apparently when b > bLP, the equilibrium (0, 0) is the attrac-
tor and attracts all positive orbits. When 0 < b < bHL, the positive equilibria (w+, g+) and (0, 0) are
both stable, and the basins of attraction for the two locally stable equilibria are separated by the stable
manifold of the saddle equilibrium (w−, g−) (see Figure 2 (a)); when b = bHL a homoclinic orbit exists
(see Figure 2 (b)); when b increases to bHL < b < b1, the equilibrium (w+, g+) is still stable and an
unstable limit cycle emerges from the subcritical Hopf bifurcation (see Figure 2 (c)); when b increases
to b1 < b < bLP, the equilibrium (w+, g+) becomes unstable and almost all the positive orbits except
for positive equilibria (w±, g±) and stable manifold (the green orbits) of (w−, g−) tend to the trivial
equilibrium (0, 0) in Figure 2 (d).
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Figure 3. Homoclinic bifurcation, saddle-node bifurcation, supercritical Hopf bifurcation
and the existence of one stable limit cycle when µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a = 48. In
all diagrams, the horizontal axis is b. The black “H” mark indicates a Hopf bifurcation point;
the “LP” mark indicates a saddle-node bifurcation point; and the red “H” mark is a neutral
saddle point which is not a bifurcation point. (a): Bifurcation diagram. (b): The maximum
and the minimum of the cycles. (c): Period of the stable periodic orbits.

Case 2. Existence of a supercritical Hopf bifurcation and one stable limit cycle

In Figure 3 (a)-(c), the bifurcation diagram, the maximum and the minimum of the cycles and
periods of limit cycles for different values of b are shown when we choose µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 =

0.95, a = 48 (see Example 2.6 in Section 2). Here the bifurcation diagram (produced with MatCont)
shows there exists a saddle-node bifurcation point at b = bLP, which is labeled “LP” and one Hopf
bifurcation points at b = b1 (labelled a black “H”) in Figure 3 (a). The point (labelled a red “H”)
represents a neutral saddle which is not a bifurcation point. Unlike the case in Figure 1, numerically
calculated first Lyapunov coefficients at the bifurcation point is negative which indicates that this Hopf
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(d) bHL < b < bLP

Figure 4. Evolution of phase portraits of (1.2) for µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a = 48.
(a) b = 2; (b) b = 2.93; (c) b = 2.9568; (d) b = 3.

bifurcation point is supercritical. The branch of limit cycles from b1 is also called a “lotus” in [34]. In
Figure 3 (c), one can also observe that the period of cycles is increasing in b for the bifurcation diagram
corresponding to (a). Furthermore, the period approach to∞ when b tends to some b = bHL, which is a
homoclinic bifurcation point where the limit cycles converge to a homoclinic orbit based on the saddle
equilibrium (w−, g−). This can be observed in Figure 3 (b) as the limit of minimum of the cycles is the
lower positive equilibrium.

Figure 4 shows the evolution of phase portraits of system (1.2) with µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 =

0.95, a = 48 when b increases. One can numerically calculate that the bifurcation values b1 = 2.918737
(Hopf bifurcation point), and bLP = 3.664595 (saddle-node bifurcation point). Here the Hopf bifur-
cation point is supercritical so the bifurcating periodic orbits are stable. Moreover the homoclinic
bifurcation point is bHL = 2.9568. Apparently when b > bLP, the equilibrium (0, 0) is the attractor and
attracts all positive orbits. When 0 < b < b1, the positive equilibria (w+, g+) and (0, 0) are both stable,
and the basins of attraction for the two locally stable equilibria are separated by the stable manifold of
the saddle equilibrium (w−, g−) (see Figure 4 (a)); when b increases to b1 < b < bHL, the equilibrium
(w+, g+) becomes unstable and a stable limit cycle emerges from the supercritical Hopf bifurcation
(see Figure 4 (b)). At b = bHL, a homoclinic orbit exists (see Figure 4 (c)). When b increases to
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bHL < b < bLP, the homoclinic orbit is broken and the equilibrium (w+, g+) is still unstable. All of the
positive orbits except for positive equilibria (w±, g±) and stable manifold (the green orbits) of (w−, g−)
tend to the trivial equilibrium (0, 0) in Figure 4 (d).
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Figure 5. Homoclinic bifurcation, saddle-node bifurcation, subcritical Hopf bifurcation and
the existence of two limit cycles when µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a = 52. In all
diagrams, the horizontal axis is B. The black “H” mark indicates a Hopf bifurcation point;
the “LP” mark indicates a saddle-node bifurcation point; and the red “H” mark is a neutral
saddle point which is not a bifurcation point. (a): Bifurcation diagram. (b): The maximum
and the minimum of the cycles. (c): Period of the stable periodic orbits.

Case 3. Existence of a subcritical Hopf bifurcation and two limit cycles

An interesting phenomenon occurs when we choose the values of the parameters as µ1 = 1, µ2 =

2, ξ1 = 11, ξ2 = 0.95, a = 52. In Figure 5 (a)-(c), the bifurcation diagram, the maximum and the
minimum of the cycles and periods of limit cycles for different values of b are shown. Here the
bifurcation diagram (produced with MatCont) shows there exist a saddle-node bifurcation point at b =

bLP, which is labelled “LP” and one Hopf bifurcation points at b = b1 (labelled a black “H”) in Figure
5 (a). The point (labelled a red “H”) is a neutral saddle which is not a bifurcation point. Numerically
calculated first Lyapunov coefficients at the Hopf bifurcation point is positive which indicates this Hopf
bifurcation point is subcritical. In Figure 5 (c), one can observe that the period approach to ∞ when b
tends to some b = bHL, which is a homoclinic bifurcation point where the limit cycles converge to a
homoclinic orbit based on the saddle equilibrium (w−, g−). This can be observed in Figure 5 (b) as the
limit of minimum of the cycles is the lower positive equilibrium. Note that, in Figure 5 (c), one can also
observe that the period of cycles is not increasing in b and there exists some range of b, bLPC < b < bHL,
that the period of cycles is not a single-valued function of b. This implies that the system (1.2) admits
multiple periodic orbits for the same b value for the bifurcation diagram corresponding to (a). Unlike
the case in 1, the branch of limit cycles from b1 is an “open-ended” one which is called a “pepper” for
there is another saddle-node bifurcation of cycles on the branch [34].

Figure 6 shows the evolution of phase portraits of system (1.2) with µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 =

0.95, a = 52 when b increases. One can numerically calculate that the bifurcation values b1 = 3.130339
(Hopf bifurcation point), and bLP = 4.168163 (saddle-node bifurcation point). Here the Hopf bifurca-
tion point is subcritical so the bifurcating periodic orbits are unstable. Moreover the homoclinic bifur-
cation point is bHL = 3.1562665 and a limit cycle saddle-node bifurcation point is bLPC = 3.129271.
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Figure 6. Evolution of phase portraits of (1.2) for µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a = 52.
(a) b = 3.12; (b) b = 3.13; (c) b = 3.14; (d) b = 3.1562665; (e) b = 4.
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Figure 7. Homoclinic bifurcation, saddle-node bifurcation, two supercritical Hopf bifurca-
tions and the existence of one stable limit cycle when µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a =

40. In all diagrams, the horizontal axis is b. The black “H” mark indicates a Hopf bifurcation
point; the “LP” mark indicates a saddle-node bifurcation point. (a): Bifurcation diagram.
(b): The maximum and the minimum of the cycles. (c): Period of the stable periodic orbits.
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Apparently when b > bLP, the equilibrium (0, 0) is the attractor and attracts all positive orbits. When
0 < b < bLPC, the positive equilibria (w+, g+) and (0, 0) are both stable, and the basins of attraction for
the two locally stable equilibria are separated by the stable manifold of the saddle equilibrium (w−, g−)
(see Figure 6 (a)); when b increases to bLPC < b < b1, the equilibrium (w+, g+) is also stable and an
unstable limit cycle emerges from the subcritical Hopf bifurcation which implies the existence of two
limit cycles (see Figure 6 (b)). when b increases to b1 < b < bLP, the equilibrium (w+, g+) becomes
unstable and there exists one stable limit cycle (see Figure 6 (c)). At b = bHL, a homoclinic orbit
exists (see Figure 6 (d)). When b increases to bHL < b < bLP, the homoclinic orbit is broken and the
equilibrium (w+, g+) is still unstable. All of the positive orbits except for positive equilibria (w±, g±)
and stable manifold (the green orbits) of (w−, g−) tend to the trivial equilibrium (0, 0) in Figure 6 (e).

Case 4. Existence of two supercritical Hopf bifurcations and one stable limit cycle

We choose the values of the parameters as µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a = 40 (see Example
2.7 in Section 2). In Figure 7 (a)-(c), the bifurcation diagram, the maximum and the minimum of the
cycles and periods of limit cycles for different values of b are shown. Here the bifurcation diagram
(produced with MatCont) shows there exists a saddle-node bifurcation point at b = bLP, which is
labeled “LP” and two Hopf bifurcation points at b = b1 and b = b2 with b1 < b2 (labelled a black “H”)
in Figure 7 (a). Numerically calculated first Lyapunov coefficients at the bifurcation points are both
negative which indicates the two Hopf bifurcation points are supercritical. The branch of limit cycles
from b1 is also a “lotus”. In Figure 7 (c), one can also observe that the period of cycles is increasing
in b for the bifurcation diagram corresponding to (a). Furthermore, the period approach to ∞ when b
tends to some b = bHL, which is a homoclinic bifurcation point where the limit cycles converge to a
homoclinic orbit based on the saddle equilibrium (w−, g−). This can be observed in Figure 7 (b) as the
limit of minimum of the cycles is the lower positive equilibrium. The branch of limit cycles from b1 is
also a “lotus” which is unlike the cases (b), (d) and (e) which we called a “bubble” or a “heart” in [34]
when there exist two supercritical Hopf bifurcation points.

Figure 8 shows the evolution of phase portraits of system (1.2) with µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 =

0.95, a = 40 when b increases. One can numerically calculate that the bifurcation values b1 = 2.537385
(Hopf bifurcation point), b2 = 2.658842 (Hopf bifurcation point) and bLP = 2.659327 (saddle-node
bifurcation point). Here the Hopf bifurcation points are supercritical so the bifurcating periodic orbits
are stable. Moreover the homoclinic bifurcation point is bHL = 2.59096. Apparently when b > bLP,
the equilibrium (0, 0) is the attractor and attracts all positive orbits. When 0 < b < b1, the positive
equilibria (w+, g+) and (0, 0) are both stable, and the basins of attraction for the two locally stable
equilibria are separated by the stable manifold of the saddle equilibrium (w−, g−) (see Figure 8 (a));
when b increases to b1 < b < bHL, the equilibrium (w+, g+) becomes unstable and a stable limit cycle
emerges from the supercritical Hopf bifurcation (see Figure 8 (b)). At b = bHL, a homoclinic orbit
exists (see Figure 8 (c)). When b increases to bHL < b < b2, the homoclinic orbit is broken and the
equilibrium (w+, g+) is still unstable and all of the positive orbits except for positive equilibria (w±, g±)
and stable manifold (the green orbits) of (w−, g−) tend to the trivial equilibrium (0, 0) in Figure 8 (d).
When b increases to b2 < b < bLP, the positive equilibrium (w+, g+) becomes stable and and the basins
of attraction for the two locally stable equilibria (w+, g+) and (0, 0) are separated by the stable manifold
of the saddle equilibrium (w−, g−) (see Figure 8 (e)).
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Figure 8. Evolution of phase portraits of (2.1) for µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95, a = 40.
(a) b = 2; (b) b = 2.55; (c) b = 2.59096; (d) b = 2.62; (e) b = 2.659.

From the simulations above, we show that the system (1.2) may admit one or two Hopf bifurca-
tion points and the Hopf bifurcation points may be supercritical and subcritical. At a critical value
b = bHL, a homoclinic orbit exists. Thus, we conclude that the system may undergo a sequence of
bifurcations including saddle-node bifurcation, supercritical Hopf bifurcation, subcritical Hopf bifur-
cation, homoclinic bifurcation. Furthermore, the system may admit monostable, bistable or tristable
dynamics. There exist bistable regions in which the non-mosquito equilibrium coexists with a pos-
itive equilibrium, i.e. the extinction of both mosquitoes coexists with the “steady state persistence”
of both mosquitoes, or the non-mosquito equilibrium coexists with a stable limit cycle, i.e. the ex-
tinction of both mosquitoes coexists with the “oscillatory persistence” of both mosquitoes. There
also exist tristable regions in which two equilibria coexist with one limit cycle, i.e. the extinction of
both mosquitoes coexists with the “steady state persistence” and the “oscillatory persistence” of both
mosquitoes.

4. Bogdanov-Takens bifurcation

In Section 3, we show the existence of the Hopf bifurcations through a single bifurcation parameter
b. By using two parameters a and b as bifurcation parameters, we now show that a Bogdanov-Takens
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bifurcation may occur in the system (1.2).
To that end, we fix µ1, µ2, ξ1, ξ2(ξ1 > 2ξ2), and choose a and b satisfying the following conditions:

(i) a = a∗ such that T (N̄(a∗), a∗) = 0 where N̄ is the unique critical point of B(N) which is defined as
(2.2);

(ii) b = b̄(N̄(a∗)).

Then system (1.2) admits a unique positive equilibrium (w̄, ḡ) (at the saddle-node bifurcation point)
defined by

w̄ =
(1 + N̄)(µ1 + ξ1N̄)

a
, ḡ =

b(1 + N̄)(µ1 + ξ1N̄)
a(µ2 + ξ2N̄)

, (4.1)

and

Det(J(w̄, ḡ)) = 0, Trace(J(w̄, ḡ)) = 0. (4.2)

Therefore, if conditions (i) and (ii) are satisfied then the Jacobian matrix at (w̄, ḡ) has a zero eigen-
value with multiplicity 2. This suggests that (1.2) may admit a Bogdanov-Takens bifurcation. With
similar procedures to those in [35, 36, 34], we confirm that (w∗, b∗) is a cusp singularity of codimension
2. Now we show that the system (1.2) may admit a Bogdanov-Takens bifurcation by simulations.

Figure 9 shows the two-parameter bifurcation diagrams on the b − a plane for µ1 = 1, µ2 = 1, ξ1 =

4, ξ2 = 0.51 in Figure 9 (a) and µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95 in Figure 9 (b). In each panel
of Figure 9, the blue curve represents the saddle-node bifurcation curve and the cyan curve represents
the Hopf bifurcation curve. The saddle-node curve Γ1 and the Hopf curve Γ2 divide the b − a plane
into three parts, marked by “nonexistence” (no positive equilibrium), “stable” ((w+, g+) is stable) and
“unstable” ((w+, g+) is unstable), respectively. The intersection point of the saddle-node curve Γ1 and
the Hopf curve Γ2 is the Bogdanov-Takens bifurcation point marked by “BT” (again by using package
MatCont). A degenerate bifurcation point marked by “GH” is the generalized Hopf bifurcation point
where the first Lyapunov coefficient vanishes while the second Lyapunov coefficient does not vanish,
and that is where the Hopf bifurcation changes from subcritical to supercritical. In Figure 9 (a), the
Hopf bifurcation curve is a monotone curve, which implies that there is only one Hopf bifurcation
point b = b1 when using b as bifurcation parameter (for example fixed a = 20). On the other hand, in
Figure 9 (b) the Hopf bifurcation curve is not monotone which means that there may exist two Hopf
bifurcation points b = b1 and b = b2 (for example fixed a = 40).

In Figure 9, the three different parts “nonexistence”, “stable” and “unstable” on the b − a plane,
which are divided by the saddle-node curve Γ1 and the Hopf curve Γ2, may give us some insights into
the release strategy of the sterile mosquitoes. Of course, it must be the best result to eradicate wild
mosquitoes. From the point of economic benefits and the control of wild mosquito population, it is
practical to choose an appropriate release rate b for fixed values of mating rate a and other parameters
to assure that the positive equilibrium lies in the region of “nonexistence”. Another advantage is that the
release rate can be adjust or the mating rate can be disturbed according to the observation of the current
states of the wild mosquitoes and the sterile mosquitoes. For example, the release sterile mosquitoes
can be increased appropriately if a cyclical phenomenon is observed.
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Figure 9. The blue curve represents the saddle-node bifurcation curve and the cyan curve
represents the Hopf bifurcation curve. The “BT” mark indicates a Bogdanov-Takens bifur-
cation point and the “GH” mark indicates a generalized Hopf point where the first Lyapunov
coefficient vanishes while the second Lyapunov coefficient does not vanish, which indicates
that it is nondegenerate, i.e. Hopf bifurcation changes from subcritical to supercritical. Pa-
rameters: (a) µ1 = 1, µ2 = 1, ξ1 = 4, ξ2 = 0.51; (b) µ1 = 1, µ2 = 2, ξ1 = 11, ξ2 = 0.95.

5. Conclusions

Sterile insect technique (SIT) is an important method to control and eliminate the number of wild
mosquito population. It is significant to use mathematical model to investigate the releasing strategy
and estimate the number of sterile mosquitoes in SIT. In this paper, an ordinary differential equation
model (1.2) for the dynamics of the wild mosquitoes and the sterile mosquitoes is investigated. By
the bifurcation analysis, we find rich bifurcation structure in model (1.2), including saddle-node bi-
furcations, (subcritical/supercritical) Hopf bifurcations, homoclinic bifurcation, and Bogdanov-Takens
bifurcations.

For different release rates of sterile mosquito and circumstance parameters, we find the system (1.2)
admits monostable, bistable and tristable dynamics. When the release rate of sterile mosquitoes is large,
only the non-mosquito equilibrium exists and it is globally stable, which implies the extinction of both
mosquitoes. With the decrease of the release rate of sterile mosquitoes, there exist bistable regions
in which the non-mosquito equilibrium coexists with a positive equilibrium, i.e. the extinction of
both mosquitoes coexists with the “steady state persistence” of both mosquitoes, or the non-mosquito
equilibrium coexists with a stable limit cycle, i.e. the extinction of both mosquitoes coexists with the
“oscillatory persistence” of both mosquitoes. There also exist tristable regions in which two equilibria
coexist with one limit cycle. In the bistable and tristable parameter regions, the asymptotic states of
both mosquitoes are determined by the initial densities of the wild and sterile mosquitoes.

From the viewpoint of biology, the wild mosquitoes will be eliminated if the release rate of sterile
mosquitoes is large, which is unrealistic sometime due to the cost. When the release rate of sterile
mosquitoes lies in a intermediate level, whether the wild mosquito population is eliminated or not
depends on the initial wild mosquitoes and sterile mosquitoes densities. Then, first and foremost, the
densities of wild mosquitoes should be investigated before sterile mosquitoes are released to insure the
numbers of both populations lie asymptotically in the region “nonexistence”.
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Appendices
A. Direction of Hopf bifurcation

When b = bk, k = 1, 2, we have T (N+) = 0. Then the eigenvalues of the Jacobian matrix at (w+, g+)

are λ1 = ω0i and λ2 = −ω0i, where ω0 := ω(bk) =
√

Det(J(w+, g+)) =

√
w+

1+N+ F′(N+).
By using the transformation of x = w − w+, y = g − g+ to (1.2), we obtain

dx
dt

= a11x + a12y + G1(x, y),
dy
dt

= a21x + a22y + G2(x, y),
(A.1)

where

a11 = −ξ1 +
a(1 + g+)

(1 + w+ + g+)2 , a12 = −
(
ξ1 +

a(1 + g+)
(1 + w+ + g+)2 w+

)
,

a21 = bk − ξ2g+, a22 = −µ2 − ξ2w+g+,

G1(x, y) = c20x2 + c11xy + c02y2 + c30x3 + c21x2y + c12xy2 + c03y3,

G2(x, y) = −ξ2xy − ξ2y2,

and

c20 = −ξ1 +
a(1 + g+)2

(1 + w+ + g+)3 , c11 = −ξ1 +
2aw+(1 + g+)2

(1 + w+ + g+)3 ,

c02 =
2w+2

(1 + w+ + g+)3 , c30 = −
a(1 + g+)2

(1 + w+ + g+)4 ,

c21 =
a(2w+ + 2w+g+ − 1 − 2g+ − g+2)

(1 + w+ + g+)4 , c12 = −
aw+(w+ − 2 − 2g+)

(1 + w+ + g+)4 ,

c03 =
aw+2

(1 + w+ + g+)4 .

By applying the translation u = x, v = − 1
ω0

(a11x + a12y) to (A.1), we obtain
du
dt

= −ω0v + H1(u, v),
dv
dt

= ω0u + H2(u, v),
(A.2)
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where

H1(u, v) = G1(u,−
a11u + ω0v

a12
),

H2(u, v) = −
1
ω0

(
a11G1(u,−

a11u + ω0v
a12

) + a12G2(u,−
a11u + ω0v

a12
)
)
.

Set

σ =
1
16

[∂3H1

∂u3 +
∂3H1

∂u∂v2 +
∂3H2

∂u2∂v
+
∂3H2

∂v3

]
+

1
16ω0

[∂2H1

∂u∂v

(∂2H1

∂u2 +
∂2H1

∂v2

)
−
∂2H2

∂u∂v

(∂2H2

∂u2 +
∂2H2

∂v2

)
−
∂2H1

∂u2

∂2H1

∂v2 +
∂2H2

∂u2

∂2H2

∂v2

]∣∣∣∣
u=0,v=0

.

(A.3)

By the results in [37], the direction of the Hopf bifurcation is determined by the sign ofσ. Therefore,
we have the following result.

Theorem A.1. Assume all parameters a, b, µ1, µ2, ξ1, ξ2 are positive and b = bk, k = 1, 2 are defined
as in Theorems 2.4. Then a family of periodic solutions bifurcate from the equilibrium (w+, g+). Fur-
thermore, system (1.2) undergoes a supercritical Hopf bifurcation if σ < 0 and a subcritical Hopf
bifurcation if σ > 0, where σ is defined as in (A.3).
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