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Abstract
A reaction–diffusion–advection equation with strong Allee effect growth rate is pro-
posed tomodel a single species streampopulation in a unidirectional flow.Here random
undirected movement of individuals in the environment is described by passive dif-
fusion, and an advective term is used to describe the directed movement in a river
caused by the flow. Under biologically reasonable boundary conditions, the existence
of multiple positive steady states is shown when both the diffusion coefficient and
the advection rate are small, which lead to different asymptotic behavior for different
initial conditions. On the other hand, when the advection rate is large, the population
becomes extinct regardless of initial condition under most boundary conditions. It is
shown that the population persistence or extinction depends onAllee threshold, advec-
tion rate, diffusion coefficient and initial conditions, and there is also rich transient
dynamical behavior before the eventual population persistence or extinction.
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1 Introduction

The growth of a biological population is affected by both the environmental factors
and the population density. The spatial structure of the natural environment influ-
ences the movement pattern of the individuals in the population, and that in turn
affects the population dynamics. Individual movement can be undirected or directed.
Random indirected movement of individuals in the environment is often described
by a passive diffusion of a density function in continuum following the classical
approach in physics. Combining with the density-dependent growth of the popula-
tion, we obtain reaction–diffusion models which have been widely used to describe
spatiotemporal behavior in both chemical (Epstein and Pojman 1998; Prigogine and
Lefever 1968) and biological fields (Cantrell and Cosner 2003; Ni 2011; Okubo and
Levin 2001).

In some situations, in addition to the random dispersal, individuals in a population
also make advective movement which is from sensing and following the gradient of
resource distribution (taxis) or a directional fluid/windflow. Some examples aremarine
living species flowing in rivers, lakes or oceans, benthic marine species along coast-
lines with dominant long-shore currents, or phytoplankton species in water column
experiencing gravitational downward pull (Huisman et al. 2002; Speirs and Gurney
2001). The addition of advection to reaction–diffusion models may change the long
term outcome (persistence/extinction) of the population (Hsu and Lou 2010; Jin and
Lewis 2011; Lam et al. 2016; Lutscher et al. 2005, 2006). When the population
follows a typical logistic growth, there often exists a critical parameter value (diffu-
sion coefficient, advection coefficient, domain size, growth rate) for the population
persistence or extinction (Lam et al. 2015; Lou and Lutscher 2014; Mckenzie et al.
2012), and it is well known that the model has a unique positive steady state solution
which is globally asymptotically stable when population persists (Cantrell and Cosner
2003).

Despite the universal acceptance of logistic growth as the most reasonable one,
since Allee’s pioneer work (Allee 1931) in 1931, ecologists have found that in many
cases, the population growth could depend on the density positively instead of negative
dependence as in the logistic one. When the population density is low, individual may
have difficulty in finding mates or defending against predators, which will lead to
low birth rate and high death rate. For high population density, population size is
still restricted by the environment limits. Thus either excessively sparse or excessive
crowded can inhibit the population growth, which means such species has a optimum
intermediate range for the population growth. This phenomenon, frequently termed as
the Allee effect, has been the focus of increasing interest over the past three decades
(Courchamp et al. 2008; Lewis and Kareiva 1993; Stephens and Sutherland 1999).
For instance, due to the severe harvesting, the west Atlantic cod (Ganus morhus)
population stayed below the Allee threshold in the past few decades (De Roos and
Persson 2002; Rowe et al. 2004). Although many management strategies have been
implemented to reduce fishing mortality after a collapse, the cod population does not
show an increase of size and such a lack of recovery indicates a reduced capacity to
rebound from low densities. Another example is the case of Vancouver Island marmot
(Marmota vancouverensis) whose population has declined by 80% since the 1980s.
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The studies in Brashares et al. (2010) shows a growth rate of strong Allee effect type
for the marmot due to the longer distance traveled when finding mates and change
of social behavior. Overall more and more evidences of Allee effect in wild species
populations have been found in recent studies (Courchamp et al. 2008; Kramer et al.
2009), especially for marine species such as blue crab, oyster whose growth rate
strongly depends on the river/ocean flow (Gascoigne and Lipcius 2004a, b; Jordan-
Cooley et al. 2011).

In this paper, we study the dynamic behavior of a reaction–diffusion–advection
model of the density of a biological species in an open or closed river environment
with a strong Allee effect population growth rate. If the river population suffers a loss
on the boundary ends due to movement, then the river is an open environment and
otherwise it is a closed environment. Compared to thewell-studied reaction–diffusion–
advection model with logistic growth rate (Cantrell and Cosner 2003; Lam et al.
2015; Lou and Lutscher 2014), the model with strong Allee effect growth possesses
multiple steady state solutions, and the extinction state is always locally stable. Here
we set up a framework of reaction–diffusion–advection model in a one-dimensional
habitat with general growth rate functions and general boundary conditions, but focus
on the strong Allee effect type growth and open or closed environment boundary
conditions.

Our main results on the dynamics of reaction–diffusion–advection model with
strong Allee effect type growth on a bounded habitat include:

1. The solution asymptotically always converges to a nonnegative steady state solu-
tion, and there is no temporal oscillatory behavior.

2. The population goes to extinction when the initial condition is small, or the advec-
tion rate is large and under an open environment.

3. When the initial population is properly large, the population persists if the advec-
tion rate is small and the boundary condition is favorable. In that case, a bistability
exists in the system so different outcomes can be reached with different initial
settings.

4. In a closed environment river system, when the advection rate is large, the pop-
ulation either becomes extinct or it only concentrates at the downstream end.
Numerical results indicate that extinction or concentration at downstream depends
on the relative position of the Allee effect threshold value.

5. The traveling wave speed of associated problem is determined by the diffusion
coefficient, advection rate, baseline growth rate and the Allee effect threshold,
and the traveling-wave-like transient dynamics facilitates the merge of population
persistence/extinction patches.

Most of the above results are rigorously proved using theory of dynamical systems,
partial differential equations, and upper–lower solution methods, and various numeri-
cal simulations are also included to verify or demonstrate theoretical results. Our focus
is on the influence of various system parameters (diffusion coefficient, advection rate,
Allee effect threshold, boundary condition parameters) and initial conditions on the
asymptotic and transient dynamical behavior.

The question of dynamics of a spatially distributed species, moving passively in a
stream or river, have been proposed to explore population persistence and the so-called
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“drift paradox” (Lutscher et al. Nov 2010; Pachepsky et al. 2005; Speirs and Gurney
2001). The drift paradox asks how stream-dwelling organisms can persist, without
being washed out, when they are continuously subject to the unidirectional stream
flow. With assumption of logistic population growth, the existence/persistence of a
stream population in a constant environment have been considered in the framework
of reaction–diffusion–advection in Lam et al. (2015, 2016), Lou and Lutscher (2014),
Lou and Zhou (2015),Mckenzie et al. (2012), Speirs and Gurney (2001) and Vasilyeva
andLutscher (2010), and the effect of seasonal variations in environmental and climatic
conditions on the stream population were considered in Jin et al. (2014), Jin and Lewis
(2011, 2012). The competition of two species in stream environment have also been
studied in Lam et al. (2015), Lou and Lutscher (2014), Lou et al. (2016), Vasilyeva
and Lutscher (2012), Zhao and Zhou (2016), Zhou (2016) and Zhou and Zhao (2018).
Several extended studies also consider the effect of river network structure (Ramirez
2012; Sarhad et al. 2014), drift-benthic structure (Huang et al. 2016; Lutscher et al.
2006), andmeandering structure (Jin et al. 2017). On the other hand, integrodifferential
and integrodifference models equations have also been used to describe the diffusion
and advection but also long-distance dispersal, and comparable results with logistic
growth on extinction, persistence and spreading of population have been obtained
(Hutson et al. 2003; Jacobsen et al. 2015; Lutscher et al. 2005; Pachepsky et al.
2005). In most of the literature mentioned above and also the present paper, advection
is a constant and unidirectional movement. Note that in other literature, the term
“advection” was used for movement towards gradient of resource function for better
quality habitat (Belgacem and Cosner 1995; Cantrell et al. 2006, 2007; Chen et al.
2008, 2012; Chen and Lou 2008; Cosner and Lou 2003; Lam 2011, 2012; Lam and
Ni 2010; Zhou and Xiao 2018).

The role of the Allee effect in population spreading and invasion in reaction–
diffusion or integrodifferential models has been investigated in Keitt et al. (2001),
Kot et al. (1996), Lewis and Kareiva (1993), Maciel and Lutscher (2015), Sullivan
et al. (2017), Wang and Kot (2001) and Wang et al. (2002), and the effect of Allee
effect in population persistence on a bounded habitat has been considered in Liu et al.
(2009), Ouyang and Shi (1998) and Shi and Shivaji (2006).

Our paper is organized as follows: In Sect. 2, we introduce the reaction–
diffusion–advection model with strong Allee effect and the boundary conditions.
Some mathematical preliminaries regarding eigenvalue problem, comparison of the
boundary conditions, previous results on the non-advective case and the upper–lower
methods are prepared in Sect. 3. Our main results on the dynamic properties of the
model are stated and proved in Sect. 4. By using comparison method and variational
method, we investigate the existence and multiplicity of positive nontrivial steady
states and derive various sufficient conditions for the population persistence and extinc-
tion under an open or closed environment.We also use numerical simulation to explore
the rich transient and wave-like dynamical behaviors. Some concluding remarks are
made in Sect. 5.
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2 Model

2.1 Equation

Following (Cantrell andCosner 2003; Lou andLutscher 2014),we consider a reaction–
diffusion–advection equation on a one-dimensional bounded habitat (0, L):

ut = duxx − qux + f (x, u), 0 < x < L, t > 0. (2.1)

Here u(x, t) is the population density of a biological species at location x and time
t , d > 0 is the diffusion coefficient, q ≥ 0 is the advection rate, and f (x, u) is the
growth/death rate of the species which may depend on the location and population
density. As discussed in Lou and Lutscher (2014), (2.1) can be used to describe plank-
ton growth in river flows, periphyton dynamics in the lake water column, or biological
species in water flow from stream to ocean or lake.

We assume that the growth rate f (x, u) = ug(x, u) satisfies the following basic
technical assumptions, which are similar to the ones in Cantrell and Cosner (2003)
and Shi and Shivaji (2006):

(f1) For any u ≥ 0, g(·, u) ∈ C[0, L], and for any x ∈ [0, L], g(x, ·) ∈ C1[0, L].
(f2) For any x ∈ [0, L], there exists r(x) ≥ 0, where 0 < r(x) < M and M > 0 is a

constant, such that g(x, r(x)) = 0, and g(x, u) < 0 for u > r(x).
(f3) For any x ∈ [0, L], there exists s(x) ∈ [0, r(x)] such that g(x, ·) is increasing in

[0, s(x)] and non-increasing in [s(x),∞]; and there also exists N > 0 such that
g(x, s(x)) ≤ N .

Here g(x, u) is the growth rate per capita at x ; r(x) is a local carrying capacity at x
which has a uniform upper bound M ; u = s(x) is where g(x, ·) reaches the maximum
value, and the number N is a uniform bound for g(x, u) at all (x, u). Typically the
behavior of g(x, ·) defined in (f3) can be one of the following three cases (see Shi and
Shivaji 2006):

(f4a) Logistic: s(x) = 0, g(x, 0) > 0, and g(x, ·) is decreasing in [0,∞);
(f4b) Weak Allee effect: s(x) > 0, g(x, 0) > 0 and g(x, ·) is increasing in [0, s(x)],

non-increasing in [s(x),∞); or
(f4c) Strong Allee effect: s(x) > 0, g(x, 0) < 0, g(x, s(x)) > 0 and g(x, ·) is

increasing in [0, s(x)], non-increasing in [s(x),∞). Hence there exists a unique
h(x) ∈ (0, s(x)) such that g(x, h(x)) = 0 for all 0 < x < L .

In (f4c), the quantity h(x) is the local threshold value for the extinction/persistence of
the population, which is also known as the sparsity constant. Figure 1 shows typical
graphs of f (x, u) and g(x, u) for these three cases.

Typical examples of growth rate functions satisfying (f4a) is

f (x, u) = u(r(x) − u), (2.2)

while the one for Allee effect is

f (x, u) = u(u − h(x))(r(x) − u), (2.3)
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Fig. 1 a Logistic; b weak Allee effect; c strong Allee effect; the graphs on top row are growth rate f (u),
and the ones on lower row are growth rate per capita g(u)

where 0 < h(x) < r(x) represents the strongAllee effect case, and−r(x) < h(x) < 0
represents the weak Allee effect case. The nonlinear function f (x, u) with a strong
Allee effect growth rate is also called the bistable type as u = 0 and u = r(x) are both
stable solutions to the ordinary differential equation (ODE) u′ = f (x, u).

2.2 Boundary conditions

The boundary condition at x = 0 or x = L can take one of the following forms (see
(Lou and Lutscher 2014) for ecological interpretation of each boundary condition):

No Flux (NF) dux (x, t) − qu(x, t) = 0, (2.4)

Free Flow (FF) ux (x, t) = 0, (2.5)

Hostile (H) u(x, t) = 0. (2.6)

Often at the upstream end x = 0 a no flux boundary condition is imposed, and at the
downstream end x = L a free flow boundary condition is used to indicate that there is
a population loss due to the advective movement, or a hostile boundary condition is
used which means no individuals can return to the habitat after leaving. The no-flux
boundary condition can be interpreted as there is no loss of individuals at x = 0 or
x = L .

Following (Lam et al. 2016; Lou and Lutscher 2014), we impose boundary condi-
tions for (2.1) in a general form
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dux (0, t) − qu(0, t) = buqu(0, t), dux (L, t) − qu(L, t) = −bdqu(L, t),

(2.7)

where bu ≥ 0 and bd ≥ 0. Here the parameters bu and bd determine the magnitude of
population loss at the upstreamend x = 0 and the downstreamend x = L , respectively.
For bu = 0 (bd = 0), that is the no-flux (NF) boundary condition (2.4); bd = 1 gives
the free-flow (FF) boundary condition (2.5); and for bu → ∞ (bd → ∞), we have the
hostile (H) boundary condition (2.6). Note that (2.7) with bu ≥ 0 and bd ≥ 0 implies
that

[dux (x, t) − qu(x, t)]
∣
∣
∣

L

0
= −q[bdu(L, t) + buu(0, t)] ≤ 0. (2.8)

When bu = bd = 0, we have a no-flux boundary condition at both ends of the stream:

(NF/NF) dux (0, t) − qu(0, t) = 0, dux (L, t) − qu(L, t) = 0, (2.9)

which represents a closed environment as there is no loss of the population due to the
movement. On the other hand, if bu > 0 or bd > 0, then the total population has a
loss over the region [0, L] due to the movement and (2.7) depicts an open flowing
environment. For example,

(NF/FF) dux (0, t) − qu(0, t) = 0, ux (L, t) = 0, (2.10)

In this paper, we consider the persistence and extinction of population u(x, t) under
the general boundary conditions (2.7) with bu ≥ 0 and bd ≥ 0. But hostile boundary
condition will also be studied some time as a comparison, such as (H/H), (NF/H) or
(H/NF). For example,

(NF/H) dux (0, t) − qu(0, t) = 0, u(L, t) = 0. (2.11)

Summarizing the above discussions, we will consider the following reaction–
diffusion–advection equation with a general Danckwerts boundary condition at the
upstream (x = 0) and downstream (x = L) ends:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ut = duxx − qux + f (x, u), 0 < x < L, t > 0,

dux (0, t) − qu(0, t) = buqu(0, t), t > 0,

dux (L, t) − qu(L, t) = −bdqu(L, t), t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ (0, L).

(2.12)
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3 Preliminaries

3.1 Eigenvalue problem and logistic model

In this section we first recall some results on the following eigenvalue problem:

⎧

⎪⎨

⎪⎩

dφ′′(x) − qφ′(x) + p(x)φ(x) = λφ(x), 0 < x < L,

dφ′(0) − qφ(0) = buqφ(0),

dφ′(L) − qφ(L) = −bdqφ(L).

(3.1)

Here d > 0, q ≥ 0, p(x) ∈ L∞(0, L), and the boundary conditions are the ones
introduced in Sect. 2.2. Then we have the following properties for the eigenvalues.

Proposition 3.1 Suppose that d > 0, L > 0, q ≥ 0, and p(x) ∈ L∞(0, L). Then

1. The eigenvalue problem (3.1) has a sequence of eigenvalues

λ1 > λ2 > · · · > λn → −∞, (3.2)

and the principal eigenvalue λ1 has the variational characterization −λ1 =
inf

ψ∈X1,ψ �=0
R(ψ), where R(ψ) is the Rayleigh quotient

R(ψ) =

∫ L

0
eαx [d(ψ ′)2(x) − p(x)ψ2(x)]dx + qbuψ2(0) + qbdeαLψ2(L)

∫ L

0
eαxψ2(x)dx

,

(3.3)

α = q/d and X1 = H1(0, L).
2. The principal eigenvalue λ1 = λ1(p, d, q, bu, bd) is continuously differentiable

in d, q, bu, bd and is decreasing with respect to bu and bd; if p1(x) ≥ p2(x), then
λ1(p1) ≥ λ1(p2).

3. If bd > 0 and bu ≥ 0, then λ1(q) → −∞ as q → +∞; moreover if bd > 1/2,
then λ1(q) is strictly decreasing in q.

4. If
∫ L
0 eαx p(x)dx > 0 and bd = bu = 0, then there always holds λ1(q) > 0,

where α = q/d.
5. If p(x) < 0 and bd , bu ≥ 0, for x ∈ [0, L], then λ1(q) < 0.

Proof We use the transform φ = eαxψ . Then system (3.1) becomes

{

dψ ′′(x) + qψ ′(x) + p(x)ψ(x) = λψ(x), 0 < x < L,

dψ ′(0) = buqψ(0), dψ ′(L) = −bdqψ(L).
(3.4)
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Part 1 is well-known as (3.4) can be written as a self-adjoint eigenvalue problem:

{

(Pψ ′)′ + (Q − λS)ψ = 0, x ∈ (0, L),

P(0) sin βψ ′(0) − cosβψ(0) = 0, P(L) sin γψ ′(L) − cos γψ(L) = 0.

with

P(x) = deαx , Q(x) = p(x)eαx , S(x) = eαx , β = arccot(buq), γ = arccot(−bdqeαL).

Then the existence of eigenvalues follows from Coddington and Levinson (1955,
Theorem 8.2.1). From the definition of Rayleigh quotient (3.3), it is clear that λ1 is
decreasing in bd or bu and if p1(x) ≥ p2(x), then λ1(p1) ≥ λ1(p2), that proves part
2. For part 3, the result that λ1(q) is strictly decreasing and limq→∞ λ1(q) = −∞
when bd > 1/2 and bu ≥ 0 are proved in Lou and Lutscher (2014, Lemmas 4.8, 4.9,
Remark 4.10), and for 0 < bd ≤ 1/2 and bu ≥ 0, we still have limq→∞ λ1(q) = −∞
following (Lou and Zhou 2015, Proposition 2.1) for the case of bu = 0 and that
λ1(q) is decreasing with respect to bu in part 2. For part 4, since bd = bu = 0,
then λ1(q) = − inf

ψ∈X1,ψ �=0
R(ψ) ≥ −R(1) > 0, and from the definition of Rayleigh

quotient (3.3), we obtain part 5. 	

If f (x, u) satisfies (f1)–(f3) and (f4a), then the population has a logistic type growth

and the dynamics of system (2.12) in this case is well-known, see for example Cantrell
and Cosner (2003), Lam et al. (2015) and Lou and Lutscher (2014). We recall the
following result:

Proposition 3.2 Suppose that f (x, u) = ug(x, u) satisfy (f1)–(f3) and (f4a), d > 0
and q ≥ 0. Let λ1(q) be the principal eigenvalue of the eigenvalue problem (3.1) with
p(x) = g(x, 0).

1. If λ1(q) ≤ 0, then u = 0 is globally asymptotically stable for (2.12); if λ1(q) > 0,
there exists a unique positive steady state of (2.12)which is globally asymptotically
stable.

2. If bd > 0 and bu ≥ 0, then there exists q1 > 0 such that for q > q1, λ1(q) < 0;
moreover if bd > 1/2 and bu ≥ 0, then λ1(q) < 0 for all q ≥ 0 if λ1(0) < 0,
and if λ1(0) > 0, there exists q2 > 0 such that λ1(q) > 0 for 0 < q < q2 and
λ1(q) < 0 for q > q2.

3. If bu = bd = 0, then λ1(q) > 0 for all q > 0.

Proof The proof of the uniqueness and global stability of positive steady state for
diffusive logistic type equation in part 1 is well known, see for example Cantrell and
Cosner (2003, Proposition 3.3). Then parts 2 and 3 follow from Proposition 3.1 as
g(x, 0) > 0 from the condition (f4a). 	


Equation (2.12) with f (x, u) = u(r(x) − u) has been considered in Lam et al.
(2015, 2016) and Lou and Lutscher (2014), and results in Proposition 3.2 for that
special case can be found in Lewis and Kareiva (2016, Theorem 3.1, 3.2) and Lou
and Lutscher (Lou and Lutscher (2014), Theorem 4.1). Results in this section hold for
bu, bd ≥ 0, and they can also be adapted to hostile boundary condition by considering
the limiting case when bu or bd → ∞.
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3.2 Comparison of boundary conditions

The dynamics of reaction–diffusion–advection system (2.12) is highly dependent on
the boundary conditions. As shown in Propositions 3.1 and 3.2 , since the principal
eigenvalue of system (2.12) decreaseswith respect to bu or bd , then the populationwith
larger bu or bd is more likely to be extinct. This monotone property for the principal
eigenvalue actually also holds for nonlinear system as shown in the following result:

Proposition 3.3 Suppose f (x, u) satisfies (f1)–(f2), 0 ≤ bu ≤ b′
u ≤ ∞ and 0 ≤ bd ≤

b′
d ≤ ∞. Let u1(x, t) be the solution of (2.12), and let u2(x, t) be the solution of

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ut = duxx − qux + f (x, u), 0 < x < L, t > 0,

dux (0, t) − qu(0, t) = b′
uqu(0, t), t > 0,

dux (L, t) − qu(L, t) = −b′
dqu(L, t), t > 0,

u(x, 0) = u0(x) ≥ 0, 0 ≤ x ≤ L.

(3.5)

Then u1(x, t) ≥ u2(x, t) ≥ 0 for t ∈ (0,∞), x ∈ �. In particular, if
limt→∞ u1(x, t) = 0, then limt→∞ u2(x, t) = 0; and if limt→∞ inf u2(x, t) ≥ δ > 0
for some positive constant δ > 0, then limt→∞ inf u1(x, t) ≥ δ > 0.

The proof of Proposition 3.3 follows from the maximum principle of nonlinear
parabolic equations (see for example, Smoller 1983, Theorem 10.1), and we omit
the details here. Note that here b′

u = ∞ or b′
d = ∞ is interpreted as the hostile

boundary condition (H). The result implies the following comparison between two
boundary conditions: if b′

u ≥ bu and b′
d ≥ bd , and with identical initial condition,

then the extinction in the system with parameter (bu, bd) implies the extinction of the
system with parameter (b′

u, b′
d), and vice versa, the persistence for the system with

(b′
u, b′

d) would imply the persistence for the one with (bu, bd).
Among all the boundary conditions, the no-flux boundary condition at x = L

(bd = 0) is themost “friendly” for the population to persist, while the hostile boundary
condition at x = L (bd = ∞) is the most vulnerable environment for the population.
And the free flow (bd = 1) is in between these two.

3.3 Non-advective case

For reaction–diffusion–advection Eq. (2.12) with the strong Allee effect growth rate in
a non-advective environment, there have been several earlier papers on the existence
and multiplicity of positive steady state solutions, and we recall these results here. In
the environment with a hostile boundary condition, the non-advection equation in a
higher dimensional domain � has the form

{

ut = d
u + u(u − h)(r − u), x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0.
(3.6)
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Proposition 3.4 Suppose that � is a bounded smooth domain inRn with n ≥ 1, d > 0,
and the constants h, r satisfy 0 < h < r .

1. If h > r/2, then for any d > 0, the only nonnegative steady state solution of (3.6)
is u = 0.

2. If 0 < h < r/2, then there exists d0 > 0 such that (3.6) has at least two positive
steady state solutions for 0 < d < d0.

3. If 0 < h < r/2 and � is a unit ball, then (3.6) has exactly two positive steady
state solutions for 0 < d < d0, and has only the zero steady state when d > d0.

The nonexistence of positive steady state solution in part 1 is proven in Dancer and
Schmitt (1987), and the existence of two positive steady state solutions in part 2 can
be proven using variational methods (see Liu et al. 2009; Rabinowitz 1973). The exact
multiplicity of positive steady state solutions in part 3 is proved in Ouyang and Shi
(1998). The conditions of h ≤ r/2 or h > r/2 in Proposition 3.4 are equivalent to

F(r) =
∫ r

0
u(u − h)(r − u)du ≤ 0 or > 0.

On the other hand, if the non-advective environment is with a free-flow (equiv-
alent to no-flux) boundary condition, then the boundary value problem in a higher
dimensional domain � has the form

⎧

⎨

⎩

ut = d
u + u(u − h)(r − u), x ∈ �, t > 0,
∂u

∂n
(x, t) = 0, x ∈ ∂�, t > 0.

(3.7)

The following results are proved in Wang et al. (2011, Theorems 3.3, 3.4):

Proposition 3.5 Suppose that � is a bounded smooth domain inRn with n ≥ 1, d > 0,
and the constants h, r satisfy 0 < h < r . Let μm be the eigenvalues of the operator
−
 under Neumann boundary condition on �.

1. There exist three nonnegative constant steady state solutions u = 0, u = h,
u = r of (3.7), and all positive nonconstant steady solutions of (3.7) satisfy
0 < u(x) < r;

2. Let d∗ = 2(h + r)

hμ1
. Then for d > d∗, the only nonnegative steady state solutions

to (3.7) are u = 0, u = h and u = r .

3. Let dm = r − h

μm
with m ≥ 1, then d = dm is a bifurcation point for the positive

steady state solutions of (3.7), where a connected component �m of the set of
positive nonconstant steady state solutions of (3.7) bifurcates from the line of
constant steady state {(d, u = h) : d > 0}.

4. If n = 1 and � = (0, L), then �m = {(d, u±
m(d, x)) : 0 < d < dm}, the

solution u±
m(d, ·) − h changes sign exactly m times in (0, L), u+

m(d, 0) > h and
u−

m(d, 0) < h. In particular, (3.7) has exactly 2m nonconstant positive steady state
solutions if dm+1 < d < dm, and all of them are unstable.

In particular Proposition 3.5 shows that when the diffusion coefficient d is large, the
Eq. (3.7) has only the constant steady states, while for the small diffusion coefficient
d case, (3.7) has a large number of positive steady states.
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3.4 Upper–lower solutionmethods

In the following we frequently use the method of upper–lower solutions to construct
steady states or study the dynamics of (2.12).We review themethod in this subsection.
Suppose that u(x) is a steady state solution of system (2.12), then u(x) satisfies

⎧

⎪⎨

⎪⎩

duxx (x) − qux (x) + f (x, u(x)) = 0, 0 < x < L,

dux (0) − qu(0) = buqu(0),

dux (L) − qu(L) = −bdqu(L),

(3.8)

where f (x, u) satisfies (f1)–(f3), and r(x) is defined in (f2). Using the transform
u = eαxv on system (3.8), we obtain the following system

⎧

⎪⎨

⎪⎩

dvxx + qvx + e−αx f (x, eαxv) = 0, 0 < x < L,

−dvx (0) + buqv(0) = 0,

dvx (L) + bdqv(L) = 0.

(3.9)

According to Pao (1992, Definition 3.2.1), ψ(x) is said to be an upper solution if it
satisfies the inequalities

⎧

⎪⎨

⎪⎩

dψ xx + qψ x + e−αx f (x, eαxψ) ≤ 0, 0 < x < L,

−dψ x (0) + buqψ(0) ≥ 0,

dψ x (L) + bdqψ(L) ≥ 0.

(3.10)

Similarly ψ(x) is called a lower solution if it satisfies all the inequalities in (3.10)
with the direction of inequalities reversed. Moreover from Pao (1992, Theorem 3.2.1),
if the upper and lower solutions satisfy ψ ≥ ψ , then there exists a solution ψ(x) of

(3.9) satisfying ψ(x) ≤ ψ(x) ≤ ψ(x). By Pao (1992, Theorem 3.2.2), system (3.9)
has a maximal solution ψmax (x) and a minimal solution ψmin(x). Similarly by using
u(x, t) = eαxv(x, t), the parabolic system (2.12) can also be converted into

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

vt = dvxx + qvx + e−αx f (x, eαxv), 0 < x < L, t > 0,

−dvx (0) + buqv(0) = 0, t > 0,

dvx (L) + bdqv(L) = 0, t > 0,

v(x, 0) = v0(x) ≥ 0, x ∈ (0, L),

(3.11)

where v0(x) = e−αx u0(x). The upper and lower solutions of (3.11) can be defined in
a similar fashion (see Pao 1992, Definition 2.3.1). In particular, if ψ and ψ is a pair of

upper and lower solutions of (3.9), and ψ(x) ≤ v0(x) ≤ ψ(x), then ψ and ψ is also
a pair of upper and lower solutions of (3.11). According to Pao (1992, Lemma 5.4.2),
system (3.11) possesses a unique solution v(x, t) satisfying

ψ(x) ≤ vψ(x, t) ≤ v(x, t) ≤ vψ(x, t) ≤ ψ(x), (3.12)
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where vψ(x, t) (or vψ(x, t)) is the solution of (3.11) with the initial value ψ

(or ψ), and from Pao (1992, Theorem 5.4.2), vψ(x, t) is nonincreasing in t and
limt→+∞ vψ(x, t) = ψmax (x); vψ(x, t) is nondecreasing in t and limt→+∞ vψ(x, t)
= ψmin(x).

4 Persistence/extinction dynamics

In this section, we consider the dynamics of (2.12) with the growth function f (x, u)

satisfying (f1)–(f3) and (f4c), the strong Allee effect growth.

4.1 Basic dynamics

First we have the following bound for steady states of (2.12), which was proved in
Lam et al. (2015, Lemma 2.3) for f (x, u) = r(x) − u. We include a proof here for
convenience of readers.

Proposition 4.1 Suppose f (x, u) satisfies (f1)–(f2) and r(x) is defined in (f2).
Let u(x) be a positive steady state solution of system (2.12), then u(x) ≤
eαx maxy∈[0,L](e−αyr(y)) for x ∈ [0, L]. Moreover, if bd ≥ 1, then u(x) ≤ M =
maxy∈[0,L] r(y) for x ∈ [0, L].
Proof Let u = eαxv. Then from (3.9), we have

eαx (dvxx + qvx ) + f (x, eαxv(x)) = 0. (4.1)

Let v(x0) = maxx∈[0,L] v(x) > 0 for x0 ∈ [0, L]. If x0 = 0, then v′(0) ≤ 0 as x = 0
is the maximum point. The boundary condition implies that bqv(0) = dv′(0) ≤ 0
which contradicts with v(x0) > 0. So x0 �= 0. Similarly we have x0 �= L . Then
x0 ∈ (0, L), and we have v′(x0) = 0 and v′′(x0) ≤ 0. Therefore (4.1) implies that
f (x0, eαx0v(x0)) ≥ 0, and consequently,

g(x0, eαx0v(x0)) ≥ 0. (4.2)

According to (f2), eαx0v(x0) ≤ r(x0), which implies that

e−αx u(x) = v(x) ≤ v(x0) ≤ e−αx0r(x0) ≤ maxy∈[0,L](e−αyr(y)), (4.3)

which implies the desired result.
Nextwe assume thatbd ≥ 1. From the boundary conditions,we know thatu′(0) > 0

and since bd ≥ 1, u′(L) ≤ 0. Then there exists x∗ ∈ (0, L] such that u′(x∗) = 0 and
u(x∗) = maxx∈[0,L] u(x). If x∗ ∈ (0, L) (which is the case if bd > 1), then u′′(x∗) ≤ 0.
According to equation in (3.8), we have f (x∗, u(x∗)) ≥ 0. If x∗ = L , then bd = 1,
we still have u′(x∗) = 0 then again we have f (x∗, u(x∗)) ≥ 0. From (f2), we have
u(x) ≤ u(x∗) ≤ r(x∗) ≤ M . 	
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Now we show that the population dynamics defined by (2.12) is well-posed: the
solution of (2.12) exists globally for t ∈ (0,∞) and it converges to a non-negative
steady state solution when t → ∞. Note here we only require (f1) and (f2), not (f3)
and (f4), hence the results hold for both logistic and (weak or strong) Allee effect
cases.

Theorem 4.2 Suppose f (x, u) satisfies (f1)–(f2), then (2.12) has a unique positive
solution u(x, t) defined for (x, t) ∈ [0, L] × (0,∞), and the solutions of (2.12)
generates a dynamical system in X2, where

X2 = {φ ∈ W 2,2(0, L) : φ(x) ≥ 0, dφ′(0) − qφ(0) = buqφ(0),

dφ′(L) − qφ(L) = −bdqφ(L)}. (4.4)

Moreover, for any u0 ∈ X2 and u0 �≡ 0, the ω-limit set ω(u0) ⊂ S, where S is the set
of non-negative steady state solutions.

Proof Assume that u(x, t) is a solution of system (2.12), then v(x, t) = e−αx u(x, t)
is a solution of system (3.11). We choose

M1 = max

{

max
y∈[0,L] e−αyr(y), max

y∈[0,L] e−αyu0(y)

}

, (4.5)

then M1 is an upper solution of (3.11) and 0 is a lower solution of (3.11). Then from
the discussion in Sect. 3.4, we obtain that

0 ≤ v(x, t) ≤ v1(x, t),

where v1(x, t) is the solution of (3.11) with initial condition v1(x, 0) = M1.Moreover
the solution v1(x, t) is nonincreasing in t and lim

t→+∞ v1(x, t) = vmax (x) which is

maximal steady state of (3.11) not larger than M1. From Proposition 4.1, we obtain
that u(x, t) exists globally for t ∈ (0,∞) and

u(x, t) ≥ 0, lim sup
t→∞

u(x, t) ≤ eαx max
y∈[0,L] e−αyr(y). (4.6)

In particular, we may assume that for any initial value u0, the solution u(x, t) of
(2.12) is bounded by M2 := eαL maxy∈[0,L] e−αyr(y) + ε for t > T and some small
ε > 0.

Next we prove that the solution u(x, t) is always convergent. For that purpose, we
construct a Lyapunov function

E(u) =
∫ L

0
e−αx

[
d

2
(ux )

2 − F(x, u)

]

dx

+q

2
(1 + bu)u2(0) − q

2
(1 − bd)e−αL u2(L), (4.7)
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for u ∈ X2, where F(x, u) =
∫ u

0
f (x, s)ds. Assume that u(x, t) is a solution of

system (2.12), we have

d

dt
E(u(·, t)) =

∫ L

0
e−αx (dux uxt − f (x, u)ut )dx

+ q(1 + bu)u(0, t)ut (0, t) − q(1 − bd)e−αL u(L, t)ut (L, t)

=
∫ L

0
(de−αx ux )dut −

∫ L

0
e−αx f (x, u)ut dx

+ q(1 + bu)u(0, t)ut (0, t) − q(1 − bd)e−αL u(L, t)ut (L, t)

= de−αx ux ut

∣
∣
∣

L

0
−

∫ L

0
[(e−αx dux )x + e−αx f (x, u)]ut dx

+ q(1 + bu)u(0, t)ut (0, t) − q(1 − bd)e−αL u(L, t)ut (L, t)

= ut (L, t)e−αL(dux (L, t) − q(1 − bd)u(L, t))

+ ut (0, t)(−dux (0, t) + q(1 + bu)u(0, t)) −
∫ L

0
e−αx (ut )

2dx

= −
∫ L

0
e−αx (ut )

2dx ≤ 0.

According to (f2), f (x, u) < 0 for u > r(x) and f (x, r(x)) = 0, we have
F(x, u(x)) ≤ F(x, r(x)) for u ∈ X2 and 0 < r(x) ≤ M . Hence when t > T ,

E(u(·, t)) ≥ −
∫ L

0
e−αx F(x, r(x))dx

−q

2
e−αL u2(L, t) ≥ −M3L − q M2

2

2
e−αL , (4.8)

where M3 = maxy∈[0,L] F(y, r(y)). Therefore E(u(·, t) is bounded from below.

Notice
d

dt
E(u) = 0 holds if and only if ut = 0, which means that u is a steady

state solution of system (2.12). Refer to Henry (1981, Theorem 4.3.4), the LaSalle’s
Invariance Principle, we have that for any initial condition u0(x) ≥ 0, the ω-limit set
of u0 is contained in the largest invariant subset of S. If every element in S is isolated,
then the ω-limit set is a single steady state. 	

In addition, if f (x, u) satisfies (f4a) (logistic case), then from part 1 in Proposition 3.2,
any solution of (2.12) either goes to zero steady state or converges to the unique positive
steady state. In the following, we will focus on the case when f (x, u) satisfies (f4c),
for which the solutions of (2.12) have more complicated behavior.
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4.2 Extinction

In this subsection, we consider under what condition, the population goes to extinc-
tion. The zero steady state of (2.12) is always locally asymptotically stable from
Proposition 3.1 part 5, and we provide some estimates of the basin of attraction of the
zero steady state. Recall that f (x, u) satisfies (f4c), then we have that h(x) satisfies
f (x, 0) = f (x, h(x)) = f (x, r(x)) = 0 with 0 < h(x) < r(x) for all x ∈ [0, L].
First we note the following property of the steady state solution u(x).

Proposition 4.3 Suppose f (x, u) satisfies (f1)–(f3) and (f4c), then there is no positive
solution u(x) of (3.8) satisfying u(x) < h(x) for all x ∈ [0, L].
Proof Integrating both sides of (3.8), we get

[dux − qu]
∣
∣
∣

L

0
+

∫ L

0
f (x, u)dx = 0. (4.9)

According to the boundary conditions in (3.8), the first part of (4.9) is

− bdqu(L) − buqu(0) ≤ 0. (4.10)

Thus, the second part of (4.9) is non-negative,

∫ L

0
f (x, u)dx ≥ 0. (4.11)

which does not hold if 0 < u(x) < h(x). Therefore, there is no positive solution u(x)

satisfying u(x) < h(x) for all x ∈ [0, L]. 	

In the following proposition, we describe the basin of attraction of the zero steady

state solution of system (2.12) for different boundary conditions.

Proposition 4.4 Suppose f (x, u) satisfies (f1)–(f3) and (f4c), and let u(x, t) be the
solution of (2.12) with initial condition u0(x).

1. When bu ≥ 0 and bd ≥ 0, if 0 < u0(x) < eαx miny∈[0,L] e−αyh(y), then
limt→+∞ u(x, t) = 0;

2. When bu ≥ 0 and bd ≥ 1, if 0 < u0(x) < miny∈[0,L] h(y), then
limt→+∞ u(x, t) = 0.

Proof 1. When bu ≥ 0 and bd ≥ 0, we set v1(x) = miny∈[0,L] e−αyh(y), which is a
constant function. Then according to (f4c), we have

d(v1)xx + q(v1)x + v1 · g(x, eαxv1) = min
y∈[0,L] e−αyh(y) · g(x, eαx min

y∈[0,L] e−αyh(y))

≤ min
y∈[0,L] e−αyh(y) · g(x, eαx e−αx h(x)) = min

y∈[0,L] e−αyh(y) · g(x, h(x)) = 0,

(4.12)
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and the boundary conditions−dv1x (0)+buqv1(0) ≥ 0, dv1x (L)+bdqv1(L) ≥ 0.
Thus, v1(x) = miny∈[0,L] e−αyh(y) is an upper solution of system (3.9). Let
v1(x) = 0 be the lower solution of system (3.9). Now assume that 0 ≤ v0(x) ≤
miny∈[0,L] e−αyh(y), and let v(x, t) be the solution of (3.11). From the discussion
in Sect. 3.4, there exist solutions V 1(x, t) and V 1(x, t) of system (3.11),

V 1(x, t) ≤ v(x, t) ≤ V 1(x, t), (4.13)

where V 1(x, t) and V 1(x, t) are the solutions of system (3.11) with the initial con-
dition V 1(x, 0) = v1(x) and V 1(x, 0) = v1(x). Moreover, limt→+∞ V 1(x, t) =
vmax (x) and limt→+∞ V 1(x, t) = vmin(x), where vmax (x), vmin(x) are the
maximal and minimal solutions of (3.9) between 0 and v1(x). From Propo-
sition 4.3, there is no positive solution u(x) satisfying u(x) < h(x) for all
x ∈ [0, L], hence vmin(x) = vmax (x) = 0. Therefore, if the initial value sat-
isfies u0(x) < eαx miny∈[0,L] e−αyh(y), then limt→+∞ u(x, t) = 0.

2. When bu ≥ 0 and bd ≥ 1, we apply the upper and lower solution method directly
to (2.12), and we choose u1(x) = miny∈[0,L] h(y) to be the upper solution and
u1(x) = 0 be the lower solution. We can follow the same argument in the above
paragraph to reach the conclusion.

	

Proposition 4.4 only gives a partial description of the basin of attraction of the zero

steady state (extinction initial values). This extinction region depends on the advection
coefficient q and the boundary condition. Using a constant initial value u0 = K > 0,
Fig. 2 shows the threshold initial condition K = K0 between persistence and extinc-
tion under the NF/H, NF/FF and NF/NF boundary conditions and varying advection
coefficient q. The left panel corresponds to the case when the threshold h is relatively
small and the right panel describes the case when threshold h is relatively large. For
the NF/NF boundary conditions, the behavior of the population changes significantly
due to the threshold while the other two exhibit almost the same tendency. For small
threshold h and under the NF/NF boundary condition, as advection q increases, the
basin of attraction of the zero steady state solution decreases. However, for large
threshold h, there exists a critical q∗ > 0, such that when the advection q > q∗, the
population will go to extinction.

To provide another extinction criterion, we compare the solution of (2.12) with the
strong Allee effect growth rate with the one with a comparable logistic growth rate.
For that purpose, we define a function f̃ (x, u) = ug̃(x, u) as follows

g̃(x, u) =
{

g(x, s(x)), 0 < u < s(x),

g(x, u), u > s(x),
(4.14)

where for x ∈ �, s(x) is the maximum point of g(x, u) defined in (f3). Thus f̃ (x, u)

is of logistic type and satisfies f̃ (x, u) ≥ f (x, u). The function f̃ (x, u) is also the
smallest function of logistic type which is greater than f (x, u). A comparison of f̃ ,
g̃ and f , g can be seen in Fig. 3.
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Fig. 2 Population extinction and persistence for varying advection coefficient q and the initial condition
u0 = K (constant). For each of NF/H, NF/FF and NF/NF boundary conditions, a curve is plotted to show
the threshold K0 between extinction and persistence. When u0 ≡ K > K0, the population persists; and
when u0 ≡ K < K0, the population becomes extinct. Persistence/extinction is determined by the solution
at t = 3000. Here f (x, u) = au(1 − u)(u − h), a = 0.5, L = 10 and d = 0.1. Left: h = 0.3; Right:
h = 0.4

Now we can define a new system with this modified growth rate:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ut = duxx − qux + f̃ (x, u), 0 < x < L, t > 0,

dux (0, t) − qu(0, t) = buqu(0, t), t > 0,

dux (L, t) − qu(L, t) = −bdqu(L, t), t > 0.

u(x, 0) = u0(x) ≥ 0, 0 ≤ x ≤ L.

(4.15)

Then from the comparison principle of parabolic equations, we obtain the following
comparison of solutions of (2.12) and (4.15).

Proposition 4.5 Suppose f (x, u) satisfies (f1)–(f3) and (f4c), and f̃ (x, u) is defined
as in (4.14). Let u3(x, t) be the solution of (2.12), and let u4(x, t) be the solution of
(4.15) with the same initial value. Then 0 ≤ u3(x, t) < u4(x, t) for t ∈ (0,∞)

and x ∈ �. In particular, if limt→∞ u4(x, t) = 0, then limt→∞ u3(x, t) = 0;
and if limt→∞ inf u3(x, t) ≥ δ > 0 for some positive constant δ > 0, then
limt→∞ inf u4(x, t) ≥ δ > 0.

Now by using the previously known results for the logistic equation, we have the
following result for population extinction with the strong Allee effect growth rate.

Theorem 4.6 Suppose that f (x, u) satisfies (f1)–(f3) and (f4c). If bu ≥ 0 and bd > 0,
then there exists q1 > 0 such that when q > q1, there is no positive steady state
solution of (2.12); and for any initial condition u0(x) ≥ 0, the solution u(x, t) of
(2.12) satisfies limt→+∞ u(x, t) = 0.

Proof This is a direct consequence of Proposition 3.2 and Proposition 4.5. 	

Here it is shown that under an open river environment, when the advection rate q

is large and there is a population loss at the downstream, then the population becomes
extinct no matter what initial condition is, which is the same as the case of logistic
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Fig. 3 Left: the graphs of f (·, u) and f̃ (·, u) for fixed x ∈ [0, L]; Right: the graphs of g(·, u) and g̃(·, u)

for fixed x ∈ [0, L]

growth (Lou and Lutscher 2014). This result confirms the numerical result shown in
Fig. 2 for NF/H and NF/FF cases, but it does not include the case of NF/NF boundary
condition which corresponds to the case bu = bd = 0.

In Fig. 4, the solutions of (2.12) with the strong Allee effect growth f (x, u) =
u(1 − u)(u − h) and the ones of (4.15) with corresponding logistic growth rate

f̃ (x, u) =

⎧

⎪⎨

⎪⎩

(1 − h)2u

4
, 0 < u <

1 + h

2
,

u(1 − u)(u − h), u >
1 + h

2
,

(4.16)

are shown. The results in Fig. 4 confirm the comparison stated in Proposition 4.5: the
solution of logistic growthmodel is an upper solution for the case with the strongAllee
effect growth. When the advection rate is small (Fig. 4 upper left), the two solutions
are almost identical despite of different growth rates; but for large advection rates,
the strong Allee effect growth rate leads to extinction while the logistic one supports
persistence. This clearly shows the importance of the growth rate at low population
density as the two growth rates are the same in high densities.

4.3 Persistence

In this subsection, we provide some criteria for the population persistence of (2.12)
with the strong Allee effect growth rate. Note that in the logistic case, the persistence
and extinction of population is completely determined by the stability of the extinction
steady state u = 0 (see Proposition 3.2), but in the strong Allee effect case, the
extinction state u = 0 is always locally stable.

We first show some properties of the set of positive steady state solutions of (2.12)
if there exists any.
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Fig. 4 Comparison of solutions of (2.12) with strong Allee effect growth f (x, u) = u(1 − u)(u − h) and
the one of (4.15) with corresponding logistic growth rate given in (4.16). Here d = 0.1, h = 0.4, L = 10,
NF/NF boundary condition is used, the initial condition is u0 = 0.6, and the solutions at t = 3000 are
shown. Upper left: q = 0.006; Upper right: q = 0.0068; Lower left: q = 0.007; Lower right: q = 0.2

Proposition 4.7 Suppose f (x, u) satisfies (f1)–(f3). If there exists a positive steady
state solution of (2.12), then there exists a maximal steady state solution umax (x)

such that for any positive steady state u(x) of system (2.12), umax (x) ≥ u(x).

Proof We consider the equivalent steady state equation (3.9). Set v2(x) = maxy∈[0,L]
e−αyr(y), which is a constant function. From (f3), we have fu(x, u) ≤ 0 for u ≥ r(x).
Therefore,

f (x, eαxv2) = f (x, eαx max
y∈[0,L] e−αyr(y)) ≤ f (x, eαx e−αxr(x)) = f (x, r(x)) = 0.

Substituting v2(x) into system (3.9), we have

⎧

⎪⎨

⎪⎩

dv′′
2 + qv′

2 + e−αx f (x, eαxv2) ≤ 0, 0 < x < L,

−dv′
2(0) + buqv2(0) ≥ 0,

dv′
2(L) + bdqv2(L) ≥ 0.

(4.17)
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Thus v2(x) is an upper solution of system (3.9).Moreover fromProposition 4.1, any
positive steady state solution v of (3.9) satisfies v(x) ≤ v2(x). Since u(x) is a positive
steady state of (2.12), we can set the lower solution of (3.9) to be v2(x) = e−αx u(x).
Then from the results in Sect. 3.4, there exists a maximal solution vmax (x) of (3.9)
satisfying v2(x) ≤ vmax (x). Since vmax (x) is obtained through themonotone iteration
process (see Amann 1976; Pao 1992) from the upper solution v2(x) and any positive
steady state solution v of (3.9) satisfying v(x) ≤ v2(x), we conclude that vmax (x) is
the maximal steady state solution of (3.9), which implies the desired result. 	


Next we show a monotonicity result for the maximal steady state solution umax (x).

Proposition 4.8 Suppose f (x, u) satisfies (f1)–(f3), and bu ≥ 0 and 0 ≤ bd ≤ 1.
Then the maximal steady state solution umax (x) of Eq. (2.12) is strictly increasing in
[0, L] if one of the following conditions is satisfied:

1. f (x, u) ≡ f (u), that is f is spatially homogeneous; or
2. g(x, u) is also differentiable in x, gu(x, u) ≤ 0 and gx (x, u) ≥ 0 for x ∈ [0, L]

and u ≥ 0.

Proof For part 1, we prove it by contradiction. Assuming that the maximal solution
umax (x) is not increasing for all x ∈ [0, L]. From boundary conditions in (2.12) and
the condition bu ≥ 0, 0 ≤ bd ≤ 1, we have

(umax )x (0) = α(bu + 1)umax (0) > 0,

(umax )x (L) = α(−bd + 1)umax (L) ≥ 0.

Then (umax )x (x) has at least two zero points in (0, L). We choose the two smallest
zero points x1, x2 ∈ (0, L) (x1 < x2) such that (umax )x (x1) = (umax )x (x2) = 0,
(umax )x (x) < 0 on (x1, x2). We claim that (umax )xx (x1) < 0 and (umax )xx (x2) > 0.
Indeed differentiating the equation in (3.8) with respect to x , we have

d(umax )xxx − q(umax )xx + fu(x, umax )(umax )x = 0. (4.18)

Since (umax )x (x) < 0 on (x1, x2), then (umax )xx (x1) ≤ 0 and (umax )xx (x2) ≥
0. If (umax )xx (x1) = 0, then from (4.18) and (umax )x (x1) = 0, we conclude that
(umax )x (x) ≡ 0 near x = x1 from the uniqueness of solution of ordinary differential
equation, which contradicts with the assumption that (umax )x (x) < 0 on (x1, x2).
Hence we have (umax )xx (x1) < 0, and similarly we can show that (umax )xx (x2) > 0.

According to Sattinger (1971/1972, p. 992), the maximal solution umax is
semistable. The corresponding eigenvalue problem is (3.1) with p(x) = fu(umax (x)):

⎧

⎪⎨

⎪⎩

dφxx − qφx + fu(umax )φ = λφ, 0 < x < L,

dφx (0) − qφ(0) = buqφ(0),

dφx (L) − qφ(L) = −bdqφ(L),

(4.19)
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and the corresponding principal eigenvalue λ1( fu(umax )) ≤ 0 with eigenfunction
φ > 0. Multiplying Eq. (4.18) by e−αxφ and multiplying the equation in (4.19) by
e−αx (umax )x , then subtracting, we obtain

de−αx ((umax )xφxx − (umax )xxxφ) + qe−αx ((umax )xxφ − (umax )xφx )

= λ1( fu(umax ))e
−αxφ(umax )x .

(4.20)

Integrating the above equation on [x1, x2], the right hand side of (4.20) becomes

∫ x2

x1
e−αxλ1( fu(umax ))φ(umax )x dx ≥ 0.

Since (umax )xx (x1) < 0 and (umax )xx (x2) > 0, the left hand side of (4.20) becomes

d
∫ x2

x1
[(e−αxφx )x (umax )x − (e−αx (umax )xx )xφ]dx

= de−αx (φx (umax )x −φ(umax )xx ) |x2x1 −d
∫ x2

x1
e−αx (φx (umax )xx −φx (umax )xx )dx

= de−αx1φ(x1)(umax )xx (x1) − de−αx2φ(x2)(umax )xx (x2) < 0,

which is a contradiction. Thus, the maximal solution umax (x) of (3.8) is increasing
on x ∈ (0, L). Moreover the strong maximum principle implies that umax must be
strictly increasing.

For part 2, we employ some idea in Lou et al. (2019, Lemma 4.2) (thanks to an
anonymous reviewer for this suggestion). Let w(x) = u′

max (x)/umax (x). Then by
some straightforward computation, we find that w(x) satisfies

⎧

⎪⎨

⎪⎩

−dwxx + (q − 2dw)wx − umax gu(x, umax )w = gx (x, umax ), 0 < x < L,

dw(0) = (1 + bu)q > 0,

dw(L) = (1 − bd)q ≥ 0.

(4.21)

From the assumptions that gu(x, u) ≤ 0 and gx (x, u) ≥ 0 for x ∈ [0, L] and u ≥ 0
and the maximum principle, we conclude thatw(x) > 0 for x ∈ (0, L), which implies
that umax (x) is strictly increasing for x ∈ (0, L). 	


The condition bu ≥ 0, 0 ≤ bd ≤ 1 in Proposition 4.8 is optimal as u′
max (L) =

α(1 − bd)umax (L) < 0 if bd > 1. Figure 5 shows the maximal positive steady
solutions under different boundary conditions. We can see that the maximal solution
umax (x) is increasing for the NF/FF and NF/NF cases and is decreasing near x = L
for the NF/H case since bd > 1 under this situation. Figure 6 shows the dependence
of the maximal solution umax (x) on the advection coefficient q. It appears that the
maximum value of the maximal solution ‖umax‖∞ decreases in q in the NF/FF and
NF/H cases, and when q ≥ q1 for some q1 > 0, ‖umax‖∞ = 0 which implies there
is no positive steady state for such q. This verifies the extinction result proved in
Theorem 4.6 for bd > 0. However in the NF/NF case, ‖umax‖∞ is not monotone in q,
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Fig. 5 The maximal steady state solution umax (x) of system (2.12) with f (x, u) = u(1− u)(u − h) under
different boundary conditions. Here d = 0.1, h = 0.3, L = 10, q = 0.03 (left) and q = 0.082 (right). The
solutions are simulated with initial condition u0 = eqx/d and the solution at t = 3000 is shown

and ‖umax‖∞ achieves the maximum at an intermediate qm > 0. This suggests that an
intermediate advection rate q may increase the maximum population density. Indeed
under intermediate advection, the river flow pushes the population to the downstream
so that the downstream end has a higher density and the upstream density is lower; but
when the advection rate is high, then the population will be washed out before it can
establish at the downstream. On the other hand, a larger advection always leads to a
lower total steady state population (see Fig. 8). It is not clear whether the population
can still persist for a large q under NF/NF boundary condition (see Sect. 4.4), but from
Fig. 6, the persistence range of advection q for NF/NF boundary condition is much
larger than the ones for NF/FF and NF/H cases.

Next we prove the existence of positive steady state solutions of (2.12) for the
NF/NF boundary condition (bu = bd = 0) case.

Theorem 4.9 Suppose that f (x, u) satisfies (f1)–(f3) and (f4c), and

max
y∈[0,L] e−αyh(y) < min

y∈[0,L] e−αyr(y). (4.22)

Then when bu = bd = 0, (2.12) has at least two positive steady state solutions. In
particular the condition (4.22) is satisfied if

0 <
q

d
<

1

L
ln

(
miny∈[0,L] r(y)

maxy∈[0,L] h(y)

)

. (4.23)

Proof Using the transform u = eαxv, the steady state equation in this case is of the
form

{

dvxx + qvx + e−αx f (x, eαxv) = 0, 0 < x < L,

vx (0) = 0, vx (L) = 0.
(4.24)
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Fig. 6 The dependence of maximal steady state solution umax (x) of system (2.12) with f (x, u) = u(1 −
u)(u − h) on the advection coefficient q. The horizontal axis is q and the vertical axis is ‖umax ‖∞. Here
d = 0.02, h = 0.3, a = 0.5

From Proposition 4.7, v2(x) = maxy∈[0,L] e−αyr(y) is an upper solution of (4.24).
Set v2(x) = maxy∈[0,L] e−αyh(y). Then from

e−αx f (x, eαxv2) = v2g(x, eαx max
y∈[0,L] e−αyh(y))

≥ v2g(x, eαx e−αx h(x)) = g(x, h(x)) = 0,

we obtain that
{

dv′′
2 + qv′

2 + e−αx f (x, eαxv2) ≥ 0, 0 < x < L,

v′
2(0) = 0, v′

2(L) = 0.

So v2(x) is a lower solution of (4.24), and from (4.22), we have v2(x) < v2(x).
Therefore (4.24) has at least one positive solution between v2 and v2 by the results in
Sect. 3.4. Moreover v1(x) = 0 is a lower solution of (4.24), and from Proposition 4.4,
v1 = miny∈[0,L] e−αyh(y) is an upper solution of (4.24), hence we have two pairs of
upper and lower solutions which satisfy

v1 < v1 < v2 < v2.

From Amann (1976, Theorem 14.2), (4.24) has at least three nonnegative solutions,
which implies that there exist at least two positive solutions. The condition (4.23) can
be derived from (4.22) since
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max
y∈[0,L] e−αyh(y) ≤ max

y∈[0,L] h(y), e−αL min
y∈[0,L] r(y) ≤ min

y∈[0,L] e−αyr(y). 	


Note that if h(x) ≡ h and r(x) ≡ r , then (4.23) becomes 0 <
q

d
<

1

L
ln(

r

h
). Also the

maximal steady state solution obtained from Theorem 4.9 is the maximal steady state
solution defined in Proposition 4.7 as v2 is the bound for all positive steady states.
The second positive solution in Theorem 4.9 is a saddle-type solution in between two
stable solutions: the maximal one and the zero solution.

The existence result in Theorem4.9 shows that the population is able to persist when
the relative advection rate q/d is relatively small. The existence of positive steady state
solution of (2.12) for other boundary conditions can also be proved along the approach
in the proof of Theorem 4.9 if proper upper and lower solutions can be constructed.
The numerically simulated persistence region Fig. 2 suggests that positive steady state
solutions of (2.12) for other boundary conditions only exist when the advection q is
in a more restrictive range than the one for no-flux case.

For the open environment, i.e. bu ≥ 0 and bd > 0, we can also obtain the existence
of multiple positive steady states, but with more restriction on the growth rate. Here
we establish a persistence result for H/H boundary condition. From Proposition 3.3,
we know that the persistence for the system with H/H type boundary condition would
imply the persistence for the one with other boundary conditions with bu ≥ 0 and
bd ≥ 0. Indeed the positive steady states under H/H type boundary condition can be
used as the lower solution to obtain the existence of the positive steady states under
other boundary conditions.

Theorem 4.10 Suppose that f (x, u) satisfies (f1)–(f3) and (f4c), d > 0, q ≥ 0 and
there exists an interval (x1, x4) ⊂ [0, L] and δ > 0 such that

F(x, r(x)) =
∫ r(x)

0
f (x, s)ds ≥ δ > 0, x ∈ (x1, x4), (4.25)

where r(x) is defined in (f2) and here we assume that r(x) is continuously differentiable

for x ∈ (x1, x4). Then for any k > 0, when
q

d
∈ [0, k], there exists d0(k) > 0, such

that when 0 < d < d0(k), the following steady state problem

{

duxx − qux + f (x, u) = 0, 0 < x < L,

u(0) = u(L) = 0,
(4.26)

has at least two positive solutions.

Proof We prove the result following a variational approach similar to Liu et al. (2009),
see also Rabinowitz (1973/1974). Define an energy functional

E(u) =
∫ L

0
e−αx

[
d

2
(ux )

2 − F(x, u)

]

dx,
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where u ∈ X3 ≡ W 1,2
0 (0, L). Here we redefine f (x, u) to be

f̃ (x, u) =
{

f (x, u), 0 ≤ u ≤ M,

0, u < 0 and u > M,
(4.27)

where M = maxy∈[0,L] r(y). From Proposition 4.1, all non-negative solutions of
(4.26) satisfy 0 ≤ u(x) ≤ M , so this will not affect the solutions of (4.26). In the
following we assume f (x, u) to be f̃ (x, u) as defined in (4.27).

Similar to Liu et al. (2009), we can verify that E(u) satisfies the Palais–
Smale condition, and similar to (4.8), we can show that E(u) is bounded from
below. Since any critical point of E(u) is a classical solution of (4.26) and E(u)

satisfies the Palais-Smale condition, inf E(u) can be achieved and it is a critical value.
In the following we prove that inf E(u) < 0 = E(0).

Let [0, L] = [0, x1] ∪ (x1, x2] ∪ (x2, x3)∪ [x3, x4)∪ [x4, L] where 0 < x1 < x2 <

x3 < x4 < L . Here x2, x3 are to be chosen and x3 − x2 ≥ (x4 − x1)/2. We define a
test function u0(x) as follows:

u0(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ∈ [0, x1],
r(x2)

x2 − x1
(x − x1), x ∈ (x1, x2],

r(x), x ∈ (x2, x3),

r(x3)

x4 − x3
(x4 − x), x ∈ [x3, x4),

0, x ∈ [x4, L).

(4.28)

Then u0(x) ∈ X3. Let v0(x) = e−αx
[

d

2
(u′

0(x))2 − F(x, u0(x))

]

. Then

E(u0) =
∫ x2

x1
v0(x)dx +

∫ x3

x2
v0(x)dx +

∫ x4

x3
v0(x)dx ≡ I1 + I2 + I3.

Since α = q

d
∈ [0, k], we have

I2 = d

2

∫ x3

x2
e−αx (rx )

2(x)dx −
∫ x3

x2
e−αx F(x, r(x))dx

≤ d

2
M2

4 (x3 − x2) − e−αx3δ(x3 − x2)

≤ d

2
M2

4 (x4 − x1) − 1

2
e−kLδ(x4 − x1),

(4.29)
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where M4 = maxx2≤x≤x3 |rx (x)|. And

|I1| + |I3| ≤d

2

r(x2)2

x2 − x1
+ M5(x2 − x1) + d

2

r(x3)2

x4 − x3
+ M5(x4 − x3)

≤d

2

M2

x2 − x1
+ d

2

M2

x4 − x3
+ M5(x2 − x1 + x4 − x3),

(4.30)

where M5 = maxx1≤x≤x4 F(x, r(x)) and recall that in (f2), 0 < r(x) < M . Now
choosing x2 sufficiently close to x1 and x3 sufficiently close to x4, we can have

M5(x2 − x1 + x4 − x3) <
δ(x4 − x1)

8
e−kL . (4.31)

Next fixing x2, x3 as above, we can choose d0(k) > 0 such that for 0 < d < d0(k),

d

2
M2

(
1

x2 − x1
+ 1

x4 − x3

)

<
δ(x4 − x1)

8
e−kL , (4.32)

and

d

2
M2

4 <
δ

8
e−kL . (4.33)

Now combining (4.29), (4.30), (4.31), (4.32) and (4.33), we have, for 0 < d <

d0(k),

E(u0) ≤ |I1| + I2 + |I3| < −δ(x4 − x1)

8
e−kL < 0. (4.34)

Thus (4.26) has at least one positive solution u1(x) satisfying E(u1) = inf E(u) <

0 (u1 > 0 follows from the definition of f (x, u) in (4.27) and the strong maximum
principle) from standard minimization theory in calculus of variation (Rabinowitz
1986, Theorem 2.7).

Next we apply the mountain pass theorem (Ambrosetti and Rabinowitz 1973) to
obtain another positive solution (4.26). Note that

E ′′(u)[ϕ, ϕ] =
∫ L

0
de−αx (ϕx )

2dx −
∫ L

0
e−αx fu(x, u)ϕ2dx .

So we have

E ′′(0)[ϕ, ϕ] > e−αL
(

d
∫ L

0
(ϕx )

2dx + A1

∫ L

0
ϕ2dx

)

≥ A2e−αL ||ϕ||2, (4.35)

where A1 = minx∈[0,L] − fu(x, 0) > 0 and A2 = min{d, A1}. Because E(0) =
E ′(0) = 0, and E is twice differentiable, then for any ε > 0, there exists ρ > 0 such
that for ||ϕ|| ≤ ρ (here || · || is the norm of X3), we have
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∣
∣
∣
∣
E(ϕ) − 1

2
E ′′(0)[ϕ, ϕ]

∣
∣
∣
∣
≤ ε||ϕ||2. (4.36)

Now by choosing ε = A2e−αL

4
, and applying (4.35) and (4.36), we obtain that when

||ϕ|| = ρ,

E(ϕ) ≥ A2e−αL

4
||ϕ||2 = A2e−αL

4
ρ2 > 0. (4.37)

Along with the result that there exists u0 ∈ X3 such that E(u0) < 0 and ‖ u ‖> ρ,
the mountain pass theorem (Ambrosetti and Rabinowitz 1973) implies that E(u) has

another critical point u2 such that E(u2) ≥ A2e−αL

4
ρ2 > 0 > E(u1). Therefore, u2

is a distinct positive solution of (4.26). 	

Now from the comparison of boundary condition in Proposition 3.3, under the

assumption of Theorem 4.10, (2.12) always has at least two positive steady state
solutions as any other boundary condition is more favorable than the H/H one in
Theorem 4.10.

Theorem 4.11 Suppose that f (x, u) satisfies (f1)–(f3) and (f4c), d > 0, q ≥ 0,
bu, bd ≥ 0 and there exist an interval (x1, x4) ⊂ [0, L] and δ > 0 such that (4.25)
holds, and r(x) is continuously differentiable for x ∈ (x1, x4). Then for any k > 0, if
q

d
∈ [0, k], there exists d0(k) > 0, such that when 0 < d < d0(k), (2.12) has at least

two positive steady state solutions.

Proof Weuse the upper–lower solution approach fromSect. 3.4. FromProposition 4.1,
v2(x) = eαx maxy∈[0,L](e−αyr(y)) is an upper solution of (3.9), and the solution v2(x)

of (4.26) is a lower solution. Using the same v1 and v1, we can conclude the existence
of at least two positive solutions of (3.9). 	

Remark 4.12 1. The growth rate condition (4.25) is clearly the local version of the

one used in Proposition 3.4, and this condition is sharp for the H/H boundary
condition (see Proposition 4.15 below for a nonexistence results). Note that for
the most favorable NF/NF boundary condition, Theorem 4.9 shows the existence
without any restriction on f (x, u), while for the most unfavorable H/H boundary
condition, condition (4.25) is needed to ensure the persistence state is amore stable
than the extinction state in at least some part of the habitat. Note that the potential
function F(x, u) is a measurement of stability, and (4.25) implies that 0 and r(x)

are both local minimum points of F , but r(x) is a global minimum point with
smaller energy.

2. The persistence result in Theorem 4.9 under NF/NF boundary condition requires
q/d is smaller than a given value, but q and d are not necessarily small. On the
other hand, the existence result in Theorems 4.10 and 4.11 for open environment
allows q/d to be large but d to be small. In general, it is difficult to determine the
exact range of (d, q) which supports population persistence.
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Next we show that when the growth rate is in a special form, then multiple positive
steady state solutions of (2.12) exist when the diffusion coefficient d and advection
rate q are in certain range. Unlike Theorem 4.9, this result holds for any bu, bd ≥ 0
but not hostile boundary condition.

Theorem 4.13 Consider the steady state solution for (2.12)

⎧

⎪⎨

⎪⎩

duxx − qux + u(r − u)(u − h) = 0, x ∈ (0, L),

dux (0) − qu(0) = buqu(0),

dux (L) − qu(L) = −bdqu(L).

(4.38)

Here 0 < h < r , d > 0, q ≥ 0, and bu, bd ≥ 0. Let dm = (r −h)L2/(mπ)2 be defined
as in Proposition 3.5 for m ∈ Nand also define d0 = ∞. Suppose that dm+1 < d < dm

for m ∈ N ∪ {0}. Then there exists qm > 0 such that when q ∈ [−qm, qm], (4.38) has
exactly 2m + 2 nonconstant positive solutions.

Proof We prove the result with a perturbation argument using implicit function theo-
rem. When q = 0, (4.38) becomes

{

duxx + u(r − u)(u − h) = 0, x ∈ (0, L),

ux (0) = ux (L) = 0.
(4.39)

From Proposition 3.5, when dm+1 < d < dm , we know that (4.39) has exactly 2m
nontrivial positive solutions u±

k (d, x) (1 ≤ k ≤ m) and two trivial positive solutions
u−

m+1(x) ≡ h, u+
m+1(x) ≡ r . Moreover all these solutions except u+

m+1 are unstable,
so each of them is non-degenerate; and u+

m+1(x) = r is locally asymptotically stable.
Here a solution u of (4.38) is stable (or unstable) if the principal eigenvalue λ1 of the
eigenvalue problem

⎧

⎪⎨

⎪⎩

dφxx − qφx + (−3u2 + 2(r + h)u − rh)φ = λφ, x ∈ (0, L),

dφx (0) − qφ(0) = buqφ(0),

dφx (L) − qφ(L) = −bdqφ(L),

(4.40)

is negative (or positive), and u is non-degenerate if λ = 0 is not an eigenvalue of
(4.40).

We use the implicit function theorem to obtain the existence of positive solutions for
(4.38) when q is near 0. Define a mapping F : R× W 2,p(0, L) → L p(0, L)×R×R

(where p > 2) by

F(q, u) =
⎛

⎝

duxx − qux + u(r − u)(u − h)

dux (0) − qu(0) − buqu(0)
dux (L) − qu(L) + bdqu(L)

⎞

⎠ .
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Then F(0, u±
k ) = 0 for 1 ≤ k ≤ m + 1. The Frechét derivative of F with respect to

u at (0, u±
k ) is

Fu(0, u±
k )[w] =

⎛

⎝

dwxx + (−3(u±
k )2 + 2(r + h)u±

k − rh)w

dwx (0)
dwx (L)

⎞

⎠ , (4.41)

where w ∈ W 2,p(0, L). From the non-degeneracy of u±
k , Fu(0, u±

k ) is invertible, then
from the implicit function theorem, we obtain the existence of a positive solution
u±

k (q, x) of (4.38) when q ∈ (−δk, δk) for some δk > 0 and each of 1 ≤ k ≤ m + 1.
One can choose qm = min1≤k≤m+1{δk} > 0 so (4.38) has 2m + 2 positive solutions
when q ∈ [−qm, qm]. Note that each of these solutions is nonconstant when q �= 0.
By making qm possibly smaller, there are exactly 2m + 2 such solutions when q ∈
[−qm, qm] as there are exactly 2m + 2 positive solutions when q = 0. 	

Remark 4.14 1. The solution u+

m+1(q, x) of (4.38) is locally asymptotically stable
as it is perturbed from u+

m+1(x) = r which is locally asymptotically stable, and
u+

m+1(q, x) is also the maximal steady state solution in Proposition 4.7. All other
positive solutions of (4.38) are unstable. The trivial state u = 0 remains a locally
asymptotically stable steady state for all d > 0 and q ≥ 0.

2. The multiplicity of positive steady state solutions in Theorem 4.13 holds for all
bd , bu ≥ 0, but the critical advection rate qm is not explicitly defined and it is only
for the special form growth function f (u) = u(r − u)(u − h); while the result
in Theorem 4.9 holds for more general growth function only requiring (f1)–(f3)
and (f4c) and an explicit bound of the critical advection rate (4.23), but only for
bd = bu = 0.

3. The multiplicity result in Theorem 4.13 does not include the NF/H or even H/H
boundary conditions. Indeed in the hostile boundary condition case, positive steady
states of (4.38) may not exist when h > r/2, see the following Proposition 4.15.

Finally we show a nonexistence of positive steady state solution result when the
upstream boundary condition is hostile and the Allee threshold is high.

Proposition 4.15 Suppose that f (x, u) = f (u) satisfies (f1)–(f3) and (f4c), and for
r(x) ≡ M defined in (f2),

F(M) =
∫ M

0
f (s)ds < 0, (4.42)

Then the following steady state problem

⎧

⎪⎨

⎪⎩

duxx − qux + f (u) = 0, x ∈ (0, L),

u(0) = 0,

dux (L) − qu(L) = −bdqu(L),

(4.43)

has no positive solution if bd ≥ 1.
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Proof Suppose that u(x) is a positive solution of (4.43). From Proposition 4.1 and
bd ≥ 1, we have u(x) ≤ M . Multiplying the equation in (4.43) by ux , and integrating
over an arbitrary interval [a, b] ⊆ [0, L], we obtain that

[
d

2
ux (x)2 + F(u(x))

] ∣
∣
∣
∣

x=b

x=a

− q
∫ b

a
u2

x (x)dx = 0, (4.44)

as

∫ b

a
(duxx ux + f (u)ux )dx = d

2
u2

x (x)|x=b
x=a +

∫ u(b)

u(a)

f (u)du

=
[

d

2
ux (x)2 + F(u(x))

] ∣
∣
∣
∣

x=b

x=a

.

From the boundary condition of (4.43), ux (0) > 0 and dux (L) = (1−bd)qu(L) ≤
0. Hence there exists x0 ∈ (0, L] such that ux (x0) = 0. Applying (4.44) to the interval
[0, x0], we obtain that

F(u(x0)) − d

2
u2

x (0) − q
∫ x0

0
u2

x (x)dx = 0.

But (4.42) implies that F(u) < 0 for any u > 0. That is a contradiction. Therefore
(4.43) has no positive solution if bd ≥ 1. 	


The condition (4.42) is satisfied for f (u) = u(r − u)(u − h) with h > r/2, so the
result in Proposition 4.15 is partly similar to the nonexistence of solutions for Dirichlet
boundary value problem in Proposition 3.4. The nonexistence of positive steady state
of (2.12) when the upstream boundary is hostile and the Allee threshold is high also
holds when the downstream boundary is hostile, but is not proven here though it can
be observed numerically (see Fig. 7 lower right panel).

Theorem 4.10 and Proposition 4.15 show that the Allee effect threshold h plays an
important role in the persistence/exitinction of population. In Fig. 7, the population
persistence/extinction behavior for (2.12) with f (u) = u(r − u)(u − h), varying
advection rate q and strong Allee threshold h is shown under the three boundary
conditions: NF/NF, NF/FF and NF/H, with an initial condition u0(x) = r = 1. For the
NF/FF boundary condition, the population persists under small q for all h ∈ (0, 1),
and it goes to extinction for large q. For the NF/H boundary condition, the persistence
for small q only occurs for 0 < h < r/2, while the behavior is similar for NF/FF case
for large q. It is interesting that for small positive q > 0, the threshold hc between
persistence and extinction is actually slightly higher than r/2.

4.4 Closed environment

Theorem 4.6 shows that when bd > 0, i.e. when the population has a loss at the
downstream, then a large advection rate q always drives the population to extinction.
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Fig. 7 Population extinction and persistence for varying advection coefficient q (log scale) and the Allee
threshold h. Here f (x, u) = au(1 − u)(u − h), a = 0.5, d = 0.1, L = 10 and the initial condition
is u0(x) = 1. (Upper left): comparison of NF/NF, NF/FF and NF/H boundary conditions; (Upper right):
NF/NF; (Lower left): NF/FF; (Lower right): NF/H

But the restriction of bu ≥ 0 and bd > 0 in Theorem 4.6 excludes the NF/NF boundary
condition forwhich the population does not have a loss at the downstreamend, so under
the NF/NF boundary condition, (2.12) could have a positive steady state solution for
large advection rate q. In the subsection, we discuss the asymptotic profile of positive
steady state under closed advective environment, so we consider this special case of
(2.12) and (3.8) with bu = bd = 0:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ut = duxx − qux + f (x, u), 0 < x < L, t > 0,

dux (0, t) − qu(0, t) = 0, t > 0,

dux (L, t) − qu(L, t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ (0, L),

(4.45)

and
⎧

⎪⎨

⎪⎩

duxx − qux + f (x, u) = 0, x ∈ (0, L),

dux (0) − qu(0) = 0,

dux (L) − qu(L) = 0.

(4.46)
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First we have the following maximum principle (see Cui et al. 2017, Lemma 3.1).

Lemma 4.16 Recall that N = maxy∈[0,L],u≥0 g(y, u) from (f3). Suppose that
f (x, u) = ug(x, u) satisfies (f1)–(f3), q, d satisfy q2/d ≥ 4N, and u(x) ∈
C2(0, L) ∩ C[0, L] satisfies

{

duxx − qux + g(x, u(x))u ≤ 0, 0 < x < L,

−dux (0) + qu(0) ≥ 0, u(L) ≥ 0,
(4.47)

then either u(x) ≡ 0 or u(x) > 0 in [0, L).

Proof Using the change of variables v(x) = e−αx/2u(x), we obtain that v(x) satisfies

{

dvxx + vg̃(x, eαx/2v) ≤ 0, 0 < x < L,

−dvx (0) + q

2
v(0) ≥ 0, v(L) ≥ 0,

(4.48)

where g̃(x, u) = g(x, u) − q2/4d ≤ 0. From the maximum principle, u(x) ≥ 0
in [0, L]. Moreover either u(x) ≡ 0 or u(x) > 0 in [0, L) according to the strong
maximum principle. 	

For some results below, we also assume that f (x, u) = ug(x, u) satisfies one of the
following:

(f5) there exists constants A, B > 0 such that, g(x, u) ≤ A − Bu for x ∈ [0, L] and
u ≥ 0.

(f6) there exists P, Q > 0 such that g(x, u) ≥ −P for any x ∈ [0, L] and u ≥ 0,
and g(x, u) ≤ −Q for any x ∈ [0, L] and u ≥ u1 where u1 > 2M and
M = maxy∈[0,L] r(y).

For the growth function satisfying (f5), the growth function per capita can be controlled
by a declining linear function. In (f6) the growth rate per capita is non-increasing but
it has a lower bound −P . We will prove our limiting profile result under the condition
(f5), but in the process of the proof, we first prove the result under the condition (f6).
Note that the cubic function f (u) = u(r − u)(u − h) satisfies (f5) but does not satisfy
(f6), while the function

f (x, u) =
{

u(r − u)(u − h), 0 ≤ u ≤ u1,

u(r − u1)(u1 − h), u > u1
(4.49)

satisfies (f6) but does not satisfy (f5), where u1 > r > h > 0.
Now we can obtain the following estimates for the positive solution u(x) of (4.46),

which is inspired by Cui et al. (2017, Lemma 3.2).

Proposition 4.17 Suppose that f (x, u) = ug(x, u) satisfies (f1)–(f3), and u(x) is a
positive solution of (4.46). Let C1 = 2 + N + P, and assume that q2/d ≥ C2

1 . Then
we have:
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1.

u(x) ≤ u+(x) := u(L) exp

((

−q

d
+ C1

q

)

(L − x)

)

, x ∈ [0, L]. (4.50)

2. If, in addition, we assume that f (x, u) = ug(x, u) also satisfies (f6), then

u(x) ≥ u−(x) := u(L) exp

((

−q

d
− C1

q

)

(L − x)

)

, x ∈ [0, L]. (4.51)

Proof We denote α = q/d and β = C1/q. Since q2/d ≥ C2
1 ≥ 4N , we have dβ2 ≤ 1

and

du+
xx − qu+

x + g(x, u(x))u+

= [d(α − β)2 − q(α − β) + g(x, u(x))]u+

≤ [−C1 + dβ2 + N ]u+

≤ [−1 + dβ2]u+ ≤ 0,

(4.52)

and

− du+
x (0) + qu+(0) = dβu+(0) ≥ 0, u+(L) = u(L). (4.53)

Applying Lemma 4.16 to u+(x) − u(x), we obtain the estimate in (4.50).
Similarly, we have

du−
xx − qu−

x + g(x, u(x))u−

= [d(α + β)2 − q(α + β) + g(x, u(x))]u−

≥ [C1 + dβ2 − P]u+ ≥ 0,

(4.54)

and

− du−
x (0) + qu−(0) = −dβu−(0) ≤ 0, u−(L) = u(L). (4.55)

Now applying Lemma 4.16 to u(x) − u−(x), we obtain the estimate in (4.51). 	

We note that the estimates in Proposition 4.17 does not require (f4a), (f4b) or (f4c),

hence it holds not only for the Allee effect case but also for the logistic case. It shows
that when the advection rate q is large, the population density exhibits a spike layer
profile: the population concentrates at the downstream boundary end and the density
elsewhere except x = L tends to zero.

Theorem 4.18 Suppose that g(x, u) satisfy (f1)–(f3), (f5) and gx (x, u) ≥ 0, and uq(x)

is a positive solution of (4.46). Recall C1 is the constant defined in Proposition 4.17.
Then
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1. There exist positive constants C2 and C3, such that when q2/d ≥ C2
1 and

q

d
≥ C2,

we have

uq(x) < C3
q

d
exp

((

−q

d
+ C1

q

)

(L − x)

)

. (4.56)

2. Let d > 0, L > 0be fixed, then limq→+∞
∫ L
0 uq(x)dx = 0and limq→+∞ uq(x) =

0 for any x ∈ [0, L).

Proof It is clear that if the conclusions hold for themaximal solution of (4.46), then the
conclusions also hold for any other positive solutions. So without loss of generality,
we assume that uq(x) is the maximal solution of (4.46). To prove (4.56) under the
assumptions (f1)–(f3) and (f5), we first prove (4.56) under the assumptions (f1)–(f3)
and (f6). From (f1)–(f3) and (f6), there exist positive constants A, B and Q, such that

g(x, u) ≤
{

A − Bu, x ∈ [0, L], 0 ≤ u ≤ u1,

−Q, x ∈ [0, L], u ≥ u1.
(4.57)

Integrating thefirst equation of (4.46) over (0, L) and applying the boundary condition,
we have

∫ L

0
uq g(x, uq)dx = 0. (4.58)

From Proposition 4.8, uq(x) is strictly increasing over x ∈ [0, L]. We assume that
uq(L) > u1 [otherwise (4.56) obviously holds]. Then there exists 0 < L1 < L , such
that uq(L1) = u1, recalling u1 is defined in (f6). Now (4.58) combined with (4.57)
yields

B
∫ L1

0
u2

qdx + Q
∫ L

L1

uqdx ≤ A
∫ L1

0
uqdx ≤ ALu1. (4.59)

According to Proposition 4.17, when q2/d ≥ C2
1 , we have u−

q (x) ≤ uq(x) ≤ u+
q (x),

where u±
q = uq(L) exp ((−α ∓ β)(L − x)), α = q/d and β = C1/q. Now substitut-

ing u−
q into (4.59), we obtain

Bu2
q(L)

2(α + β)
[exp (−2(α + β)(L − L1)) − exp (−2(α + β)L))

+ Quq(L)

α + β
(1 − exp (−(α + β)L)] ≤ ALu1.

(4.60)

Claim 4.19 As α → ∞, we have

exp (−(α + β)(L − L1)) = u1

uq(L)
(1 + O(α−1)). (4.61)
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Proof of Claim 4.19 Since u−
q (x) ≤ uq(x) ≤ u+

q (x), there exist x1, x2 ∈ (0, L) satis-
fying x1 < L1 < x2 such that u−

q (x) = u+
q (x) = u1, that is

exp (−(α + β)(L − x1)) = exp (−(α − β)(L − x2)) = u1

uq(L)
. (4.62)

Notice that for fixed d > 0 when α → ∞, β = O(α−1). Thus,

exp
(

(−α + O(α−1))(L − x1)
)

= exp
(

(−α + O(α−1))(L − x2)
)

= u1

uq(L)
.

(4.63)

Since x1 ≤ L1 ≤ x2, we have

exp
(

(−α + O(α−1))(L − L1)
)

= u1

uq(L)
, (4.64)

which implies the claim. 	

Substituting (4.61) into (4.60), we have (as α → ∞)

1

α + β

[

Bu2
1 − Bu2

q(L) exp
(

−2(α + O(α−1))L
)

+ Quq(L) − Qu1 + O(α−1)
]

≤ ALu1.

(4.65)

From Proposition 4.1, uq(L) ≤ C4eαL , where C4 is a constant. Therefore (4.65)
implies that

1

α + β

[

Quq(L) + O(1)
] ≤ ALu1, asα → ∞. (4.66)

From (4.66), we conclude that there exist positive constants C2, C3 such that
uq(L) ≤ C3α whenever α ≥ C2 and q2/d ≥ C2

1 . Together with (4.50), we obtain
(4.56). This proves (4.56) when (f1)–(f3) and (f6) are satisfied.

Now suppose that f (x, u) = ug(x, u) satisfy (f1)–(f3) and (f5), then we can define
a f̃ (x, u) = ug̃(x, u) satisfying (f1)–(f3) and (f6), and g(x, u) ≤ g̃(x, u). Then
a comparison argument implies that the solutions of (4.46) satisfy uq(x) ≤ ũq(x),
whereuq(x) is the solution of (4.46)with f (x, u), and ũq(x) is a solution of (4.46)with
f̃ (x, u). Indeed this can be shown using argument as in the proof of Theorem 4.9, as
ũq(x) can be constructedwithuq(x) as the lower solution and eαx maxy∈[0,L] e−αyr(y)

as the upper solution. Now the estimate (4.56) holds for ũq(x), then it also holds for
uq(x) under the conditions (f1)–(f3) and (f5). This completes the proof of part 1.

For part 2, we follow the proof of Lemma 2.5 in Lam et al. (2015). From (f5), there
exist constants A, B > 0 such that g(x, u) ≤ A − Bu for x ∈ [0, L] and u ≥ 0.

123



Persistence and extinction of population in… 2129

Then from comparison method as in the last paragraph, it is sufficient to consider the
solution uq(x) of

⎧

⎪⎨

⎪⎩

duxx − qux + u(A − Bu) = 0, x ∈ (0, L),

dux (0) − qu(0) = 0,

dux (L) − qu(L) = 0.

(4.67)

Integrating (4.67) on (0, L) and applying the boundary condition, we obtain

B
∫ L

0
u2

q(x)dx = A
∫ L

0
uq(x)dx ≤ A

√
L

√
∫ L

0
u2

q(x)dx . (4.68)

In particular,
∫ L

0
u2

q(x)dx is bounded by a quantity independent of q. Choosing any

function m(x) ∈ C2[0, L] with mx (0) = mx (L) = 0, multiplying the equation in
(4.67) by m(x) and integrating by parts, we obtain

d
∫ L

0
mxx uqdx + q

∫ L

0
mx uqdx +

∫ L

0
muq(A − Buq)dx = 0. (4.69)

Since both
∫ L

0
uq(x)dx and

∫ L

0
u2

q(x)dx are bounded and q → +∞, then (4.69)

implies that
∫ L

0
mx (x)uq(x)dx → 0 and consequently

∫ L

0
uq(x)dx → 0 as q →

+∞. For the pointwise convergence, suppose it is not true. Then there exists a constant
δ > 0 and a x∗ ∈ [0, L), such that lim infq→+∞ uq(x∗) ≥ δ > 0. Since uq(x) is
strictly increasing, we have

∫ L

0
uqn (x)dx ≥

∫ L

x∗
uqn (x)dx ≥ δ(L − x∗) > 0,

for a sequence qn → ∞, which contradicts with
∫ L

0
uqdx → 0 as q → +∞.

Therefore, we have limq→+∞ uq(x) = 0 for any x ∈ [0, L). 	

We remark that the results of Theorem 4.18 hold under the assumption that such

a steady state solution uq(x) exists for (4.46) when the advection rate q is large, and
the results hold for logistic (f4a), weak Allee effect (f4b), and strong Allee effect (f4c)
cases. The existence of such steady state solutions for the logistic case and any q > 0
has been proven in Lam et al. (2015, Lemma 2.1), and the existence for the weak
Allee effect case can also be established (see our forthcoming work). So the results of
Theorem 4.18 are relevant for these two cases. However, the existence for the strong
Allee effect case for large q remains an open question. Nevertheless, the properties of
the solution profile established in Theorem 4.18 indicates that when q is large, then
the population concentrates at the downstream end but the total biomass becomes very
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Fig. 8 The evolution of total biomass of (4.45) with respect to time under NF/NF boundary condition and
varying advection coefficient q. The horizontal axis is t and the vertical axis is ‖u(·, t)‖1 = ∫ L

0 u(x, t)dx .
Here f (x, u) = u(1− u)(u − h), d = 0.09, L = 10 and the initial condition is u0(x) = 0 for x ∈ [0, L/2]
and u0(x) = 1 for x ∈ [L/2, L]. Left: h = 0.4; Right: h = 0.6

small regardless of the type of growth rate. In Fig. 8, the time series of total biomass
of (4.45) for different advection rate q are plotted. It can be observed that the total
biomass always decreases with respect to q. For small advection rate, the population
is close to carrying capacity; but for large advection rate, the total population tends to
near zero (or indeed zero) when t → ∞.

4.5 Transient dynamics and traveling waves

From Fig. 8 left panel, the total biomass of the species increases in time t for small
advection rate q, but it decreases in time t for large q; while in the right panel, the total
biomass always decreases in time. Moreover, in all cases, the total biomass increases
or decreases in an almost linear fashion for a long time period until it is near the
equilibrium level, and the slope of linear change before the total biomass reaching the
equilibrium level decreases with respect to q.

Such wave-propagating-like transient dynamics of (4.45) is closely related to the
traveling wave solution of the reaction–diffusion–advection equation:

ut = duxx − qux + au(r − u)(u − h), t > 0, x ∈ (−∞,∞), (4.70)

where d > 0, a > 0, q ∈ R, and 0 < h < r . It is well-known (Hadeler and Rothe
1975; Lewis andKareiva 1993) that (4.70) has a unique pair of travelingwave solutions
U±(x − c±t) satisfying

⎧

⎪⎨

⎪⎩

dU ′′±(y) − (q − c±)U ′±(y) + aU±(y)(r − U±(y))(U±(y) − h) = 0, y ∈ (−∞, ∞),

c− : U−(−∞) = 0, U−(∞) = r ,

c+ : U+(−∞) = r , U+(∞) = 0,

(4.71)
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Fig. 9 Propagation of interface and formation of boundary layer in (4.45). Here f (x, u) = u(1−u)(u −h),
h = 0.4, d = 0.09, L = 10 and the initial condition is u0(x) = 0 for x ∈ [0, L/2] and u0(x) = 1 for
x ∈ [L/2, L]. Upper left: q = 0.03; Upper right: q = 0.043; Lower left: q = 0.07; Lower right: q = 0.1

with

c± = q ± √
2ad

( r

2
− h

)

. (4.72)

Indeed it can be explicitly computed that

U±(y) = r

1 + e±ky
, where k =

√

a

2d
r . (4.73)

The initial condition used in Figs. 8 and 9 is a step function, which represents that
the initial population only exists over the region [L/2, L]. The profile of this initial
condition resembles the shape of U−. The formula for c− in (4.72) shows that when
h < r/2, the wave speed c− is negative for small q, so the wave front moves upstream
and the population persists in the entire river (see Figs. 8 left panel and 9 upper left
panel); for large q, the wave speed is positive, the wave front moves downstream, and
the population could form a boundary layer steady state at downstream end (see Figs. 8
left panel and 9 lower left panel), or the population could become extinct (see Figs. 8
left panel and 9 lower right panel). Between the waves of two opposite directions,

123



2132 Y. Wang et al.

0 0.02 0.04 0.06 0.08 0.1

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

q

c
Strong Allee

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

NF/NF

Space x

P
op

ul
at

io
n q=0.02

q=0.04
q=0.042
q=0.045
q=0.06
q=0.1

Fig. 10 Effect of advection rate q to the population propagation in (4.45). Left: The dependence of traveling
wave speed c with respect to the advection rate q; Right: The dependence of maximal steady state solution
on the advection rate q. Here f (x, u) = u(1 − u)(u − h), d = 0.09, h = 0.4 and the initial condition is
u0(x) = 0 for x ∈ [0, L/2] and u0(x) = 1 for x ∈ [L/2, L]

Fig. 11 Traveling-wave-like dynamics for different advection rate q. Here f (x, u) = u(1 − u)(u − h),
d = 0.09, h = 0.4, L = 10, and the initial condition is u0(x) = 0 for x ∈ [0, L/2] and u0(x) = 1 for
x ∈ [L/2, L]. The advection rate from left to right is q = 0.03, q = 0.043, q = 0.07 and q = 0.1

there is a “break-even” advection rate q0 (that is≈ 0.042 for parameters in Figs. 8 and
9) such that the total biomass is almost unchanged for all time, and the traveling wave
is a standing one with c− ≈ 0 (see Fig. 9 upper right panel). On the other hand, when
h > r/2, the formula of c− in (4.72) shows that the wave speed c− is always positive,
hence for any advection rate q, the population cannot invade the upstream region (see
Fig. 8 right panel). Indeed, Fig. 8 right panel suggests that extinction always occurs in
this case for any advection rate q when the initial condition is a step function from 0 to
1. Note that positive steady states of (4.45) still exist for small q even when h > r/2
(see Theorem 4.9). However, this phenomenon of population is unable to persist in
the upstream region when h > r/2 echoes the nonexistence of positive steady states
in Propositions 3.4 and 4.15 when the upstream end has Dirichlet boundary condition.

The traveling-wave-like transient dynamics of (4.45) occurs when the diffusion
coefficient d and advection rate q are relatively small, the river length L is compara-
bly large, and the interface between extinction and persistence is far away from the
boundary. Figure 10 left panel shows the comparison of the numerical wave speeds
in Fig. 8 right panel and the theoretical one in (4.72); Fig. 10 right panel shows that
the maximal steady state solution of (4.45) decreases in q, and the solution main-
tains a transition layer profile between the extinction and persistence states. Figure 11
shows the traveling-wave-like behavior of the solutions for different q. The slope of
the interface is approximately c−: it is negative when q = 0.03, and it is positive when
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Fig. 12 Formation of boundary layer. Here f (x, u) = u(1 − u)(u − h), h = 0.4, d = 0.09, L = 10 and
the initial condition is u0(x) = 1 for x ∈ [0, L/2] and u0(x) = 0 for x ∈ [L/2, L]. Upper left: q = 0.03;
Upper right: q = 0.043; Lower left: q = 0.09; Lower right: q = 0.1

q = 0.07 and q = 0.1. It is almost zero when q = 0.043 (the break-even advection
rate).

Figure 12 shows the evolution of population profile under different q when the
initial condition is a step function u0(x) = 1 for x ∈ [0, L/2] and u0(x) = 0 for
x ∈ [L/2, L]. That is, the population initially is at upstream end, but not downstream
end. Then in all cases, the population can invade the downstream as c+ > 0 in this
case. The invasion is successful for small q case and the population is established in
the entire river (see Fig. 12 upper left and upper right panels). But for large q, another
wave is formed at the upstream end and propagates at c− > 0 downstream. Hence for
some time period, there are two wave propagating: the front invasion wave with speed
c+, and the back extinction wavewith speed c−. Although the backwave never catches
up with the front wave as c+ > c−, the back extinction wave eventually wipes out the
entire population in the upstream region. Either it ends at a boundary layer steady state
at downstream end (see Fig. 12 lower left panel), or the population becomes extinct
(see Fig. 12 lower right panel).

In Fig. 13, the dynamics of (4.45) for small diffusion coefficient d = 0.0001 and
various q is shown with the initial condition u0(x) = h + 0.1 sin x . It is known that
when there is no advection present, sharp interfaces between the two stable states
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Fig. 13 Slow interface motion, persistence and extinction with advection in (4.45). Here f (x, u) = u(1 −
u)(u − h), h = 0.4, d = 0.0001, L = 10 and the initial condition is u0 = h + 0.1 sin x . Upper left:
q = 0.001; Upper right: q = 0.008; Lower left: q = 0.03; Lower right: q = 0.1

are generated quickly, then the interfaces move slowly if the bistable nonlinearity is
balanced (h = r/2) (Carr and Pego 1989; Fusco andHale 1989), or the interfacesmove
with traveling wave speed if it is unbalanced (h �= r/2) (Fusco et al. 1996). Here we
observe that the sharp interfaces between the two stable states are still formed quickly
in all cases of advection rate q. Next a properly small q = 0.001 can facilitate the slow
movement of the interfaces (see Fig. 13 upper left panel); or a larger q = 0.008 can
speed up the transition layer from 1 to 0 to catch the transition layer from 0 to 1, so the
two transition layers merge and the two patches of high density population collide into
one (see Fig. 13 upper right panel). However if the advection rate q increases further,
then the strong flow will push all population patches downstream before they can
establish in the middle sections (see Fig. 13 lower panel). In the large q case (Fig. 13
lower panel), a very sharp boundary layer appears to persist, which demonstrates that
the boundary layer solution as in Theorem 4.18 exists for such q.

The merging of the interfaces and the collision of persistence/extinction patches
can be clearly observed in Fig. 14. In the upper panel (h = 0.4), the persistence
patches merge through coarsening as c+ > c−; and in the lower panel (h = 0.6), the
extinction patchesmerge as c+ < c−.When the advection rate q is large, the extinction
wave starting from the upstream end point prevails so the extinction eventually occurs
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Fig. 14 Interface merging, persistence and extinction with advection in (4.45). Here f (x, u) = u(1 −
u)(u − h), d = 0.0001, L = 10 and the initial condition is u0 = h + 0.1 sin 2x . Upper row: h = 0.4;
Lower row: h = 0.6; The advection rate from left to right: q = 0.001, q = 0.008, q = 0.03, and q = 0.1

Fig. 15 Bistable dynamics for different initial conditions. Here f (x, u) = u(1 − u)(u − h), d = 0.09,
h = 0.4, L = 10, and q = 0.043. The initial conditions from left to right are u0(x) = 0.36; u0(x) = 0 for
x ∈ [0, L/2] and u0(x) = 1 for x ∈ [L/2, L]; u0(x) = 1 for x ∈ [0, L/2] and u0(x) = 0 for x ∈ [L/2, L],
and u0(x) = 0.43

despite there being a large merged persistence patch (Fig. 14 upper row q = 0.03 or
q = 0.1). Also when the advection rate q is sufficiently small, the steady state with
multiple interfaces appears to be metastable regardless of h = 0.4 or h = 0.6 (see
Fig. 14 first column).

Finally Figs. 15 and 16 demonstrate the bistable nature of (4.45) for different
initial conditions. In Fig. 15, the population becomes extinct when starting from an
initial population which is entirely smaller than the Allee threshold (first panel); and
the population reaches the maximal steady state when starting from relatively large
initial population (third and fourth panels). Both of the extinction and maximal steady
state solutions are locally asymptotically stable (see Proposition 4.8), and we expect
that there are the only stable ones. But the second panel also shows a stable pattern
with a transition layer. We conjecture that the transition layer solution is unstable and
metastable (with a small positive eigenvalue), so the pattern can be observed for a long
time in numerical simulation. The stability of such steady states will be a question for
further studies.

Figure 16 shows awell-known feature of the spreading/extinction bistable structure.
For bistable equation on unbounded domain (R) (4.70) with q = 0, it is known that
when the initial condition is a function uL(x) = 1 when |x | ≤ L and uL(x) = 0
otherwise, then there is a sharp threshold L0 > 0, such that the corresponding solution
converges to 0 if L < L0, and the solution converges to a traveling wave if L > L0
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Fig. 16 Minimal initial patch size for invasion. Here f (x, u) = u(1 − u)(u − h), d = 0.09, h = 0.4,
L = 10, q = 0.03, and the initial condition is u0(x) = 1 for x ∈ [C − W , C + W ] and u0(x) = 0
otherwise. Values of (C, W ) from left to right: (C, W ) = (0.25L, 0.065L); (C, W ) = (0.25L, 0.07L);
(C, W ) = (0.75L, 0.065L); and (C, W ) = (0.75L, 0.07L)

(Zlatoš 2006), and such threshold phenomenon hold for more general situations (Du
and Matano 2010; Muratov and Zhong 2013). Figure 16 illustrates this phenomenon
(bistability between extinction and maximal steady state) with q > 0 and no-flux
boundary condition. It can be seen that here L0 ≈ 0.07L where L is the length of
habitat, and the value of L0 appears to be independent of location of initial patch.

5 Conclusion

The persistence or extinction of a stream population can be modeled by a reaction–
diffusion–advection equation defined on a one-dimensional habitat (river environ-
ment). While it is typical that the growth rate exhibits logistic type, it is also common
that the growth rate of the species exhibits a strong Allee effect so that the growth
is negative at lower density. It is shown that other than the extinction of population
due to the small initial condition, a strong advection can also drive the population to
extinction in an open environment regardless of initial condition. On the other hand,
in a closed environment, the population becomes extinct in the upstream region but
may concentrate near the downstream end under strong flow rate. In general, a large
increase of the advection rate makes the extinction more likely, but there are a few
numerical simulations indicating that an intermediate advection rate may increase the
population size or possibility of persistence (see Figs. 6 NF/NF case and 7 NF/H case).

The logistic growth usually leads to an unconditional persistence of the population
for all initial condition, and the Allee effect growth rate causes a bistability in the
population dynamics. For a species with Allee effect type growth, multiple stable
states are possible and different initial conditions can lead to different asymptotic
behavior, so the persistence is always conditional. The question of persistence or
extinction also depends on the boundary conditions, advection rate, diffusion rate and
the Allee threshold. From both analytical and numerical approaches, we can see that
in general, a higher Allee threshold or a higher advection rate often lead to a wider
range of the extinction region.

Our numerical results also suggest that when the Allee threshold satisfies certain
condition, a global extinction for all initial conditions is possible even in a closed
environment. For example, in Figs. 2 and 7, under NF/NF boundary condition and the
growth function f (x, u) = u(1 − u)(u − h), a global extinction occurs if h = 0.4
for all large advection rate q, but for h = 0.3, the population appears to at least
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survive at the downstream end not in a total extinction. A theoretical verification
of this phenomenon is an interesting open question. Similar global extinction when
h > 0.5 has been observed and proved for a two-patch ODE model with strong Allee
effect growth function f (u) = u(1 − u)(u − h) and no loss due to dispersal (Swift
et al. 2018).

Most of our results in this paper allow a spatially heterogeneous nonlinear growth
function f (x, u) with a bistable structure. A multiplicity result for the steady state
solutions with a homogeneous growth function is obtained for small advection rate
(see Theorem 4.13), and the number of such solution can be large if the diffusion
coefficient is sufficiently small. In the absence of advection, the existence of steady
state solutions with multiple transition layers or spike layers has been proved in Ai
et al. (2006), Alikakos et al. (1993), Hale and Sakamoto (1988) and Nakashima (2003)
for one-dimensional case and many others for higher dimensional case. The existence
and profile of such solutions under small diffusion and appropriate advection rate is
another interesting question for future investigation.
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