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PERSISTENCE AND EXTINCTION OF POPULATION
IN REACTION-DIFFUSION-ADVECTION MODEL WITH

WEAK ALLEE EFFECT GROWTH∗
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Abstract. The dynamical behavior of a reaction-diffusion-advection model of a stream pop-
ulation with weak Allee effect type growth is studied. Under the open environment, it is shown
that the persistence or extinction of population depends on the diffusion coefficient, advection rate,
and type of boundary condition, and the existence of multiple positive steady states is proved for
intermediate advection rate using bifurcation theory. On the other hand, for closed environment, the
stream population always persists for all diffusion coefficients and advection rates.
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1. Introduction. The survival of a biological population in a river or stream
depends on both the natural environment and the intrinsic growth pattern of the
species. Reaction-diffusion equations have been used to model the spatiotemporal
distribution and population size under passive diffusion. With the addition of the
advection term for the stream flow, they can describe the population distribution
under directed movement that is from sensing and following the gradient of resource
distribution (taxis) or a directional fluid/wind flow [2, 12, 19, 20]. A typical form of
reaction-diffusion-advection population model in a river/stream environment is

ut = duxx − qux + ug(x, u), 0 < x < L, t > 0,(1.1)

where u(x, t) is the population density function at the location x and time t, d > 0 is
the diffusion coefficient, q ≥ 0 is the advection rate (flow from left to right), L is the
length of the river/stream, and g(x, u) is the growth rate per capita that is affected
by the heterogeneous environment.

The reaction-diffusion-advection model (1.1) has been used to describe various
spatiotemporal phenomena under advective environment. The question of how popu-
lations resist washout in such environment and persist over large temporal scales has
been called the “drift paradox” [15, 16, 24]. It is shown that the species have a low
probability to survive if all the populations are washed down to the downstream. It
is suggested that the diffusion coefficient of the species is the key for survival, and the
intermediate diffusion coefficient is preferred for the population persistence [24].

Typically a logistic type growth rate has been used in population dynamics of
(1.1) to model the crowding effect and competition for limited resource, and the cor-
responding growth rate per capital g(x, u) is a decreasing function with respect to the
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1294 YAN WANG AND JUNPING SHI

population density u. Under the assumption of the logistic growth, there often exists
a critical parameter value (diffusion coefficient, advection rate, domain size, growth
rate) for the population persistence or extinction in (1.1) [2, 8, 13, 17], and in the per-
sistence case there is a unique positive steady state which is globally asymptotically
stable [2].

However in many empirical studies, it is found that the growth rate per capital
g(x, u) reaches the peak value at a positive population density instead of at zero,
which is called Allee effect [1, 3, 7, 11, 25]. The Allee effect is strong if the growth
rate per capital is negative for low population density, and if the growth rate per
capital is positive and increasing with respect to u at low population density, it is
called weak Allee effect. In [28], the dynamic behavior of (1.1) with a strong Allee
effect growth rate was investigated. Compared to the well-studied logistic growth rate,
the extinction state in the strong Allee effect case is always locally stable. It is shown
that when both the diffusion coefficient and the advection rate are small, there exist
multiple positive steady state solutions hence the dynamics is bistable so that different
initial conditions lead to different asymptotic behavior. On the other hand, when the
advection rate is large, the population becomes extinct regardless of initial condition
under most boundary conditions.

In this paper, we consider the dynamical behavior of the model (1.1) with weak
Allee effect growth and open or closed environment boundary conditions. Our main
findings on the dynamics of reaction-diffusion-advection model (1.1) with weak Allee
effect type growth are the following.

1. In a closed river environment, the population always persists for all diffusion
coefficients and advection rates.

2. In an open river environment with nonhostile boundary condition, the pop-
ulation persists for all diffusion coefficients if the advection rate is not large,
and it becomes extinct for large advection rate; in the intermediate advection
rate, there exist multiple positive steady state solutions; hence the system
can tend to alternative stable states asymptotically.

3. In an open river environment with even partially hostile boundary condition,
the population persists when both the diffusion coefficient and advection rate
are not large, and either a large diffusion coefficient or a large advection
rate leads to population extinction; the bistable dynamics occurs when both
the diffusion coefficient and advection rate are in the intermediate ranges.

Note that if the river population has a loss on the boundary ends due to movement,
then the river is an open environment and otherwise it is a closed environment. These
results are rigorously proved by using the theory of dynamical systems, comparison
methods, and bifurcation theory. Global bifurcation diagrams of (1.1) with the advec-
tion rate q as the bifurcation parameter are obtained for different types of boundary
conditions. Bifurcation theory is applied in this paper for the weak Allee effect and
also logistic cases, while it is not applicable to the strong Allee effect case since the
extinction state is always stable in that case.

Our study for the weak Allee effect case of the dynamical behavior of the system
(1.1) in this paper complements the one in [28] for the strong Allee effect case, and the
ones in [8, 13] for the logistic case. It reveals that in open environment, for different
parameter regimes (diffusion coefficient or advection rate), the dynamical behavior of
the system (1.1) with weak Allee effect growth rate can be one of “extinction” (all
solutions converge to zero), “bistable” (multiple stable steady states) or “monostable”
(all solutions converge to a positive steady state); see Figure 9 for a numerical demon-
stration. Note that in the “monostable” case, the uniqueness of positive steady state
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POPULATION MODEL WITH WEAK ALLEE EFFECT GROWTH 1295

is not proved as the logistic case, as the usual subhomogeneous or sublinear algebraic
condition implying uniqueness does not hold here. But numerical simulation indicates
that the all solutions converge to the same positive steady state. In comparison, the
dynamical behavior of the system (1.1) with strong Allee effect growth rate can only
be “extinction” or “bistable” [28], while the one for logistic case can only be “extinc-
tion” or “monostable” (here the uniqueness of positive steady state is well known)
[8, 13]. Similar to the analytical or numerical findings in [8, 13, 28], the transition
from one dynamical behavior to another is often monotonic in the advection rate q
but not so in the diffusion coefficient d (see Figure 9 lower panel). The weak Allee
effect case is the most complex one with all three dynamical behavior, and the bistable
regime is always in between the extinction and monostable regimes.

Dynamics of reaction-diffusion population models with weak Allee effect growth
rate and without the effect of advection has been considered in [6, 22]; in [10, 18], the
role of weak Allee effect in the ideal free dispersal was considered; and the effect of
weak Allee effect on the population spreading/invasion has been investigated in [26].

Our paper is organized as follows. In section 2, we recall the reaction-diffusion-
advection model with various growth rate functions and the boundary conditions, as
well as some basic results from [28]. The main results on the persistence/extinction
dynamics are presented in section 3. Some concluding remarks are given in section 4.

2. Preliminaries.

2.1. Model. Following [28], the density function of a stream population sat-
isfies the following initial-boundary value problem of a reaction-diffusion-advection
equation: 

ut = duxx − qux + ug(x, u), 0 < x < L, t > 0,

dux(0, t)− qu(0, t) = buqu(0, t), t > 0,

dux(L, t)− qu(L, t) = −bdqu(L, t), t > 0,

u(x, 0) = u0(x) ≥ 0, 0 < x < L.

(2.1)

Here u(x, t) is the population density at location x ∈ [0, L] and time t ≥ 0, and the
river environment is modeled by a one-dimensional interval [0, L] ⊂ R; the upstream
endpoint is x = 0, and the downstream endpoint is x = L, and L is the length of
the river; the parameter d is the diffusion coefficient, q is the advection coefficient
(flow rate), and dux(x, t) − qu(x, t) is the flow flux at x; in the boundary condition,
the parameters bu ≥ 0 and bd ≥ 0 indicate the severity of the population loss at
the upstream end x = 0 and the downstream end x = L, respectively; and the
function g(x, u) is the growth rate per capita that will be specified below. This
form of boundary condition was proposed in [9]. Typically a no-flux (NF) boundary
condition with bu = 0 is imposed at the upstream end, and the downstream boundary
condition can be hostile (H) which is equivalent to bd =∞, or free-flow one (FF) with
bd = 1, or NF one with bd = 0. More discussions and biological interpretations of
these boundary conditions were given in [13]. The boundary condition in (2.1) with
smaller (bu, bd) is more favorable for population persistence (see [28, Proposition 3.3]).

We recall the assumptions on the growth rate per capita g(x, u) as in [28] (see
also [2, 22]):

(g1) For any u ≥ 0, g(·, u) ∈ Cα[0, L], for some 0 < α < 1, and for any x ∈ [0, L],
g(x, ·) ∈ C1(R).

(g2) For any x ∈ [0, L], there exists r(x) ≥ 0, where 0 < r(x) < M and M > 0 is
a constant, such that g(x, u(x)) ≤ 0 for u > r(x).

D
ow

nl
oa

de
d 

07
/1

9/
19

 to
 1

28
.2

39
.9

9.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1296 YAN WANG AND JUNPING SHI

(g3) For any x ∈ [0, L], there exists s(x) ∈ [0, r(x)] such that g(x, ·) is increasing
in [0, s(x)] and decreasing in [s(x),∞]; and there also exists N > 0 such that
g(x, s(x)) ≤ N .

Here r(x) is the local carrying capacity at x that has a uniform upper bound M ;
u = s(x) is where g(x, ·) reaches the maximum value, and the number N is a uniform
bound for g(x, u) at all (x, u). Moreover we assume that g(x, u) takes one of the
following three forms: (see [22, 28])

(g4a) Logistic: s(x) = 0, g(x, 0) > 0, and g(x, ·) is decreasing in [0,∞);
(g4b) Weak Allee effect: s(x) > 0, g(x, 0) > 0 and g(x, ·) is increasing in [0, s(x)],

decreasing in [s(x),∞); or
(g4c) Strong Allee effect: s(x) > 0, g(x, 0) < 0, g(x, s(x)) > 0 and g(x, ·) is in-

creasing in [0, s(x)], decreasing in [s(x),∞). In this case there exists a unique
h(x) ∈ (0, s(x)) such that g(x, h(x)) = 0.

The dynamical behavior of solutions to (2.1) with logistic growth rate is well known
(see [8, 13, 17]), and the one with strong Allee effect growth rate has been studied in
[28]. The goal of this paper is to consider the dynamical behavior of solutions to (2.1)
with weak Allee effect growth rate, and the effect of dispersal parameters q and d on
the dynamics.

2.2. Basic dynamics. We recall the following results from [28] (see Proposition
4.1, Theorem 4.2, and Propositions 4.7, 4.8), which show that the long time dynamic
behavior of solutions of (2.1) is determined by the nonnegative steady state solutions
of (2.1), and some properties of positive steady state solutions hold regardless of
assumption (g4a, b, c).

Theorem 2.1. Suppose that g(x, u) satisfies (g1)–(g2).
1. Equation (2.1) has a unique positive solution u(x, t) defined for (x, t) ∈ [0, L]×

(0,∞), and the solutions of (2.1) generates a dynamical system in X2, where

X2 = {φ ∈W 2,2(0, L) : φ(x) ≥ 0, dφ′(0)− qφ(0) = buqφ(0),

dφ′(L)− qφ(L) = −bdqφ(L)}.
(2.2)

2. For any u0 ∈ X2 and u0 6≡ 0, the ω-limit set ω(u0) ⊂ S, where S is the set
of nonnegative steady state solutions.

3. Let u(x) be a positive steady state solution of (2.1); then for x ∈ [0, L],

u(x) ≤ eαx max
y∈[0,L]

(e−αyr(y)),

where r(x) is defined in (g2) and α =
q

d
. Moreover, if bd ≥ 1, then u(x) ≤

M = max
y∈[0,L]

r(y) for x ∈ [0, L].

4. If in addition g(x, u) also satisfies (g3), and there exists a positive steady state
solution of (2.1), then there exists a maximal steady state solution umax(x)
such that for any positive steady state u(x) of (2.1), we have umax(x) ≥ u(x).
Moreover if bu ≥ 0 and 0 ≤ bd < 1, then umax(x) is strictly increasing in
[0, L].

For (2.1), there is always an extinction steady state u = 0 for any d > 0 and
q ≥ 0. The local asymptotical stability of the extinction state can be determined by
the principal eigenvalue of an associated eigenvalue problem as follows.

Proposition 2.2. Suppose that g(x, u) satisfy (g1)–(g3), d > 0, and q ≥ 0. Let
λ1(q) be the principal eigenvalue of the eigenvalue problem:
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POPULATION MODEL WITH WEAK ALLEE EFFECT GROWTH 1297
dφ′′ − qφ′ + g(x, 0)φ = λφ, 0 < x < L,

dφ′(0)− qφ(0) = buqφ(0),

dφ′(L)− qφ(L) = −bdqφ(L).

(2.3)

1. If λ1(q) < 0, then u = 0 is locally asymptotically stable for (2.1); and if
λ1(q) > 0, then u = 0 is unstable and there exists a positive steady state of
(2.1).

2. If in addition g(x, u) also satisfies (g4a) or (g4b), then
(a) (open environment) when bd > 0 and bu ≥ 0, there exist q2 ≥ q1 > 0

such that λ1(q) > 0 for 0 ≤ q < q1, λ1(q1) = λ1(q2) = 0, and λ1(q) < 0
for q > q2; moreover if bd > 1/2, then λ1(q) is strictly decreasing and
q1 = q2.

(b) (closed environment) when bu = bd = 0, then λ1(q) > 0 for all q > 0.
3. If in addition g(x, u) also satisfies (g4a), then u = 0 is globally asymptotically

stable for (2.1) when u = 0 is locally asymptotically stable, and when u = 0
is unstable, then there exists a unique positive steady state of (2.1) that is
globally asymptotically stable.

Proof. For part 1, the stability/instability of the extinction state follows from
standard theory of semilinear parabolic equations [5]. For part 2, from the variational
characterization of λ1 in part 1 of [28, Proposition 3.1], λ1(q) > 0 for 0 ≤ q < q1 in
the open environment case, and λ1(q) > 0 for any q ≥ 0 in the close environment
case. Also from part 3 of [28, Proposition 3.1], λ(q) → −∞ as q → ∞ in the open
environment case, so there exists q2 > q1 such that λ1(q) < 0 for q > q2. We can
choose q2 ≥ q1 > 0 so that q1 is the smallest positive root of λ1(q) = 0 and q2 is the
largest. The strict decreasing property of λ1(q) when bd > 1/2 is proved in Theorem
2.1 of [14]. Part 3 is from [28, Proposition 3.2].

Proposition 2.2 shows that for the logistic or weak Allee effect case, the stability
of the extinction state is similar, but the global dynamics for the two cases may be
different as the positive steady state may not be unique for the weak Allee effect case
(see Theorem 3.5).

2.3. Nonadvective case. For reaction-diffusion-advection equation (2.1) with
no advection, there have been several previous works on the existence and multiplicity
of positive steady state solutions, and we recall these results here. Here the dispersal
and evolution of a species are on a bounded heterogeneous habitat Ω in Rn with n ≥ 1,
and the inhomogeneous growth rate g(x, u) is either logistic or of weak Allee effect
type. In this subsection, we assume that the conditions (g1)–(g3) and (g4a)–(g4c) are
defined for x ∈ Ω instead of x ∈ [0, L]. If the environment is with a hostile boundary
condition, then the equation is in form of{

ut = d∆u+ ug(x, u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.
(2.4)

The steady state solution satisfies{
d∆u+ ug(x, u) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(2.5)

Let X = W 2,p(Ω) ∩W 1,p
0 (Ω) and Y = Lp(Ω), where p > n. Then F : R × X → Y

defined by F (d, u) = d∆u+ug(x, u) is a continuously differentiable mapping. Denote
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1298 YAN WANG AND JUNPING SHI

the set of nonnegative solutions of (2.5) by Γ={(d, u) ∈ R+×X :u ≥ 0, F (d, u) = 0}.
Then from the strong maximum principle, Γ = Γ0 ∪ Γ+, where Γ0 = {(d, 0) : d > 0}
is the line of trivial solutions and Γ+ = {(d, u) ∈ Γ : u > 0} is the set of positive
solutions. Define

d1(g,Ω) = inf
φ∈W 1,2

0 (Ω)

{∫
Ω

g(x, 0)φ2(x)dx :

∫
Ω

|∇φ(x)|2dx = 1

}
.(2.6)

Then d1 = d1(g,Ω) is a bifurcation point where nontrivial solutions of system (2.5)
bifurcate from the line of trivial solutions Γ0. Refering to [22, Theorems 1–3], we have
the following result when g(x, u) is of weak Allee effect type.

Theorem 2.3. Suppose that g(x, u) satisfies (g1)–(g3) and (g4b). Then
1. the extinction state u = 0 is locally asymptotically stable with respect to (2.4)

when d > d1, and it is unstable when 0 < d < d1;
2. d = d1 is a bifurcation point for system (2.5), and there is a connected com-

ponent Γ1
+ of Γ+ whose closure includes the point (d, u) = (d1, 0) and the bi-

furcation at (d1, 0) is subcritical; near (d1, 0), Γ1
+ can be written as a curve

(d(s), u(s)) with s ∈ (0, δ), d(s)→ d1 and u(s) = sφ1 +o(s) as s→ 0+, where
φ1(x) is the positive eigenfunction satisfying d1∆φ1 + g(x, 0)φ1 = 0 in Ω and
φ1 = 0 on ∂Ω;

3. there exists d∗ ≡ d∗(g,Ω) satisfying d∗ > d1 > 0 such that (2.5) has no
positive solution when d > d∗, and when d ≤ d∗, (2.5) has a maximal solution
um(d, x) such that for any solution u(d, x) of (2.5), um(d, x) ≥ u(d, x) for
x ∈ Ω, and um(d, x) is semistable;

4. for d < d∗, um(d, x) is decreasing with respect to d, the map d 7→ um(d, ·) is
left continuous for d ∈ (0, d∗), i.e.,

lim
η→d−

|um(η, ·)− um(d, ·)|X = 0,

and all um(d, ·) are on the global branch Γ1
+;

5. (2.5) has at least two positive solutions when d ∈ (d1, d∗).

Note that when g(x, u) satisfies (g4a) instead of (g4b), then d = d1 is still a bifurcation
point and the bifurcation is supercritical, and for any 0 < d < d1, there is a unique
positive solution of (2.5), and for d ≥ d1, there is no positive solution of (2.5).
So a main distinction of weak Allee effect growth rate is to allow an intermediate
range of diffusion coefficient (d1, d∗) so that the model possesses a bistability of two
nonnegative locally asymptotically stable states (one of them is zero).

On the other hand, if the habitat is a closed environment and there is no advection
effect, then the population is described by the following model with a NF boundary
condition: 

∂u

∂t
= d4u+ ug(x, u), x ∈ Ω, t > 0,

∂

∂n
u(x, t) = 0, x ∈ ∂Ω, t > 0.

(2.7)

We have the following results regarding the dynamics of (2.7) when the growth rate
is of weak Allee effect.

Theorem 2.4. Suppose that g(x, u) satisfies (g1)–(g3) and (g4b).
1. The extinction state u = 0 is unstable for any d > 0, and for any d > 0,

(2.7) has a maximal steady state solution um(d, x) such that for any solution
u(d, x) of (2.7), um(d, x) ≥ u(d, x) for x ∈ Ω, and um(d, x) is semistable;
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2. for d > 0, um(d, x) is decreasing with respect to d, the map d 7→ um(d, ·) is
left continuous for d ∈ (0,∞), i.e.,

lim
η→d−

|um(η, ·)− um(d, ·)|X′ = 0,

and all um(d, ·) are on a global branch Γ1
+, where X ′ = {u ∈ W 2,p(Ω) :

∂u/∂n = 0 on ∂Ω}.
Proof. When the advection is absent, Proposition 2.2 part 1 and part 3(b) still

hold true for Ω ⊂ Rn with n ≥ 1. So the instability of u = 0 in part 1 follows
from Proposition 2.2. The existence of a positive steady state follows from the upper-
lower solution method, with the upper solution u(x) = M , where M is defined in
(g2), and the lower solution u(x) = εϕ1(x), where ϕ1(x) is the positive eigenfunction
corresponding to d∆φ+ g(x, 0)φ = λ1φ, x ∈ Ω,

∂φ

∂n
= 0, x ∈ ∂Ω.

(2.8)

Here ε > 0 is sufficiently small so that v(x) < v(x). And there is a maximal steady
state in this case as u is an upper bound of all nonnegative steady states (similar
to Theorem 2.1 part 3). For part 2, let d1 > d2 and assume that um(d1, x) and
um(d2, x) are the maximal steady state solutions of (2.7) with diffusion coefficients d1

and d2, respectively. Then we have ∆um(d2, x)+d−1
1 ug(x, um(d2, x)) ≥ ∆um(d2, x)+

d−1
2 ug(x, um(d2, x)) = 0. Therefore um(d2, x) is a lower solution of (2.7) with diffusion

coefficient d1, which implies um(d1, x) ≥ um(d2, x) as um are the maximal solutions.
So for d > 0, um(d, x) is decreasing with respect to d. Other conclusions in part 2
follow from similar arguments in [22, Theorem 3].

3. Persistence/Extinction dynamics. From subsection 2.3, we know that
the persistence or extinction of a diffusive population with weak Allee effect growth
rate is determined by the boundary condition and the diffusion coefficient d. Under
Neumann boundary (NF) condition, there always exists a semistable positive steady
state solution so the population always persists if the initial population is large enough.
Under zero Dirichlet (H) boundary condition, there are three possible scenarios: un-
conditional persistence when 0 < d < d1, conditional persistence and bistability when
d1 < d < d∗, and extinction when d > d∗. In this section, we consider the effect of
advection on the persistence or extinction of population through comparison method
and bifurcation approach.

3.1. Comparison with logistic models. If g(x, u) satisfies (g1)–(g3) and (g4a)
(logistic growth), then the persistence or extinction of population in (2.1) is completely
determined by the stability of the extinction state as shown in Proposition 2.2. When
g(x, u) satisfies (g1)–(g3) and (g4b) (weak Allee effect), the persistence or extinction
could depend on the initial condition. But here we show that the solutions of (2.7)
with weak Allee effect growth rate can be compared with the ones of two related
equations with comparable logistic growth rates. For that purpose, we define the
“upper growth function” ḡ(x, u) and the “lower growth function” g(x, u) as follows,

g(x, u) =

{
g(x, s(x)), 0 < u < s(x),

g(x, u), u > s(x),
(3.1)

where s(x) is defined in (g3) to be the maximum point of g(x, ·); and
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1300 YAN WANG AND JUNPING SHI

g(x, u) =

{
g(x, 0), 0 < u < ξ(x),

g(x, u), u > ξ(x),
(3.2)

where, for x ∈ Ω, ξ(x) > s(x) satisfies g(x, ξ(x)) = g(x, 0) (see Figure 1). Thus
g(x, u) and g(x, u) are both continuous functions of logistic type and satisfy g(x, u) ≥
g(x, u) ≥ g(x, u). Then we have the following results regarding persistence/extinction
of population in (2.1) by comparing with the ones with the two logistic growth rates
g(x, u) and g(x, u), as the persistence/extinction of population under logistic growth
rate is known (Proposition 2.2).

u

grow
th rate per capita

Fig. 1. The graphs of g(x, u), ḡ(x, u), and g(x, u) for fixed x ∈ Ω.

Theorem 3.1. Suppose that g(x, u) satisfies (g1)–(g3) and (g4b), and g(x, u) and
g(x, u) are defined as in (3.1) and (3.2). Let u(x, t) be the solution of (2.1), and let
um(x) and um(x) be the maximal nonnegative steady state solution of (2.1) with
growth function g(x, u) and g(x, u), respectively.

1. (open environment) When bd > 0 and bu ≥ 0, then there exists constants q
1

and q1 satisfying 0 < q
1
< q1 such that

(a) if 0 ≤ q < q
1
, (2.1) has at least one positive steady state solution, and

um(x) ≥ lim sup
t→∞

u(x, t) ≥ lim inf
t→∞

u(x, t) ≥ um(x) > 0;(3.3)

(b) if q > q1, (2.1) has no positive steady state solution, and lim
t→∞

u(x, t) = 0.

2. (closed environment) When bu = bd = 0, then for all q ≥ 0, (2.1) has a
positive steady state solution and (3.3) holds.

Proof. First we consider the open environment case (bd > 0 and bu ≥ 0). From
Proposition 2.2 part 3(a), for (2.1) with g(x, u), we define q

1
to be the value such that

λ1(q
1
, g(x, 0)) = 0 and λ1(q, g(x, 0)) > 0 for 0 < q < q

1
, and for (2.1) with g(x, u),

we define q1 to be the value such that λ1(q1, g(x, 0)) = 0 and λ1(q, g(x, 0)) < 0 for
q > q1. Since g(x, u) ≥ g(x, u) ≥ g(x, u), from the comparison principle of parabolic

equations, we have u(x, t) ≥ u(x, t) ≥ u(x, t) for any x ∈ Ω and t > 0, where
u(x, t) and u(x, t) are the solutions of (2.1) with growth rates g(x, u) and g(x, u) and
same initial condition as in (2.1). From Proposition 2.2, if 0 ≤ q < q

1
, we obtain

(3.3) as lim
t→∞

u(x, t) = um(x) and lim
t→∞

u(x, t) = um(x). In this case, (2.1) has at
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POPULATION MODEL WITH WEAK ALLEE EFFECT GROWTH 1301

least one positive steady state solution, as u(x, t) converges to a nonnegative steady
state from Theorem 2.1, and the steady state is positive from (3.3). If q > q1, then
lim
t→∞

u(x, t) = 0 as lim
t→∞

u(x, t) = 0 and lim
t→∞

u(x, t) = 0. The close environment case

can be proved in a similar way.

Theorem 3.1 shows that the stream population model (2.1) with weak Allee effect
growth rate is similar to the one with logistic growth rate in small (0 ≤ q < q

1
)

or large (q > q1) advection cases, but it does not provide any information for the
intermediate (q

1
< q < q1) advection rate. In the next subsection, we use bifurcation

theory to explore the dynamic behavior of (2.1) in that case. In Figure 2, solutions
of (2.1) with weak Allee effect growth g(x, u) = (1 − u)(u + h) and the ones with
corresponding upper and lower logistic growth rates

ḡ(x, u) =


(1 + h)2

4
, 0 < u <

1− h
2

,

(1− u)(u+ h), u ≥ 1− h
2

,

and

g(x, u) =

{
h, 0 < u < 1− h,
(1− u)(u+ h), u ≥ 1− h,

are shown. One can observe that when the advection rate is smaller than q
1
, the three

solutions are almost identical in their maximum values, which is due to the fact that
the three functions g(x, u), g(x, u), and g(x, u) have same values for large population
density u. But the growth rates for small population density u are more important
when the advection rate q is in an intermediate range. Figure 3 shows a comparison
of profiles of maximal steady state solutions of three growth rates g(x, u), g(x, u), and
g(x, u).

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

q

u m
ax

q1

NF/FF

q̄1q
1

 

 
logistic ḡ(x,u)
weak Allee g(x,u)
logistic g(x,u)

Fig. 2. Comparison of maximal steady state solutions of (2.1) with growth rates g(x, u),
g(x, u) = (1 − u)(u + h), and g(x, u). Here the horizontal axis is the advection rate q, and the
vertical axis is the maximum value of the maximal steady state solutions; the parameters used are
d = 4, h = 0.3, L = 10, bu = 0, and bd = 1.
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weak Allee g(x,u)
logistic g(x,u)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
NF/FF

Space x

P
op

ul
at

io
n

 

 

logistic ḡ(x,u)
weak Allee g(x,u)
logistic g(x,u)

Fig. 3. Comparison of the maximal steady state solutions to (2.1) of different growth rates.
Here g(x, u) = (r−u)(u+h), r = 1, d = 4, h = 0.3, L = 10, bu = 0 and bd = 1. Upper left: q = 0.9;
Upper right: q = 1.65; Lower left: q = 1.9; Lower right: q = 2.1.

3.2. Bifurcation: Open environment. In this subsection, we consider the
structure of the set of positive steady state solutions of (2.1) using the advection rate
q as a bifurcation parameter. The steady state equation of system (2.1) is

duxx(x)− qux(x) + u(x)g(x, u(x)) = 0, 0 < x < L,

dux(0)− qu(0) = buqu(0),

dux(L)− qu(L) = −bdqu(L).

(3.4)

Define X3 = W 2,2(0, L) and Y = L2(0, L) and a nonlinear mapping G : R+ ×X3 →
Y × R2 as

G(q, u) :=

 duxx − qux + ug(x, u)
dux(0)− (1 + bu)qu(0)
dux(L)− (1− bd)qu(L)

 .(3.5)

We denote the set of nonnegative solutions of the equation by Γ = {(q, u) ∈ R+×X3 :
u ≥ 0, G(q, u) = 0}. Then from the strong maximum principle, Γ = Γ0 ∪ Γ+, where
Γ0 = {(q, 0) : q > 0} is the set of trivial solutions and Γ+ = {(q, u) ∈ Γ : u > 0}. We
consider the bifurcation of nontrivial solutions of (2.1) from the zero steady state at
some bifurcation point q = q1, which is identified in Proposition 2.2 part 3(a).

Theorem 3.2. Suppose that g(x, u) satisfies (g1)–(g3) and (g4a) or (g4b), g is
twice differentiable in u, bu ≥ 0, bd ≥ 1

2 , and Ω+ = {x ∈ [0, L] : g(x, 0) > 0} is a set
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POPULATION MODEL WITH WEAK ALLEE EFFECT GROWTH 1303

with positive Lebesgue measure. Recall q1 is the unique positive number such that the
principal eigenvalue of (2.3) λ1(q) = 0. Then

1. q = q1 is a bifurcation point for (3.4), and there is a connected component Γ1
+

of the set Γ+ of positive solutions to (3.4) whose closure includes the point
(q, u) = (q1, 0) and the projection of Γ1

+ onto R+ via (q, u) 7→ q contains the
interval [0, q1);

2. near (q1, 0), Γ1
+ = {(q(s), u(s)) : 0 < s < δ}, q(0) = q1, u(0) = 0 and

u(s) = sφ + sz(s), z(0) = 0, z : [0, δ) → X4, q(s), z(s) are differentiable
functions, where φ is the positive eigenfunction of (2.3) with q = q1 and

λ = λ1(q1) = 0, and X4 = {ϕ ∈ X3 :
∫ L

0
φϕdx = 0} is a subspace of X3

complement to Span{φ};
3. when g(x, u) satisfies (g4a) (logistic growth), then the bifurcation at (q1, 0) is

forward, i.e., q(s) < q1 for s ∈ (0, δ);
4. when g(x, u) satisfies (g4b) (weak Allee effect growth), then the bifurcation at

(q1, 0) is backward, i.e., q(s) > q1 for s ∈ (0, δ).

The proof of Theorem 3.2 is given in the Appendix.

Remark 3.3. 1. When bu = bd = 0 (closed environment), the trivial steady
state is always unstable and there exists a stable positive steady state solution
(see Theorem 3.1 part 2). Then, no bifurcation occurs from the branch of the
trivial steady state solution.

2. Theorem 3.2 is proved under the assumptions of bu ≥ 0 and bd ≥ 1/2. For the
case of bu ≥ 0, 0 < bd < 1/2, there always exists a critical advection rate q1

that destabilizes the zero steady state solution, but it is not known whether
it is unique in general situation. If the environment is spatially homogeneous,
then such q1 is unique for all bu ≥ 0 and bd > 0 ([14, Theorem 2.1]). The
bifurcation structure of positive solutions of (3.4) for 0 < bd < 1/2 is an
interesting open question.

For more specific types of growth rate function, logistic or weak Allee effect, more
detailed information on the global bifurcation of solutions of (3.4) can be obtained.

Theorem 3.4. Suppose that g(x, u) satisfies (g1)–(g3) and (g4a) (logistic growth),
bu ≥ 0, bd ≥ 1

2 . Then in addition to Theorem 3.2,
1. for each 0 ≤ q < q1, there exists a unique positive solution uq(x) of (3.4) and

it is linearly stable; moreover for any initial value u0(x) ≥ (6≡)0, lim
t→∞

u(x, t) =

uq(x) in X3, where u(x, t) is the solution of (2.1) with initial condition u0;
2. Γ1

+ can be parameterized as Γ1
+ = {(q, uq(x)) : 0 ≤ q < q1}, lim

q→q1
uq(·) = 0,

and the map q 7→ uq(q, ·) is continuously differentiable.

The proof of this result is omitted, as the uniqueness of the positive solution uq(x) is
well known (see [2, 13]), and the rest parts follow from similar results about logistic
type growth functions (see [2]). Figure 4 (left panel) shows a bifurcation diagram in
this case.

Theorem 3.5. Suppose that g(x, u) satisfies (g1)–(g3) and (g4b) (weak Allee ef-
fect growth), bu ≥ 0, bd ≥ 1

2 . Then in addition to Theorem 3.2,
1. there exists q∗ > q1 > 0 such that (3.4) when q ≤ q∗, (3.4) has a max-

imal solution um(q, x) such that for any positive solution u(q, x) of (3.4),
um(q, x) ≥ u(q, x) for x ∈ [0, L];

2. (3.4) has at least two positive solutions when q ∈ (q1, q∗).
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0 q
1 q

logistic

0 q
1 qq

*

Weak Allee Effect

Fig. 4. Illustrative bifurcation diagrams of nonnegative solutions to (3.4). Left: g(x, u) follows
logistic type growth. Right: g(x, u) follows weak Allee effect type growth. Here the horizontal axis is
q, and the vertical axis is ||u||∞.

The proof of Theorem 3.5 is given in the Appendix. Figure 4 and Figure 5 show
the numerical bifurcation diagrams of maximal solutions for (3.4) under the NF/FF
and NF/H boundary conditions, which also reveals that the bifurcation points q1

and q∗ are smaller for NF/H boundary condition than the ones for NF/FF boundary
condition. In general the bifurcation points appear to be decreasing in bu and bd.
Note that NF/H is not covered by Theorem 3.5 but a similar proof also holds in that
case (see the next subsection).

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

q

||u
|| ∞

q
*

q
1

NF/FF

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

q

||u
|| ∞

q
*

q
1

NF/H

Fig. 5. Numerical bifurcation diagrams of nonnegative solutions to (3.4) when g(x, u) = u(1−
u)(u + h), and only the trivial solutions and maximal solutions are plotted. Left: the NF/FF
boundary condition. Right: the NF/H boundary condition. Here d = 4, h = 0.3, and L = 10. Here
the horizontal axis is q, and the vertical axis is ||u||∞.

3.3. Hostile boundary condition. In the boundary condition of (2.1), when
bu → ∞, bd → ∞, all the individuals of the species die on the boundary so the
boundary is hostile, and it can be written as u(0) = u(L) = 0. The dynamical
behavior of the system (2.1) can still be described by Theorem 2.1 with some small
modification. In particular the dynamics is determined by the nonnegative steady
state solutions. In subsection 3.2, it is shown that bifurcation of positive solutions of
(3.4) with respect to q follows Figure 5 for any diffusion coefficient d > 0. Here we
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POPULATION MODEL WITH WEAK ALLEE EFFECT GROWTH 1305

show that for the hostile boundary condition, the bifurcation diagrams are different
for different range of d > 0. The steady state equation of system (2.1) with hostile
boundary condition becomes{

duxx(x)− qux(x) + u(x)g(x, u(x)) = 0, 0 < x < L,

u(0) = u(L) = 0.
(3.6)

Theorem 3.6. Suppose that g(x, u) satisfies (g1)–(g3) and (g4b) (weak Allee
effect growth). Recall the critical diffusion coefficients d1 and d∗ when q = 0 in
Theorem 2.3.

1. If 0 < d < d1, there is a connected component Γ1
+ of the set of positive

solutions to (3.6) in the space R+ × X5 that connects (q, u) = (0, um) and
(q, u) = (q1, 0), where q1 > 0 is the bifurcation point for (3.6) on the branch
Γ0 of trivial solutions, and X5 = W 2,2(0, L)∩W 1,2

0 (0, L); there exists q∗ > q1

such that (3.6) has at least two positive solutions on Γ1
+ for any q1 < q < q∗,

at least one positive solution on Γ1
+ for any 0 ≤ q ≤ q1, and any 0 ≤ q < q∗

one of the solutions is the maximal solution um(q, x). (See Figures 6 and 7
(left).)

0 q
1 qq

*

d < d1

0 qq
*

d1 < d < d∗

Fig. 6. Illustrative bifurcation diagrams of nonnegative solutions to (3.6). Left: 0 < d < d1.
Right: d1 < d < d∗. Here the horizontal axis is q, and the vertical axis is ||u||∞.

0.5 1 1.5
−0.5

0

0.5

1

q
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|| ∞

q
*

q
1

H/H

0 0.5 1 1.5
−0.5

0

0.5

1

q

||u
|| ∞

q
*

H/H

Fig. 7. Numerical bifurcation diagrams of nonnegative solutions to (3.6) when g(x, u) = u(1−
u)(u + h), and only the trivial solutions and maximal solutions are plotted. Here h = 0.3, L = 10,
the horizontal axis is q, and the vertical axis is ||u||∞. Left: d = 3. Right: d = 4.
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2. If d1 < d < d∗, there is a connected component Γ1
+ of the set of positive

solutions to (3.6) in R+ × X5 which connects (q, u) = (0, um) and (q, u) =
(0, u2), um is the maximal solution of (3.6) when q = 0, and u2 is another
positive solution of (3.6) when q = 0; there exists q∗ > 0 such that (3.6) has
at least two positive solutions on Γ1

+ for any 0 ≤ q < q∗, and one of these two
solutions is the maximal solution um(q, x). (See Figures 6 and 7 (right).)

The proof of Theorem 3.6 is given in the Appendix.
Figure 6 and Figure 7 show the numerical bifurcation diagrams of maximal steady

state solutions for (3.6) in the cases of 0 < d < d1 and d1 < d < d∗.

Remark 3.7. 1. The results in Theorem 3.6 also hold when only one of the
boundary condition is hostile, for example, NF/H boundary condition. In
these cases, there exists a critical diffusion coefficient d1 > 0 so that the
bifurcation diagrams with parameter q are different when d < d1 and d > d1

as in Figures 6 and 7. As shown in Theorem 3.5, the qualitative bifurcation
diagrams for all d > 0 are same for the boundary open environment boundary
conditions with bu ∈ [0,∞) and bd ∈ (0,∞).

2. If d > d∗ (defined in Theorem 2.3), (3.6) has no positive solutions when q = 0
from Theorem 2.3. But it is not known whether (3.6) has positive solutions
for some positive q > 0. Since it is known that there is no solutions for large
q > 0, the set Γ+

1 of positive solutions will be an isola, which is not connected
to q = 0 or u = 0 if it is not empty.

3. The critical advection rate q∗ defined in Theorems 3.5 or 3.6 is the largest
advection rate for the existence of positive steady states of (2.1) on the
connected component Γ+

1 , which either emerges from a bifurcation point
(q, u) = (q1, 0) or (q, u) = (0, um). Theoretically we do not exclude the
possibility of another connected component Γ̃+

1 which is an isola for larger q.
But numerical simulations in Figures 5 and 7 show that the set of positive
solutions of (3.4) or (3.6) is connected.

Finally we compare the effect of different boundary conditions on the dynamics
of (2.1). Especially we compare the different ranges of advection rate q and diffu-
sion coefficient d that generate extinction, bistable, or monostable dynamics under
different boundary conditions. Theorems 3.5 and 3.6 identify two critical advection
rates q1 and q∗ that separate the ranges of advection rates of these three dynamical
regimes: when 0 ≤ q ≤ q1, the solutions tend to the maximal steady state um as
t → ∞; when q1 < q < q∗, the dynamic outcome depends on the initial conditions;
most solutions either tend to the stable extinction state u = 0 or the stable maximal
steady state um as t → ∞, and there are also solutions on the threshold manifold
that separates the basin of attractions of the two state states, and they converge
to unstable steady states on the threshold manifold; and when q > q∗, all solutions
tend to the extinction state u = 0. In Figure 8, we compare bifurcation points q1,
q∗ and maximal solutions um(q, x) of (2.1) for 0 ≤ q ≤ q∗ under different boundary
conditions. Here we impose the upstream boundary condition to be NF (bu = 0).
For open environment (bd ∈ (0,∞]), there always exist two bifurcation points satis-
fying 0 < q1(bd) < q∗(bd). And as bd decreases, q1(bd) and q∗(bd) both increase. For
closed environment (bd = 0), there exists a (possibly unique) positive steady state
solution for any q ≥ 0 and there are no bifurcation points. One can observe from
Figure 8 (left panel) that the maximum value of um(q, ·) increases for small q andD
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decreases for large q when 0 ≤ bd < 1, while the maximum value always decreases
when bd > 1. On the other hand, for all boundary conditions, the total population
||um(q, ·)||1 decreases in q.
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q

0

1

2

3

4

5

6

7

8

9

10

11

||u
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Fig. 8. Comparison of bifurcation points q1, q∗, and maximal steady state solutions of (2.1)
under different boundary conditions. Here g(x, u) = (r − u)(u + h), r = 1, h = 0.3, bu = 0 (NF
boundary condition on the upstream end), d = 4, L = 10, and the horizontal axis is q. Left:
comparison of ||u||∞. Right: comparison of ||u||1.

In Figure 9, the parameter regions for the three dynamical behavior (monostable,
bistable, and extinction) are plotted in the (d, q)-plane. For the boundary conditions
that have NF on the upstream end and bd = 0.25, bd = 0.5, or bd = 1 on the down-
stream end (upper panel and middle left panel), the bifurcation curves q1(d) and q∗(d)
increase as the diffusion coefficient d increases, and it appears that each of q1(d) and
q∗(d) approaches a limit as d → ∞. Note that the case bd = 0.25 is not included in
the results of Theorem 3.5, but the behavior is similar to the one for bd > 0.5. For the
boundary conditions that have NF on the upstream end and bd = 2, the bifurcation
curves q1(d) and q∗(d) are not monotone increasing but have a local maximum point in
an intermediate advection rate. The curves still have asymptotic limits when d→∞.
For the NF/H and H/H type boundary conditions (lower panel), not only the shape
of graphs of q1(d) and q∗(d) are one-hump type, each of q1(d) and q∗(d) drops to zero
at some d > 0. Indeed the value d1 > 0 such that q1(d) = 0 and the value d∗ > 0
such that q∗(d) = 0 are exactly the critical diffusion coefficients defined in Theorem
2.3. The vanishing of the bifurcation point q1(d) and q∗(d) under hostile boundary
condition is shown in Theorem 3.6. When 0 < d < d1, the dynamics changes as
“monostable-bistable-extinction” as q increases across q1 and q∗ (see Figure 6 (left)),
and when d1 < d < d∗, it changes to “bistable-extinction” (see Figure 6 (right)). The
numerical result here also suggests that when d > d∗, the population does to extinction
for all q ≥ 0. Also for the NF/H and H/H type boundary conditions, if one fixes the
advection rate q to be in an intermediate range and increases the diffusion coefficient
d, then the dynamics varies in the sequence “extinction-bistable-monostable-bistable-
extinction” (see Figure 9 (lower panel)). Note that for the logistic growth case, it is
known that the dynamics changes in the sequence “extinction-monostable-extinction”
[13, 24], and it was concluded that intermediate diffusion coefficient is favourable
for the persistence. Here we get a similar conclusion for weak Allee effect type
growth rate, but there are bistable regimes between the transition from extinction to
persistence.
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Fig. 9. Population dynamical behavior of (2.1) for varying advection rate q and diffusion
coefficient d. Here g(x, u) = (r − u)(u + h), r = 1, h = 0.3, d = 4, and L = 10. In each graph, the
horizontal axis is d in log scale, and the vertical axis is q. In all except lower right, bu = 0 (NF).
Upper left: bd = 0.25. Upper right: bd = 0.5. Middle left: bd = 1 (F). Middle right: bd = 2. Lower
left: hostile boundary at x = L (H). Lower right: hostile boundary at x = 0 and x = L (H/H).

4. Conclusion. The persistence or extinction of a stream population with dif-
fusive and advective movement is modeled by a reaction-diffusion-advection equation
on an interval with boundary conditions depicting different flowing patterns at the
endpoints. When the growth rate of the species is of logistic type, it is well known that
the dynamics is either population extinction or convergence to a positive steady state
(monostable), depending on the environment parameters (diffusion, advection, stream
length) and boundary conditions [2, 8, 13, 17]. On the other hand, if the growth rate
is of strong Allee effect, it was shown that either population extinction or alternative
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stable states (bistable) occurs, still depending on the environment parameters and
boundary conditions. In this paper, the dynamics of the reaction-diffusion-advection
equation with weak Allee effect growth rate is considered. Its outcome is in between
the one with logistic growth and the one with strong Allee effect growth, so the
extinction, bistable, and monostable dynamics all can occur for some environment
parameters and boundary conditions.

For a closed advective environment, the dynamic behavior of the stream popu-
lation with weak Allee effect growth is similar to the one with logistic growth, and
the population persists for all diffusion coefficients and advection rates. For the open
environment with non-hostile boundary condition, still similar to the logistic growth
case, the trivial steady state in the weak Allee effect case is destabilized at a criti-
cal advection rate so it is stable for large advection and unstable for small advection.
However, at the critical advection rate, unlike the logistic case, a backward bifurcation
occurs so there is a range of advection rates for which the dynamics of stream popu-
lation is bistable. Hence the model with weak Allee effect growth has features of the
logistic model in some parameter ranges, but it also possesses the bistable dynamics
that are characteristic for strong Allee effect growth in other parameter ranges. We
use bifurcation theory to identify the range of advection rate for these three dynamic
regimes: extinction, bistable, and monostable, and the diffusion coefficient does not
affect the qualitative dynamics in this case.

For the open environment with hostile boundary condition, it is shown that both
of the diffusion coefficient and the advection rate affect the dynamic outcomes. For an
intermediate advection rate, when increasing the diffusion coefficient, the dynamics
changes from extinction to bistable, then to monostable, then to bistable again, and
back to extinction. This is more complicated than the logistic growth case but also
shows that intermediate diffusion coefficient is favorable for population persistence
even when the growth rate has a weak Allee effect. This extends the previous explana-
tion of the “drift paradox” in [15, 16, 24] to the weak Allee effect growth case but with
an additional possibility of bistable dynamics in two windows of diffusion coefficients.

Appendix.

Proof of Theorem 3.2. We apply a local bifurcation theorem [4, Theorem 1.7] and
a global version in [23]. The nonlinear map G defined in (3.5) is differentiable and
twice differentiable in u, and G(q, 0) = 0 for all q ≥ 0. At the bifurcation point
(q, u) = (q1, 0),

Gu(q1, 0)[φ] :=

 dφxx − q1φx + g(x, 0)φ
dφx(0)− (1 + bu)q1φ(0)
dφx(L)− (1− bd)q1φ(L)

 =

0
0
0

 ,(4.1)

from Proposition 2.2, Gu(q1, 0) has a one-dimensional kernel spanned by φ as
λ1(q1) = 0 is the principal eigenvalue of (2.3), and the codimension of the range
of Gu(q1, 0) is also one from [23]. Here we make the range R(Gu(q1, 0)) of Gu(q1, 0)
more specific. Suppose there exists a ϕ ∈ X3 such that

Gu(q1, 0)[ϕ] :=

 dϕxx − q1ϕx + g(x, 0)ϕ
dϕx(0)− (1 + bu)q1ϕ(0)
dϕx(L)− (1− bd)q1ϕ(L)

 =

h(x)
a
b

 ,(4.2)

where (h(x), a, b) ∈ Y × R2. Notice that the first equation in (4.1) can be written as

d(e−α1xφx)x + g(x, 0)e−α1xφ = 0,(4.3)

where α1 = q1
d . Similarly, from (4.2), we have
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1310 YAN WANG AND JUNPING SHI

d(e−α1xϕx)x + g(x, 0)e−α1xϕ = e−α1xh(x).(4.4)

Then multiplying (4.3) by ϕ and (4.4) by φ, subtracting each other, and integrating
from 0 to L, we have

−e−α1Lbφ(L) + aφ(0) = −
∫ L

0

e−α1xφ(x)h(x)dx.(4.5)

Therefore we have

R(Gu(q1, 0)) = {(h(x), a, b) ∈ Y × R2 : l(h(x), a, b) = 0},

where l : Y × R2 → R is a linear functional in (Y × R2)∗ defined by

l(h(x), a, b) =

∫ L

0

e−α1xφ(x)h(x)dx+ aφ(0)− e−α1Lbφ(L).(4.6)

Therefore dimN(Gu(q1, 0)) = codimR(Gu(q1, 0)) = 1.
Next we prove that Gqu(q1, 0)[φ] 6∈ R(Gu(q1, 0)), where φ ∈ N(Gu(q1, 0)) and

φ 6= 0. We have

Gqu(q1, 0)[φ] :=

 −φx
−(1 + bu)φ(0)
−(1− bd)φ(L)

 .(4.7)

By using bd ≥ 1
2 and Gu(q1, 0)[φ] = 0, we have

l(Gqu(q1, 0)[φ]) =−
∫ L

0

e−α1xφ(x)φx(x)dx− (1 + bu)φ2(0) + e−α1L(1− bd)φ2(L)

=− 1

2
e−α1xφ2(x)|L0 −

∫ L

0

α1

2
e−α1xφ2(x)dx− (1 + bu)φ2(0)

+ e−α1L(1− bd)φ2(L)

=−
∫ L

0

α1

2
e−α1xφ2(x)dx−

(
1

2
+ bu

)
φ2(0) + e−α1L

(
1

2
− bd

)
φ2(L);

< 0,

(4.8)

hence Gqu(q1, 0)[φ] 6∈ R(Gu(q1, 0)).
Now from [4, Theorem 1.7], the set of positive solutions of (3.4) near the bifur-

cation point (q1, 0) is Γ1
+ = {(q(s), u(s)) : 0 < s < δ}, q(0) = q1, u(0) = 0 and

u(s) = sφ+sz(s), z(0) = 0, z : [0, δ)→ X4, q(s), z(s) are continuous functions, where

X4 = {ϕ ∈ X3 :
∫ L

0
φϕdx = 0} is a subspace of X3 complement to Span{φ}. Since

Guu(q1, 0)[ϕ1, ϕ2] :=

2gu(x, 0)ϕ1ϕ2

0
0

 ,(4.9)

where ϕ1, ϕ2 ∈ X3, we also obtain that (see [21])

q′(0) = −〈l, Guu(q1, 0)[φ, φ]〉
2〈l, Gqu(q1, 0)[φ]〉

=
2
∫ L

0
e−α1xgu(x, 0)φ3(x)dx

α1

∫ L
0
e−α1xφ2(x)dx+ (2bu + 1)φ2(0) + (2bd − 1)e−α1xφ2(L)

.

(4.10)
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Therefore, if gu(x, 0) < 0 for all x ∈ Ω, which is the logistic type growth rate, we
have q′(0) < 0, and the bifurcation occurring at (q1, 0) is forward. And if gu(x, 0) > 0
for all x ∈ Ω, which is the weak Allee type growth rate, we have q′(0) > 0, and the
bifurcation occurring at (q1, 0) is backward.

Next we apply [23, Theorem 4.3, 4.4] to obtain a global connected component
Γ+

1 containing the local bifurcation curve which we obtain above. The conditions in
[23, Theorem 4.3, 4.4] can all be verified using standard ways; see [23, 27]. Then
we conclude that there exists a connected component Γ1

+ of Γ+ such that its closure
contains (q1, 0), and there are three possibilities: (i) Γ1

+ is unbounded in R×X3; (ii)
the closure of Γ1

+ contains another (qi, 0), where qi is another eigenvalue satisfying the
kernel of Gu(qi, 0) is nontrivial and qi 6= q1; or (iii) Γ1

+ contains a point (q, z), where
z ∈ X4. Case (ii) cannot happen since according to Lemma 3.1 all solutions on Γ1

+ are
positive, but the solutions bifurcating from (qi, 0) with qi 6= q1 are sign-changing near
the bifurcation point, as 0 is a nonprincipal eigenvalue of (2.3) with q = qi. Case (iii)
cannot occur either as z ∈ X4 implying that z is sign-changing but all solutions on
Γ1

+ are positive. Therefore case (i) must occur and Γ1
+ must be unbounded in R×X3.

And from Proposition 2.1, we have

u(x) ≤ eq∗x/d max
y∈[0,L]

(e−q∗y/dr(y)),

where r(x) is defined in (g2), which gives that Γ1
+ is bounded in R+ ×X3. Thus, the

projection of Γ+ on R+ is bounded. On the other hand, from Lemma 3.1, we know
that there exist a q1 > 0 such that positive solutions of system (3.4) only exist when
q < q1. Therefore (−∞, q1) ⊃ ProjqΓ

1
+ ⊃ (−∞, q1) ⊃ [0, q1).

Proof of Theorem 3.5. From Theorem 3.1, we know that there exists a q1 > 0,
such that (3.4) has no positive solution when q > q1. For any q ≥ 0, using the
transform u = eαxv (α = q/d) on (3.4), we obtain the following boundary value
problem for v: 

dvxx + qvx + vg(x, eαxv) = 0, 0 < x < L,

−dvx(0) + buqv(0) = 0,

dvx(L) + bdqv(L) = 0.

(4.11)

Set v(x) = max
y∈[0,L]

e−αyr(y). From (g3), we have g(x, u) ≤ 0 for u ≥ r(x) which implies

that

g(x, eαxv) = g

(
x, eαx max

y∈[0,L]
e−αyr(y)

)
≤ g(x, eαxe−αxr(x)) = g(x, r(x)) = 0.

Hence v(x) satisfies
dv′′ + qv′ + vg(x, eαxv) ≤ 0, 0 < x < L,

−dv′(0) + buqv(0) ≥ 0,

dv′(L) + bdqv(L) ≥ 0,

(4.12)

which shows that v(x) is an upper solution of (4.11) for any q ≥ 0. For a given
0 ≤ q ≤ q∗, if there exists a positive solution v(x) of (4.11), then it satisfies v(x) ≤ v(x)
from Theorem 2.1 part 2. We can set the lower solution of (4.11) to be v(x) = v(x).
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Then there exists a maximal solution vm(x) of (4.11) satisfying v(x) ≤ vm(x). Since
vm(x) is obtained through iteration from v(x) and any positive solution v of (4.11)
satisfies v(x) ≤ v(x), then vm(x) is the maximal solution of (4.11). Hence the maximal
solution vm(x) always exists as long as a positive solution v(x) of (4.11) exists. From
Theorem 3.2, under the conditions (g1)–(g3) and (g4b), (4.11) has a positive solution
v(x) for q ∈ (q1, q1 + δ) with some δ > 0, and these solutions are on a connected
component Γ1

+ that emerges from the bifurcation point q = q1. Define q∗ = sup{q >
0 : there exists a positive solution (q, u) ∈ Γ1

+ of (3.4)}. Then q∗ is well defined and
q1 < q∗ ≤ q1. Because of the continuity of Γ1

+ and Theorem 3.2, (4.11) (or (3.4))
has a positive solution (q, v) (or (q, u)) for all q ∈ [0, q∗). Then from above argument,
(4.11) has a maximal solution vm(q, x) for q ∈ [0, q∗), and consequently (3.4) has a
maximal solution um(q, x) for q ∈ [0, q∗).

From Theorem 2.1, the solutions {um(q, x) : 0 ≤ q < q∗} are uniformly bounded,
and thus they are also bounded inX3 from elliptic estimates. By taking a subsequence,
we may assume that um(q∗, x) = limq→(q∗)− um(q, x) ≥ 0 exists, and it is a solution
of (3.4). From the maximum principle, either um(q∗, x) > 0 or um(q∗, x) ≡ 0. If
um(q∗, x) ≡ 0, then q = q∗ is also a bifurcation point for (3.4) from the trivial branch
Γ0, but q = q1 is the only bifurcation point where positive solutions of (3.4) can
bifurcate from Γ0. So this is impossible as q∗ > q1. Therefore um(q∗, x) > 0 so (3.4)
has a maximal solution um(q, x) for q ∈ [0, q∗]. Finally the existence of two positive
solutions of (3.4) when q ∈ (q1, q∗) follows from the same argument of [22, Theorem
3] but using the energy functional

E(u) =

∫ L

0

e−αx
[
d

2
(u′)2 − F (x, u)

]
dx+

q

2
(1 + bu)u2(0)− q

2
(1− bd)e−αLu2(L),

(4.13)

for u ∈ X2, where F (x, u) =

∫ u

0

ug(x, s)ds.

Proof of Theorem 3.6. For the case that 0 < d < d1, when q = 0, the trivial
solution u = 0 of (3.6) is unstable and according to Theorem 2.3, (2.5) has a maximal
solution um. Then we can follow the same proof of Theorems 3.2 and 3.5 to prove
that there is a unique bifurcation point q1 > 0 for (3.6) on the branch Γ0 of trivial
solutions, the bifurcation is backward so the bifurcating branch Γ1

+ can be extended
to some q∗ > q1, and Γ+

1 connects to (0, um). Other parts can also be obtained using
the same proof as the ones of Theorems 3.2 and 3.5.

For the case that d1 < d < d∗, when q = 0, the trivial solution u = 0 of
(3.6) is stable. From Theorem 2.3, (2.5) has a maximal solution um and at least
another positive solution u2. Let Γ1

+ be the connected component of the set of positive
solutions to (3.6) in R+ ×X3 containing (0, um). Then from [29, Theorem 4.2], the
following alternatives hold: (i) Γ1

+ is unbounded in R+ × X5, or (ii) Γ1
+ contains

another (0, u2) ∈ R × X5 with u2 6= um, or (iii) Γ1
+ ∩ ∂(R+ × X5) 6= ∅, where

∂(R+×X5) is the boundary of R+×X5. Since the zero steady state is always stable,
(iii) is not possible. From Theorem 3.1, Γ1

+ is bounded; hence (i) is also not possible.
Therefore, Γ1

+ contains another (0, u2) ∈ {0} × X5 with u2 6= um. Other parts can
also be obtained using the same proof as the ones of Theorems 3.2 and 3.5.
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