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Abstract
A reaction-diffusion model is proposed to describe the mechanisms underlying the
spatial distributions of ROP1 and calcium on the pollen tube tip. The model assumes
that the plasma membrane ROP1 activates itself through positive feedback loop, while
the cytosolic calcium ions inhibit ROP1 via a negative feedback loop. Furthermore it
is proposed that lateral movement of molecules on the plasma membrane are depicted
by diffusion. It is shown that bistable or oscillatory dynamics could exist even in the
non-spatial model, and stationary and oscillatory spatiotemporal patterns are found in
the full spatial model which resemble the experimental data of pollen tube tip growth.
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1 Introduction

Cell polarity is a fundamental feature of almost all cells. It is required for the differentia-
tion of new cells, the formation of cell shapes, and cellmigration, etc (Edelstein-Keshet
et al. 2013; Mogilner et al. 2012). Polar tip growth is a specialized form of cell growth,
in which growth is limited to the single end of the cell, allowing the cell to rapidly
elongate and penetrate tissues. Pollen tubes provide an excellent model for studying tip
growth and spatiotemporal oscillation, such asCa2+ oscillation (Feijó et al. 2001). As
the male structure carrying sperm cells, pollen tubes protrude from pollen grains, and
elongate by extremely polarized cell growth known as tip growth. They pass through
several female tissues to reach the ovule, in which the sperm cells are released from
the pollen tube and fuse with the egg cell and the central cell to grow an embryo and
endosperm. To efficiently target to the ovule, pollen tubes grow extraordinarily fast in
an oscillatory fashionwhich is controlled by theRhoGTPase (ROP1)molecular switch
(Li et al. 1999;Yang 2008).Within the signaling network regulating polarized exocyto-
sis to the tip of pollen tube, plasma membrane localized ROP1 at the pollen tube apex
is regulated by positive and negative feedback loops through exocytosis. Polarized
exocytosis regulated by active ROP1 couple with ROP1 signaling to the composition
and mechanics of the cell wall (Luo et al. 2017). The resulting asymmetric cell wall
structure determines the strain rates and thereby the geometry of the cell wall. To pro-
mote polar exocytosis, the ROP1 signaling network is localized dynamically to the tip
plasma membrane as an apical cap, whose shape changes in an oscillatory manner as
growth oscillation. Therefore, modeling the oscillatory dynamic of ROP1 distribution
on the plasma membrane is the key to understand the tip growth of pollen tube.

As a key regulator of the self-organizing pollen tube system, the activity and distri-
bution of ROP1 are fine-tuned by both positive and negative feedback mechanisms as
well as slow diffusion. It has been indicated that the Ca2+ is involved in the negative
feedback regulation of ROP1. In addition, it also has been shown that ROP1 promotes
the formation of the intracellular Ca2+ gradients probably via the influx of extracel-
lular Ca2+ (Gu et al. 2005; Li et al. 1999). In recent work (Luo et al. 2017; Xiao et al.
2016), the Yang and Cui group demonstrated that spatial distribution of active ROP1 as
an apical cap can be achieved through both positive and negative feedbacks, and a gra-
dient of guidance signal can promote ROP1 activation and lead to an asymmetric dis-
tribution of active ROP1 and result in the change of growth direction. All of these prior
findings provide us the basis to uncover the quantitative principles behind the formation
and regulation of rapid spatiotemporal oscillation of ROP1-Ca2+ signaling network
and their linkage to growth redirection. In this paper, we propose a reaction-diffusion
model of ROP1 and Ca2+ distributions on the cell plasma membrane to show how
ROP1 and Ca2+ are spatiotemporally intertwined and what are the quantitative rela-
tionship between them in order to generate theROP1-Ca2+ spatiotemporal oscillation.

A PDE model for yeast cell polarization was proposed in Altschuler et al. (2008)
but it only considered the positive feedback. The reaction-diffusion pattern formation
theory suggests that positive feedback alone cannot generate stable spatial patterns.
Reaction-diffusion models for yeast cell polarization induced by pheromone spatial
gradient have been established by Chou et al. (2008), Lo et al. (2014), Moore et al.
(2008), Yi et al. (2007) and Zheng et al. (2011), see also (Goryachev and Pokhilko
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2008; Holmes and Edelstein-Keshet 2016; Jilkine et al. 2007; Mori et al. 2011; Rätz
and Röger 2012). In the recent work (Xiao et al. 2016), a PDE model for the ROP1
dynamics for the pollen tube tip growth was proposed:

⎧
⎨

⎩

Rt=kp f Rα

(

Rtot−
∫ L

−L
R(s, ·)ds

)

−kn f R+DRRss, (s, t) ∈ (−L, L) × [0, T ],
Rs(−L, t) = Rs(L, t) = 0, t ∈ [0, T ].

(1.1)

It is shown by Xiao et al. (2016) that the positive steady state of (1.1) is unique
and has a soliton-like profile which resembles the Arabidopsis PT experimental ROP1
data obtained in Yang lab. Moreover the parameters kp f and kn f were estimated based
on the numerically integrated steady state profile of (1.1) and the experimental data
using a constrained Least Squares (CNLS) method. The experimental data fits with
the numerical steady state of (1.1) reasonably well. However the positive steady state
of (1.1) indeed is unstable with respect to the time-evolution dynamics of (1.1), which
suggests that some other feedback mechanism or other key activator/inhibitor in the
system is not identified in (1.1). Also the model (1.1) cannot produce time-periodic
patterns which occurs in the pollen tube growth.

Reaction-diffusion systems have been widely used in developmental biology mod-
eling since the pioneer work of Turing (1952), see for example Gierer and Meinhardt
(1972),Kondo andMiura (2010) and Maini et al. (1997). Rigorous bifurcation analysis
for a wide range of reaction-diffusionmodels has been done in recent years (Chen et al.
2014; Jin et al. 2013;Wanget al. 2011, 2016;Yi et al. 2009;Zhou andShi 2015), and the
generation of spatially non-homogeneous time-periodic patterns in reaction-diffusion
models with time delay has been considered by Busenberg and Huang (1996), Chen
et al. (2013, 2018), Chen and Yu (2016a, b), Chen and Shi (2012), Guo (2015), Seirin
Lee et al. (2011), Shi et al. (2017, 2019b), Su et al. (2009), Yan and Li (2010) and Yi
et al. (2017).

Our proposed model in this paper couples the spatial Ca2+ dynamics with the
ROP1 dynamics in (1.1). It is based on the ROP1 dynamics described in (1.1), but
adds the associated Ca2+ dynamics which forms a reaction-diffusion model with
an activator-inhibitor pair, nonlocal and time-delay effect (see Sect. 2). The base-
line kinetic model is a system of two ordinary differential equations with intriguing
dynamics: (i) bistability; (ii) limit cycles generated through Hopf bifurcations; (iii)
degenerate trivial steady state (0, 0). A detailed analysis and classification is given for
the kinetic system in Sect. 3. In Sect. 4, the analysis and simulation of the reaction-
diffusion system is given. It is demonstrated that a rich spectrum of spatiotemporal
patterns can be produced by our proposed model: non-constant steady states, spatially
homogeneous time-periodic solutions, and various spatially nonhomogeneous time-
periodic solutions. Of particular interest to the pollen tube tip growth is the spatially
nonhomogeneous time-periodic solutions, which predicts the ROP1-Ca2+ spatiotem-
poral oscillation. Indeed our numerical finding in certain parameter range qualitatively
matches with experimental data generated in Yang Lab (Hwang et al. 2005), which
partially validates the proposed reaction-diffusion model and underlying modeling
principle. Some concluding remarks are given in Sect. 5.
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Fig. 1 ROP1 and Ca2+ polarization dynamics. Left: ROP1 dynamics; Right: Ca2+ dynamics

2 Model

To model the cell-signaling process on the membrane, we simplify the cell membrane
as a one-dimensional spatial domain x ∈ (−L, L), where x is the (signed) distance
from the tip of the membrane x = 0. Note that for simplicity, we ignore the geometric
curvature of the membrane in the current model. The main variables in the models are
the active ROP1 concentration R(x, t) and the Calcium ion Ca2+ concentration at the
location x and time t . Moreover, we set L to be large enough so that the ROP1 and
Ca2+ concentration gradients are close to zero on the boundary, so we assume that R
and C satisfy no-flux boundary condition:

∂R(x, t)

∂x
= ∂C(x, t)

∂x
= 0, x = −L, L. (2.1)

The redistribution of signaling molecules ROP1 is determined by the rates of four
fundamental transport mechanisms (Altschuler et al. 2008): (1) recruitment (k f b) of
cytoplasmic molecules to the locations of membrane-bound signaling molecules; (2)
spontaneous association (kon) of cytoplasmic molecules to random locations on the
plasma membrane; (3) lateral diffusion (D) of molecules along the membrane; and
(4) random disassociation (kof f ) of signaling molecules from the membrane.

In our model, we eliminate the spontaneous term because the spontaneous rate
kon is much smaller than k f b and kof f . Altschuler et al. (2008) proposed a stochastic
model showing that no cluster will be formed if kon is not small, and then most
particles will arrive on the membrane through spontaneous associations rather than
recruitment. So we can assume that kon is small enough. Moreover, the time between
two spontaneous event follows an exponential distribution with expectation Ton =
(kon(1 − heq)N )−1. When kon is small, Ton will be large which leads to a long time
between two spontaneous events. Our partial differential equation model describes
the change of distribution of ROP1 intensity in a short period of time. Therefore, we
eliminate the spontaneous term when we model the cell-signaling process.

In this case, the ROP1 polarization dynamics without spontaneous association can
be simplified as three main procedures (see Fig. 1 left panel): (1) activation of inactive
ROP1; (2) inhibition of active ROP1; (3) lateral diffusion of molecules along the
membrane. The activation of ROP1 can be considered as a positive feedback while
the deactivation of ROP1 as a negative feedback. Both activation and inhibition rates
are proportional to substrate concentrations.
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Fig. 2 Interaction diagram of ROP1 and Ca2+

The lateral movement of ROP1 is modeled by a diffusion term D1
∂2R(x, t)

∂x2
, where

D1 is the diffusion coefficient of ROP1. As for activation of ROP1, it is shown by biol-
ogy model simulation, the activation rate is proportional to Rα where the exponent
satisfies 1 < α < 2. Moreover, since majority of inactive ROP1 are in cytoplasm with
high mobility, the activation rate is proportional to the total amount of cytoplasmic

molecules (i.e. Rtotal −
∫ L

−L
R(x, t)dx) with rate kp f . On the other hand, most active

ROP1 are on the membrane. Since molecules on the membrane have much less mobil-
ity, the inhibition rate is proportional to the density of molecules (i.e. R(x, t)) at any
given location with rate kn f . Moreover, Ca2+ can inhibit ROP1 with some threshold
kh and an inhibition function

g(C) = C2

C2 + k2h
. (2.2)

Here g(C) is a Hill function which shows a transition from low inhibition rate at low
Calcium density, and a high but bounded inhibition rate at a high Calcium density.
The constant kh is the half-saturation value indicating the threshold between the low
and high Calcium density. Hence R(x, t) satisfies a reaction-diffusion equation with
a nonlocal integral term:

∂R(x, t)

∂t
= kp f R

α(x, t)

(

Rtotal −
∫ L

−L
R(x, t)dx

)

− kn f R(x, t)g(C(x, t)) + D1
∂2R(x, t)

∂x2
. (2.3)

On the other hand, we simplify the Ca2+ activities as following three procedures:
(1) influx of Ca2+; (2) self-decay of Ca2+; and (3) diffusion of Ca2+ along the

membrane (see Fig. 1 right panel). The diffusion of Ca2+ is given by D2
∂2C(x, t)

∂x2
,

where D2 is the diffusion coefficient of Ca2+. The Ca2+ ions could flow into the
cell through Calcium channel on the membrane, and the Ca2+ inflow is controlled
by ROP1 with rate kac. Also there is a time delay τ in this promotion. In this work,
we model Ca2+ promotion with kacR(x, t − τ) to show a linear response of Calcium
influx to the ROP1 density, which is supported by several studies from Yang lab
(Hwang et al. 2005; Li et al. 1999; Yan et al. 2009). On the other hand, self-decay of
Ca2+ is proportional to substrate concentration at a certain rate kdc. Therefore, the
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Ca2+ activities are described by a reaction-diffusion equation with time-delay:

∂C(x, t)

∂t
= kacR(x, t − τ) − kdcC(x, t) + D2

∂2C(x, t)

∂x2
. (2.4)

Note that ROP1 activates both ROP1 andCa2+ growth, andCa2+ inhibits both ROP1
and Ca2+ (see Fig. 2).

Now summarizing the above description, adding the proper initial conditions, we
have the following full system for the interaction between the ROP1 and Ca2+ on the
cell membrane:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt = kp f Rα

(

Rtotal −
∫ L

−L
Rdx

)

− kn f
RC2

C2 + k2h
+ D1Rxx , (x, t) ∈ (−L, L) × (0, T ),

Ct = kac R(x, t − τ) − kdcC + D2Cxx , (x, t) ∈ (−L, L) × (0, T ),

Rx (x, t) = Cx (x, t) = 0, x = −L, L,

R(x, t) = R0(x, t), (x, t) ∈ (−L, L)×[−τ, 0],
C(x, 0) = C0(x), x ∈ (−L, L).

(2.5)
Here Rt , Ct , Rxx , Cxx are abbreviated notations for partial derivatives, and

R = R(x, t), C = C(x, t) except the term with time delay.
To reduce the number of parameters in the problem and convert the equation into

a dimensionless form, we introduce the normalized quantities:

t̃ = kdct, x̃ =
√
kdc
D2

x, R̃ = 2LR

Rtotal
, C̃ = 2LkdcC

Rtotalkac
, (2.6)

k1 = 2Lkp f
kdc

(
Rtotal

2L

)α

, k2 = kn f
2Lkp f

(
2L

Rtotal

)α

, k3 = 2Lkhkdc
kac Rtotal

, D = D1

D2
,

(2.7)

τ̃ = kdcτ, L̃ = L

√
kdc
D2

, T̃ = kdcT . (2.8)

With these normalized quantities, the PDEmodel (2.5) is rewritten in the following
normalized form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃t̃ = k1 R̃α

(

1 − 1

2L̃

∫ L̃

−L̃
R̃d x̃

)

− k1k2
R̃C̃2

C̃2 + k23
+ DR̃x̃ x̃ , (x̃, t̃) ∈ (−L̃, L̃) × (0, T̃ ),

C̃t̃ = R̃(x̃, t̃ − τ̃ ) − C̃ + C̃x̃ x̃ , (x̃, t̃) ∈ (−L̃, L̃) × (0, T̃ ),

R̃x̃ (x̃, t̃) = C̃x̃ (x̃, t̃) = 0, x̃ = −L̃, L̃,

R̃(x̃, t̃) = R̃0(x̃, t̃), (x̃, t̃) ∈ (−L̃, L̃) × [−τ̃ , 0],
C̃(x̃, 0) = C̃0(x̃), x̃ ∈ (−L̃, L̃).

(2.9)
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Dropping the ∼ in (2.9), we have the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt = k1Rα

(

1 − 1

2L

∫ L

−L
Rdx

)

− k1k2
RC2

C2 + k23
+ DRxx , (x, t) ∈ (−L, L) × (0, T ),

Ct = R(x, t − τ) − C + Cxx , (x, t) ∈ (−L, L) × (0, T ),

Rx (x, t) = Cx (x, t) = 0, x = −L, L,

R(x, t) = R0(x, t), (x, t) ∈ (−L, L) × [−τ, 0],
C(x, 0) = C0(x), x ∈ (−L, L).

(2.10)
From now on, we will analyze the dynamics behavior of the simplified system

(2.10). Indeed, in this paper, we will only consider the case that τ = 0 to show the
rich dynamics of corresponding ODE and PDE models, and the effect of delay will
be considered in a future work.

3 Non-spatial dynamics

In system (2.10), if the initial conditions (R0(x, t),C0(x)) are spatially homogeneous
and τ = 0, then the corresponding solution of (2.10) is also spatially homogeneous
and it satisfies ⎧

⎪⎨

⎪⎩

Rt = k1Rα(1 − R) − k1k2
RC2

C2 + k23
,

Ct = R − C .

(3.1)

The steady states of (3.1) satisfy

⎧
⎪⎨

⎪⎩

k1Rα(1 − R) − k1k2
RC2

C2 + k23
= 0,

R − C = 0.
(3.2)

A nonnegative steady state is either the trivial one (R,C) = (0, 0), or a positive one
satisfying

Rα−1(1 − R) − k2
C2

C2 + k23
= 0, C = R. (3.3)

Then (3.3) is equivalent to C = R and

f (R) ≡ k2 − Rα−3(1 − R)(R2 + k23) = 0. (3.4)

The following result shows the existence and exact multiplicity of roots R of (3.4),
which also reveals the existence and exact multiplicity of steady states of (3.1) in form
(R, R).

Proposition 3.1 There exists a constant k31 > 0 such that

1. If 0 < k3 < k31, then there exists 0 < k21 < k22 which depend on k3 and α such
that
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Fig. 3 Graphs of f (R) with α = 1.5 and varying (k2, k3)

(a) when 0 < k2 < k21, there is a unique positive root R3 for (3.4) (see Fig. 3a);
(b) when k2 > k22, there is a unique positive root R1 for (3.4) (see Fig. 3e);
(c) when k2 = k21 or k2 = k22, then there are exactly two positive roots R1, R3

satisfying R1 < R3 for (3.4) (see Fig. 3b, d);
(d) when k21 < k2 < k22, there are exactly three positive roots R1, R2, R3 satis-

fying R1 < R2 < R3 for (3.4) (see Fig. 3c).

2. If k3 > k31, then for any k2 > 0, there is a unique positive root R1 for (3.4) (see
Fig. 3f).

The proof of Proposition 3.1 is given in Appendix. From Proposition 3.1, (3.1)
possesses one, or two, or three positive steady states depending on the parameter values
of k2 and k3. We denote the positive steady states of (3.1) by (R j ,C j ) = (R j , R j )

(1 ≤ j ≤ 3), where R j is the root of (3.4) as shown in Proposition 3.1, and C j = R j .
Figure 4 shows the regions of parameters (k2, k3)where (3.1) has 1 or 3 positive steady
states.When k3 > k31, the bifurcation diagram in (k2, R,C)-space is amonotone curve
(see Fig. 5b, c), while when 0 < k3 < k31, the corresponding bifurcation diagram is
an S-shaped one with two saddle-node bifurcation points at k2 = k21 and k2 = k22
(see Fig. 5a). When the parameter k2 varies, the bifurcation diagram depicts a typical
hysteresis scenario with a bistable structure. Similar bifurcation structure have been
found in various biological models of spruce budworm population (Ludwig et al.
1978), shallow lakes (Scheffer et al. 2001, 1993), coral reef (Li et al. 2014; Mumby
et al. 2007), and forest and savanna (Ding et al. 2017; Staver et al. 2011a, b).
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Fig. 4 The number of positive steady states of system (3.1) for different values of (k2, k3) with α = 1.5.
Here the horizontal axis is k3 and vertical axis is k2

Fig. 5 Bifurcation diagrams of system (3.1) with α = 1.5

Nextwe consider the local stability of the steady states (0, 0) and (R j , R j ) (1 ≤ j ≤
3) with respect to (3.1). First at steady state (0, 0), the Jacobian matrix is

(
0 0
1 −1

)

.

Therefore we have two eigenvalues λ1 = 0 and λ2 = −1 < 0 which indicates
that (0, 0) is a degenerate steady state. One can apply the theory of two-dimensional
dynamical system to obtain the following description of the dynamics of (3.1) near
(0, 0):

Proposition 3.2 For any k1, k2, k3 > 0, there exists a δ > 0 such that in the neighbor-
hood B = {(R,C) : 0 < R < δ, 0 < C < δ} of (0, 0),
1. (3.1) has a unique center manifold Wc = {(R, hc(R)) : 0 ≤ R < δ} for (3.1) such

that hc(0) = 0 and h′
c(0) = 1, and the orbit of (3.1) on Wc is unstable;

123



1328 C. Tian et al.

Fig. 6 Dynamical behavior of (3.1) near (0, 0). Here α = 1.5, k1 = 175, k2 = 0.31, k3 = 0.0316, and the
initial conditions for the solution orbits in the right panel are (R(0),C(0)) = (0.05, 0.05) and (0.04, 0.04)

2. there exists a function hs : (0, δ) → (0, δ) such that the region O = {(R,C) :
0 ≤ R ≤ hs(C), 0 < C < δ} is invariant, and for any (R0,C0) ∈ O, the solution
(R(t),C(t)) of (3.1) with (R(0),C(0)) = (R0,C0) satisfies lim

t→∞(R(t),C(t)) =
(0, 0).

3. other orbits in B exhibit saddle behavior near (0, 0), that is, the orbit does not
approach (0, 0) as t → ∞ or t → −∞, and for t > T , the orbit leaves the
neighborhood B.

The proof of Proposition 3.2 is given in Appendix. It shows that there is a “horn”-
shaped region belonging to the basin of attraction of the origin (0, 0). Indeed for
any parameter values, if the initial value of Ca2+ C0 is sufficiently large, then the
solution will converge to (0, 0) (see Fig. 6). So our subsequent discussion will be for
the remaining part of the phase portrait in which the orbits do not converge to (0, 0).

For positive steady states, we linearize (3.1) at a steady state (R j , R j ) ( j = 1, 2, 3),
then we obtain the Jacobian matrix as

J (R j , R j ) =
(
k1R j f ′

1(R j ) −k1R j f ′
2(R j )

1 −1

)

, (3.5)

where

f1(R) = Rα−1(1 − R), f2(R) = k2R2

R2 + k23
. (3.6)

Hence we find that

Tr(J (R j , R j )) = k1R j f
′
1(R j ) − 1, (3.7)

Det(J (R j , R j )) = k1R j ( f
′
2(R j ) − f ′

1(R j )). (3.8)

We recall that a steady state (R, R) of (3.1) is a sink or spiral sink if both eigenvalues
of J (R, R) are of negative real parts; it is a source or spiral source if both eigenvalues
of J (R, R) are of positive real parts; and it is a saddle if J (R, R) has one positive and
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Spatiotemporal dynamics of a reaction-diffusion model... 1329

one negative eigenvalue. From the trace-determinant theory, it is easy to know that
(R, R) is a sink or spiral sink if Tr(J ) < 0 and Det(J ) > 0; it is a source or spiral
source if Tr(J ) > 0 and Det(J ) > 0; and it is a saddle if Tr(J ) ∈ R and Det(J ) < 0.

For our next result regarding the local stability of the positive steady state (R j , R j )

( j = 1, 2, 3) obtained above,wedetermine the stability using the trace anddeterminant
of J (R,C).We also observe that the steady states of (3.1) are independent of parameter
k1, but k1 does affect the stability of steady states. For fixed α ∈ (1, 2) and k3 > 0,
and any 0 < R < 1, the pair (R, R) can be a steady state of (3.1) for exactly one value
of k2 > 0 by the relation (from (3.2)):

k2 = Rα−3(1 − R)(R2 + k23). (3.9)

That is, for fixed α ∈ (1, 2) and k3 > 0, the set of steady states of (3.1) can be
parameterized by R as a bifurcation diagram (see Fig. 5):

� = {(k2(R), R, R) : R ∈ (0, 1)}, (3.10)

where k2(R) is given by (3.9). Now we state our results on the local stability of the
positive steady state in terms of parametrization in (3.10).

Theorem 3.3 Suppose that α ∈ (1, 2) and k3 > 0, and k2(R) is defined as in (3.9) so
that (R, R) is a positive steady state of (3.1) with k2 = k2(R) for 0 < R < 1.

1. If k3 > k31 (defined inProposition3.1), thenDet(J (R, R)) > 0 for any R ∈ (0, 1);
and if 0 < k3 < k31, then there exist r1, r2 > 0 such that Det(J (R, R)) > 0 for
R ∈ (0, r1) ∪ (r2, 1), and Det(J (R, R)) < 0 for R ∈ (r1, r2). Here k2(r1) = k21
and k2(r2) = k22 (defined in Proposition 3.1).

2. Define

k11 = α2α−1

(α − 1)2α−1 . (3.11)

If 0 < k1 < k11, then Tr(J (R, R)) < 0 for any R ∈ (0, 1); and if k1 > k11, then
there exist 0 < R̃1 < R̃2 such that Tr(J (R, R)) < 0 for R ∈ (0, R̃1) ∪ (R̃2, 1),
and Tr(J (R, R)) > 0 for R ∈ (R̃1, R̃2).

According to Theorem 3.3, we can have following results for 0 < k3 < k31, when
there are at least one and at most three positive steady state of (3.1):

1. The middle positive steady state (R2, R2) is always a saddle.
2. The largest positive steady state (R3, R3) or the smallest one (R1, R1) is either a

sink or spiral sink, or a source or spiral source, but it is not a saddle.
3. Define

Is = ((0, r1) ∪ (r2, 1)) ∩ ((0, R̃1) ∪ (R̃2, 1)). (3.12)

Then when R ∈ Is , the positive steady state (R, R) is a sink or spiral sink which
is locally asymptotically stable. In particular, when R > 0 is sufficiently small or
when R is close to 1, then (R, R) is a sink or spiral sink.
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4. Define
Iu = ((0, r1) ∪ (r2, 1)) ∩ (R̃1, R̃2). (3.13)

Then when R ∈ Iu , the positive steady state (R, R) is a source or spiral source
which is unstable.

The proof of Theorem 3.3 is in the Appendix. Note that the stable regime Is is
always not an empty set as it contains a right neighborhood of R = 0 and a left
neighborhood of R = 1, but Is may also contain another connected component which
is disconnected from R = 0 and R = 1. The unstable regime Iu could be empty, and
that happens when 0 < k1 < k11. However Iu is not empty when k1 is chosen as
sufficiently large. Indeed for fixed k3 > 0, one has that

lim
k1→∞ R̃1 = 0, lim

k1→∞ R̃2 = α − 1

α
. (3.14)

The local stability analysis given in Theorem 3.3 can be used to guide our classifi-
cation of global dynamics of (3.1). A complete classification in terms of parameters
(k1, k2, k3) is rather exhaustive and it will not be given here. Here we focus on in
which cases, the system (3.1) shows sustained temporal oscillations. The follow result
classifies the occurrence of Hopf bifurcations in terms of parameters k1, k2 and k3.

Proposition 3.4 Suppose that α ∈ (1, 2), and define

g(R) = Rα−1[(α − 1) − αR]. (3.15)

Let k31, k11 be defined as in Proposition 3.1 and (3.11) respectively, and let
r1, r2, R̃1, R̃2 > 0 be defined in Theorem 3.3. We also define k̃21 = k2(R̃1) and
k̃22 = k2(R̃2).

1. If k3 > k31, (3.1) has a unique positive steady state for all k1, k2 > 0. Moreover

(a) When k1 < k11, the unique positive steady state of (3.1) is a sink or spiral sink
for any k2 > 0. (see Fig. 7a)

(b) When k1 > k11, the unique positive steady state of (3.1) is a sink or spiral
sink for k2 ∈ (0, k̃22) ∪ (k̃21,∞), and is unstable for k2 ∈ (k̃22, k̃21); Hopf
bifurcations occur at k2 = k̃21 and k2 = k̃22, and there exists at least one
periodic orbit for k2 ∈ (k̃22, k̃21). (see Fig. 7b)

2. If 0 < k3 < k31, (3.1) has at least one and at most three positive steady states, and
when there exist three positive steady states, the middle one (R2, R2) is a saddle.
Moreover

(c) If k1 > 1/g(r2), then Hopf bifurcations occur at k̃22 on the large steady state
(R3, R3) and at k̃21 on the small steady state (R1, R1) of (3.1). (see Fig. 7c)

(d) If 1/g(r1) < k1 < 1/g(r2), then the large positive steady state (R3, R3) is
always a sink or spiral sink, and a Hopf bifurcation occurs at k̃21 on the small
positive steady state (R1, R1) of (3.1). (see Fig. 7d)
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(e) Define

k̃3 =
√

(α − 1)5

α3(−α2 + 5α − 2)
. (3.16)

If 0 < k1 < 1/g(r1) and 0 < k3 < k̃3, or 0 < k1 < k11 and k̃3 < k3 < k31,
then both the large positive steady state (R3, R3) and the small positive steady
state (R1, R1) are always sink or spiral sink, and there is no Hopf bifurcation
occurring. (see Fig. 7e)

(f) If k11 < k1 < 1/g(r1) and k̃3 < k3 < k31, then the large positive steady state
(R3, R3) is always a sink or spiral sink, and Hopf bifurcations occur at k̃21
and k̃22 on the small positive steady state (R1, R1) of (3.1). (see Fig. 7f)

The proof of Proposition 3.4 is in the Appendix. The six bifurcation diagrams
of steady states and Hopf bifurcations are shown in Fig. 7, and a classification of
(k3, k1) parameter regions in which Hopf bifurcations with parameter k2 can occur is
summarized in Fig. 8.

Guided by bifurcation diagrams above, there are following six possible dynamic
phase planes and dynamics of (R(t),C(t)) solutions. Note that from Proposition 3.2,
there is always a region of initial conditions that orbits starting from there converge to
the origin (0, 0) as t → ∞. So in the following we only describe the dynamics below
the basin of attraction of (0, 0).

1. There is only one positive steady state R1, which is a sink or spiral sink. All the
solutions will converge to R1. For example, when α = 1.5, k1 = 9.5, k2 = 1,
k3 = 0.06, there is a spiral sink at R1 = 0.02587. (See Fig. 9 upper row)

2. There is only one positive steady state R1, which is a source or spiral source, and
there is a limit cycle around R1. For example, when α = 1.5, k1 = 15, k2 = 1,
k3 = 0.06, there is a limit cycle around positive steady state R1 = 0.02587. (See
Fig. 9 lower row)

3. There are three positive steady states R1, R2 and R3; R2 is a saddle point while
R1 and R3 are sinks or spiral sinks. A solution will converge to either R1or R3
depending on the initial value. For example, when α = 1.5, k1 = 5, k2 = 0.4035,
k3 = 0.0707, there are two sinks R1 = 0.1418 and R3 = 0.3194. The solution
converges to R1 = 0.1418 if the initial value is (R(0),C(0)) = (0.1, 0.4), while
to R3 = 0.3194 if (R(0),C(0)) = (0.4, 0.1). (See Fig. 10)

4. There are three positive steady states R1, which is a source, R2, which is a saddle
point, R3, which is a sink. Here except the stablemanifold of R2, all other solutions
converge to R3. For example, when α = 1.5, k1 = 12, k2 = 0.31, k3 = 0.0316,
the sink R3 = 0.6013 attracts most of initial condition, and Fig. 11 shows an orbit
connecting R1 to R3. It is also possible that there is a limit cycle around R1, but
the parameter range for that case is not robust.

5. There are three positive steady states R1, R2 and R3. R2 is a saddle point while
R1 and R3 are source or spiral source. Again the parameter range supporting such
dynamics is not robust enough so we do not include a phase portrait for that case
here.
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Fig. 7 Possible bifurcation diagrams of (3.1) with parameter k2. Here the horizontal axis is k2 and the
vertical axis is R, α = 1.5 and k1, k3 are specified for each diagram
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Fig. 8 Classification of (k3, k1) parameter region for Hopf Bifurcation occurrence with α = 1.5. Here
regions (a) to (f) represent (k3, k1) parameter regions of cases (a) to (f) in Proposition 3.4, respectively

Fig. 9 Dynamic behavior of (3.1). Here α = 1.5, k2 = 1, k3 = 0.06; Upper: k1 = 9.5; Lower: k1 = 15
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Fig. 10 Dynamic behavior of (3.1). Here α = 1.5, k1 = 5, k2 = 0.4035, k3 = 0.0707

Fig. 11 Dynamic behavior of (3.1). Here α = 1.5, k1 = 12, k2 = 0.31, k3 = 0.0316

4 Spatial dynamics

In this section, we consider the dynamics of the reaction-diffusion model (2.10) which
is also with nonlocal term and delay. First we consider the model without the time
delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt = DRxx + k1R
α

(

1 − 1

2L

∫ L

−L
Rdx

)

− k1k2
RC2

C2 + k23
, (x, t) ∈ (−L, L) × (0, T ),

Ct = Cxx + R − C, (x, t) ∈ (−L, L) × (0, T ),

Rx (x, t) = Cx (x, t) = 0, x = −L, L, t ∈ (0, T ),

R(x, t) = R0(x, t), (x, t) ∈ (−L, L) × [−τ, 0],
C(x, 0) = C0(x), x ∈ (−L, L).

(4.1)
We shall show that spatiotemporal pattern formation is possible for (4.1) as a com-

bined effect of diffusion, kinetic dynamics as shown in Sect. 3, and also the nonlocal
integral term.
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It is easy to see that a steady state (R∗, R∗) of (3.1) is a constant steady state
solution of (4.1). Linearizing Eq. (4.1) at a constant steady state (R∗, R∗), we obtain
the following eigenvalue problem which determines the linear stability of the constant
steady state:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μφ = Dφxx + (
k1R∗ f ′

1(R∗) + k1Rα∗
)
φ − k1R∗ f ′

2(R∗)ψ − k1Rα∗
1

2L

∫ L

−L
φdx, x ∈ (−L, L),

μψ = ψxx + φ − ψ, x ∈ (−L, L),

φx (x) = ψx (x) = 0, x = −L, L,

(4.2)
where f1(R) and f2(R) are defined in (3.6). The eigenvalue problem (4.2) can be
considered in the real-valued Sobolev space with the Neumann Boundary problem
X = {(φ,ψ) ∈ H2(−L, L) × H2(−L, L) : Rx (±L) = Cx (±L) = 0}, and the
eigenvalues of the corresponding diffusion operator u �→ −u′′ are

λn =
(nπ

2L

)2
, n ∈ N0 := {0, 1, 2, . . .}, (4.3)

and the corresponding eigenfunctions are

ϕn(x) =
{
cos(

√
λnx), n = 0, 2, 4, . . . ,

sin(
√

λnx), n = 1, 3, 5, . . . .
(4.4)

The following lemma shows that the eigenvalue problem (4.2) can be solved through
a Fourier decomposition of the eigenfunctions and it is reduced to eigenvalues of
infinitely many 2 × 2 matrices.

Lemma 4.1 Let λn and ϕn(x) be defined by (4.3) and (4.4) respectively, and let
(R∗, R∗) be a constant steady state of Eq. (4.1) with R∗ satisfying Eq. (3.4). Define

J0 =
(
k1R∗ f ′

1(R∗) −k1R∗ f ′
2(R∗)

1 −1

)

,

Jn =
(−Dλn + k1R∗ f ′

1(R∗) + k1Rα∗ −k1R∗ f ′
2(R∗)

1 −λn − 1

)

, n = 1, 2, 3, . . . ,

(4.5)

then we have

(i) ifμ is an eigenvalue of (4.2), then there exists n ∈ N0 such thatμ is an eigenvalue
of Jn;

(ii) (R∗, R∗) is locally asymptotically stablewhen the eigenvalues of Jn for all n ∈ N0
have negative real parts, and it is unstable when there exists some n ∈ N0 such
that Jn has at least one eigenvalue with positive real part.

Proof By the Fourier expansion, we can write the eigenfunction of (4.2) as

(φ,ψ)T =
∞∑

n=0

(an, bn)
Tϕn(x). (4.6)

123



1336 C. Tian et al.

Substituting (4.6) into (4.2), multiplying both sides by ϕn(x) and integrating the equa-
tions on [−L, L], then by using the orthogonality of ϕn(x), we obtain that

Jn(an, bn)
T = μ(an, bn)

T , for n ∈ N0.

Note that the nonlocal term

∫ L

−L
φ(x)dx =

∫ L

−L

∞∑

n=0

anϕn(x)dx =
{
an, n = 0;
0, n = 1, 2, . . .

,

so J0 is different from other Jn with n ≥ 1. Therefore, we know that the eigenvalues
of (4.2) are identical with those of the matrix Jn (n ∈ N0), so the stability of the
constant equilibrium (R∗, R∗) is determined by the eigenvalues of Jn . By (Simonett
1995, Theorem 8.6) (R∗, R∗) is locally asymptotically stable when the real parts of
all the eigenvalues of Jn (n ∈ N0) are negative and, it is unstable when there exists a
Jn with eigenvalues of positive real part. ��

From Lemma 4.1, the eigenvalues of (4.2) are the eigenvalues of Jn , which are
determined by the characteristic equation

�n(μ) = μ2 − Tnμ + Dn = 0, (4.7)

where
T0 = k1R∗ f ′

1(R∗) − 1, D0 = k1R∗( f ′
2(R∗) − f ′

1(R∗)),

and for n ≥ 1,

Tn = −(D + 1)λn + k1R∗ f ′
1(R∗) + k1R

α∗ − 1,

Dn = Dλ2n + (
D − k1R∗ f ′

1(R∗) − k1R
α∗
)
λn + k1R∗( f ′

2(R∗) − f ′
1(R∗)) − k1R

α∗ .

Following the approach in Wang et al. (2011) and Yi et al. (2009), the condition
for the occurrence of a Hopf bifurcation near (R∗, R∗) is that there exist a pair of
purely imaginary eigenvalues ±iωn with ωn > 0 such that Eq. (4.7) holds, which is
equivalent to that there exists n ∈ N0 such that

(H) Tn = 0, Dn > 0, and Ti �= 0, Di �= 0 for i �= n.

Also, we need to verify the transversality condition which is dRe(μ)
dk1

�= 0 for Hopf
bifurcation. By the fact that Re(μ) = Tn/2, we obtain that

dRe(μ)

dk1
= R∗ f ′

1(R∗) + Rα∗ = (α − 1)Rα−1∗ (1 − R∗) > 0,

because 0 < R∗ < 1. Therefore, the transversality condition holds and a Hopf bifur-
cations indeed occurs at the following defined bifurcation points.

Here we choose k1 as the bifurcation parameter, while one can also use other
parameter as the bifurcation parameter. Then we have the spatially homogeneous
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Hopf bifurcation point (which indeed is the Hopf bifurcation point of kinetic system
(3.1), and thus the bifurcating periodic orbits are spatially homogeneous), and spatially
non-homogeneous Hopf bifurcation points (where the bifurcating periodic orbits are
spatially non-homogeneous) expressed by:

k(0)
1H = 1

R∗ f ′
1(R∗)

, k(n)
1H = 1 + (D + 1)λn

R∗ f ′
1(R∗) + Rα∗

, n ∈ N, (4.8)

provided that k2 ∈ (k∗
2 ,+∞) such that R∗ f ′

1(R∗) > 0 which is necessary for the
homogeneous Hopf bifurcation, where

k∗
2 = k2

(
α − 1

α

)

= (α − 1)α−3

αα

[
(α − 1)2 + k23α

2
]
, (4.9)

with k2(R) defined by (3.9). Also, notice that R∗ f ′
1(R∗) + Rα∗ = (α − 1)Rα−1∗ (1 −

R∗) > 0 holds for any R∗ ∈ (0, 1), thus k(n)
1H > 0. To sum up the discussion, we have

the following lemma.

Lemma 4.2 For fixed parameters k3, D in system (4.1) and let k∗
2 and k(n)

1H , n ∈ N0
be defined by (4.9) and (4.8) respectively, then we have

(i) when k2 ∈ (0, k∗
2), the spatially homogeneous Hopf bifurcation does not occur,

but system (4.1) undergoes a spatially non-homogeneous Hopf bifurcation at
k1 = k(n)

1H defined in (4.8) for each n ∈ N;
(ii) when k2 ∈ (k∗

2 ,+∞), system (4.1) undergoes a spatially homogeneous Hopf

bifurcation at k1 = k(0)
1H and a spatially non-homogeneous Hopf bifurcation at

k1 = k(n)
1H for each n ∈ N.

Similarly a steady state bifurcation occurs when

(S) Dn = 0, Tn �= 0, and Ti �= 0, Di �= 0, for i �= n,

holds for some n ∈ N, which is also called the diffusion-driven instability developed
by Turing (1952). According to the condition (S), by taking k1 as the bifurcation
parameter, we can obtain the following bifurcation points for the Turing instability:

k(n)
1S = D(λ2n + λn)

(R∗ f ′
1(R∗) + Rα∗ )λn + R∗( f ′

1(R∗) − f ′
2(R∗)) + Rα∗

, n ∈ N. (4.10)

Note that k(n)
1S may not be positive, but there exist an N ∈ N such that k(n)

1S > 0

when n > N and a steady state bifurcation indeed occurs at k1 = k(n)
1S when n > N .

According to Yi et al. (2009), we also need to the verify the transversality condition
which is dDn

dk1
�= 0 for the steady state bifurcation. By a direct calculation, we have

dDn

dk1
= −(R∗ f ′

1(R∗) + Rα∗ )λn + R∗( f ′
2(R∗) − f ′

1(R∗) − Rα−1) < 0,

thus the transversality condition is satisfied.
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Fig. 12 Steady state and Hopf bifurcation diagram for Eq. (4.1) on D − k1 plane with k2 = 1, k3 =
0.06, α = 1.5, L = 0.5π .We choose six points in D−k1 plane to perform the numerical simulations: P1 =
(0.1, 12), P2 = (0.1, 14.5), P3 = (0.04, 5), P4 = (0.04, 7), P5 = (0.04, 9.5), P6 = (0.04, 14.5)

The Hopf bifurcation points defined in (4.8) and the steady state bifurcation points
defined in (4.10) provide theoretical parameter values where spatial/temporal patterns
for system (4.1) can emerge. In the remaining part of this section, we take some
different values of k1, D and the spatial domain length L to numerically demonstrate
possible bifurcations and rich dynamical behavior of model (4.1).

Example 4.3 We choose k2 = 1, k3 = 0.06, α = 1.5, L = 0.5π . According
to Proposition 3.4 and Fig. 4, there is a unique constant steady state (R∗, R∗) =
(0.0259, 0.0259) which is determined by Eq. (3.4). According to Proposition 3.4,
(0.0259, 0.0259) is locally asymptotically stable for k1 ∈ (0, k∗

1) and unstable for
k1 ∈ (k∗

1 ,+∞) with k∗
1 = 13.4744 being the homogeneous Hopf bifurcation point of

the kinetic system (3.5). Then, by (4.8) and (4.10), we can compute the bifurcation
points as

k(0)
1H = k∗

1 = 13.4744, k(n)
1H = 12.7578(1 + (D + 1)n2), k(n)

1S = D(n4 + n2)

0.0784n2 − 0.1822
.

(4.11)

The bifurcation curves in (4.11) are plotted in Fig. 12 in D − k1 plane, and this
diagram serves as a guidance map for the different spatiotemporal patterns shown
below. Figure 13 demonstrates the situation when D = 0.1 and k1 = 12 (P1) or
k1 = 14.5 (P2) in Fig. 12. For parameter value at P1, the constant steady state
(0.0259, 0.0259) is locally stable under a small random perturbation around the steady
state (Fig. 13 upper row); while a spatially homogeneous time-periodic orbit arises
when k1 crosses the homogeneous Hopf bifurcation line k1 = k(0)

1H and reaches P2
(Fig. 13 lower row).
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Fig. 13 The dynamics of Eq. (4.1) when D = 0.1, k2 = 1, k3 = 0.06, L = 0.5π . (Upper row:
P1(0.1, 12)): (R∗, R∗) remains stable; (Lower row: P2(0.1, 14.5)): stable spatially homogeneous time-
periodic pattern is observed. The initial condition is a small random perturbation of (0.0259, 0.0259)

For a smaller diffusion rate D = 0.04, spatially non-homogeneous steady states
and periodic orbits can be generated when k1 increases (see from Fig. 12). When
k1 = 5 (P3), the constant steady state is stable under a small perturbation (see Fig. 14
upper row); when k1 = 7 (P4), a mode-2 Turing pattern (spatially non-homogeneous
steady state) is observed (see the Fig. 14 middle row); and when k1 = 9.5 (P5), a
mode-3 Turing pattern is observed (see the Fig. 14 lower row). Finally if k1 crosses
the homogeneous Hopf bifurcation line k1 = k(0)

1H to k1 = 14.5 (P6), then spatiotem-
poral patterns (spatially non-homogeneous periodic orbits) are observed (see Fig. 15).
Indeed by taking different initial values, two different patterns can be observed: a
mode-3 spatiotemporal oscillating patterns is observed when a small random pertur-
bation of the steady state is chosen as the initial condition (upper row), and a mode-4
spatiotemporal oscillating pattern is observed when the initial condition a prescribed
one (lower row).

In this example, the homogeneous Hopf bifurcation curve (n = 0) and the steady
state bifurcation curve with lowest n (n = 2) are where stability switches occur. For
parameter values below both curves (P1, P3), the constant steady state is stable; for
the one above the homogeneous Hopf bifurcation curve but below the steady state
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Fig. 14 The dynamics of Eq. (4.1) when D = 0.04, k2 = 1, k3 = 0.06, L = 0.5π . (Upper row:
P3(0.04, 5)): constant steady state; (Middle row: P4(0.04, 7)): spatially non-homogeneous steady state
with one peak (n = 2); (Lower row: P5(0.04, 9.5)): spatially non-homogeneous steady state with one and
a half peaks (n = 3)

bifurcation curve (P2), a spatial homogeneous periodic orbit is observed; for the ones
below the homogeneous Hopf bifurcation curve but above the steady state bifurcation
curve (P4, P5), a spatially non-homogeneous steady state is observed (number of
peaks varies with different parameters); and for the one above both bifurcation curves
(P6), a spatially non-homogeneous periodic orbit emerges.
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Fig. 15 The dynamics of Eq. (4.1) when D = 0.04, k2 = 1, k3 = 0.06, L = 0.5π : P6(0.04, 14.5)).
(Upper row): the initial condition is a small random perturbation of (0.0259, 0.0259); (Lower row): the
initial condition is (0.0259 − 0.01 cos(4x), 0.0259 − 0.01 cos(4x))

Example 4.4 We choose k2 = 1, k3 = 0.5, α = 1.5, L = π , according to Proposi-
tion 3.4 and Fig. 4, there is a unique steady state (R∗, R∗) = (0.3920, 0.3920) which
is determined by Eq. (3.4) and is locally asymptotically stable for the kinetic system
(3.1) by Proposition 3.4. Then, by (4.8) and (4.10), we can compute the bifurcation
point as

k(n)
1H = 5.2539(1 + (D + 1)n2), k(n)

1S = D(n4 + n2)

0.1903n2 − 0.2812
. (4.12)

Similarly, by plotting (4.12) in D − k1 plane, we obtain the bifurcation diagram
in Fig. 16. Note that here a homogeneous Hopf bifurcation line is absent as k2 < k∗

2 .
According to Lemma 4.2, we know that there is no homogeneous Hopf bifurcation
in this case. When D = 0.2, Fig. 17 shows that the constant steady state is stable
below the non-homogeneous Hopf bifurcation line (P7, upper row of Fig. 17), and a
stable spatially non-homogeneous time-periodic pattern emerges when k1 crosses the
first non-homogeneous Hopf bifurcation line (P8, lower row of Fig. 17). On the other
hand when D = 0.1, with the increase of k1, the first bifurcation line is the steady
state bifurcation with mode n = 4, so we observe the spatially non-homogeneous
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Fig. 16 Steady state andHopf bifurcation diagram for Eq. (4.1) on D−k1 planewith k2 = 1, k3 = 0.5, α =
1.5, L = π . In different regions, the dynamics of system (4.1) are different, and we select a point form each
region to show the pattern formation of (4.1): P7 = (0.2, 5), constant steady state; P8 = (0.2, 8), mode-1
spatially non-homogeneous periodic patterns; P9 = (0.1, 3.5), constant steady state; P10 = (0.1, 6),
spatially non-homogeneous steady state; P11 = (0.1, 8), spatially non-homogeneous periodic patterns

steady state at P10 (see the middle row of Fig. 18). Then the lower row of Fig. 18
demonstrates that a spatiotemporal oscillatory pattern is generated after k1 traverses
the spatially non-homogeneous Hopf bifurcation line.

In this example, a spatially homogeneous Hopf bifurcation does not occur, and the
spatially non-homogeneous time-periodic orbits can bifurcate directly from a constant
steady state (Fig. 17), or through a steady state bifurcation first then a Hopf bifurcation
(see Fig. 18), which is different from the ones in Example 4.3. Another interesting
observation is that in Example 4.3, the peaks of spatially non-homogeneous time-
periodic orbits are synchronized (see Fig. 19 upper row), while for Example 4.4, the
peaks of spatially non-homogeneous time-periodic orbits are not synchronous (see
Fig. 19 lower row). Indeed in latter case, the pattern oscillates with a swinging pattern
with peak appearing alternatively on the left and right sides.

5 Conclusion

Oscillatory spatiotemporal Ca2+ signals have been observed in experiments, and it
is identified as an important driving force of the polar cell growth in Arabidopsis
pollen tubes (Luo et al. 2017). We propose a new reaction-diffusion model of ROP1
and Ca2+ interaction on the plasma membrane which incorporates positive feedback
of ROP1, negative feedbacks between ROP1, and Ca2+, lateral diffusive movement
of ROP1 and Ca2+. Mathematical analysis and numerical simulation of the system
are conducted for (i) the non-spatial model without diffusion and time-delay; and (ii)
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Fig. 17 The dynamics of Eq. (4.1) when D = 0.2, k2 = 1, k3 = 0.5, L = π . (Upper row: P7(0.2, 5)):
stable constant steady state; (Lower row: P8(0.2, 8)): spatiotemporal pattern generated by spatially non-
homogeneous Hopf bifurcation with n = 1

the spatial model with diffusion, nonlocal effect but without time-delay. The effect of
time-delay is not considered in this paper but will be analyzed in a future work.

It is revealed from mathematical analysis that the non-spatial model could have
multiple steady states because of the degeneracy of the trivial steady state, and also
the Hill type rate function that Calcium inhibits ROP1. Oscillations also occur in
the non-spatial model as a result of Hopf bifurcation (steady state losing stabil-
ity to temporal oscillation). The study of non-spatial models provides a guidance
for parameter selection when detecting spatiotemporal patterns in spatial models.
For the spatial reaction-diffusion model, parameter ranges supporting spatially non-
homogenous time-periodic solutions are identified via linear stability analysis, and
numerical simulations confirm the existence of stable spatially non-homogenous time-
periodic patterns. Some of these patterns show a symmetric spatial profile with peak
values occurring at two locations, and the peak values oscillates with the time. These
spatiotemporal characters qualitatively match with experimental data from Yang’s lab
(Hwang et al. 2005). Quantitative comparison of numerical simulated solutions and
experimental data, model validation using experimental data as well as fine tuning of
the reaction-diffusion model will be the next stage of the investigation.
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Fig. 18 The dynamics of Eq. (4.1) when D = 0.1, k2 = 1, k3 = 0.5, L = π . (Upper row: P9(0.1, 3.5)):
stable constant steady state; (Middle row: P10(0.1, 6)): spatially non-homogeneous steady state with two
peaks; (Lower row: P11(0.1, 8)): spatiotemporal pattern with two peaks
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Fig. 19 The snapshots of the spatiotemporal patterns of Ca2+ at certain moments. (Upper row): a the
snapshots of patterns in Fig. 15a; b the snapshots of patterns in Fig. 15c. (Lower row): c the snapshots of
patterns in Fig. 17c; d the snapshots of patterns in Fig. 18e

The spatiotemporal pattern formation discovered here also extends the classical
Turing diffusion-induced pattern formation theory. In the standard reaction-diffusion
system, a spatially non-homogenous time-periodic solution bifurcating from a trivial
steady state is usually not stable, as the only stable time-periodic solution would be the
spatially homogenous one. Here we find that the presence of a nonlocal integral term
(in the model it represents the total amount of cytoplasmic molecules) could change
this. In our model, a spatially non-homogenous time-periodic solution could be the
first bifurcating pattern from a stable homogeneous steady state, hence it could be a
stable pattern. Theoretical study in that aspect will be continued in another work (Shi
et al. 2019a) for more general situations.

In this paper a spatiotemporal mathematical model in a one-dimensional spatial
domain is considered, while a more realistic model for the interaction between ROP1
and Ca2+ is on a two-dimensional or three-dimensional spatial domain. The simpli-
fied one-dimensional model here illustrates the reaction-diffusion pattern formation
mechanism, and we expect similar spatiotemporal patterns also occur in the more
realistic two-dimensional or three-dimensional models. This will be verified in our
future work.
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6 Appendix

Proof of Proposition 3.1 In this proposition, we study the number of roots of equation
(3.4) with 1 < α < 2. The function f (R) has the properties that

lim
R→0+ f (R) = −∞ and lim

R→∞ f (R) = ∞. (6.1)

Also, we have the first derivative of f (R) as

f ′(R) = αRα−1 − (α − 1)Rα−2 + k23(α − 2)Rα−3 − k23(α − 3)Rα−4. (6.2)

Let
h(R) = αR3 − (α − 1)R2 + k23(α − 2)R − k23(α − 3). (6.3)

So we have f ′(R) = Rα−4h(R).
Step 1. There exists a unique x2 > 0 such that h′(R) < 0 for 0 < R < x2, h′(R) > 0
for R > x2, and h(R) reaches the global minimum in (0,∞) at R = x2.

Note that the function h(R) has the properties that

h(0) = −k23(α − 3) > 0 and lim
R→∞ h(R) = ∞, (6.4)

and we have the first derivative of h(R) as

h′(R) = 3αR2 − 2(α − 1)R + k23(α − 2). (6.5)

Sinceα ∈ (1, 2), for (6.5), we have the discriminant�1 = 4(α−1)2−12k23α(α−2) >

0. In this case, h′(R) = 0 must have two roots in (−∞,∞). Notice that
2(α − 1)

3α
> 0

and
k23(α − 2)

3α
< 0 so h′(R)must have one negative root and one positive root. Let x2

be the positive root of h′(R) = 0. Since h′(0) = k23(α − 2) < 0, we have h′(R) < 0
for 0 < R < x2, h′(R) > 0 for R > x2. Therefore, h(R) decreases for 0 < R < x2,
and increases for R > x2. That is to say, if h(x2) ≥ 0, then h(R) ≥ 0 for any R > 0,
while h(R) = 0 has two positive solutions if h(x2) < 0.
Step 2. There exist k31, k32 > 0 such that

h(x2)

{≥ 0, if k31 < k3 < k32.
< 0, if 0 < k3 < k31 or k3 > k32.

(6.6)

Since h′(R) is an quadratic function and the relationship between h(R) and h′(R),
we can have following two facts:

x2 =
(α − 1) +

√

(α − 1)2 − 3k23α(α − 2)

3α
, (6.7)
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h(x2) =
(
x2
3

− α − 1

9α

)

h′(x2) + 6k23α(α − 2) − 2(α − 1)2

9α
x2

+ k23(α − 1)(α − 2) − 9k23α(α − 3)

9α
. (6.8)

Therefore, we have

h(x2) ≥ 0 (6.9)

⇔ x2 ≤ (α − 1)(α − 2) − 9α(α − 3)

2(α − 1)2 − 6k23α(α − 2)
k23 (6.10)

⇔
(α − 1) +

√

(α − 1)2 − 3k23α(α − 2)

3α
≤ (α − 1)(α − 2) − 9α(α − 3)

2(α − 1)2 − 6k23α(α − 2)
k23

(6.11)

⇔ Ak43 + Bk23 + C ≥ 0, (6.12)

where

A =α(α − 2)3 < 0, (6.13)

B =2(α − 1)2(α − 2)2 − 18(α − 1)(α − 2) + 27 > 0, (6.14)

C =(α − 1)3(α − 3) < 0. (6.15)

Notice that the discriminant of the quadratic function Ay2 + By + C is

�2 = [2(α − 1)2(α − 2)2 − 18(α − 1)(α − 2)+27]2 − 4α(α − 1)3(α − 2)3(α − 3)
(6.16)

= [2(α − 1)2(α − 2)2 − 18(α − 1)(α − 2) + 27]2
− 4(α − 1)4(α − 2)4 + 8(α − 1)3(α − 2)3 (6.17)

> −18(α − 1)(α − 2)[4(α − 1)2(α − 2)2

− 18(α − 1)(α − 2) + 27] + 8(α − 1)3(α − 2)3 (6.18)

= −2(α − 1)(α − 2)[32(α − 1)2(α − 2)2 − 162(α − 1)(α − 2) + 243].
(6.19)

Since the discriminant of the quadratic function 32y2 − 162y + 243 is �3 = 1622 −
4×32×243 = −4860 < 0, then 32(α −1)2(α −2)2 −162(α −1)(α −2)+243 > 0
for any α. Therefore

�2 > −2(α−1)(α−2)[32(α−1)2(α−2)2−162(α−1)(α−2)+243] > 0. (6.20)

So the quadratic equation Ay2+ By+C = 0 has two real-valued solutions k∗
31 < k∗

32.

Because k∗
31+k∗

32 = − B

A
> 0 and k∗

31k
∗
32 = C

A
> 0, then k∗

31 and k
∗
32 are both positive.
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Moreover we can have that Ak43 + Bk23 + C ≥ 0 if and only if k∗
31 ≤ k23 ≤ k∗

32. Now
let k31 = √

k∗
31 and k32 = √

k∗
32, we reach the conclusion in (6.6).

Step 3. We consider the number of roots of equation f (R) = 0 in (3.4) for each
case in (6.6). In the case where h(x2) ≥ 0, we would have h(R) ≥ 0 for any R > 0
because h(R) decreases for 0 < R < x2, and increases for R > x2. That is to say,
f ′(R) = Rα−4h(R) > 0 for any R > 0. So f (R) increases for all R > 0. According
to property (6.1), f (R) = 0 has one unique positive root.

On the other hand, when h(x2) < 0, h(R) = 0 has two positive solutions. Let 0 <

r1 < x2 < r2 be the solutions of h(R) = 0. Then h(R) > 0 if R ∈ [0, r1)∪ (r2,+∞)

and h(R) < 0 if R ∈ (r1, r2). That is to say,

f ′(R) = Rα−4h(R)

⎧
⎨

⎩

> 0, if R ∈ (0, r1),
< 0, if R ∈ (r1, r2),
> 0, if R ∈ (r2,+∞).

(6.21)

Therefore, f (R) increases for 0 < R < r1, decreases for r1 < R < r2, and increases
when R > r2. Then we know that

1. If f (r1) f (r2) > 0, then f (R) = 0 has one unique positive solution.
2. If f (r1) f (r2) = 0, then f (R) = 0 has two positive solutions.
3. If f (r1) f (r2) < 0, then f (R) = 0 has three positive solutions.

Define
l(R) = Rα−3(1 − R)(R2 + k23). (6.22)

Then f (r1) f (r2) = [k2−l(r1)][k2−l(r2)]. Since r1 and r2 are solutions of h(R) = 0,
r1 and r2 only depends on α and k3. So there exists k21, k22 which only depends on α,
k3 and are defined as

k21 = rα−3
1 (1 − r1)(r

2
1 + k23), k22 = rα−3

2 (1 − r2)(r
2
2 + k23), (6.23)

such that

1. If k2 < k21 or k2 > k22, then f (R) = 0 has one unique positive solution.
2. If k2 = k21 or k2 = k22, then f (R) = 0 has two positive solutions.
3. If k21 < k2 < k22, then f (R) = 0 has three positive solutions.

We claim that 0 < k21 < k22 for 0 < k3 < k31, while k21 < k22 < 0 for k3 > k32.
This is equivalent to r1 < r2 < 1 for 0 < k3 < k31, while 1 < r1 < r2 for k3 < k32.
Notice that h(1) = 1+k23 > 0, and that h(R) decreases for 0 < R < x2 and increases
for R > x2. So we only need to prove that h′(1) = α + 2 + k23(α − 2) < 0 for
0 < k3 < k31, while h′(1) > 0 for k3 > k32. In fact, k231 and k232 are two positive
roots of equation Ay2 + By +C = 0, where A, B,C are defined as (6.13), (6.14) and
(6.15) respectively. Notice that A < 0 and

A

(
2 + α

2 − α

)2

+ B

(
2 + α

2 − α

)

+C = 32

(

α − 1

4

)2

+ 54
α

2 − α
> 0, for 1 < α < 2.

(6.24)
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So k231 <
2 + α

2 − α
< k232. Therefore, we have

h′(1) = α + 2 + k23(α − 2) > α + 2 + k231(α − 2) > 0, if 0 < k3 < k31, (6.25)

h′(1) = α + 2 + k23(α − 2) < α + 2 + k232(α − 2) < 0, if k3 > k32. (6.26)

So we have proved that 0 < k21 < k22 for 0 < k3 < k31, while k21 < k22 < 0 for
k3 > k32. Therefore we reach the conclusion about number of solution of f (R) = 0.

��

Proof of Proposition 3.2 By the Center Manifold Theorem (Page 116 in Perko (2001)),
we can compute the center manifold near the equilibrium (0, 0):

C = ϑ(R) = 1

k1(2 − α)
R2−α + o(R2−α). (6.27)

Then, by substituting (6.27) into the first equation of the kinetic system (3.1), we obtain
the following scalar system which gives the flow of Eq. (3.1) on the center manifold:

Rt = k1R
α(1 − R) − k1k2

Rϑ2(R)

ϑ2(R) + k23
> 0, for 0 < R < δ. (6.28)

Thus, we know that the flow on the center manifold is moving away from the origin
and it is an unstable orbit.

Next we show that there is an invariant region near R = 0, C > 0 for Eq. (3.1).
Define

O =
⎧
⎨

⎩
(R,C) : 0 ≤ R ≤

(
k2

2(k23 + δ2)

) 1
α−1

C
2

α−1 , 0 ≤ C ≤ δ

⎫
⎬

⎭
.

It is obvious that R = 0 is invariant for (3.1). Then, if C = δ, 0 ≤ R ≤
(

k2
2(k23 + δ2)

) 1
α−1

δ
2

α−1 , since 1 < α < 2 then 2
α−1 > 1, so one can choose δ > 0

small enough so that

(
k2

2(k23 + δ2)

) 1
α−1

δ
2

α−1 ≤ δ. By using C = δ, we have C ′ < 0.
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On the boundary R =
(

k2
2(k23 + δ2)

) 1
α−1

C
2

α−1 , we have

d

dt

(
R

α−1
2

C

)

=
α−1
2 CR

α−3
2 R′ − R

α−1
2 C ′

C2 = R
α−3
2

C2

(
α − 1

2
CR′ − RC ′

)

= R
α−3
2

C2

[
α − 1

2
Ck1

(

Rα − Rα+1 − k2
RC2

C2 + k23

)

− R2 + CR

]

≤ R
α−3
2

C

[
α − 1

2
k1

(

Rα − k2
RC2

C2 + k23

)

+ R

]

≤ R
α−3
2

C

[

(α − 1)k1R
α − (α − 1)k1k2RC2

2(C2 + k23)

]

≤ R
α−3
2

C

[

(α − 1)k1

(

Rα − (α − 1)k1k2RC2

2(δ2 + k23)

)]

= (α − 1)R
α−1
2 k1C

2

[
Rα−1

C2 − k2
2(δ2 + k23)

]

= 0,

and thefirst inequality holds for R small enough: R < α−1
2 k1Rα . The above calculation

implies that the dynamics of (3.1) is inward on R =
(

k2
2(k23 + δ2)

) 1
α−1

C
2

α−1 . This

shows that O is an invariant region for Eq. (3.1), and any orbit in O converges to
the origin. It is also clear that when R = 0, C > 0 (the positive C-axis), we have
(Rt ,Ct ) = (0,−C). So we know that all the solutions starting from R = 0, C > 0
will always stay on this curve and eventually converge to the origin. One can choose
a maximum orbit R = hs(C) so that all orbits such that 0 ≤ R ≤ hs(C) converge to
the origin. Then other trajectories exhibits saddle behavior near the origin. ��
Proof of Theorem 3.3 First, we look at the determinant of the Jacobian matrix
J (R j , R j ): Det(J (R j , R j )) = k1R j ( f ′

2(R j ) − f ′
1(R j )), where f1, f2 are defined

in (3.6). From (3.6), we have

f2(R) − f1(R) = k2R2

R2 + k23
− Rα−1(1 − R) (6.29)

⇔ f (R) = k2 − Rα−3(1 − R)(R2 + k23) = R2 + k23
R2 ( f2(R) − f1(R)) (6.30)

⇔ f ′(R) = −2k23
R3 ( f2(R) − f1(R)) + R2 + k23

R2 ( f ′
2(R) − f ′

1(R)). (6.31)

From (6.30), we know that f2(R) − f1(R) = 0 when f (R) = 0. Since positive
steady states (R j , R j ) ( j = 1, 2, 3) satisfy f (R j ) = 0, we have f2(R j )− f1(R j ) = 0.
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Therefore, from (6.31), we know

f ′(R j ) > 0 ⇔ f ′
2(R j ) − f ′

1(R j ) > 0 ⇔ Det(J (R j , R j )) > 0;
f ′(R j ) = 0 ⇔ f ′

2(R j ) − f ′
1(R j ) = 0 ⇔ Det(J (R j , R j )) = 0;

f ′(R j ) < 0 ⇔ f ′
2(R j ) − f ′

1(R j ) < 0 ⇔ Det(J (R j , R j )) < 0.

According to the proof of Proposition 3.1, we have the following result of
Det(J (R j , R j )): there exists a constant k31 > 0 such that

1. If 0 < k3 < k31, then there exists r1 and r2, which are two positive solutions of
h(R) = 0, such that

(a) f ′(R) > 0 ⇒ Det(J (R, R)) > 0 for R ∈ (0, r1) ∪ (r2, 1);
(b) f ′(R) < 0 ⇒ Det(J (R, R)) < 0 for R ∈ (r1, r2).

2. If k31 < k3, then for any 0 < R < 1, we always have f ′(R) > 0 ⇒
Det(J (R, R)) > 0.

Here we want to point out that from (6.23), we have k2(r1) = k21 and k2(r2) = k22.
Next we look at the trace of Jacobianmatrix (3.5): Tr(J (R j ,C j )) = k1R j f ′

1(R j )−
1. Define a new function

g(R) = R f ′
1(R) = Rα−1[(α − 1) − αR]. (6.32)

We observe that g(R) has the following properties:

g(0) = 0, g

(
α − 1

α

)

= 0, and lim
R→∞ g(R) = ∞. (6.33)

Also we have the first derivative of g(R) as

g′(R) = Rα−2[(α − 1)2 − α2R]. (6.34)

Hence the function g(R) increases for 0 < R <

(
α − 1

α

)2

and decreases for R >

(
α − 1

α

)2

. So g(R) achieves itsmaximumat R =
(

α − 1

α

)2

with g

((
α − 1

α

)2
)

=
(

α − 1

α

)2α−1

.

Therefore we conclude that

1. If k1 <

(
α

α − 1

)2α−1

, then

Tr(J (R, R)) = k1g(R) − 1 <

(
α

α − 1

)2α−1 (
α − 1

α

)2α−1

− 1 = 0. (6.35)
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2. If k1 >

(
α

α − 1

)2α−1

, then there exists 0 < R̃1 < R̃2, such that g(R̃1) =

g(R̃2) = 1

k1
. Therefore,

(a) If R̃1 < R < R̃2, then Tr(J (R, R)) = k1g(R) − 1 > k1g(R̃1) = 0.
(b) If 0 < R < R̃1 or R̃2 < R < 1, then Tr(J (R, R)) = k1g(R)−1 < k1g(R̃1) =

0.

��
Proof of Proposition 3.4 From the proof of Theorem 3.3, we can easily get Part 1 in
Proposition 3.4. So here we only discuss Part 2: the case that 0 < k3 < k31. Since
Det(J (R2,C2)) < 0, the steady state (R2,C2) is always a saddle point. Sowe focus on
the positive steady states (R1,C1) and (R3,C3). To prove the results in Proposition 3.4,
we need to determine the order of the possible bifurcation points: r1, r2, R̃1 and R̃2,
where r1 and r2 are the steady state bifurcation points satisfying h(r1) = h(r2) = 0
with h(R) defined in (6.3), and R̃1, R̃2 are possible Hopf bifurcation points satisfying
g(R̃1) = g(R̃2) = 1/k1. Then, by the results of Theorem 3.3, we can obtain the
stability of each steady state.

First, we prove that g(r1) > g(r2) always holds. From the definition of h(R), we
know that

h(r1) = αr31 − (α − 1)r21 + k23(α − 2)r1 − k23(aα − 3) = 0. (6.36)

Multiplying (6.36) by rα−3
1 , we have

αrα
1 − (α − 1)rα−1

1 + k23(α − 2)rα−2
1 − k23(aα − 3)rα−3

1 = 0, (6.37)

which together with g(r1) = −αrα
1 + (α − 1)rα−1

1 from (6.32) implies that

g(r1) = k23(α − 2)rα−2
1 − k23(α − 3)rα−3

1 . (6.38)

Define

G(R) = k23(α − 2)Rα−2 − k23(α − 3)Rα−3, R ∈ (0, 1), α ∈ (1, 2). (6.39)

By direct calculation, we have G ′(R) = k23(α − 2)2Rα−3 − k23(α − 3)2Rα−4 and

G ′(R) < 0 for R ∈
(

0,
(

α−3
α−2

)2
)

⊃ (0, 1). Therefore, G(R) is strictly decreasing for

R ∈ (0, 1). By the fact that 0 < r1 < r2 < 1, immediately we reach the conclusion
that g(r1) > g(r2).

Nowwe consider the case that 0 < k3 < k31 which implies the existence ofmultiple
steady states. For the convenience of discussion, we define

g̃(R) = g(R) − 1/k1, (6.40)
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then we know that g̃ has two zeros R̃1 and R̃2. For the order of r1, r2, R̃1 and R̃2, we
have the following six possible situations:

(i) r1 < r2 < R̃1 < R̃2. We show that this case will not happen. By the property

of h(R), it is not difficult to verify that h
((

α−1
α

)2
)

> 0 = h(r2), so we know

that
(

α−1
α

)2
< r2. Because

(
α−1
α

)2
is the maximum point of g̃(R) and R̃1 is

the smallest root of g̃(R), so we have R̃1 < r2 which is a contradiction to the
assumption.

(ii) r1 < R̃1 < r2 < R̃2. By the fact that g̃(R) > 0 for R ∈ (R̃1, R̃1) and g(R) < 0
for R ∈ (0, R̃1) ∪ (R̃2, 1), it is easy to obtain that g̃(r1) < 0 since r1 < R̃1,
which is equivalent to k1 < 1/g(r1). Also, by g̃(r2) > 0, we have k1 > 1/g(r2).
However, it has been proved that g(r1) > g(r2), so the set (1/g(r2), 1/g(r1)) is
empty, which means that this case cannot happen.

(iii) R̃1 < r1 < r2 < R̃2 (see Fig. 7c). Because that r1, r2 ∈ (R̃1, R̃2), so we have
g̃(r1) > 0 and g̃(r2) > 0, which is equivalent to k1 > 1/g(r2). In this case,
by Theorem 3.3, we know that Hopf bifurcations occur at both of (R1, R1) and
(R3, R3).

(iv) R̃1 < r1 < R̃2 < r2 (see Fig. 7d). By similar argument, since r1 ∈ (R̃1, R̃2)

and r2 > R̃2, we can obtain that g̃(r1) > 0 and g̃(r2) < 0 which imply that
k1 ∈ (1/g(r1), 1/g(r2)). In this case, from R̃1 < r1 < R̃2 < r2 and Theorem 3.3,
a Hopf bifurcation only occurs at (R3, R3) and does not occur at (R1, R1).

(v) r1 < R̃1 < R̃2 < r2 (see Fig. 7e). Similarly, we have g̃(r1) < 0 and g̃(r2) < 0,
then it can be inferred that k11 < k1 < 1/g(r1). In this case, no Hopf bifurcation

can occur. Also, we have
(

α−1
α

)2
> r1 in this case, which will be used later.

(vi) R̃1 < R̃2 < r1 < r2 (see Fig. 7f). In this case, we still have k11 < k1 < 1/g(r1),

but the difference with case (v) is that
(

α−1
α

)2
< r1. In this case, two Hopf

bifurcations occur at (R1, R1).

So in order to distinguish the last two cases, we define k̃3 to be the value of k3 such

that r1 = (
α−1
α

)2
, and it is easy to calculate that k̃3 is given by (3.16). So case (v) is

for 0 < k3 < k̃3 which is equivalent to r1 <
(

α−1
α

)2
and case (vi) is for k̃3 < k3 < k31

which implies r1 >
(

α−1
α

)2
. Also we must have that k̃3 < k31. Suppose not, then

first we assume that k3 > k32, then h(R) = 0 has two positive solutions, but both of
them should be bigger than 1 and here we have 0 < R < 1 which is a contradiction.
If k31 < k3 < k32, then h(R) = 0 has no roots, so it contradicts with the fact that

h(R) = 0 has one of positive roots at (
α − 1

α
)2 < 1 when k3 = k̃3. Therefore, we can

conclude that k̃3 < k31. Finally if 0 < k1 < k11, then g̃(R) has no zeros, (R1, R1) and
(R3, R3) are both always linearly stable and Hopf bifurcation will not occur, which is
similar to (v) above.

In summary the case (c) is implied by (iii) above, case (d) is implied by (iv) above,
case (e) is implied by (v) and the case of 0 < k1 < k11, and case (f) is implied by (vi)
above. The proof is completed. ��
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