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Abstract. In this paper, we study the Hopf bifurcation and spatiotemporal

pattern formation of a delayed diffusive logistic model under Neumann bound-
ary condition with spatial heterogeneity. It is shown that for large diffusion

coefficient, a supercritical Hopf bifurcation occurs near the non-homogeneous
positive steady state at a critical time delay value, and the dependence of cor-

responding spatiotemporal patterns on the heterogeneous resource function is

demonstrated via numerical simulations. Moreover, it is proved that the het-
erogeneous resource supply contributes to the increase of the temporal average

of total biomass of the population even though the total biomass oscillates

periodically in time.

1. Introduction. In recent years, the effects of spatial heterogeneity on the pop-
ulation dynamics draw a lot of attention [3–6, 10, 19–22, 24, 25, 27, 31, 32], as the
resource distribution which significantly affects the population biomass is restricted
by some spatial factors such as climate, topography, etc. Hence it is more realistic
to consider heterogeneous resource supply in the biological modeling. A prototypi-
cal reaction-diffusion model with logistic growth and spatial heterogeneous resource
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is in the following form [27]:
ut(x, t) = d∆u(x, t) + u(x, t)(m(x)− u(x, t)), x ∈ Ω, t > 0,

∂νu(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1)

where u(x, t) represents the population density at location x and at time t and d > 0
is the diffusion coefficient; the spatial domain Ω is a region in RN for N ≥ 1; and the
function m(x) is the carrying capacity, or equivalently, the resource supply of the
species, which is related to spatial location and reflects the influence of environment
on the species. Here ∂νu(x, t) = ∇u(x, t) ·ν where ν is the unit outer normal vector
at x ∈ ∂Ω, so a no-flux boundary condition is imposed so the system is a closed
one. System (1) admits a unique positive spatially non-homogeneous steady state
which is globally asymptotically stable [5, 27].

It is known that historical information may significantly impact the dynamics of
population system because of the maturation time for reproduction or other time
delays in biological process, hence the logistic equation with time delay (also called
Hutchinson equation) has been proposed as a more realistic model [23]. Combining
with the spatial movement of population, the reaction-diffusion logistic equation
with time delay has been proposed to consider the evolution of population distri-
bution. Dynamics of such equation under the Neumann boundary condition was
studied in [14,29,41], and the Dirichlet boundary value problem of a delayed diffu-
sive logistic model has been considered in, for example, [2, 9, 34, 36, 40]. In general,
the time delay leads to occurrence of Hopf bifurcations, and the positive steady
state loses its stability and temporally oscillatory patterns arise. In these previous
works, only homogeneous resource supply is assumed. Under homogeneous Neu-
mann boundary condition, the unique positive steady state is constant and the
stable bifurcating periodic orbit is spatially homogeneous. In this work, we intro-
duce a time delay into the model with spatial heterogeneity (1), which describes a
more realistic growth scenario. More precisely, we propose a diffusive logistic model
with heterogeneous resource supply and delay effect as follows:

ut(x, t) = d∆u(x, t) + u(x, t)(m(x)− u(x, t− τ)), x ∈ Ω, t > 0,

∂νu(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x, t), x ∈ Ω, t ∈ [−τ, 0].

(2)

Here τ > 0 represents the time delay and u0 ∈ C := C([−τ, 0], Y ) with Y = L2(Ω)
is the initial condition. By taking the transform:

λ =
1

d
, t̃ =

t

λ
, τ̃ =

τ

λ
,

and dropping tilde, we obtain the following system:
ut(x, t) = ∆u(x, t) + λu(x, t)(m(x)− u(x, t− τ)), x ∈ Ω, t > 0,

∂νu(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x, t), x ∈ Ω, t ∈ [−τ, 0].

(3)

When m(x) is a positive constant K, Eq. (3) is the classic delayed diffusive logistic
model which has been thoroughly studied in [29, 39, 41] and the references therein.
The results show that there is a threshold value τ0 = π/(2λK) at which the system
undergoes a supercritical Hopf bifurcation, then the positive constant steady state
loses its stability and a stable spatially homogeneous periodic orbit arises when
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τ > τ0. It is clear that the delay τ plays a critical role in the destabilization of
the constant steady state. However, when m(x) is not constant, Eq. (3) admits a
spatially non-homogeneous steady state denoted by uλ(x) whose stability is more
difficult to determine.

Define m̄ := 1
|Ω|
∫

Ω
m(x)dx with |Ω| being the Lebesgue measure of Ω, which

biologically means the average resource. In this paper, under some mild conditions
on the resource function m(x), we prove the following main results regarding Eq.
(3) when λ ∈ (0, λ∗) with λ∗ defined in Lemma 2.1 of this paper:

1. there exists an infinite sequence {τnλ}∞n=0 with τnλ → π/2+2nπ
λm̄ as λ → 0+

such that the positive steady state of Eq. (3) is locally asymptotically stable
when τ ∈ (0, τ0λ), and it is unstable when τ ∈ (τ0λ,∞);

2. a supercritical Hopf bifurcation occurs at τ = τnλ for (3) near the spatially
non-homogeneous steady state uλ and all bifurcating periodic orbits are locally
asymptotically stable on the center manifold. Especially, there exists a ε > 0
such that a locally stable spatially non-homogeneous periodic orbit arises near
uλ for τ ∈ (τ0λ, τ0λ + ε);

3. the spatial heterogeneity increases the temporal average of total biomass when
the population is oscillating in time: any periodic solution u(x, t) of (3) sat-

isfies that ū >
∫

Ω
m(x)dx where ū := 1

T

∫ s+T
s

∫
Ω
u(x, t)dxdt is the tempo-

ral average of the population total biomass and
∫

Ω
m(x)dx is the total re-

source. Also the time-dependent total biomass shows a temporal oscillation
and it is possible that sometimes the total biomass is below the total resource∫

Ω
m(x)dx.

The existence and uniqueness of the positive steady state θ(x, d) of Eq. (2) for any
d > 0 has been established in [27, Theorem 1], and it is known that the positive
steady state is spatially non-homogeneous. Moreover, when d → ∞, it is shown
in [27] that θ(x, d)→ m̄. In [22, Proposition 3.1], a more precise asymptotic estimate
of θ(x, d) for large d is obtained and the estimate is useful for determining the
stability of uλ(x) (which is equivalent to θ(x, d)) with respect to (3). On the other
hand, for Eq. (1) which is the case of τ = 0 of Eq. (2), it was shown in [27] that the
population biomass satisfies

∫
Ω
θ(x, d)dx >

∫
Ω
m(x)dx, while, when the resource

supply is a constant m̄, the population biomass is equal to
∫

Ω
m(x)dx. It implies

that the heterogeneity of resource leads to the increase of population biomass. Our
result 3 above shows the same phenomenon still occurs when a time delay exists in
the biological process. The population now oscillates over time, but the temporal
average of population biomass is still greater than the total resource. Such results
also hold for more general diffusive logistic type model with heterogeneous growth
rate and carrying capacity [10], and ecological experiments have been carried out to
verify it in [42]. Other than the scalar equation (1), the effect of spatial heterogeneity
on the competition of two species is investigated in [19–22,25,27]. The method we
use here for Neumann boundary value problem with heterogeneous resource function
is similar to earlier work for Dirichlet boundary value problem with homogeneous
resource function [2, 9, 16, 17, 34, 36, 37, 40], as the steady states in both cases are
spatially non-homogeneous. That approach is powerful but also limited as it requires
a precise profile of the steady state. Hence the stability/instability of positive steady
state for large λ is still not known, as the profile of positive steady state is not clear
in that case and thus the current method cannot be applied.
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After the completion of initial draft of this paper, we learned that in a recent
work [8], the Hopf bifurcation in a reaction-diffusion-advection logistic model with
time delay and spatial heterogeneous resource has been proved by using a similar
approach as ours. In this paper, we also investigate the effect of heterogeneous
resource function on the spatiotemporal patterns generated by (3) with numerical
simulations. In particular when m(x) is spatially periodic or monotone function,
the resulting spatiotemporal patterns are strikingly distinctive.

In [26], a two-patch logistic population model with a single delay was considered.
In that work, the dispersal coefficients are chosen to resemble the Neumann or
Dirichlet boundary condition, and the resource function can also be homogeneous
or non-homogeneous. The existence of Hopf bifurcation and locally stable periodic
orbits is proved under these conditions. Our work here can also be viewed as a
continuous counter part for the non-homogeneous case in that paper.

This paper is organized as follows. In Section 2, we study the stability and Hopf
bifurcation of the positive steady state through analyzing the corresponding eigen-
value problem. By using some specific function m(x), we perform the simulations
for system (2) in Section 3. Finally, we conclude our results and discuss some fu-
ture work in Section 4. Here, we want to introduce some notations in this paper.
The Lebesgue space of integrable functions defined on a spatial domain Ω which is
bounded and smooth is denoted by L2(Ω) and we use Hk, Hk

0 to denote the real-
valued Sobolev space in which the functions have kth order weak derivative based
on L2(Ω) space. Denote X = H2(Ω) ∩H1

0 (Ω) and Y = L2(Ω). For a space Z, we

define its complexification is ZC , Z ⊕ iZ = {x1 + ix2 : x1, x2 ∈ Z}. The Banach
space of continuous and differentiable mappings from (−τ, 0] into Y is denoted by
C = C((−τ, 0], Y ) and C1 = C1((−τ, 0], Y ) respectively, and the complex-valued
Hilbert space YC has the inner product: 〈u, v〉 =

∫
Ω
ū(x)v(x)dx.

2. Stability and Hopf bifurcation. In this section, we investigate the stability
of the unique positive non-homogeneous steady state uλ(x) (for the convenience of
writing, we will use uλ in the rest part of this paper) of Eq. (3) by studying the
associated eigenvalue problem. Here we assume that the non-homogeneous resource
function m(x) satisfies

(H) m(x) ∈ Cα(Ω̄) for α ∈ (0, 1), m(x) is non-constant and
∫

Ω
m(x)dx ≥ 0.

Firstly, the steady state of Eq. (3) satisfies the following elliptic boundary value
problem: {

∆u(x) + λu(x)(m(x)− u(x)) = 0, x ∈ Ω,

∂νu(x) = 0, x ∈ ∂Ω.
(4)

For the following analysis, we decompose the spaces X, Y as follows,

X = K ⊕X1, Y = K ⊕ Y1,

where

K = Span{1}, X1 =

{
y ∈ X :

∫
Ω

y(x)dx = 0

}
, Y1 =

{
y ∈ Y :

∫
Ω

y(x)dx = 0

}
.

For the existence, uniqueness and asymptotic profile of the positive steady state
solution, the following results have been given in [22, Proposition 3.1]:

Lemma 2.1. Suppose that m(x) satisfies (H), then there exists a λ∗ > 0 depending
on m(x) such that, for λ ∈ (0, λ∗), Eq. (4) has a unique positive solution with the
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following form:

uλ = m̄+ λ(ρm(x) + C(m)) + λ2(γm(x) +K(m)) + o(λ2), (5)

where o(λ2) is taken in L∞(Ω). Here ρm(x) satisfies
∆ρm(x) + m̄(m(x)− m̄) = 0, x ∈ Ω,∫

Ω

ρm(x)dx = 0,

∂νρm(x) = 0, x ∈ ∂Ω,

(6)

γm(x) is the unique solution of
∆γm(x) + (m(x)− 2m̄) (ρm(x) + C(m)) = 0, x ∈ Ω,∫

Ω

γm(x)dx = 0,

∂νγm(x) = 0, x ∈ ∂Ω,

(7)

and C(m), K(m) are constants defined by

C(m) =
1

m̄2|Ω|

∫
Ω

|∇ρm|2(x)dx, (8)

and

K(m) =
1

m̄2|Ω|

∫
Ω

(m(x)− 3m̄)ρ2
m(x)dx. (9)

The following analysis is always based on the assumption that 0 < λ < λ∗ and
λ∗ is sufficiently small. Let uλ be the unique positive steady state of Eq. (3) for
0 < λ < λ∗ and linearize Eq. (3) at uλ, we have{

ϕt(x, t) = ∆ϕ(x, t) + λ[m(x)− uλ]ϕ(x, t)− λuλϕ(x, t− τ), x ∈ Ω, t > 0,

∂νϕ(x, t) = 0, x ∈ ∂Ω, t > 0.

(10)
Define a linear operator A(λ) : D(A(λ))→ YC by

A(λ)ϕ := ∆ϕ+ λ[m(x)− uλ]ϕ, (11)

where D(A(λ)) = XC. From [39, Theorem 3.1.5], the semigroup induced by the
solution of Eq. (10) has an infinitesimal generator Aτ (λ) given by

Aτ (λ)φ = φ̇

with

D(Aτ (λ)) = {φ ∈ CC ∩ C1
C : φ̇(0) = A(λ)φ(0)− λuλφ(−τ)}.

Then, the spectrum of Aτ (λ) is

σ(Aτ (λ)) = {µ ∈ C : Λ(λ, µ, τ)ψ = 0, for some ψ ∈ XC\{0}} (12)

with

Λ(λ, µ, τ) := A(λ)− λuλe−µτ − µ. (13)

Then, through analyzing the spectrum of Aτ (λ), we investigate the stability of
the positive non-homogeneous steady state uλ and Hopf bifurcation of system (3)
with τ considered as the bifurcation parameter. Firstly, we have the following
results for the spectrum of Aτ (λ) and the stability of the steady state uλ of system
(3) when τ = 0.

Theorem 2.2. For λ ∈ (0, λ∗),
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(i) all the eigenvalues of Aτ (λ) have negative real parts when τ = 0. Therefore,
the steady state uλ is locally asymptotically stable when τ = 0;

(ii) for any τ > 0, 0 6∈ σ(Aτ (λ)).

Proof. When τ = 0, the stability of uλ is determined by the eigenvalues of Aτ (λ)
when τ = 0. By the fact that uλ satisfies

∆uλ + λ(m(x)− uλ)uλ = A(λ)uλ = 0,

we know that 0 is the principal eigenvalue of A(λ) and uλ is its corresponding
eigenfunction. On the other hand, the principal eigenvalue of A(λ) can be expressed
through the variational method, thus we have

0 = µ1 = inf
06=y∈XC

−
∫

Ω
|∇y|2 + λ

∫
Ω

(m(x)− uλ))y2∫
Ω
y2

.

Similarly, for Aτ (λ) when τ = 0, we have

∆y + λ(m(x)− 2uλ)y = µ̃, for some y ∈ XC\{0},

and the principal eigenvalue is

µ̃1 = inf
06=y∈XC

−
∫

Ω
|∇y|2 + λ

∫
Ω

(m(x)− 2uλ))y2∫
Ω
y2

. (14)

Comparing µ̃1 with µ1, we conclude that µ̃1 < µ1 = 0. Therefore, all eigenvalues
of Aτ (λ) are negative when τ = 0, thus we know that uλ is locally asymptotically
stable when τ = 0.

Next, we prove 0 6∈ σ(Aτ (λ)) for any τ > 0 and λ ∈ (0, λ∗) by contradiction.
Assuming that 0 ∈ σ(Aτ (λ)), we substitute µ = 0 into Eq. (12) and obtain

(∆ + λ(m(x)− 2uλ))ỹ = 0, for some ỹ ∈ XC\{0}. (15)

However, by (14), we know that the principal eigenvalue of the operator ∆ +
λ(m(x) − 2uλ) is µ̃1 < 0, so there exists no ỹ such that Eq. (15) holds. This
is a contradiction to 0 ∈ σ(Aτ (λ)).

Secondly, we study the situation that Aτ (λ) has a pair of purely imaginary ei-
genvalues µ = ±iω (ω > 0) for some τ > 0, which is a necessary condition for the
Hopf bifurcation. For that purpose, we substitute µ = iω into Eq. (12) and obtain

∆ψ + λ(m(x)− uλ)ψ − λuλe−iθψ − iωψ = 0, for some ψ ∈ XC\{0} (16)

with θ := ωτ . For further study, we give the following lemma first.

Lemma 2.3. For λ ∈ (0, λ∗), if there exist some (ω, θ, ψ) ∈ R+ × R × XC\{0}
solving Eq. (16), then ω/λ is uniformly bounded.

Proof. By Eq. (16), we have〈[
∆ + λ(m(x)− uλ)− λuλe−iθ − iω

]
ψ,ψ

〉
=〈A(λ)ψ,ψ〉 − λeiθ〈uλψ,ψ〉 − iω〈ψ,ψ〉 = 0.

(17)

Since A(λ) is self-adjoint, then 〈A(λ)ψ,ψ〉 is real. Separating the real and imaginary
parts of Eq. (17), we have

ω〈ψ,ψ〉 = λ sin(θ)

∫
Ω

uλ|ψ|2dx.
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Since | sin(θ)| ≤ 1 and there exists M > 0 such that |uλ| = |m̄ + λ(ρm + C(m)) +
o(λ)| ≤M , we obtain

|ω|
λ

=
sin(θ)

∫
Ω
uλ|ψ|2dx

‖ψ‖2YC

≤M.

Thus, we proved the boundedness of ω/λ.

For λ ∈ (0, λ∗), we have the following results about the existence of the triple
(ω, θ, ψ) ∈ R+ × R×XC\{0} satisfying Eq. (16). Let

ψ = β + λz, β > 0, with ‖ψ‖YC = 1, ω = λh. (18)

Substituting (18) and uλ = m̄+λξ with ξ := (ρm(x)+C(m))+λ(γm(x)+K(m))+
o(λ) into Eq. (16), we get

g1(z, β, θ, h, λ) :=∆z + (m(x)− (m̄+ λξ))(β + λz)

− (m̄+ λξ)e−iθ(β + λz)− ih(β + λz) = 0,

g2(β, z, λ) :=(β2 − 1) + λ2‖z‖YC = 0.

(19)

We define G(z, β, θ, h, λ) := (g1, g2) from (X1)C×R3×R to (Y1)C×R. When λ→ 0,
the limiting equation of (19) is

g1(z, β, θ, h, 0) =∆z + β(m(x)− m̄)− βm̄e−iθ − ihβ = 0,

g2(β, z, 0) =β2 − 1 = 0,
(20)

and by the second equation, immediately we have β = 1. Substituting β = 1 into
the first equation of (20) and integrating it over Ω, we obtain

m̄e−iθ + ih = 0.

Hence the solution set of Eq. (20) is

Σ =
{

(z, β, θ, h) =
(
ρm, 1,

π

2
+ 2nπ, m̄

)
, n ∈ N ∪ {0}

}
,

where ρm is the unique solution of Eq. (6). By the periodicity of θ, we can always
set θ ∈ [0, 2π), under which Eq. (20) has a unique solution given by

(z0, β0, θ0, h0) =
(
ρm, 1,

π

2
, m̄
)
. (21)

By the implicit function theorem, the existence of the solution of G(z, β, θ, h, λ) = 0
for small λ can be shown as follows.

Theorem 2.4. For λ ∈ (0, λ∗),

(i) there exists a unique continuously differentiable map Wλ := (zλ, βλ, θλ, hλ)
from (0, λ∗) to (X1)C×R3 satisfying W0 = (z0, β0, θ0, h0) defined in (21) such
that G(Wλ, λ) = 0;

(ii) the eigenvalue problem

Λ(λ, iω, τ)ψ = 0, τ > 0, ψ ∈ XC\{0}
with Λ defined in (13) has non-trivial solutions, that is, iω ∈ σ(Aτ (λ)) if and
only if

ω = ωλ := λhλ, τ = τnλ :=
θλ + 2nπ

ωλ
(n ∈ N ∪ {0}),

ψ = rψλ with ψλ := βλ + λzλ,

where r is a nonzero constant and (zλ, βλ, hλ, θλ) = Wλ is defined in part (i).
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Proof. We define T = (T1, T2) : (X1)C × R3 7→ YC × R by

T := D(z,β,θ,h)G(W0, 0).

Therefore we have

T1(χ, κ, ϑ, ε) = ∆χ+ (m(x)− m̄)κ+ m̄ϑ− iε,
T2(κ) = 2κ.

It can be verified that T is bijective from (X1)C × R3 to (Y1)C × R, thus by the
implicit function theorem, there exists a continuously differentiable mapping Wλ :
(0, λ∗)→ (X1)C × R3 such that G(Wλ, λ) = 0 with W0 = (z0, β0, θ0, h0) as λ→ 0.

Next we prove the uniqueness of Wλ. Assume that there exists another con-
tinuously differentiable mapping Wλ := (zλ, βλ, θλ, hλ) with θλ ∈ [0, 2π), hλ > 0
such that G(Wλ, λ) = 0, then we need to show that Wλ → W0 as λ → 0 in the
norm of (X1)C×R3 by the implicit function theorem. First, the boundedness of the
sequences {βλ}, {θλ} and {hλ} can be easily obtained from the definition of Wλ

and Lemma 2.3. In the following, we will prove the boundedness of the zλ. From
the first equation of Eq. (19), we have

‖zλ‖2YC
≤ 1

λ2

∣∣∣〈[(m(x)− uλ)− uλe−iθ
λ

− ihλ](βλ + λzλ), zλ〉
∣∣∣ ,

where λ2 is the second eigenvalue of −∆ on H1(Ω). The boundedness of m(x),
{hλ} and uλ implies that there exists a constant M1 > 0 such that

1

λ2

∥∥∥(m(x)− uλ)− uλe−iθ
λ

− ihλ
∥∥∥
∞
≤M1,

then we have ∥∥zλ∥∥2

YC
≤M1

∣∣βλ∣∣ ∥∥zλ∥∥
YC

+ λM1

∥∥zλ∥∥2

YC
. (22)

We can choose a proper M1 such that λM1 < 1/2, then Eq. (22) implies that∥∥zλ∥∥2

YC
≤ 2M1

∣∣βλ∣∣ .
Hence,

{
zλ
}

is bounded in YC when λ ∈ (0, λ∗]. Since the operator ∆ : (X1)C 7→
(Y1)C has a bounded inverse, by applying ∆−1 on g1

(
zλ, βλ, hλ, θλ, λ

)
= 0, we find

that
{
zλ
}

is also bounded in XC, and hence
{
Wλ : λ ∈ (0, λ∗]

}
is precompact in

YC ×R3. Therefore, there is a subsequence
{
Wλj :=

(
zλj , βλj , hλj , θλj

)}
such that

Wλj →W 0, λj → 0 as j →∞.

By taking the limit of the equation G
(
Wλj , λj

)
= 0 as j → ∞, we have that

G
(
W 0, 0

)
= 0. Also, we know that G (z, β, h, θ, 0) = 0 has a unique solution given

by (z, β, h, θ) = W0, thus W 0 = W0. Hence, Wλ → W0 as λ → 0 in the norm of
XC × R3. This proves part (i), and part (ii) is immediately observed from part
(i).

Remark 2.5. The results in Theorem 2.4 are for Eq. (3) which has a rescaling in
time τ̃ = τ/λ. Therefore, if we go back to the real time scale that is the original
system (2), the critical value for Eq. (2) satisfies

τnλ =
λ(θλ + 2nπ)

ωλ
=
θλ + 2nπ

hλ
, and lim

λ→0
τnλ =

π + 4nπ

2m̄
,

which we will use in the numerical simulations.
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Next we demonstrate that a Hopf bifurcation indeed occurs at τnλ = (θλ +
2nπ)/ωλ in system (3) by verifying the transversality condition.

Lemma 2.6. For λ ∈ (0, λ∗), we have

(i) Aτ (λ) has a simple eigenvalue µ(τ) = a(τ)+ib(τ) satisfying a(τnλ) = 0, b(τnλ) =
ωλ when τ is near τnλ;

(ii) Re
(
dµ

dτ
(τnλ)

)
> 0.

Proof. As for part (i), the proof is similar to that in [36, Theorem 3.5] which is
omitted here. Now we give the proof for part (ii). Applying the implicit function
theorem, we obtain that there exist a neighborhood O ×D ×H ⊂ R × C ×XC of
(τλ, iωλ, ψλ) and a continuous differential function (µ, ψ) : O → D×H such that,
for each τ ∈ O, µ(τ) is the only eigenvalue of Aτ (λ) with associated eigenfunction
ψ(τ) and the following equalities hold:

µ(τnλ) = iωλ, ψ(τnλ) = ψλ,

Λ(λ, µ(τ), τ) =
[
∆ + λ(m(x)− uλ)− λuλe−µ(τ)τ − µ(τ)

]
ψ(τ) = 0, τ ∈ O.

(23)
Differentiating Eq. (23) with respect to τ at τ = τnλ, we get

Λ(λ, iωλ, τnλ)
dψ(τnλ)

dτ
+ λuλe

−iθλ
(
dµ(τnλ)

dτ
+ iωλ

)
ψλ −

dµ(τnλ)

dτ
ψλ = 0. (24)

Multiplying Eq. (24) by ψλ and integrating over Ω, we have

dµ(τnλ)

dτ
=

iλωλe
−iθλ

∫
Ω
uλψ

2
λdx∫

Ω
ψ2
λdx− λτnλe−iθλ

∫
Ω
uλψ2

λdx
. (25)

We define

Snλ =

∫
Ω

ψ2
λdx− λτnλe−iθλ

∫
Ω

uλψ
2
λdx. (26)

When λ→ 0, we obtain that

lim
λ→0

uλ = m̄, lim
λ→0

θλ =
π

2
, lim
λ→0

ψλ = 1, lim
λ→0

λτnλ =
π/2 + 2nπ

m̄
, (27)

so

lim
λ→0

Snλ = 1 + i
(π

2
+ 2nπ

)
6= 0.

By the continuity with respect to λ, we know Snλ 6= 0 in a small neighborhood of
λ = 0. We continue the calculation of Eq. (25) and have

dµ(τnλ)

dτ
=

1

|Snλ|2

(
iλωλe

−iθλ
∫

Ω

ψ2
λdx− iλ2τnλωλ

∣∣∣∣∫
Ω

uλψ
2
λdx

∣∣∣∣2
)
. (28)

Therefore,

Re
(
dµ(τnλ)

dτ

)
=
λωλ sin(θλ)

∫
Ω
ψ2
λdx

|Snλ|2
.

Since lim
λ→0

sin θλ
∫

Ω
ψ2
λdx = 1 > 0, for λ ∈ (0, λ∗), we also can attain that sin θλ

∫
Ω
ψ2
λ

dx > 0. Hence, by the positiveness of ωλ, we have Re
(
dµ(τnλ)

dτ

)
> 0.

By Theorem 2.4 and Lemma 2.6, we have the following results for the stability
and Hopf bifurcation of uλ which is the positive steady state solution of (3).
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Theorem 2.7. Suppose that m(x) satisfies (H), then for each λ ∈ (0, λ∗),

(i) there exists an infinite sequence τnλ > 0 defined in Theorem 2.4 such that
all the eigenvalues of Aτ (λ) have negative real parts when τ ∈ (0, τ0λ), Aτ (λ)
has a pair of purely imaginary eigenvalues ±iωλ (ωλ > 0) when τ = τnλ, and
Aτ (λ) has 2(n+1) eigenvalues with positive real parts when τ ∈

(
τnλ, τ(n+1)λ

)
;

(ii) the unique positive steady state uλ of Eq. (3) is locally asymptotically stable
when τ ∈ (0, τ0λ), and it is unstable when τ ∈ (τ0λ,+∞);

(iii) a Hopf bifurcation occurs at τ = τnλ for (3) so that there is a continuous
family of periodic orbits of (3) in form of {(τn(s), un(x, t, s), Tn(s)) : s ∈ (0,
δ1)} so that un(x, t, s) is a Tn(s)−periodic solution of (3) with τ = τn(s), and
τn(0) = τnλ, lim

s→0+
un(x, t, s) = uλ(x) and lim

s→0+
Tn(s) = 2π/ωλ.

Next, by applying the method of Faria [11,12], the normal form of system (3) can
be computed to determine the direction of the Hopf bifurcation proved in Theorem
2.7 and the stability of the periodic orbits.

Theorem 2.8. Suppose that m(x) satisfies (H), for each λ ∈ (0, λ∗), the Hopf
bifurcation of the steady state uλ of Eq. (3) at τ = τnλ defined in Theorem 2.4 is
supercritical, and the bifurcating periodic orbits are stable on the center manifold.
Especially, there exists ε > 0 such that system (3) has a stable periodic orbit when
τ ∈ (τ0λ, τ0λ + ε).

Proof. In Theorem 2.7, we obtain conditions under which system (3) undergoes a
Hopf bifurcations near the positive steady state uλ at τ = τnλ. By letting U(t) =
u(·, t) − uλ and Ut = U(t + a) ∈ C = C([−τ, 0], YC), α = τ − τnλ and t → t/τ , for
each λ ∈ (0, λ∗), we translate the steady state and parameter τ to the origin, then
α = 0 is the Hopf bifurcation value now.

Then we rewrite Eq. (3) as follows:

dU(t)

dt
= τnλ∆Ut(0) + L0(Ut) + F (Ut, α),

where

L0(ϕ) =λτnλ ((m(x)− uλ)ϕ(0)− uλϕ(−1)) ,

F (ϕ, α) =α∆ϕ(0) + Lα(ϕ)− λ(τnλ + α)ϕ(0)ϕ(−1),

where Lα(ϕ) = λα ((m(x)− uλ)ϕ(0)− uλϕ(−1)). And the Taylor expansion of
F (Ut, α) is

F (Ut, α) =
1

2!
F2(Ut), α) +

1

3!
F3(Ut, α) + h.o.t.

with
F2(Ut, α) =2!α ((∆ + λ(m(x)− uλ)Ut(0)− λuλUt(−1))) ,

F3(Ut, α) =− 3!λαUt(0)Ut(−1).

By following the computing procedure of normal form in [12], the bifurcation
direction and the stability of the bifurcating periodic orbits can be determined by
the following two numbers:

K1 = Re(A1), K2 = Re(A2),

where

A1 :=
iωλ
Snλ
〈ψλ, ψλ〉, A2 :=

1

4
(C1 + C2),
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with

C1 :=
8iλ2τnλ
ωλ

[
1

S2
nλ

Re(eiθλ)e−iθλ〈ψλ, ψ2
λ〉〈ψλ, |ψλ|2〉

− 1

|Snλ|2

(
2(Re(eiθλ))2|〈ψλ, |ψλ|2〉|2 +

1

3
|〈ψλ, ψ̄2

λ〉|2
)]

,

C2 :=− 2λτnλ
Snλ

[
〈ψλ, (h20(−1) + h20(0)eiθλ)ψλ〉+ 〈ψλ, (h11(−1) + h11(0)eiθλ)ψλ〉

]
.

Here h20, h11 are the solutions of the following equations, respectively, ḣ20(s)− 2iθnλh20(s) = −2λτnλe
−iθλ

[
〈ψλ, ψ2

λ〉ψλeiθλs

Snλ
+
〈ψ̄λ, ψ2

λ〉ψ̄λe−iθλs

S̄nλ

]
,

ḣ20(0)− τnλ [A(λ)h20(0)− λuλh20(−1)] = −2λτnλe
−iθλψ2

λ,

and ḣ11(s) = −4λτnλRe(eiθλ)

[
〈ψλ, |ψλ|2〉ψλeiθλs

Snλ
+
〈ψ̄λ, |ψλ|2〉ψ̄λe−iθλs

S̄nλ

]
,

ḣ11(0)− τnλ [A(λ)h11(0)− λuλh11(−1)] = −4λτnλRe(eiθλ)|ψλ|2,
where θnλ := θλ + 2nπ and A(λ), Snλ are defined in (11) and (26), respectively.
Then, by taking the limits of K1 and K2 when λ→ 0 and using (27), we have the
following results:

K1 = Re(A1) = ωλRe
(
i〈ψλ, ψλ〉
Snλ

)
,

where

lim
λ→0
Re
(
i〈ψλ, ψλ〉
Snλ

)
=

π/2 + 2nπ

1 + (π/2 + 2nπ)2
> 0.

Thus, we have K1 > 0. And

lim
λ→0

K2 = lim
λ→0
Re
(

1

4
(C1 + C2)

)
=

1

15m̄2θnλ|1 + iθnλ|4
(
−3θ3

nλ + 13θ2
nλ − 39θnλ + 1

)
< 0.

According to [12, Theorem 3.2], K1 > 0 and K2 < 0 imply that a supercritical Hopf
bifurcation occurs here for Eq. (3) and the bifurcating periodic orbits are locally
asymptotically stable on the center manifold. The first bifurcating periodic orbit is
stable in the small neighborhood of the bifurcation point τ0λ.

Finally, we show that the spatial heterogeneity increases the population size,
which has been proved for the case that the solution of system (3) converges to the
steady state without time delay in [27, Theorem 1.2]. When the time delay is incor-
porated in the model, it also can be proved that, compared to the constant resource
supply case (i.e. m(x) = m̄), the temporal average of total biomass increases in the
situation that a stable spatially non-homogeneous periodic orbit arises in Eq. (3)
when τ > τ0λ because of the non-homogeneous resource distribution.

Definition 2.9. Suppose that u(x, t) is a time-periodic solution of Eq. (3) with
period T , then ũ(t) :=

∫
Ω
u(x, t)dx is the total biomass of the population at time t,

and the temporal average of total biomass is defined as

ū :=
1

T

∫ s+T

s

∫
Ω

u(x, t)dxdt.
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Note that ũ(t) is still a time-periodic function of time t, while ū is a positive
constant. Here we assume that m(x) satisfies a stronger condition:

(H ′) m(x) ∈ Cα(Ω̄) for α ∈ (0, 1), m(x) is non-constant and m(x) ≥ 0 for all
x ∈ Ω.

Then, we have the following result:

Theorem 2.10. Assume that m(x) satisfies (H ′), and suppose that u(x, t) is a
time-periodic solution of Eq. (3) with period T . Then

ū >

∫
Ω

m(x)dx.

Proof. Because u(x, t) satisfies Eq. (3), we have∫
Ω

ut(x, t)ϕ(x, t)dx =

∫
Ω

∆u(x, t)ϕ(x, t)dx+λ

∫
Ω

u(x, t)[m(x)−u(x, t−τ)]ϕ(x, t)dx

(29)
for any ϕ(x, t) ∈ W 1,2(Ω) and t > 0. By using the Maximum Principle [33] and
a similar argument as the one in [15, Lemma 1], the positiveness of the periodic
solution u(x, t) can be obtained. We choose the test function ϕ in Eq. (29) to be
ϕ = 1/u. Integrating the both sides of Eq. (29) in one temporal period [s, s + T ],
we have

1

T

∫ s+T

s

∫
Ω

ut
u
dxdt =

1

T

∫ s+T

s

∫
Ω

∆u

u
dxdt+

λ

T

∫ s+T

s

∫
Ω

[m(x)−u(t−τ)]dxdt. (30)

From Fubuni Theorem, the left side of Eq. (30) can be computed as

1

T

∫ s+T

s

∫
Ω

ut
u
dxdt =

1

T

∫
Ω

∫ s+T

s

ut
u
dtdx

=
1

T

∫
Ω

[ln(u(x, s+ T )− ln(u(x, s))]dx = 0.

Then, by applying the Neumann boundary condition and direct calculation, we have

1

T

∫ s+T

s

∫
Ω

u(x, t)dxdt =
1

λT

∫ s+T

s

∫
Ω

|∇u(x, t)|2

u2(x, t)
dxdt+

∫
Ω

m(x)dx >

∫
Ω

m(x)dx,

(31)
where the fact that

1

T

∫ s+T

s

∫
Ω

u(x, t)dxdt =
1

T

∫ s+T

s

∫
Ω

u(x, t− τ)dxdt

is used. Also, the last inequality in (31) holds for the reason that u(x, t) is non-
constant. The conclusion is inferred by (31).

Remark 2.11. From Theorem 2.10, we have ū >
∫

Ω
m(x)dx for a time periodic

solution u(x, t) of Eq. (3), which means that the temporal average of total biomass
with heterogeneous resource supply is always greater than that of the constant case
(i.e. m(x) = m̄). In other words, the spatial heterogeneity will benefit the temporal
average of population size. However, ũ(t) >

∫
Ω
m(x)dx is not always true, and ũ(t)

is a time-periodic function and oscillates around
∫

Ω
m(x)dx, which will be shown

by the numerical simulations in Section 3.
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3. Pattern formation: Numerical simulations. In this part, we investigate
the effect of m(x) on the profile of the non-homogeneous steady state and the
structure of the spatial periodic solutions of Eq. (3) which is equivalent to the
original system (2) under a rescaling in time which is supposed to simplify the
theoretical analysis. In order to preserve the real time scale, we carry out the
simulations for the original system (2), and the critical value for stability switch
will be τ0λ = π

2m̄ + o(λ) according to Remark 2.5. The numerical simulations are
performed on a one-dimensional spatial domain (0, 2π), and two classes of m(x) are
considered: (i) m(x) is monotone in x; (ii) m(x) is periodic in x.

3.1. Non-homogeneous steady states. From (5) in Lemma 2.1, the profile of
the steady state uλ(x) of Eq. (3) has the following form:

uλ(x) = m̄+ λ(ρm(x) + C(m)) + λ2(γm(x) +K(m)) + o(λ2),

with ρm(x), C(m), γm(x) and K(m) satisfying Eq. (6), (8), (7) and (9) respectively.
Since we assume that λ is sufficiently small, thus uλ can be interpreted as a pertur-
bation of the constant m̄ which is the average resource. But the spatial variation of
m(x) affects the profile of uλ in the order λ through the term ρm(x) +C(m). Note
that the steady state of Eq. (2) is equivalent to that of Eq. (3) in the sense that
λ = 1/d.
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Figure 1. The non-homogeneous steady states of Eq (2) when
m(x) is a cosine function: (a) m(x) = cos(x) + 2; (b) m(x) =
cos(1.5x) + 2; (c) m(x) = cos(2x) + 2. Here d = 2 (which is
equivalent to λ = 0.5), τ = 0.71 < τ0λ ≈ 0.785 and initial value
u0 = 2 for all three cases, and the solution converges to the non-
homogeneous steady state.

In Figure 1, the resource function m(x) is a cosine function with m̄ = 2 for
several different periods. According to Theorem 2.4 and Remark 2.5, the first Hopf
bifurcation point for Eq. (2) is τ0λ ≈ π

2m̄ ≈ 0.785 when λ is small. Simulations
of solutions of (2) are shown in Figure 1 when τ = 0.73 < τ0λ, and the solutions
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converge to the steady state. In each group, the top figure is the graph of u(x, t) in
two-dimensional space (x, t) with color showing the value of u(x, t), and the bottom
one is the profile of the steady state uλ(x) and corresponding resource function
m(x). Comparing the profile of the steady state and the resource function (see the
lower figures in all groups), we can see that the steady state uλ(x) has the exactly
same maximum and minimum points as the resource function m(x) even though
their amplitudes are different. This shows that the population distribution roughly
matches the distribution of food resource, but not in the more restrictive sense of
ideal-free distribution in biology [7,13]. Here the matching is achieved as the chosen
resource function m(x) satisfies the homogeneous Neumann boundary condition. In
the next two examples (i.e. the sine and linear function cases), the maximum and
minimum points of steady states do not always match with the ones of resource
functions.
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Figure 2. The non-homogeneous steady states of Eq. (2) when
m(x) is a sine function: (a) m(x) = sin(x) + 2; (b) m(x) =
sin(1.5x) + 1.788; (c) m(x) = sin(2x) + 2. The parameters are
the same as in Figure 1, and here τ = 0.73 < τ0λ ≈ 0.785. The
solution converges to the non-homogeneous steady state for each
case.

In Figure 2, the resource functions are sine functions with m̄ = 2 and the critical
value of stability switch again is τ0λ ≈ 0.785 for all cases. By taking τ = 0.71 < τ0λ,
the solutions of system (2) also converge to the stable non-homogeneous steady
state. The situation here is different from the case that m(x) is a cosine function.
The individuals still show the tendency of aggregating to where the food resources
is relatively rich, but this trend is influenced by the boundary condition. Here the
interior local maximum or minimum points of uλ(x) still matches with the ones
of m(x), but uλ(x) achieves local maximum/minimum on the boundary which are
not extreme points of m(x). On the other hand, the two local maximum/minimum
points of m(x) closest to boundary are not local maximum/minimum points of
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uλ(x). Indeed the positive steady states shown in Figure 2 aggregates to the left
side in the sense that

ûλ(x) :=
1

x

∫ x

0

uλ(y)dy ≥ ūλ :=
1

2π

∫ 2π

0

uλ(y)dy, x ∈ [0, 2π],

as the resource function m(x) also satisfies m̂(x) ≥ m̄ for every x ∈ [0, 2π]. We can
also observe from Figures 1 and 2 that uλ(x) inherits the symmetry property that
m(x) satisfies. That is, if m(x) is “even” in x in the sense m(2π − x) = m(x), so is
uλ(x); and if m(x) is “odd” in x in the sense m(2π − x) = −m(x), so is uλ(x).
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Figure 3. The non-homogeneous steady states of Eq. (2) when
m(x) is a monotone linear function: (a) m(x) = 1 + x/π; (b)
m(x) = 3 − x/π. Here d = 2 and τ = 0.73 < τ0λ. The solution
converges to the positive monotone steady state.

Finally, in Figure 3, simulations of increasing and decreasing linear function cases
are exhibited. We still have τ0λ ≈ 0.785 here. One can observe that the positive
steady state inherits the odd symmetry and monotone properties of m(x).

3.2. Spatiotemporal patterns. In this subsection we demonstrate the spatially
non-homogeneous periodic orbits which bifurcate from the non-homogeneous steady
state of system (2) through a supercritical Hopf bifurcation. By Theorem 2.4 and
Remark 2.5, the first Hopf bifurcation value is τ0λ = π

2m̄+o(λ). In all of the following
figures, we set the parameters as d = 2, τ = 0.82 > τ0λ ≈ 0.785 with m̄ = 2 in all
the cases. In each group, the top figure is the graph of u(x, t) in two-dimensional
space (x, t) with color showing the value of u(x, t), and the bottom figure shows the
oscillation of the total biomass ũ(t) =

∫
Ω
u(x, t)dx, and comparison with temporal

average of total biomass ū and corresponding total resource
∫

Ω
m(x)dx.
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Figure 4. The periodic orbits induced by Hopf bifurcation near
the non-homogeneous steady state of Eq. (2) for case that m(x) is
cosine function: (a) m(x) = cos(x) + 2; (b) m(x) = cos(1.5x) + 2;
(c) m(x) = cos(2x) + 2. Here d = 2, and τ = 0.82 > τ0λ ≈ 0.785.

In Figure 4, we use the same resource functions as the ones in Figure 1, but
with a larger delay τ = 0.82 which is greater than the first Hopf bifurcation value
τ0λ. Compared with Figure 1, the solutions now show a temporal oscillation with a
spatial profile (same number of peaks) consistent with the spatial non-homogeneous
steady state. The bottom row verifies the result in Theorem 2.10 that the temporal
average of total biomass of the population is greater than the total resource. How-
ever, because of the oscillation of the population density in time, the total biomass
ũ(t) is also a time-periodic function and it goes below the total resource for some
interval in each period. Figures 5 and 6 show the periodic orbits of system (2)
when m(x) are sine and linear functions, respectively. From these figures, the same
conclusion can be drawn that the periodic orbits have the same spatial structure
with the corresponding steady states. Because the periodicity both in space and
time, so the spot patterns can be observed. In Figure 5 (a), (c) and Figure 6, the
spatiotemporal patterns are not spatially symmetric, which also inherits from the
steady state profile.

4. Discussion. In consideration of the spatial movement of species in the realistic
biological systems, the reaction-diffusion logistic model is widely employed to de-
scribe the evolution of spatial distribution of the population. However this model is
often not sufficient to explain the heterogeneous distribution of the species in space.
So some revisions of the diffusive models are needed to fit the actual situation. One
of them is to introduce the advection term or use nonlinear diffusion instead of
only using the simplest diffusion (see [18, 28, 30, 35, 38] and the references therein).
Another mechanism is the aggregation of the population which is proposed by Brit-
ton [1] who argue that there are some reasons for individuals to group together, for
example, the aggregation of bees or ants for social work, or the herd behavior which
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Figure 5. The periodic orbits induced by Hopf bifurcation near
the non-homogeneous steady state of Eq. (2) for case that m(x) is
sine function: (a) m(x) = sin(x) + 2; (b) m(x) = sin(1.5x) + 1.788;
(c) m(x) = sin(2x) + 2. Here d = 2, and τ = 0.82 > τ0λ ≈ 0.785.

is well known for herds to prevent the predation. Therefore, nonlocal models are
established in order to describe the aggregation occurring in some species, which
admits spatially non-homogeneous steady states and thus can illustrate the hetero-
geneous distribution of the species. In [3,27], the authors give a new mechanism for
the spatial heterogeneity of population due to the non-homogeneous carrying ca-
pacity which is largely determined by the distribution of resource. The results show
that the heterogeneity of resource will lead to the increase of population biomass
and the non-homogeneous distribution of population [27], which means that the
spatial patterns will arise in such models.

The time delay is embraced into population models or other biological systems
on account of the dependence on the historical information of the systems. And it
is well known that time delay is an important mechanism inducing the temporal
patterns due to the occurrence of Hopf bifurcation. Therefore, a delayed reaction-
diffusion logistic model with heterogeneous carrying capacity in a bounded habitat
is investigated under the homogeneous Neumann boundary condition in the present
paper. By taking time delay as parameter, there is a threshold value τ0λ ≈ π/(2λm̄)
such that the non-constant steady state of system (3) loses its stability and the
system undergoes a supercritical Hopf bifurcation, thus spatiotemporal patterns
arise through self-organization (see Figures 4, 5, 6). Also, through the simulations
in Section 3, we can observe that the food resource distribution has profound impact
on the structure of the steady state, and there is a significant aggregation tendency
toward the high density region of resource. And such tendency is also influenced
by the Neumann boundary condition (see Figures 2 and 5 for the case that m(x)
being a sine function). Moreover, we proved that the spatial heterogeneity of the
resource increases the temporal average of total biomass of the population when it
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Figure 6. The periodic orbits induced by Hopf bifurcation near
the non-homogeneous steady state of Eq. (2) for case that m(x) is
monotone linear function: (a) m(x) = 1+x/π; (b) m(x) = 3−x/π.
Here d = 2, and τ = 0.82 > τ0λ ≈ 0.785.

oscillates periodically in time. This is in accordance with the result of the situation
that the population converges to the steady state, which shows the robustness of
such result.

There are still a lot of open questions for future investigations. Because of the
limitation of the analytic method which requires the concrete form of the steady
state, the existence of Hopf bifurcation is only proved when the diffusion coefficient
is sufficiently large in this paper. The numerical simulations show that the Hopf
bifurcation occurs for a wide range of diffusion coefficient, and we conjecture that
system (2) undergoes Hopf bifurcation for all d > 0. Therefore, new methods need
to be developed to study the Hopf bifurcation for such general case. On the other
hand, the model can be refined to relate to the practical situation. For example, we
may consider the distributed delay or nonlocal delay effect in stead of the discrete
delay considered here.
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