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a b s t r a c t

In this paper, the existence and nonexistence of energy minimizer of the Kirchhoff–
Schrödinger energy function with prescribed L2-norm in dimension four are con-
sidered. The energy infimum values are completely classified in terms of coefficient
and exponent of the nonlinearity. The sharp existence results of global constraint
minimizers for both the subcritical and critical exponent cases are obtained, and
the criticality is in the sense of both Sobolev embedding and Gagliardo–Nirenberg
inequality. Our results also show the delicate difference between the case without a
trapping potential function and the one with potential function.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and main results

This paper is concerned with the existence of L2-normalized minimizers of the nonlinear Schrödinger–
Kirchhoff functional for a four-dimensional Bose–Einstein condensate:

Ec
V (u) = a

2

∫
R4

|∇u|2 + 1
2

∫
R4

V (x)u2 + b

4

∫
R4

|∇u|4 − c

p

∫
R4

|u|p, u ∈ H1(R4), (1.1)

where a, b > 0 are constants, c > 0 is a parameter and V is a potential function from various physics
applications. If u ∈ H1(R4) achieves the minimizer of the functional Ec

V with the constraint
∫
R4 |u|2 = 1,

then there exists a real number λ such that u satisfies

−
(

a + b

∫
R4

|∇u|2
)
∆u + V (x)u = c|u|p−2

u + λu, x ∈ R4. (1.2)
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Solutions of Eq. (1.2) are the stationary solutions of Kirchhoff wave equation

utt −
(

a + b

∫
R4

|∇u|2
)
∆u = f(x, u), x ∈ R4, (1.3)

where f is a general nonlinearity. The problem (1.3) was proposed by Kirchhoff [10] in 1883 to describe
the transversal oscillations of a stretched string. Comparing with the corresponding semilinear Schrödinger
equations (i.e., setting b = 0 in the above two equations), it is much more challenging and interesting to
investigate equations (1.2) and (1.3) in view of the presence of the nonlocal term

(∫
RN

|∇u|2dx

)
∆u.

After the pioneering work of [14], much attention was paid to (1.2) and (1.3). For instance, replacing
the term |u|p−2

u with a general nonlinearity f(x, u), there are many results on the existence of solutions
for Eq. (1.2), one can refer, for example, [3,7,8] and the references therein. Eq. (1.2) can be viewed as an
eigenvalue problem by taking λ as an unknown Lagrange multiplier. From this point of view, one can solve
(1.2) by studying some constrained variational problem and obtain normalized solutions.

For spatial dimension N = 3, a lot of interests are paid to (1.2) and some existence results are obtained,
see for example, [3–5,8,11–13,16,17]. Because of the additional Kirchhoff type nonlocal term, the nonlinearity
is usually assumed that 4-suplinear when N = 3 and the critical Sobolev exponent is 2∗

S = 6. Furthermore
the ground state of the functional Ec

V with prescribed mass when V = 0 and N = 3 has been also considered
[19–21]. Typically the subcritical case p ∈ (2, 14/3) (thus p < 2∗

S) is assumed when considering the
constrained minimizer of Ec

V , where 2∗
GN = 14/3 is the Gagliardo–Nirenberg (G–N) critical exponent from

the celebrated Gagliardo–Nirenberg inequality when N = 3. When p ∈ [14/3, 2∗) and N = 3, the energy
functional Ec

V is not bounded from below hence the minimization problem is not valid.
For the spatial dimension N = 4, the critical Sobolev exponent is 2∗

S = 4 and the G–N critical exponent
is also 2∗

GN = 4. The existence of nontrivial solutions to Kirchhoff equation on bounded domain in R4 was
shown in [15] without constraint, see also [9]. In this paper, we consider the energy minimizer of the energy
functional Ec

V with a prescribed mass when N = 4, p ∈ (2, 4], and either V = 0 or V ̸= 0. This include both
subcritical (p < 4) and the double critical (p = 4) cases. When p = 4, the nonlocal term and the nonlinearity
are both 4-linear growth, which generates an additional competition in the energy function Ec

V .
From now on we assume that N = 4. We consider the following minimization problem

ec
V := inf

u∈SV

Ec
V (u), (1.4)

where Ec
V (u) is defined in (1.1) for u ∈ HV := {u ∈ H1(R4) :

∫
R4 V (x)u2 < ∞} and SV := {u ∈ HV :

|u|2 = 1}. Here | · |p denotes the norm of Lp(R4) defined by |u|pp =
∫
R4 |u|p. If V = 0, we denote the space

HV by H0, the set SV by S0, the functional Ec
V by Ec

0, and ec
V by ec

0 respectively.
Before stating our main results, we recall the well-known Gagliardo–Nirenberg inequality with the best

constant (see [18]): let p ∈ [2, 4), then

|u|p ⩽

(
p

2|Qp|2
p−2

) 1
p

|∇u|
2(p−2)

p
2 |u|

1− 2(p−2)
p

2 , u ∈ H1(R4) (1.5)

with the equality only holds when u = t2Qp(tx), where up to translations, Qp is the unique ground state
solution of

− (p − 2)∆Qp +
(

1 − p − 2
2

)
Qp = |Qp|p−2

Qp in R4. (1.6)

If |u|2 = 1, then

|u|p ⩽

(
p

2|Qp|2
p−2

) 1
p

|∇u|
2(p−2)

p
2 , p ∈ (2, 4), (1.7)
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with the equality only holds when u = up(x) = t2Qp(tx)/|Qp|2 up to translations. We also recall the Sobolev
inequality in R4:

S2
∫
R4

u4 ⩽

(∫
R4

|∇u|2
)2

, u ∈ H1(R4) (1.8)

where

S2 =
|∇Q4|42
|Q4|44

, Q4(x) = 8 1
2

1 + |x|2
, (1.9)

and S2 is the best Sobolev embedding constant satisfying S2 = |∇Q4|22 = |Q4|44 (see [1]).
The main results of this paper, which we will prove in Section 3, read as follows.

Theorem 1.1. Let V = 0 and p ∈ (2, 4]. Then

(a) There exists c∗ ∈ [0, ∞) defined by

c∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 2 < p < 3,

a|Qp|2, p = 3,

a4−p|Qp|p−2
2 (4 − p)p−4( b

2p−6 )p−3, 3 < p < 4,

bS2, p = 4,

such that ec
0 = 0 for 0 < c ⩽ c∗ and ec

0 < 0 for c > c∗. Furthermore, when c > c∗, ec
0 > −∞ if p ∈ (2, 4)

and ec
0 = −∞ if p = 4.

(b) If p ∈ (2, 4), then ec
0 = min

t⩾0
fc,p(t) where

fc,p(t) = a

2 t + b

4 t2 − c

2|Qp|p−2
2

tp−2. (1.10)

Moreover, Ec
0 has a minimizer if and only if p ∈ (2, 4) and c > c∗, or p ∈ (3, 4) and c ⩾ c∗. While ec

0
can be achieved, the minimizer equals to (Qp)tp up to translations, where (Qp)t(x) = t2Qp(tx)/|Qp|2
and tp > 0 is the unique minimum point of fc,p.

(c) If p = 4, Ec
0 has no energy minimizers for any c > 0.

Theorem 1.2. Let p ∈ (2, 4], and V (·) satisfies the condition:

(V) V ∈ C(R4, [0, ∞)), lim
|x|→∞

V (x) = ∞ and inf
x∈R4

V (x) = 0; there exists a small ε0 > 0 such that
m({V (x) ⩽ ε0}) ⩽ ε0.

Then there exists a c∗ > 0 such that

(a) if p ∈ (2, 4), then ec
V > 0 for c ∈ (0, c∗), ec∗

V = 0 and ec
V ∈ (−∞, 0) for c ∈ (c∗, ∞). Moreover, ec

V can
be achieved for all c > 0.

(b) if p = 4, then c∗ = bS2, ec
V ∈ (−∞, 0) for c ∈ (0, c∗), ec∗

V = 0 and ec
V = −∞ for c ∈ (c∗, ∞). Moreover,

Ec
V has an energy minimizer for c < c∗, and it has no minimizers for c ⩾ c∗.

Remark 1.3.

1. When p = 4, c∗ = bS2 which does not depend on the potential function V . For p < 4, this is not known
unless V = 0 (see Theorem 1.1).

2. The functions V (x) = |x| and V (x) = (|x| − 1)2 satisfy (V ).
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Theorems 1.1 and 1.2 provide the first existence results for the constraint minimization problem for
the Kirchhoff–Schrödinger energy functional (1.1) when N = 4 and p ∈ (2, 4]. Similar results for N = 3,
p ∈ (2, 14/3) and V = 0 were obtained in [21]. Our results here consider the effect of potential function V

and also the more delicate doubly critical exponent p = 4 case. When V ̸= 0, the existence of ground state
of Ec

V for N = 2, p = 4 and b = 0 was obtained in [6]. That is the Gagliardo–Nirenberg critical exponent
case, but not the Sobolev critical exponent. In Section 2, we give some basic estimates, and we prove our
main results in Section 3.

2. Preliminaries

In this section, we give some estimates of Ec
V which are required in the proof of the main results in next

section.

2.1. The case of V = 0

For p ∈ (2, 4), we conclude from (1.6) that∫
R4

|∇Qp|2 =
∫
R4

|Qp|2 = 2
p

∫
R4

|Qp|p. (2.1)

We define
gc,p(t) = a

2 + b

4 t − c

2|Qp|p−2
2

tp−3, fc,p(t) = tgc,p(t), t ⩾ 0. (2.2)

The following lemma characterizes the threshold value c∗ and infimum energy level ec
0 when 2 < p < 4.

Lemma 2.1. If p ∈ (2, 4), then ec
0 = min

t⩾0
fc,p(t). Moreover, there exists a c∗ ⩾ 0 such that

1. If 2 < p < 3, then c∗ = 0 and ec
0 ∈ (−∞, 0) for all c > 0.

2. If 3 ⩽ p < 4, then c∗ ∈ (0, +∞), ec
0 = 0 for c ∈ (0, c∗], and −∞ < ec

0 < 0 for c > c∗; Moreover,
c∗ = a|Qp|2 if p = 3, c∗ = a4−p|Qp|p−2

2 (b/(2p − 6))p−3 if 3 < p < 4.

Proof. Let p ∈ (2, 4). For any c > 0 and u ∈ S0, then by (1.7),

Ec
0(u) ⩾ a

2 |∇u|22 + b

4 |∇u|42 − c

2|Qp|p−2
2

|∇u|2(p−2)
2 . (2.3)

Because 2 < p < 4, Ec
0 is bounded from below on S0; that is, ec

0 > −∞ is well defined.
For p ∈ (2, 4), let

(Qp)t(x) := t2Qp(tx)
|Qp|2

, t > 0, (2.4)

then (Qp)t ∈ S0 and by (2.1), we have

ec
0 ⩽ Ec

0((Qp)t) = a

2 t2 + b

4 t4 − c

2 t2(p−2)|Qp|2−p
2 = fc,p(t) → 0, t → 0. (2.5)

Therefore, ec
0 ⩽ 0 for all c > 0 when p ∈ (2, 4). It follows from (2.3) that Ec

0(u) ⩾ inf
t>0

fc,p(t) for all u ∈ S0.
According to (2.3) and (2.5), ec

0 = min
t⩾0

fc,p(t).
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We complete the proof for the following three cases.

(a) If p ∈ (2, 3) and c > 0, then fc,p(t) < 0 for t > 0 small. We set c∗ = 0, then ec
0 < 0 for all c > 0.

Therefore, c∗ = 0 is well defined. According to (2.3), ec
0 ∈ (−∞, 0).

(b) If p = 3, then gc,p(t) = a

2 + b

4 t − c

2|Qp|p−2
2

. It is obvious that gc,p(t) ⩾ gc,p(0) = a

2 − c

2|Qp|p−2
2

. Let

c∗ = a|Qp|p−2
2 . If c ⩽ c∗, then gc,p(0) ⩾ 0. This together with ec

0 ⩽ 0 implies that ec
0 = 0. If c > c∗,

then fc,p(t) = tgc,p(t) < 0 for t > 0 small. Therefore, we have ec
0 < 0.

(c) If p ∈ (3, 4), then there exists t∗ > 0 such that g′
c,p(t∗) = 0 and gc,p(t∗) = min

t⩾0
gc,p(t). Indeed it is easy

to calculate that t∗ satisfies
b

4 = c

2|Qp|p−2
2

(p − 3)tp−4
∗ .

Let c∗ be the unique value satisfying

gc∗,p(t∗) = a

2 + b

4 t∗ − c∗

2|Qp|p−2
2

tp−3
∗ = a

2 − c∗

2|Qp|p−2
2

(4 − p)tp−3
∗ = 0.

Then we have

c∗ = a4−p|Qp|p−2
2 (4 − p)p−4

(
b

2p − 6

)p−3
.

If c ⩽ c∗, then min
t⩾0

gc,p ⩾ 0 and ec
0 = 0. If c > c∗, then gc∗,p(t∗) < 0 and it follows from (2.5) that

ec
0 < 0. □

Next we show the related estimates for p = 4.

Lemma 2.2. If p = 4, then c∗ = bS2, ec
0 = 0 for c ∈ (0, c∗], and ec

0 = −∞ for c > c∗. Moreover when
c ⩽ c∗ = bS2, the infimum ec

0 = 0 is not achieved.

Proof. If p = 4, we show that c∗ = bS2. In fact, for c ⩽ bS2 and u ∈ S0, since

Ec
0(u) = a

2 |∇u|22 + b

4 |∇u|42 − c

4 |u|44 ⩾
a

2 |∇u|22 + b

4 |∇u|42 − c

4S2 |∇u|42 ⩾
b

4(1 − c

c∗
)|∇u|42 ⩾ 0,

then we have ec
0 ⩾ 0 for c ⩽ bS2. On the other hand, for u ∈ S0, let ut(x) = t2u(tx), then ut ∈ S0 and

Ec
0(ut) = a

2 t2|∇u|22 + b

4 t4|∇u|42 − c

4 t4|u|44 → 0, t → 0.

Hence ec
0 = 0 for c ⩽ bS2. For c > bS2, since Q4 /∈ L2(R4), we cannot use the same method of p < 4 here

and we use a cut-off function technique to obtain the estimates of ec
0.

In what follows, we assume that c > bS2. For R > 1, we can obtain by directly computing that∫
|x|>R

Q4
4(x) =

∫
|x|>R

64
(1 + |x|2)4

dx = 64ω4

∫ ∞

R

r3

(1 + r2)4 dr < 64ω4

∫ ∞

R

1
r5 dr = 16ω4

R4 , (2.6)

∫
|x|>R

|∇Q4(x)|2 = 8
∫

|x|>R

|2x|2

(1 + |x|2)4
dx = 32ω4

∫ ∞

R

r5

(1 + r2)4 dr < 32ω4

∫ ∞

R

1
r3 dr <

16ω4

R2 , (2.7)
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∫
R<|x|<2R

Q2
4(x) =

∫
R<|x|<2R

8
(1 + |x|2)2

dx

= 8ω4

∫ 2R

R

r3

(1 + r2)2 dr

= 4ω4

∫ 4R2

R2

t

(1 + t)2 dt

= 4ω4

∫ 4R2

R2

[
1

1 + t
− 1

(1 + t)2

]
dt

= 4ω4

[
ln 1 + 4R2

1 + R2 + 1
1 + 4R2 − 1

1 + R2

]
, (2.8)∫

|x|<R

Q2
4(x) =

∫
|x|<R

8
(1 + |x|2)2

dx

= 8ω4

∫ R

0

r3

(1 + r2)2 dr

= 4ω4

∫ R2

0

[
1

1 + t
− 1

(1 + t)2

]
dt

= 4ω4

[
ln(1 + R2) + 1

1 + R2 − 1
]

, (2.9)

where ω4 = 2π2/Γ (2) = 2π2 is the surface area of unit sphere in R4. We choose a radially symmetric function
ϕ ∈ C∞

0 (R4) with 0 ⩽ ϕ ⩽ 1, ϕ = 1 on BR := {x ∈ R4 : |x| < R} and ϕ = 0 on Bc
2R := {x ∈ R4 : |x| > 2R},

and |∇ϕ| ⩽ 2/R. Moreover, we may choose ϕ to be non-increasing on |x|. Let U = ϕQ4/|ϕQ4|2 and
Ut(x) = t2U(tx), then U, Ut ∈ S0. Since limR→∞ ln(1 + R2) = +∞ and limR→∞(1 − 1

1+R2 ) = 1, then for
R > 0 large,

ln(1 + R2)
2 > 1 − 1

1 + R2 .

Therefore, we have from (2.9)

|ϕQ4|22 =
∫
R4

|ϕQ4|2 ⩾
∫

|x|<R

|Q4|2 ⩾
ω4

4 ln(1 + R2). (2.10)

Since
lim

R→∞

(
ln 1 + 4R2

1 + R2 + 1
1 + 4R2 − 1

1 + R2

)
= ln 4 < 2

and (2.8), ∫
R<|x|<2R

Q2
4 < 8ω4.

This together with (2.6)–(2.10) and (1.9) implies that for R large,

Ec
0(Ut) = a

2 t2|∇U |22 + b

4 t4|∇U |42 − c

4 t4|U |44

= at2

2|Q4ϕ|22

[∫
R4

|∇Q4ϕ + Q4∇ϕ|2
]

+ bt4

|Q4ϕ|42

[∫
R4

|∇Q4ϕ + Q4∇ϕ|2
]2

− ct4

4|Q4ϕ|42

∫
R4

|Q4ϕ|4

⩽
at2

2|Q4ϕ|22

[∫
R4

|∇Q4ϕ|2 +
∫
R4

|Q4|2|∇ϕ|2 + 2
∫
R4

|∇Q4||∇ϕ|Q4ϕ

]
+ bt4

4|Q4ϕ|42

[∫
R4

|∇Q4ϕ|2 +
∫
R4

|Q4|2|∇ϕ|2 + 2
∫
R4

|∇Q4||∇ϕ|Q4ϕ

]2
− ct4

4|Q4ϕ|42

∫
R4

|Q4ϕ|4
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⩽
at2

2|Q4ϕ|22

[∫
|x|<2R

|∇Q4|2 +
∫

R<|x|<2R

|Q4|2|∇ϕ|2 + 2
∫

R<|x|<2R

|∇Q4||∇ϕ|Q4ϕ

]

+ bt4

4|Q4ϕ|42

[∫
|x|<2R

|∇Q4|2 +
∫

R<|x|<2R

|Q4|2|∇ϕ|2 + 2
∫

R<|x|<2R

|∇Q4||∇ϕ|Q4ϕ

]2

− ct4

4|Q4ϕ|42

∫
|x|<R

|Q4|4

⩽
at2

2|Q4ϕ|22

[∫
|x|<R

|∇Q4|2 +
∫

R<|x|<2R

|∇Q4|2 + 4
R2

∫
|R<|x|<2R

|Q4|2 + 4
R

∫
R<|x|<2R

|∇Q4|Q4

]

+ bt4

4|Q4ϕ|42

[∫
|x|<R

|∇Q4|2 +
∫

R<|x|<2R

|∇Q4|2 + 4
R2

∫
|R<|x|<2R

|Q4|2 + 4
R

∫
R<|x|<2R

|∇Q4|Q4

]2

− ct4

4|Q4ϕ|42

∫
|x|<R

|Q4|4

⩽
at2

2|Q4ϕ|22

[∫
|x|<R

|∇Q4|2 + 2
∫

|x|>R

|∇Q4|2 + 8
R2

∫
R<|x|<2R

|Q4|2
]

+ bt4

4|Q4ϕ|42

[∫
|x|<R

|∇Q4|2 + 2
∫

|x|>R

|∇Q4|2 + 8
R2

∫
R<|x|<2R

|Q4|2
]2

− ct4

4|Q4ϕ|42

∫
|x|<R

|Q4|4

⩽
at2

2|Q4ϕ|22

[∫
|x|<R

|∇Q4|2 + 32ω4

R4 + 64ω4

R2

]
+ bt4

4|Q4ϕ|42

[∫
|x|<R

|∇Q4|2 + 32ω4

R4 + 64ω4

R2

]2

− ct4

4|Q4ϕ|42

(∫
R4

|Q4|4 −
∫

|x|>R

|Q4|4
)

⩽
at2

2|Q4ϕ|22

[∫
|x|<R

|∇Q4|2 + 128ω4

R2

]
+ bt4

4|Q4ϕ|42

[∫
|x|<R

|∇Q4|2 + 128ω4

R2

]2

− ct4

4|Q4ϕ|42

(
S2 − 16ω4

R4

)
⩽

at2

2|Q4ϕ|22

[
S2 + 128ω4

R2

]
+ t4

4|Q4ϕ|42

[
(bS2 − c)S2 + b

256ω4

R2 S2 + b
1282ω2

4
R4 + c

16ω4

R4

]
. (2.11)

Since c > bS2, we can choose R > 0 large such that

b
256ω4

R2 S2 + b
1282ω2

4
R4 + c

16ω4

R4 <
1
2(c − bS2)S2,

then we have from (2.11) that ec
0 ⩽ Ec

0(Ut) → −∞ as t → ∞. Therefore, c∗ is well defined and c∗ = bS2.
If ec

0 is achieved by u ∈ S0, then Ec
0(u) = 0. Then from the Sobolev inequality (1.8), we have

0 = Ec
0(u) = a

2 |∇u|22 + b

4 |∇u|42 − c

4 |u|44 ⩾
a

2 |∇u|22 + b

4 |∇u|42 − c

4S−2|∇u|42

= a

2 |∇u|22 + (1 − c

c∗
) b

4 |∇u|42.

By the above inequality, a

2 |∇u|22 + (1 − c

c∗
) b

4 |∇u|42 ⩽ Ec
0(u) = 0, then we have from c ⩽ c∗ that |∇u|2 = 0,

which implies that |u|4 = 0 from the Sobolev inequality, and then u = 0 a.e. x ∈ R4. This contradicts with
u ∈ S0. □
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2.2. The case of V ̸= 0

In this subsection, we consider the case of V ̸= 0 which is different from the case of V = 0. First we recall
the following result about the embedding, and its proof is almost the same as that of [22, Lemma 5.1] or
Section 3 of [2], hence we omit it here.

Lemma 2.3. Suppose V satisfies the condition (V ), then the embedding HV ↪→ Lq(R4) is compact, for
any 2 ⩽ q < 4.

Next we prove some properties of the energy infimum ec
V .

Lemma 2.4. Suppose V satisfies the condition (V ) and p ∈ (2, 4), then the energy infimum ec
V is continuous

and non-increasing for c ∈ (0, ∞).

Proof. The non-increasing property is obvious since Ec1
V (u) ⩽ Ec2

V (u) if c1 ⩾ c2. So we only need to prove
the continuity. We first prove the continuity from left. Let {cn} be a sequence such that cn ≤ c. If cn → c−,
then for ε > 0, c − ε ⩽ cn ⩽ c and ec

V ⩽ ecn
V ⩽ ec−ε

V as n large. Therefore, Ec
V (u) ⩽ Ecn

V (u) ⩽ Ec
V (u) + ε

p |u|pp
for every u ∈ SV . By the definition of ec

V , there exists a u ∈ SV such that Ec
V (u) ⩽ ec

V + ε. Hence

ec
V ⩽ ecn

V ⩽ Ecn
V (u) ⩽ Ec

V (u) + ε

p
|u|pp ⩽ ec

V + ε + ε

p
|u|pp.

Therefore ecn
V → ec

V if cn → c− as n → ∞.
On the other hand, we prove that ecn

V → ec
V if cn → c+ where {cn} is a sequence satisfying cn ≥ c. In

fact, it is easy to see that ecn
V ⩽ ec

V and c ⩽ cn ⩽ 2c for n large. According to the definition of ecn
V , there

exists a sequence {un} ⊂ SV such that Ecn
V (un) ⩽ ecn

V + 1
n . From (1.7) and un ∈ SV , we have

Ecn
V (un) = a

2 |∇un|22 + b

4 |∇un|42 + 1
2

∫
R4

V (x)u2
n − cn

p
|un|pp

⩾
a

2 |∇un|22 + b

4 |∇un|42 + 1
2

∫
R4

V (x)u2
n − 2c

2|Qp|p−2
2

|∇un|2(p−2)
2 ,

which implies that un is bounded in HV . We may assume from Lemma 2.3 that un ⇀ u in HV and un → u

in Lr(R4) for r ∈ [2, 4). Hence u ∈ SV and

ec
V ⩽ Ec

V (u) ⩽ lim inf
n→∞

Ec
V (un) = lim inf

n→∞
Ecn

V (un) ⩽ lim inf
n→∞

(ecn
V + 1

n
) ⩽ ec

V . □

Again we give the estimates of the threshold value c∗ and infimum energy level ec
0 for 2 < p < 4 and

p = 4 separately.

Lemma 2.5. Suppose V satisfies the condition (V ) and p ∈ (2, 4), then there exists a c∗ > 0 such that if
0 < c < c∗, ec

V > 0; if c = c∗, ec
V = 0; and if c > c∗, −∞ < ec

V < 0.

Proof. It is obvious that Ec
V (u) ⩾ Ec

0(u), therefore inf
SV

Ec
V (u) ⩾ ec

0 > −∞. However, if we compute Ec
V (ut),

then
∫
R4 V (x)u2

t may not converge to 0 as t → 0. That is, ec
V may not be 0 as ec

0 = 0. In what follows, we
use other methods to obtain the conclusion. For p ∈ (2, 4) and u ∈ SV , let C(u) = 1

p |u|pp. It follows from
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(1.7) and the Young inequality that

Ec
V (u) = a

2 |∇u|22 + 1
2

∫
R4

V (x)u2 + b

4 |∇u|42 − c

p
|u|pp

⩾
a

2

(
2
p

) 1
p−2

|Qp|2|u|
p

p−2
p + b

4

(
2
p

) 2
p−2

|Qp|22|u|
2p

p−2
p − c

p
|u|pp + 1

2

∫
R4

V (x)u2

⩾
c

2 − 1
2

∫
V (x)⩽c

(c − V (x))u2dx + 2
3−p
p−2 a|Qp|2C(u)

1
p−2 + 4

3−p
p−2 b|Qp|22C(u)

2
p−2 − cC(u)

⩾
c

2 − p − 2
2p

c− 2
p−2

∫
V (x)⩽c

(c − V (x))
p

p−2 + 4
3−p
p−2 b|Qp|22C(u)

2
p−2 − 2cC(u).

Let f(x) = 4
3−p
p−2 b|Qp|22x

2
p−2 − 2cx, then

min
x⩾0

f(x) = −(4 − p)c
2

4−p 4
p−3
4−p

(
p − 2
b|Qp|22

) p−2
4−p

.

If c < c1 = min
{

ε0
2 ,

b|Qp|22
2(p−2)

(
1

p(4−p)

) 4−p
p−2

}
, then we have

Ec
V (u) ⩾ c

2 − p − 2
2p

c− 2
p−2 c

p
p−2 m(Vc) − (4 − p)c

2
4−p 4− 3−p

4−p

(
p − 2
b|Qp|22

) p−2
4−p

⩾
c

2 − p − 2
2p

cε0 − (4 − p)c
2

4−p 4− 3−p
4−p

(
p − 2
b|Qp|22

) p−2
4−p

⩾
c

p
− (4 − p)c

2
4−p 4− 3−p

4−p

(
p − 2
b|Qp|22

) p−2
4−p

= c

⎡⎣1
p

− (4 − p)c
p−2
4−p 4− 3−p

4−p

(
p − 2
b|Qp|22

) p−2
4−p

⎤⎦ ⩾
c

2p
,

where Vc := {x ∈ R4 : V (x) ⩽ c} and m(Vc) denotes the Lebesgue measure. This implies that ec
V > 0 if

c < c1. Let c∗ = sup{c > 0 : ec
V > 0}. According to the definition of c∗, ec

V > 0 for c < c∗. Fix u ∈ SV , then
it follows from (2.1) that

Ec
V (u) = a

2 |∇u|22 + 1
2

∫
R4

V (x)u2 + b

4 |∇u|42 − c

p
|u|pp,

this implies that there exists a c2 > c∗ (for example, c2 > pE0
V (u)/|u|pp) such that ec

V ⩽ Ec
V (u) < 0 for

c > c2. Moreover, by the continuity of ec
V (Lemma 2.4) and definition of c∗, we have ec∗

V ⩾ 0. In the following,
we prove that ec∗

V = 0 and ec
V < 0 for c > c∗. Let {un} ⊂ SV be a minimizing sequence for ec∗

V , then one has
from (1.7) that

Ec∗
V (un) = a

2 |∇un|22 + b

4 |∇un|42 + 1
2

∫
R4

V (x)u2
n − c∗

p
|un|pp

⩾
a

2 |∇un|22 + b

4 |∇un|42 − c

2|Qp|p−2
2

|∇un|2(p−2)
2 .

Therefore {un} is bounded in HV , and we may assume from Lemma 2.3 that there exists a u ∈ HV such
that un ⇀ u in HV and un → u in Lr(R4) for r ∈ [2, 4). This together with the lower semicontinuity of the
norm implies that u ∈ SV and ec∗

V ⩽ Ec∗
V (u) ⩽ 0. Therefore, ec∗

V = 0. From direct computing, we can obtain
that ec

V ⩽ Ec
V (u) < Ec∗

V (u) = 0 if c > c∗. □
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Next we deal with the case of p = 4.

Lemma 2.6. Suppose V satisfies the condition (V ) and p = 4. Let c∗ = bS2, then ec
V > 0 for c < c∗,

ec∗
V = 0 and ec

V = −∞ for c > c∗.

Proof. For c < c∗ = bS2, let λ = min{ε0, bS2 − c}. Then we have from (1.8), Young inequality and the
condition (V ) that

Ec
V (u) = a

2 |∇u|22 + 1
2

∫
R4

V (x)u2 + b

4 |∇u|42 − c

4 |u|44

⩾
bS2

4 |u|44 − c

4 |u|44 + 1
2

∫
R4

V (x)u2

⩾
λ

2 − 1
2

∫
V (x)⩽λ

(λ − V (x))u2dx + 1
4(bS2 − c)|u|44

⩾
λ

2 − 1
4(bS2 − c)

∫
V (x)⩽λ

(λ − V (x))2

⩾
λ

2 − 1
4(bS2 − c)λ2ε0 ⩾

λ

4 .

Therefore, ec
V > 0 for all c < c∗.

For c > c∗, according to the proof above, let Ut be defined in Lemma 2.1, then by (2.11),

Ec
V (Ut) ⩽

a

2|Q4ϕ|22
t2
[
S2 + 128ω4

R2

]
− 1

4|Q4ϕ|42
t4
[
(c − c∗)S2 − b

256ω4

R2 S2 − b
1282ω2

4
R4 − c

16ω4

R4 − 2|Q4ϕ|22
∫
R4

V (x)ϕ2(tx)Q2
4(tx)

]
.

Let R > 0 large be fixed such that

b
256ω4

R2 S2 + b
1282ω2

4
R4 + c

16ω4

R4 <
1
2(c − c∗)S2.

Since ϕ(tx)Q4(tx) ⩽ ϕ(x)Q4(x) when t > 1, then by the Lebesgue dominated convergence theorem, we have

lim
t→∞

∫
R4

V (x)ϕ2(tx)Q2
4(tx) = 0, (2.12)

and together with (1.9), we have
ec

V ⩽ lim
t→∞

Ec
V (Ut) = −∞. (2.13)

Finally for c = c∗ and u ∈ SV , we have

Ec
V (u) = a

2 |∇u|22 + 1
2

∫
R4

V (x)u2 + b

4 |∇u|42 − c

4 |u|44

⩾
a

2 |∇u|22 + 1
2

∫
R4

V (x)u2 + 1
4(c∗ − c)|u|44 = a

2 |∇u|22 + 1
2

∫
R4

V (x)u2.

Hence, ec∗
V ⩾ 0. On the other hand, let ϕ be the cut-off function defined in the proof of Lemma 2.2. For any

ε > 0, we have from (2.8)–(2.11) that there exists R0 = R0(ε) > 0 such that

|Q4ϕ|22 ⩾
ω4

4 ln(1 + R2) ⩾ ω4

4 ln(1 + R2
0) ⩾ 1

ε
, |∇Q4|22 = S2 ⩾

128ω4

R2 , R ⩾ R0, (2.14)

and then
1

4|Q4ϕ|42

[
b
256ω4

R2 S2 + b
1282ω2

4
R4 + c∗

16ω4

R4

]
⩽

ε2

4

[
b
256ω4

R2 S2 + b
1282ω2

4
R4 + c∗

16ω4

R4

]
⩽ ε3, R ⩾ R0. (2.15)



Y. Li, X. Hao and J. Shi / Nonlinear Analysis 186 (2019) 99–112 109

We choose R = R0 in the definition of ϕ. Since ϕ(tx)Q4(tx) ⩽ ϕ(x)Q4(x) when t > 1, then by the Lebesgue
dominated convergence theorem, we have

lim
t→∞

∫
R4

V (x)ϕ2(tx)Q2
4(tx) = 0,

and hence there exists a t0 = t0(ε) > 0 from the definition of limit such that∫
R4

V (x)ϕ2(tx)Q2
4(tx) ⩽ ε2, t ⩾ t0. (2.16)

It follows from (2.14)–(2.16) and the Young inequality that

ec∗
V ⩽ Ec∗

V (Ut)

⩽
at2

2|Q4ϕ|22

[
S2 + 128ω4

R2

]
+ t4

4|Q4ϕ|42

[
b
256ω4

R2 S2 + b
1282ω2

4
R4 + c∗

16ω4

R4 + 2|Q4ϕ|22
∫
R4

V (x)ϕ2(tx)Q2
4(tx)

]
⩽Cεt2 + εt4

∫
R4

V (x)ϕ2(tx)Q2
4(tx) + ε3t4 ⩽ Cεt2 + 2ε3t4,

where C > 0 is a positive constant independent of ε and R. Choosing t = max{ε−1/4, t0}, we can obtain
that ec∗

V ⩽ Cε
1
2 . This implies that ec∗

V = 0. □

3. Proofs of main theorems

In this section, we prove our main results Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Part (a) follows directly from Lemma 2.1, and part (c) follows from Lemmas 2.1
and 2.2. So we only need to prove part (b) which is divided in the following cases.

Case 1. When 2 < p < 4, Ec
0 has a minimizer with −∞ < ec

0 < 0 if c > c∗.
Let {un} ⊂ S0 such that Ec

0(un) → ec
0. Then

Ec
0(un) = a

2 |∇un|22 + b

4 |∇un|42 − c

p
|un|pp ⩾

a

2 |∇un|22 + b

4 |∇un|42 − c

2|Qp|p−2
2

|∇un|2(p−2)
2 .

The conditions p ∈ (2, 4) and |un|2 = 1 imply that {un} is bounded in H1(R4). According to Schwarz
rearrangement, there exists a radial symmetric sequence {ûn} ⊂ H1(R4) such that∫

R4
|∇ûn|2dx ⩽

∫
R4

|∇un|2dx,

∫
R4

|ûn|rdx =
∫
R4

|un|rdx, r ∈ [2, 4].

Hence {ûn} ⊂ S0 is bounded in H1
r (R4) which consists of radial functions in H1(R4). From the compactness

of embedding H1
r (R4) ↪→ Lp(R4) for p ∈ (2, 4), we may assume that ûn ⇀ u in H1(R4), ûn(x) → u(x) a.e.

x ∈ R4 and ûn → u in Lq(R4) for p ∈ (2, 4). From {ûn} ⊂ S0, we have

ec
0 ⩽ Ec

0(ûn) = a

2 |∇ûn|22 + b

4 |∇ûn|42 − c

p
|ûn|pp

⩽
a

2 |∇un|22 + b

4 |∇un|42 − c

p
|un|pp = Ec

0(un) → ec
0 (n → ∞).

Therefore, {ûn} is also a minimizing sequence. By the weak lower semicontinuity of the norm function, we
have |u|2 ⩽ 1. If |u|2 = 1, then the weak lower semicontinuity of the norm and ûn → u in Lp(R4) imply
that,

ec
0 ⩽ Ec

0(u) ⩽ lim inf
n→∞

Ec
0(ûn) = ec

0. (3.1)



110 Y. Li, X. Hao and J. Shi / Nonlinear Analysis 186 (2019) 99–112

Therefore, ec
0 is achieved by u. If |u|2 < 1, by Lemma 2.5 and the second inequality of (3.1), Ec

0(u) ⩽ ec
0 < 0

and then u ̸= 0. Let ut(x) = u(tx) for all x ∈ R4, then there exists a t < 1 such that |ut|2 = t−4|u|2 = 1.
That is ut ∈ S0. Since Ec

0(u) ⩽ ec
0 < 0,

ec
0 ⩽ Ec

0(ut) = a

2 t−2|∇u|22 + b

4 t−4|∇u|42 − c

p
t−4|u|pp

<
a

2 t−4|∇u|22 + b

4 t−4|∇u|42 − c

p
t−4|u|pp = t−4Ec

0(u) < Ec
0(u) ⩽ lim inf

n→∞
Ec

0(ûn) = ec
0.

This is a contradiction. Therefore, |u|2 = 1 and Ec
0(u) = ec

0. Moreover, since u is the limit of ûn, u is also
radial symmetric.

Case 2. When p ∈ (2, 3] and c ⩽ c∗, ec
0 cannot be achieved.

If p ∈ (2, 3), then c∗ = 0. Therefore we have from Case 1 that ec
0 is achieved for all c > 0. If p = 3, then

Ec
0 has no minimizer for all 0 < c ⩽ c∗. In fact if u ∈ S0 with ec

0 = Ec
0(u), then from (2.3), we have

0 = ec
0 = Ec

0(u) ⩾ (1 − c

c∗
)a

2 |∇u|22 + b

4 |∇u|42 ⩾
b

4 |∇u|42.

This implies that u = 0 in D1,2(R4) and then u = 0 in L2(R4), which is impossible.
Case 3. When p ∈ (3, 4) and c ⩽ c∗. In this case, if u ∈ S0 satisfying 0 = ec

0 = Ec
0(u), then from (2.3),

we have fc,p(|∇u|22) ⩽ 0. When c < c∗, gc,p(|∇u|22) > 0 and then u = 0 which is impossible. If c = c∗,
then fc,p(tp) = min

t⩾0
fc,p(t) = 0. Then it follows from (2.5) and the definition of c∗ in Lemma 2.1 that

Ec
0((Qp)tp) = fc,p(tp) = 0. Therefore, ec∗

0 can be achieved by (Qp)tp . Similar to the proof of Case 1, we can
obtain that the minimizer is radially symmetric.

Finally we prove that minimizer is unique up to translations. It is easy to see that (Qp)tp can achieve ec
0.

If ec
0 = Ec

0(u), then fc,p(tp) = ec
0. According to (1.7) and (2.3), we have that u = (Qp)t for some t > 0. By

using (2.5), we have fc,p(t) = ec
0. From the uniqueness of tp, we know that t = tp. Therefore, u = (Qp)tp up

to translations. □

Proof of Theorem 1.2. The range of value of ec
V has been obtained in Lemmas 2.5 and 2.6. So we only

need to show whether the infimum can be attained or not in the following cases.
Case 1. When p = 4 and c < c∗ = bS2, ec

V can be achieved.
Let {un} ⊂ SV be a minimizing sequence. The boundedness of {un} is obvious from the Sobolev inequality

and

Ec
V (un) = a

2 |∇un|22 + 1
2

∫
R4

V (x)u2
n + b

4 |∇un|42 − c

4 |un|44

⩾
a

2 |∇un|22 + bS2

4 |un|44 − c

4 |un|44 + 1
2

∫
R4

V (x)u2
n.

We may assume that un ⇀ u in HV . By Lemma 2.3 and un ∈ SV , we have u ∈ SV and there exist λn ∈ R
such that

lim
n→∞

[Ec
V

′(un) − λnun] = 0.

Set lim
n→∞

|∇un|22 = A. Then

lim
n→∞

λn = lim
n→∞

(Ec
V

′(un), un) = lim
n→∞

[(Ec
V

′(un), un) − 4Ec
V (un) + 4ec

V ]

= lim
n→∞

(4ec
V − a|∇un|22 −

∫
R4

V (x)u2
n) := λ.
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On the other hand, we have for ϕ ∈ HV ,

0 = lim
n→∞

(Ec
V

′(un) − λnun, ϕ) = lim
n→∞

[(Ec
V

′(un), ϕ) − λn

∫
R4

unϕ]

= lim
n→∞

[(a + b|∇un|22)
∫
R4

∇un∇ϕ +
∫
R4

V (x)unϕ − c

∫
R4

u3
nϕ − λn

∫
R4

unϕ]

= (a + bA)
∫
R4

∇u∇ϕ +
∫
R4

V (x)uϕ − c

∫
R4

u3ϕ − λ

∫
R4

uϕ, ϕ ∈ HV .

Let ϕ = u, then
λ = (a + bA)|∇u|22 +

∫
R4

V (x)u2 − c|u|4.

By u ∈ SV and |∇u|22 ⩽ lim inf
n→∞

|∇un|22 = A, we obtain that

ec
V ⩽ Ec

V (u) = 1
2a|∇u|22 + 1

2

∫
R4

V (x)u2 + 1
4b|∇u|42 − c

4 |u|44

⩽
1
2a|∇u|22 + 1

2

∫
R4

V (x)u2 + 1
4bA|∇u|22 − c

4 |u|44

= 1
4a|∇u|22 + 1

4

∫
R4

V (x)u2 + 1
4λ

⩽ lim inf
n→∞

[
1
4a|∇un|22 + 1

4

∫
R4

V (x)u2
n + 1

4λn

]
= lim inf

n→∞

(
1
4a|∇un|22 + 1

4

∫
R4

V (x)u2
n + 1

4[(Ec
V

′(un), un) − 4Ec
V (un) + 4ec

V ]
)

= ec
V .

Therefore, Ec
V (u) = ec

V and ec
V can be achieved.

Case 2. When p = 4 and c = c∗, ec
V is not achieved.

When c = c∗, since

Ec∗
V (u) ⩾ a

2 |∇u|22 + 1
2

∫
R4

V (x)u2 + b

4(1 − c∗

c∗
)|∇u|42 ⩾

a

2 |∇u|22,

then by using similar proof of that of the case V = 0, we can show that ec∗
V = 0 is not achieved.

Case 3. When 2 < p < 4, ec
V is achieved for all c > 0.

If 2 < p < 4, for all c > 0, let {un} ⊂ SV be a minimizing sequence for ec
V . Then it can easily be seen that

{un} is bounded in HV (R4) such that un ⇀ u in HV (R4) and un → u in Lq(R4) for q ∈ [2, 4). Similarly, we
can obtain |u|2 = 1. So, we have

ec
V ⩽ Ec

V (u) = a

2 |∇u|22 + b

4 |∇u|42 + 1
2

∫
R4

V (x)u2 − c

p
|u|pp

⩽ lim inf
n→∞

[a2 |∇un|22 + b

4 |∇un|42 + 1
2

∫
R4

V (x)u2
n − c

p
|un|pp]

= lim inf
n→∞

Ec
V (un) = ec

V .

Then, Ec
V (u) = ec

V , i.e., Ec
V has a minimizer u. □

References
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[14] J.-L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in

Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro,
Rio de Janeiro, 1977), in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam-New York, 1978, pp. 284–346.

[15] Daisuke Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations 257
(4) (2014) 1168–1193.

[16] X.H. Tang, Bitao Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J.
Differential Equations 261 (4) (2016) 2384–2402.

[17] Jun Wang, Lixin Tian, Junxiang Xu, Fubao Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff
type problem with critical growth, J. Differential Equations 253 (7) (2012) 2314–2351.

[18] Michael I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (4)
(1982/83) 567–576.

[19] Hongyu Ye, The existence of normalized solutions for L2-critical constrained problems related to Kirchhoff equations, Z.
Angew. Math. Phys. 66 (4) (2015) 1483–1497.

[20] Hongyu Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods
Appl. Sci. 38 (13) (2015) 2663–2679.

[21] Xiaoyu Zeng, Yimin Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math.
Lett. 74 (2017) 52–59.

[22] Jian Zhang, Stability of attractive Bose-Einstein condensates, J. Stat. Phys. 101 (3–4) (2000) 731–746.

http://refhub.elsevier.com/S0362-546X(18)30310-9/sb3
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb3
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb3
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb4
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb4
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb4
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb5
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb5
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb5
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb6
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb6
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb6
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb7
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb7
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb7
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb8
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb8
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb8
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb9
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb9
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb9
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb10
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb11
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb11
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb11
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb12
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb12
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb12
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb13
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb13
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb13
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb14
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb14
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb14
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb14
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb14
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb15
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb15
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb15
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb16
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb16
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb16
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb17
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb17
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb17
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb18
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb18
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb18
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb19
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb19
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb19
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb20
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb20
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb20
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb21
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb21
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb21
http://refhub.elsevier.com/S0362-546X(18)30310-9/sb22

	The existence of constrained minimizers for a class of nonlinear Kirchhoff–Schrodinger equations with doubly critical exponents in dimension four
	Introduction and main results
	Preliminaries
	The case of V=0
	The case of V≠0

	Proofs of main theorems
	References


