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Abstract
Natural rivers connect to each other to form river networks. The geometric struc-
ture of a river network can significantly influence spatial dynamics of populations in
the system. We consider a process-oriented model to describe population dynamics
in river networks of trees, establish the fundamental theories of the corresponding
parabolic problems and elliptic problems, derive the persistence threshold by using
the principal eigenvalue of the corresponding eigenvalue problem, and define the net
reproductive rate to describe population persistence or extinction. By virtue of numeri-
cal simulations,we investigate the effects of hydraulic, physical, and biological factors,
especially the structure of the river network, on population persistence.

Keywords River network · Population persistence · Eigenvalue problems · Net
reproductive rate

Mathematics Subject Classification 35K57 · 47A75 · 92D25

1 Introduction

River and stream ecosystems form a key component of the global environmental
ecosystems, with a characteristic that organisms living in river systems are subjected to
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the biased flow in the downstream direction. Stream ecologists and river managers are
interested in the instream flow needs (IFNs) and “drift paradox” problem. The former
asks how much stream flow can be changed while still maintaining an intact stream
ecology (Anderson et al. 2006; Mckenzie et al. 2012), and the latter asks how stream-
dwelling organisms can persist without beingwashed outwhen continuously subjected
to a unidirectional water flow (Müller 1954, 1982; Pachepsky et al. 2005; Speirs and
Gurney 2001). The problems are challenging due to the complex and dynamic nature
of interactions between the river environment and the biological community. The study
of river population models reveals the dependence of spatial population dynamics on
environmental and biological factors in rivers or streams; hence, it has become an
important explanation of the IFNs and “drift paradox” problem, see, e.g., Anderson
et al. (2006), Lutscher et al. (2006), Mckenzie et al. (2012), Pachepsky et al. (2005),
Speirs and Gurney (2001), Jin and Lewis (2011), Lutscher et al. (2005).

In mathematical models for river populations, rivers have been traditionally treated
as a bounded or unbounded interval on the real line (see, e.g., Speirs and Gurney 2001;
Mckenzie et al. 2012; Jin and Lewis 2011; Lutscher et al. 2005). While spatially and
temporally homogeneous river intervals (see, e.g., Speirs and Gurney 2001) are recog-
nized as oversimplification of real river systems, rivers have also been approximated
by alternating good and bad patches or pool-and-riffle channels (see, e.g., Lutscher
et al. 2006; Jin and Lewis 2014), drift and benthic (or storage) zones (see, e.g., Huang
et al. 2016; Pachepsky et al. 2005), or meandering rivers consisting of a main channel
and point bars (see, e.g., Jin et al. 2017; Jin and Lewis 2014), etc.

Nevertheless, natural river systems are often in a spatial network structure such as
dendritic trees. The network topology (i.e., the topological structure of a network),
together with other physical and hydraulic features in a river network, can greatly
influence the spatial distribution of the flow profile, including the flow velocity and
water depth, in the network. For a population living in a river network, its dispersal
vectors may be constrained by the network configuration and the flow profile, and
its life history traits may depend on varying habitat conditions in the network. As a
result, population distribution and long-term behaviors in river systems can be signifi-
cantly affected by the network topology or structure, see, e.g., Cuddington and Yodzis
(2002), Fagan (2002), Goldberg et al. (2010), Grant et al. (2007), Grant et al. (2010),
Peterson et al. (2013). Then there may arise interesting questions such as whether
a population can persist in the desert streams of the southwestern USA while the
streams are experiencing substantial natural drying trends (Fagan 2002), or whether
dendritic geometry enhances dynamic stability of ecological systems or not (Grant
et al. 2007). Other related dynamics in the network, such as the dynamics of water-
borne infectious diseases like cholera,may also be greatly affected by the river network
geometry (see, e.g., Bertuzzo et al. 2010). River networks have been modeled by habi-
tats of discrete patches in individual-based models (Fagan 2002; Grant et al. 2010)
and matrix population models for stage-structured populations (Goldberg et al. 2010;
Mari et al. 2014). This simplification neglects the spatial heterogeneity within each
river branch and can hardly describe the flow effect on the population properly. In
recent works (Ramirez 2012; Sarhad and Anderson 2015; Sarhad et al. 2014; Vasi-
lyeva 2019), integro-differential equations and reaction–diffusion–advection (RDA)
equations were used to model population dynamics in river networks, which were
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described by continuous graph-like spatial domains, like the networks in the natural
world. In their works, a river network was modeled under the framework of a metric
graph, which is a graph G = (V , E) with a set V of vertices and a set E of edges,
such that each edge is associated with an interval connecting vertices (see, e.g., Berko-
laiko and Kuchment 2013); population dynamics in each river branch was modeled
by an integro-differential equation or an RDA equation on a corresponding edge, and
transition conditions were imposed at junction vertices.

The fundamental theories of parabolic and elliptic equations as well as the cor-
responding eigenvalue problems on metric networks are important in establishing
population dynamics of biological species in river networks. The existence and unique-
ness of solutions of linear parabolic equations and nonlinear parabolic equations on
networks have been established in vonBelow (1988a, 1994), respectively.Amaximum
principle for semilinear parabolic equations on networks was obtained in von Below
(1991), and the eigenvalue problems associated with parabolic equations on networks
were studied in von Below (1988b). Stability of steady states of parabolic equations
on networks was studied in von Below and Lubary (2015), Yanagida (2001). More
studies of diffusion equations on networks can be found in, e.g., Arendt et al. (2014),
Lumer (1980). In these works, the model parameters are allowed to be time and/or
space dependent; the so-called Kirchhoff laws or an excitatoric Kirchhoff condition
(or dynamical node condition) is assumed at the interior junction vertices. In the cur-
rent paper we will establish a mathematically rigorous foundation of RDA equations
in a metric tree, which models population dynamics of a biological species in a river
network. The model consists of RDA equations describing population dynamics in
network branches, conditions of continuous population density and zero population
flux at interior junction vertices, and suitable initial conditions and boundary condi-
tions at upstream and downstream vertices, allowing spatial variations of diffusion
rates, advection rates, and growth rates throughout the network. We will rigorously
derive mathematical theories, such as the maximal principle, the comparison princi-
ple, and the existence, uniqueness and estimates of the solutions, for the parabolic
equations and the corresponding elliptic equations.

The long-term behavior of a population (e.g., persistence or extinction) has been
described by uniform persistence, (in)stability of the trivial solution, existence and
stability of positive steady states, the critical domain size (minimal size of the habitat
such that a species can persist), etc., see, e.g., Jin and Lewis (2011), Huang et al.
(2016), Lam et al. (2016), Lutscher et al. (2005), Mckenzie et al. (2012), Pachepsky
et al. (2005). For a single species in one-dimensional rivers, the persistence theory was
established in a homogeneous environment in Speirs andGurney (2001), Lutscher et al.
(2005), in temporally varying environments in Jin and Lewis (2011), and in spatially
heterogeneous environment in Mckenzie et al. (2012). For a benthic–drift population
consisting of individuals drifting in water and individuals staying on the benthos, the
critical domain size was studied in a spatially homogeneous river in Pachepsky et al.
(2005) and in a river with alternating good and bad channels in Lutscher et al. (2006).
In particular, persistence metrics (fundamental niche, source/sink metric, and the net
reproductive rate) have been established for a single-stage population in Mckenzie
et al. (2012) and for a benthic–drift population in Huang et al. (2016), respectively.
Population persistence for a single species in homogeneous river networks has also

123



2504 Journal of Nonlinear Science (2019) 29:2501–2545

been studied for integro-differential equations (Ramirez 2012) and forRDA equations
(Sarhad and Anderson 2015; Sarhad et al. 2014; Vasilyeva 2019), where the flow
advection, population dispersal, and growth were assumed to be the same throughout
the network and population persistence was determined by the instability of the trivial
solution (extinction state). In particular, in Sarhad and Anderson (2015), Sarhad et al.
(2014), the principal eigenvalue of the corresponding eigenvalue problem was used to
determine the stability of the trivial solution, andmost of the analyses and results about
persistence conditions were restricted to radial trees, in which all branches of the same
order are essentially identical habitats. In Vasilyeva (2019), the persistence condition
was derived and proved to guarantee the existence and uniqueness of a positive steady-
state solution in a simple Y -shaped river network. In our work, we will establish
persistence conditions in terms of the principal eigenvalue and the net reproductive
rate of a general RDA system where the population dispersal and growth, the flow
advection, the wetted cross-sectional area, and the length of the branches may vary
from branch to branch. We will also prove the existence and uniqueness of a globally
attractive positive steady state when the population persists provided that growth rates
satisfy certain conditions. The theory of infinite-dimensional dynamical systems and
existing theories of parabolic and elliptic equations as well as eigenvalue problems on
the real line and on metric networks will be applied. We will also study how different
factors influence population persistence and the distribution of the positive steady state
(if exists) in the network.

This paper is organized as follows: In Sect. 2, we introduce the notion of the river
network of a general tree and the initial boundary value problem for population dynam-
ics in the network. In Sect. 3, we establish the existence of the principal eigenvalue λ∗
of the corresponding eigenvalue problem and show that if λ∗ ≤ 0, then the population
will be extinct (the trivial solution is globally asymptotically stable), and that if λ∗ > 0,
then the population persists in the sense that there exists a unique positive steady state
that is globally attractive. In Sect. 4, we define the next-generation operator and the
net reproductive rate R0 and prove that R0 = 1 can be used as a persistence threshold
for the population. We also provide a method to calculate R0. In Sect. 5, by virtue of
numerical simulations, we study the influences of hydraulic, physical, and biological
factors on the net reproductive rate R0 and the positive steady state. In “Appendix A,”
we provide the derivation of the fundamental theories for the parabolic and elliptic
problems on networks, including the maximal principle; the comparison principle;
and the existence, uniqueness, and estimates of the solutions.

2 Model

2.1 The River Network—AMetric Tree

In this work, we assume that the river network is a finite metric tree, i.e., a connected
finite metric graph with no cycles, or equivalently, a finite metric graph on which any
two vertices can be connected by a unique simple path.
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We first introduce the mathematical definition of a river network (a finite tree) and
notations on it (see, e.g., von Below 1994). Let G be a Cκ -network for κ ≥ 2 with the
set of vertices

E = {ei : 1 ≤ i ≤ N },

the set of edges

K = {k j : j ∈ IN−1}, n ≥ 2,

and the arc length parameterization π j ∈ Cκ([0, l j ], R
2) on edge k j , where N and

N − 1 are the numbers of vertices and edges, respectively, and

IN−1 = {1, 2, . . . , N − 1}.

The edge k j is isomorphic to the interval [0, l j ] with length l j and spatial variable x j
on it, where x j = 0 and x j = l j represent the upstream end and the downstream end
of k j , respectively. The topological graph � = (E, K ) embedded in G is assumed
to be simple and connected. Thus, � admits the following properties: Each k j has its
endpoints in E , any two vertices in E can be connected by a unique simple path with
arcs in K , and any two distinct edges k j and kh intersect at no more than one point
in E . See Fig. 1 for an example of a river network. Endowed with the above graph
topology and metric defined on each edge, G is a connected and compact subset of
R
2. The orientation of G is given by the incidence matrix (di j )N×(N−1) with

di j =
⎧
⎨

⎩

1 if π j (l j ) = ei (i.e., ei is the downstream end of the edge k j ),
−1 if π j (0) = ei (i.e., ei is the upstream end of the edge k j ),
0 otherwise (i.e., ei is not a vertex on the edge k j ).

(2.1)

Fig. 1 An example of a simple
river network. Each blue arrow
represents a river branch with
the specific water flow direction,
l j ( j = 1, 2, 3) is the length of
the edge k j , and ei
(i = 1, 2, 3, 4) is a vertex
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We distinguish the set E of vertices as follows:

Er = {ei ∈ E : γi > 1} (ramification (or interior junction) vertices),

Eb = {ei ∈ E : γi = 1} (boundary vertices),

Eu = {ei ∈ E : γi = 1, ei is an upstream boundary vertex},
Ed = {ei ∈ E : γi = 1, ei is a downstream boundary vertex},

where γi = γ (ei ) is the valency of ei that represents the number of edges that connect
to ei , and Eb = Eu ∪ Ed.

Let t be the time variable, and for T > 0, denote

� = G × [0, T ], � j = [0, l j ] × [0, T ],
�p = (G\Eb) × (0, T ], ωp = (G × {0}) ∪ (Eb × (0, T ]).

For a function u : � → R, we define u j = u ◦ (π j , id) : � j → R. Differentiation is
carried out on each edge k j with respect to the arc length parameter x j . A function is
differentiable on G means that it is differentiable at all points x ∈ G\E . We use the
following notations for functions and derivatives at a vertex

u j (ei , t) = u j (π
−1
j (ei ), t), ux j (ei ) = ∂

∂x j
u j (π

−1
j (ei ), t),

ux j x j (ei ) = ∂2

∂x2j
u j (π

−1
j (ei ), t).

Any function u on � satisfies u j (ei , t) = uh(ei , t) if k j ∩ kh = {ei }.
We now introduce function spaces on G. Let

C(G) = {g : g j ∈ C([0, l j ], R), j ∈ IN−1}

with the norm:

‖g‖C(G) = max
j∈IN−1

max
x∈[0,l j ]

|g j (x)|.

The Banach space Cm(G) consists of all functions that are m times continuously
differentiable over G with norm given by

‖g‖Cm (G) =
m∑

β=1

‖g(β)‖C(G) + ‖g‖C(G),

where g(β) is the βth derivative of g. Similarly, L p(G) is the Banach space of all
real-valued functions defined on G that are measurable and p-summable with respect
to G with p ≥ 1. The norm in this space is defined by

123



Journal of Nonlinear Science (2019) 29:2501–2545 2507

‖g‖L p(G) =
N−1∑

j=1

( ∫ l j

0
|g j |p

)1/p
.

For α ∈ [0, 1), define

C2+α,1+ α
2 (�) =

{
u ∈ C(�) : u j ∈ C2+α,1+ α

2 (� j ), ∀ j ∈ IN−1

}
,

where C2+α,1+ α
2 (� j ) with the usual norm ‖ · ‖

C2+α,1+ α
2 (� j )

denotes the Banach space

of functions u on � j having continuous derivatives ∂r+su
∂tr ∂xsj

for 2r + s ≤ 2 and finite

Hölder constraints of the indicated exponents in the case of α > 0. ThenC2+α,1+ α
2 (�)

is a Banach space endowed with the norm

‖u‖
C2+α,1+ α

2 (�)
=

N−1∑

j=1

‖u j‖C2+α,1+ α
2 (� j )

.

Similarly, we can define C2+α(G),W 2
p(G), andW 2,1

p (�) for any fixed α ∈ [0, 1) and
p ≥ 1.

2.2 The PopulationModel in the River Network

Since Speirs and Gurney’s work (Speirs and Gurney 2001), the dynamics of a
population living in a one-dimensional river has been described by the following
reaction–diffusion–advection equation:

∂u

∂t
= D

∂2u

∂x2
− v

∂u

∂x
+ f (x, u)u, (2.2)

where u(x, t) is the population density at location x and time t , D is the diffusion
coefficient, v is the flow velocity, and f is the per capita growth rate.

We adapt model (2.2) to a population living in a river network G. The dynamics of
the population can be described by

∂u j

∂t
= Dj

∂2u j

∂x2j
− v j

∂u j

∂x j
+ f j (x j , u j )u j , x j ∈ (0, l j ), j ∈ IN−1, t > 0, (2.3)

where u j is the population density on the edge k j , Dj is the diffusion coefficient on
k j , v j is the flow velocity on k j , and f j is the per capita growth rate on k j . The initial
population distribution in G is denoted by u0, that is,

u j (x j , 0) = u0j (x j ), x j ∈ [0, l j ], j ∈ IN−1. (2.4)
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There are three types of vertices in the river network G: upstream boundary ends,
downstream boundary ends, and interior junction vertices. Correspondingly, boundary
or interface conditions are imposed at each vertex of E .

• At an upstream boundary point ei ∈ Eu that only connects to edge k j , the boundary
condition can be assumed as

α j,1u j (ei , t) − β j,1
∂u j

∂x j
(ei , t) = 0 with α j,1 ≥ 0, β j,1 ≥ 0, α j,1 + β j,1 > 0,

(2.5)
for instance,

the zero-flux boundary condition:

(

Dj
∂u j

∂x j
− v j u j

)

(ei , t) = 0. (2.6)

• At a downstream boundary point ei ∈ Ed that only connects to edge k j , the
boundary condition can be assumed as

α j,2u j (ei , t) + β j,2
∂u j

∂x j
(ei , t) = 0 with α j,2 ≥ 0, β j,2 ≥ 0, α j,2 + β j,2 > 0,

(2.7)
for instance,

the free flow (or Neumann) condition:
∂u j

∂x j
(ei , t) = 0 or (2.8)

the hostile (or Dirichlet) condition: u j (ei , t) = 0. (2.9)

• At an interior junction point ei ∈ Er, the population density is continuous and
the total population flux in and out is zero. Hence, the continuity conditions and
Kirchhoff laws hold at ei :

ui1(ei , t) = ui2(ei , t) = · · · = uim (ei , t), (2.10a)
im∑

j=i1

di j A j D j
∂u j

∂x j
(ei , t) = 0, (2.10b)

where ei ∈ Er connects to edges ki1 , ki2 , . . ., and kim , di j is defined in (2.1),
A j is the wetted cross-sectional area of the edge k j , and (2.10b) is the result of
substituting the continuity condition (2.10a) and the condition of flow conservation
at ei

im∑

j=i1

di j A jv j = 0, (2.11)

into the condition of zero population flux at ei

im∑

j=i1

di j A j

(

Dj
∂u j

∂x j
− v j u j

)

(ei , t) = 0. (2.12)
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According to different ecological conditions at boundary vertices on G, we further
use the following notations throughout the paper:

E0 = {ei ∈ Eb : vertices with hostile (or Dirichlet) condition},
Eb\E0 : vertices not assigned with hostile condition.

We finally define an initial boundary value problem for a population in a river
network:

(IBVP) (2.3), (2.4), (2.5), (2.7), and (2.10).

Furthermore, we impose the following assumptions in different parts of the paper.

[H1] For each j ∈ IN−1, Dj > 0, v j ≥ 0, A j > 0.
[H2] For each j ∈ IN−1, f j : [0, l j ]× [0,∞) → R is continuous and there exists
a constant Mj > 0 such that f j (x, u) ≤ 0 for any x ∈ [0, l j ] and u ≥ Mj , and
f j (·, u j )u j is Lipschitz continuous in u j with Lipschitz constant L j > 0.
[H3] For each j ∈ IN−1, f j (·, u j ) is strictly monotonically decreasing in u j .

By adapting theories for parabolic and elliptic equations on intervals and/or net-
works (Mugnolo 2012; Arendt et al. 2014; Fijavz̆ et al. 2007; Protter and Weinberger
1967; von Below 1988a, 1991, 1994; Ladyzenskaja et al. 1968; Solonnikov 1965;
Pao 1992; Ye et al. 2011), we develop the fundamental theories of parabolic and ellip-
tic problems on networks corresponding to (IBVP), see “Appendix A.” In particular,
for linear parabolic problems, we establish the strong maximum principle (in Lemma
A.1); Hopf boundary lemma for networks (in Lemma A.2); comparison principle (in
Lemma A.3); and the existence, uniqueness, and L p and Schauder estimates of solu-
tions (in Theorem A.4, via writing the differential operator into a self-adjoint operator
on the network); for the nonlinear problem (IBVP), we develop the theory of the exis-
tence, uniqueness, and positivity of solutions (in Theorem A.7, by using the method
of upper and lower solutions) and prove the monotonicity and strict subhomogeneity
of the solution map (in Lemmas A.8 and A.9, respectively); for the corresponding
elliptic problems, we also obtain the strong maximum principle (in Lemma A.10);
Hopf boundary lemma (in Lemma A.11); comparison principle (in Lemma A.12);
and the existence, uniqueness, and L p and Schauder estimates of solutions (in The-
orems A.13 and A.15). These mathematical preparations enable us to establish the
persistence/extinction criteria for system (IBVP).

3 The Eigenvalue Problem and Population Persistence

In this section, we consider the eigenvalue problem associated with the linearized
system of (IBVP) at the trivial solution, establish the existence of the principal eigen-
value, and then use the principal eigenvalue as a threshold to determine population
persistence and extinction. We also obtain the existence, uniqueness, and attractivity
of a positive steady state when the population persists. Assumptions [H1]–[H3] are
imposed in the rest of the paper.
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3.1 The Eigenvalue Problem and Its Principal Eigenvalue

We first introduce some Banach spaces which will be used frequently later. Denote

X = {ϕ ∈ C1(G) : ϕ satisfies (2.5) and (2.7)}, (3.1)

and let
X+ = {ϕ ∈ X : ϕ ≥ 0} (3.2)

be the positive cone in X . The interior of X+ is

Xo = {ϕ ∈ X : ϕ > 0 on G\E0, and di jϕx j (ei ) < 0 if ei ∈ E0}. (3.3)

Then X+ is a solid cone of X with non-empty interior Xo. We also write ϕ1 
ϕ2 if ϕ1 − ϕ2 ∈ Xo.

The linearization of (IBVP) at the trivial solution u = 0 is

⎧
⎪⎨

⎪⎩

∂u j

∂t
= Dj

∂2u j

∂x2j
− v j

∂u j

∂x j
+ f j (x j , 0)u j , x j ∈ (0, l j ), j ∈ IN−1, t > 0,

(2.4), (2.5), (2.7), and (2.10).
(3.4)

Substituting u j (x j , t) = eλtψ j (x j ) into (3.4), we obtain the corresponding eigenvalue
problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λψ j (x j ) = Dj
∂2ψ j

∂x2j
− v j

∂ψ j

∂x j
+ f j (x j , 0)ψ j , x j ∈ (0, l j ), j ∈ IN−1,

α j,1ψ j (ei ) − β j,1
∂ψ j

∂x j
(ei ) = 0, ∀ei ∈ Eu,

α j,2ψ j (ei ) + β j,2
∂ψ j

∂x j
(ei ) = 0, ∀ei ∈ Ed,

ψi1(ei ) = · · · = ψim (ei ),
∑im

j=i1
di j A j D j

∂ψ j

∂x j
(ei ) = 0, ∀ei ∈ Er.

(3.5)
For simplicity, denote L to be the operator such that L|k j = L j , where

L j = Dj
∂2

∂x2j
− v j

∂

∂x j
+ f j (·, 0). (3.6)

The following result indicates that (3.5) admits a simple eigenvalue λ∗ associated
with a positive eigenfunction ψ∗ ∈ Xo. We call λ∗ the principal eigenvalue of (3.5).
The proof of the proposition is given in “Appendix B.”

Proposition 3.1 The eigenvalue problem (3.5) admits a simple eigenvalue λ∗ associ-
ated with a positive eigenfunction ψ∗ ∈ Xo. None of the other eigenvalues of (3.5)
corresponds to a positive eigenfunction, and if λ �= λ∗ is an eigenvalue of (3.5), then
Re(λ) ≤ λ∗.
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We say that L has the strong maximum principle property if u ∈ C2(G) satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−L j u j (x j ) ≥ 0, x j ∈ (0, l j ), j ∈ IN−1,

α j,1u j (ei ) − β j,1
∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Eu,

α j,2u j (ei ) + β j,2
∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Ed,

ui1(ei ) = · · · = uim (ei ),
∑im

j=i1
di j A j D j

∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Er

(3.7)
implies that u > 0 in G\E0 unless u ≡ 0. We also say that u ∈ C2(G) is an upper
solution of L if (3.7) holds, and u is called a strict upper solution of L if it is an upper
solution but is not a solution. Then the analysis of Du (2006), Theorem 2.4) can be
easily adapted to conclude the following result.

Proposition 3.2 The following statements are equivalent.

(i) L has the strong maximum principle property;
(ii) L has a strict upper solution which is positive in G\E0;
(iii) λ∗ < 0.

3.2 Population Persistence or Extinction

A positive steady state of (IBVP) satisfies the following elliptic problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Dj
∂2u j

∂x2j
+ v j

∂u j

∂x j
= f j (x j , u j )u j , x j ∈ (0, l j ), j ∈ IN−1,

α j,1u j (ei ) − β j,1
∂u j

∂x j
(ei ) = 0, ∀ei ∈ Eu,

α j,2u j (ei ) + β j,2
∂u j

∂x j
(ei ) = 0, ∀ei ∈ Ed,

ui1(ei ) = · · · = uim (ei ),
∑im

j=i1
di j A j D j

∂u j

∂x j
(ei ) = 0, ∀ei ∈ Er.

(3.8)
The following result shows how the sign of λ∗ affects the stability of the trivial

solution as well as the existence and attractivity of a positive steady state for (IBVP).
The proof is given in “Appendix C.”

Theorem 3.3 Let λ∗ be the principal eigenvalue of the eigenvalue problem (3.5).

(i) If λ∗ ≤ 0, then u ≡ 0 is globally attractive for (IBVP) for all initial values in X+.
(ii) If λ∗ > 0, then (IBVP) admits a unique positive steady state u∗ ∈ Xo which is

globally attractive for all initial values in X+\{0}.
Theorem 3.3 indicates that λ∗ is the key quantity to determine persistence or extinc-

tion for a population living in a river network. The population persists if λ∗ > 0, and
the population will become extinct if λ∗ ≤ 0.
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4 The Net Reproductive RateR0

The net reproductive rate has been defined and proved to be a threshold quantity
for population persistence in a single river channel (Mckenzie et al. 2012; Huang
et al. 2016). In this section, we will define the next-generation operator and the net
reproductive rateR0 for (IBVP) and then useR0 to determine population persistence
and extinction. Moreover, we will provide a numerical method to calculate R0.

4.1 Definition of the Net Reproductive RateR0

Assume that the growth rate of the population on edge k j satisfies f j (x j , u j )u j =
f̃ j (x j , u j )u j −m j (x j )u j , where f̃ j is the recruitment rate andm j (x j ) is the mortality
rate. Let r j (x j ) = f̃ j (x j , 0), and assume r ,m ∈ C(G). Then

∂( f j (·, u j )u j )

∂u j
(x j , 0) = f j (x j , 0) = r j (x j ) − m j (x j ).

For φ0 ∈ X , assume that φ satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂φ j

∂t
= Dj

∂2φ j

∂x2j
− v j

∂φ j

∂x j
− m j (x j )φ j , x j ∈ (0, l j ), j ∈ IN−1, t > 0,

φ j (x j , 0) = φ0
j (x j ), x j ∈ [0, l j ],

φ satisfies (2.5), (2.7), and (2.10).

(4.1)

Define � : X → X by

[�(φ0)] j (x j ) =
∫ ∞

0
r j (x j )φ j (x j , t)dt, x j ∈ [0, l j ], j ∈ IN−1,

where φ is the solution of (4.1) with initial condition φ0. That is, � is a linear operator
mapping an initial distribution of the population to its offspring distribution. Hence,
we call � the next-generation operator. Let

R0 = r(�),

where r(�) is the spectral radius of � on X . Then R0 represents the average number
of offsprings that an individual produces during its lifetime, and we call R0 the net
reproductive rate.

Let B : D → D with

D = {ϕ ∈ C2(G\Eb) ∩ C1(G) : ϕ satisfies (2.5), (2.7), (2.10)} (4.2)
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be defined by

Bj = Dj
∂2

∂x2j
− v j

∂

∂x j
− m j (x j ), j ∈ IN−1.

Let �1 : X → X be such that

[�1(φ
0)] j (x j ) =

∫ ∞

0
φ j (x j , t)dt, x j ∈ [0, l j ], j ∈ IN−1,

where φ is the solution of (4.1). Similarly as in Proposition 2.10 of Mckenzie et al.
(2012), we can prove that −�1 is the inverse operator of B, i.e., B−1 = −�1. Hence,
�(φ) = −QB−1(φ), where the operator Q is defined as

[Q(φ)] j (x j ) = r j (x j )φ j (x j ), ∀x j ∈ [0, l j ], j ∈ IN−1,∀φ ∈ X .

Then L = B + Q. By Proposition 3.1 and the above analysis, noting that (λI − B)−1

is defined such that

[(λI − B)−1(φ0)] j (x j ) =
∫ ∞

0
e−λtφ j (x j , t)dt, x j ∈ [0, l j ], j ∈ IN−1,

where φ is the solution of (4.1), we know that both L and B are resolvent-positive
operators in X . It follows from Propositions 3.1 and 3.2 that the spectral bound s(B)

of B is the principal eigenvalue of B and s(B) < 0. We then obtain the following
result by using Thieme (2009), Theorem 3.5.

Lemma 4.1 R0 − 1 and λ∗ have the same sign, where λ∗ is the principal eigenvalue
of the eigenvalue problem (3.5).

Theorem 3.3 and Lemma 4.1 imply the following result.

Corollary 4.2 IfR0 ≤ 1, then u ≡ 0 is globally attractive for (IBVP); ifR0 > 1, then
(IBVP) admits a unique positive steady state u∗ ∈ Xo, which is globally attractive
for all initial values in X+\{0}.

Therefore, R0 = 1 is the threshold for population persistence and extinction. The
population will be extinct ifR0 ≤ 1, and it will persist ifR0 > 1.

4.2 Calculation ofR0

Let

B j = Dj
∂2

∂x2j
− v j

∂

∂x j
, j ∈ IN−1.
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Integrating (4.1) with respect to t from 0 to ∞ yields

∫ ∞

0

∂φ j

∂t
dt =

∫ ∞

0

[

Dj
∂2φ j

∂x2j
− v j

∂φ j

∂x j
− m j (x j )φ j

]

dt, j ∈ IN−1.

Note that φ j (·, t) → 0 as t → ∞. The above equation implies that

{
−φ0

j (x j ) = B j [(�1(φ
0)) j ] − m j (x j )(�1(φ

0)) j ], j ∈ IN−1,

�1(φ
0) satisfies (2.5), (2.7), and (2.10).

(4.3)

Therefore, �1(φ
0) is the solution of

{
−φ0

j (x j ) = B ju j (x j ) − m j (x j )u j (x j ), x j ∈ (0, l j ), j ∈ IN−1,

u satisfies (2.5), (2.7), and (2.10).
(4.4)

We define

T1 : X → X , u = T1φ
0,

where u is the solution of (4.4). Then T1 is a compact and strongly positive operator
on X . By the definition of T1 and equations (4.3) and (4.4), we know that �1 = T1 on
X . Hence, � = Q�1 is also a compact and strongly positive operator on X . It follows
from Du (2006), Theorem 1.2 that R0 = r(�) > 0 is a simple eigenvalue of � with
an eigenfunction φ∗ ∈ Xo, i.e.,

�φ∗ = R0φ
∗,

and there is no other eigenvalues of � associated with positive eigenfunctions.
By following the idea in the proof of Wang and Zhao (2012), Theorem 3.2, we can

obtain R0 via the principal eigenvalue of another eigenvalue problem.

Theorem 4.3 If the eigenvalue problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μr j (x j )ϕ j (x j ) = −Dj
∂2ϕ j

∂x2j
+ v j

∂ϕ j

∂x j
+ m j (x j )ϕ j , x j ∈ (0, l j ), j ∈ IN−1,

α j,1ϕ j (ei ) − β j,1
∂ϕ j

∂x j
(ei ) = 0, ∀ei ∈ Eu,

α j,2ϕ j (ei ) + β j,2
∂ϕ j

∂x j
(ei ) = 0, ∀ei ∈ Ed,

ϕi1(ei ) = · · · = ϕim (ei ),
im∑

j=i1

di j A j D j
∂ϕ j

∂x j
(ei ) = 0, ∀ei ∈ Er,

(4.5)

admits a unique positive eigenvalueμ0 with a positive eigenfunction, thenR0 = 1/μ0.
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To numerically calculateR0, we use the finite difference method to discretize (4.5)
and approximate (4.5) by

μr̂ϕ = Âϕ,

where r̂ is a diagonal matrix containing values of r(x j ) on the main diagonal and Â is
the discretization of the operator on the right-hand side of (4.5). The matrix Â−1r̂ is a
nonnegative and irreducible matrix. The Perron–Frobenius theorem implies that Â−1r̂
admits a simple principal eigenvalue ς∗, which is the unique eigenvalue of Â−1r̂ that
is associated with a positive eigenvector ϕ∗, that is,

Â−1r̂ϕ∗ = ς∗ϕ∗. (4.6)

Then we approximate 1/μ0 by ς∗, i.e.,

R0 = 1

μ0 ≈ ς∗ (4.7)

by using Theorem 4.3 and above approximating scheme.
Note that the next-generation operator� can be approximated by r̂ Â−1. This implies

that the eigenvalue problem �φ∗ = R0φ
∗ can be approximated by r̂ Â−1φ∗ ≈ ς∗φ∗.

It follows from (4.6) that r̂ϕ∗ is a positive eigenvector of r̂ Â−1 corresponding to ς∗,
i.e., r̂ Â−1(r̂ϕ∗) = ς∗(r̂ϕ∗). Thus, r̂ϕ∗ can be used to approximate the eigenfunction
φ∗ of � associated with the eigenvalueR0. We call φ∗ (or r̂ϕ∗ as approximation) the
next-generation distribution of the population.

5 Numerical Simulations

The results in Sects. 3 and 4 show that both the principal eigenvalueλ∗ of the eigenvalue
problem (3.5) and the net reproductive rate R0 can be used to determine population
persistence or extinction. For the biological significance of R0, now we apply the
theory in Sect. 4 to investigate the influences of biotic and abiotic factors on the
population’s long-termbehavior of (IBVP)via numerical studies ofR0 and thepositive
steady state (if exists).

Real river networks are complex, and the quantitative influence of a factor on
population persistence highly depends on the structure and scales of the network.
While the choice of a general river network is random, we consider a few simple
but typical river networks of trees with one, three, four, five, and seven branches,
representing different types of network topologies, merging from the upstream or
splitting into the downstream, see Fig. 2. In particular, river networks (1), (3-a), (3-b),
(7-a), and (7-b) are radial trees, which are rooted trees with all tree features, including
edge lengths, cross-sectional areas, and boundary conditions depending only on the
distance to the root (see Sarhad et al. 2014).

Three sets of boundary conditions for (IBVP) are considered (see, e.g., Mckenzie
et al. 2012; Sarhad and Anderson 2015):
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Fig. 2 River networks that are considered in (IBVP) in Sect. 5. The arrows represent the direction of the
water flow. The i th branch of the network is represented by ki

• (ZF-FF): Zero-flux condition (2.6) at the upstream end and free flow (i.e., Neu-
mann) condition (2.8) at the downstreamend—organismsdonot cross the upstream
boundary but can freely leave the downstream boundary;

• (ZF-H): Zero-flux condition (2.6) at the upstream end and hostile condition (2.9)
at the downstream end—organisms do not cross the upstream boundary and they
die (or are removed) at the downstream boundary;

• (H-H): Hostile condition (2.9) at both the upstream and the downstream ends—
organisms die (or are removed) at the upstream and downstream boundaries.

We adopt the baseline parameters in Speirs and Gurney (2001) for (IBVP). All param-
eters and their unites are given in Table 1. Note that for simplicity, we choose a constant
growth rate r j on each edge k j , which may result in discontinuity of the growth rate
r(x) at interior vertices of the network but should not change the essence of the results
as it can be considered as an approximation of a continuous growth function in the
network.

Table 1 Parameters for (IBVP) and their units

Parameter L and l j D j v j A j r j m j Q j n j B j S0 j y j

Unit m m2/s m/s m2 1/s 1/s m3/s s/m1/3 m m/m m
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5.1 The Influence of the River Network Structure on Population Persistence

Natural rivers are rarely in the form of single branches but in various types of networks.
The structure (or topology) of a river network influences hydrodynamics as well as the
dynamics of ecosystems in the network. To see how the network structure influences
population persistence, we compare the values of the net reproductive rate R0 in
all the river networks in Fig. 2. For simplicity, we assume constant growth rate and
diffusion rate throughout each network, but allow for varying habitat conditions in the
simulations in this subsection.

5.1.1 The Influence of the Total Length of the Network on R0

For a specific type of network structure, variations of the length of branches yield
larger (longer) or smaller (shorter) river systems. One may easily ask such a question
as whether a population grows better in a small river system or a large river system.
On the other hand, one may also wonder whether a simple river shape or a complex
river structure is more beneficial to a population given that the total length of the river
is the same.

We assume that each network in Fig. 2 is of equal branch lengths (i.e., l j is constant
within a network), and vary the total network length (L = ∑

l j ) to see how population
dynamics changes with the total length L in each network. Figure 3 shows that, under
the three sets of boundary conditions, when the total length of the network increases,
the net reproductive rate R0 increases in all the networks. This coincides with the
well-known result in one-dimensional river (see, e.g., Jin and Lewis 2011; Lutscher
et al. 2005): Given the same habitat conditions, increasing the total habitat size helps
population persistence.

Note that network (1) is a radial tree of order 1, that networks (3-a) and (3-b) are
radial trees of order 2, and that networks (7-a) and (7-b) are radial trees of order 3. In
a radial tree, population dynamics in the branches of the same order (e.g., k1 and k2
in network (3-a)) is identical. Figure 3 also shows that when the total network length
L is the same, the R0 in network (1) is larger than the one in networks (3-a) and (3-b),
that the R0 in network (3-a) is larger than the one in network (7-a), and that the R0
in network (3-b) is larger than the one in network (7-b). This indicates that in a radial
tree, if the total length of the network is fixed, then increasing the number of orders
only reduces the value ofR0 and does not help the population to persist. However, one
cannot conclude a general result from this that, when the total river length is fixed, the
networks with more branches admit smaller net reproductive rates. In the non-radial
networks (4-a,b) and (5-a,b), the values of R0 in networks (5-a) and (5-b) may be
larger than those in networks (4-a) and (4-b), see Fig. 3a, c, e, f.

We actually consider two cases of flow conditions in Fig. 3. (1) The advection
rates (v j ’s) are the same throughout the network (e.g., for the sake of ecological
protection), and the cross-sectional areas in different branches (A j ’s) vary according
to the flow conservation relation at interior junctions (2.11), see Fig. 3a, c, e. (2)
The cross-sectional areas are the same in the network (e.g., for specific construction
requirement), and the flow advection rates vary according to (2.11), see Fig. 3b, d, f.
By comparing the left panels and the right panels in Fig. 3, we also find that in the
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Fig. 3 The relationship betweenR0 and the total length L of the river network. The curve “(*)” represents
R0 in network (*) in Figure 2. Parameters: Dj = 0.35, m j = 0.0000007, r j = 0.0000052. In a, c, e,
the flow advection rate is the same in the network v j = 0.0015; the cross-sectional area is A j = 1 in the
most upstream branches in merging trees (e.g., A1 = A2 = 1 in network (3-a)) or in the most downstream
branches in splitting trees (e.g., A2 = A3 = 1 in network (3-b)). In b, d, f, the cross-sectional area is the
same in the network A j = 1; the flow advection rate is v j = 0.0015 in the most upstream branches in
merging trees or in the most downstream branches in splitting trees. Boundary conditions: a–b (ZF-FF);
c–d (H-H); e–f (ZF-H)
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Fig. 4 The relationship between R0 and the total length L of the river networks (3-a) and (3-b), from
Fig. 3b, d, f

same type of network with the same length, if the total upstream flow discharge is
constant, then the network with constant flow velocity yields a larger net reproductive
rate than the network with constant cross-sectional areas does (e.g., R0 in network
(3-a) is larger in Fig. 3a than in Fig. 3b). This is because there are some channels with
high flow velocities in the latter network, which makes the habitat conditions worse
for population growth.

5.1.2 The Influence of Boundary Conditions on R0

It has been shown that boundary conditionsmay greatly influence the long-term behav-
ior of a population in river environments, see, e.g., Lam et al. (2016), Sarhad and
Anderson (2015). Figure 3a–d shows that when (ZF-FF) or (H-H) boundary condi-
tions are applied, R0 is the same in networks (3-a) and (3-b), in networks (5-a) and
(5-b), or in networks (7-a) and (7-b). This seems to indicate that under these boundary
conditions, whether the network is a merging tree (e.g., edges join at the downstream
end) or a splitting tree (e.g., edges split at the upstream end) does not affect the net
reproductive rate, provided that at every junction node only three edges are involved
in the merging or splitting phenomenon. Nevertheless, when (ZF-H) boundary condi-
tions are applied, the value of R0 in network (3-a) (or (5-a), (7-a), respectively) is not
less than the value of R0 in network (3-b) (or (5-b), (7-b), respectively) (see Fig. 3e–f).
This is because when the population is not lost from the upstream and the downstream
end is lethal, more branches in the downstream cannot result in better conditions for
population persistence. We do not see the exact same phenomenon as above in the
networks of 4 branches (networks (4-a,b)). When (ZF-FF) or (H-H) boundary condi-
tions are applied, the 4-branch merging tree (network (4-a)) admits a larger R0 than
the 4-branch splitting tree (network (4-b)) does, so having more upstream branches
helps population persist if the upstream boundary condition is better for the population
than the downstream one (ZF-FF) or if both boundaries are lethal (H-H). Neverthe-
less, when (ZF-H) boundary conditions are applied, if the total river length is small,

123



2520 Journal of Nonlinear Science (2019) 29:2501–2545

then the value of R0 in network (4-a) may be smaller than the one in network (4-b)
(see Fig. 3e). Overall, in all these types of river networks with equal branch length,
more upstream branches are more beneficial to population persistence or at least do
not accelerate population extinction, provided that the upstream ends are not the only
boundaries that are subjected to hostile conditions and that the total network length is
sufficiently large.

To see the effect of boundary conditions on the net reproductive rate more closely,
we focus on the R0 values in networks of 3 branches when the cross-sectional areas are
the same throughout the network, and compare the corresponding curves from Fig. 3b,
d, f in Fig. 4. It shows that the combination of zero-flux upstream condition and free
flow downstream condition yields the largest value of R0 and that hostile condition
at both ends yields the smallest value of R0. When the total length of the network
is small, different boundary conditions result in significantly different values of R0.
When the total length of the network is large, imposing the hostile condition or the free
flow condition at the downstream end does not make much difference to R0 if more
branches are at the upstream (i.e., in network (3-a)) with the same boundary condition,
while the upstream conditions do not influence R0 much if more branches are at the
downstream (i.e., in network (3-b)) with the same boundary condition. Therefore, one
may need to consider the influence of boundary conditions on the net reproductive
rate in a specific river network.

5.2 Population Dynamics in Networks Consisting of a Main River and Small
Tributaries

A natural river network is composed of a main river and all of its tributaries. In this
subsection, wewill pay close attention to population dynamics in river networks where
one or two tributaries flow into a main river channel, in order to better understand the
influence of small tributaries on population persistence or extinction in river networks.
In particular, we will consider networks (3-a*) and (4-a*) in Fig. 5. In network (3-a*),
a small river channel (k2) flows into the main river channel (consisting of k1 and k3); in
network (4-a*), two small river channels (k2 and k3) flow into the main river channel
(consisting of k1 and k4).

Hydraulic and physical characteristics in a real river are closely related (see, e.g.,
Chaudhry 1993; Jin and Lewis 2014). To better explore population dynamics in a

Fig. 5 River networks where
one or two small branches flow
into the main river. The arrows
represent the direction of the
water flow

k
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k
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k
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k
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river network, we incorporate the explicit relation between hydraulic and physical
factors into the population model and investigate their effects on the net reproductive
rate and the positive steady state (if exists). Assume a constant bottom slope S0 j , a
constant bottom Manning roughness coefficient n j , and a rectangular cross section
with constant width Bj in branch k j of the network. We further assume that the water
flow is at the steady state with flow discharge Q j in k j ; hence, there is a uniform flow
in k j Chaudhry (1993). As a result, the water depth y j in k j can be approximated by
the normal depth defined in (D.2) in “Appendix D”:

y j =
(

Q2
j n

2
j

B2
j S0 j k

2

) 3
10

, (5.1)

which yields the flow velocity in branch k j as

v j = Q j

A j
= Q j

B j y j
. (5.2)

We then can substitute (5.1) and (5.2) into (IBVP) to study how parameters influence
population persistence in uniformflows in river networks. TheManning coefficient and
the bottom slope are chosen as constants in this subsection: n j = 0.2, S0 j = 0.000001.

5.2.1 The Influence of the Flow Discharge onR0

We first consider the influence of the flow discharge onR0 in network (3-a*). Assume
that the length and width of the main river (k1&k3) are l = l1 + l3 = 1600 and
B1 = B3 = 20, respectively, that the length and width of the small branch (k2) are
l2 = 800 and B2 = 4, respectively, and that the bottom slope, the bottom roughness,
and biological conditions (diffusion rate, birth and death rates) are the same throughout
the network. For simplicity, we assume that the small branch joins the main river at
its midpoint. Figure 6a shows how the net reproductive rate R0 varies with the flow
discharge in themain channel and in the small branch if they are not connected.We see
that R0 decreases with the upstream flow discharge, which coincides with previous
results of population dynamics in one-dimensional rivers (see, e.g., Jin and Lewis
2014), and that R0 is larger in the main channel than in the small branch. Figure 6b
shows the dependence ofR0 on the upstream flow discharge in the main river Q1 and
the upstream flow discharge in the small branch Q2. Clearly, R0 is large when both
Q1 and Q2 are small and R0 is small when both Q1 and Q2 are large. Hence, in a
river network, it is still true that low upstream flow discharges help population persist
and high upstream flow discharges accelerate population’s extinction. Moreover, R0
decreases more rapidly in Q1 than it does in Q2, which implies that, given the same
habitat and demography conditions, the upstream flow discharge in the large main
river influences global population persistence/extinction more than the upstream flow
discharge in the small branch does. Note that in this example the population will be
extinct in the small branch if it does not join the main river (see Fig. 6a), but joining the
small branch into the main river may help the population persist in the whole network.
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Fig. 6 The relationship between R0 and the upstream flow discharges in network (3-a*). Parameters:
Dj = 0.6, m j = 0.0000007, r j = 0.0000093. a R0 in the main river and in the small branch if they are
not connected. b R0 in network (3-a*); the curves are contour lines forR0. Boundary conditions: (ZF-FF)

5.2.2 The Influence of the Flow Discharge and theWidth of the Small Branches on
R0

Next, we assume that the conditions in the main river are constant, but study the
influence of the flow discharge (Q2) and the width (B2) of the small branches on
population dynamics in the whole network. This can help us know more about what
long-term behaviors of a population to expect when one or more small branches are
added in or removed from an existing main river. We consider two upstream flow
conditions in the main river: (a) Q1 = 0.05, under which the population can persist
in the main river (R0,main = 1.109), and (b) Q1 = 0.09, under which the population
will be extinct in the main river (R0,main = 0.768), if the main river is not connected
with a small branch.

Figure 7 shows the dependence ofR0 on Q2 and B2 in network (3-a*). Both figures
show the same phenomenon: A population may grow better or worse if a new small
branch joins the main river; in order to increase R0 or help the population persist in
the whole network, low upstream flow discharge and large width, or equivalently, low
flow discharge per unit width Q2/B2, in the small branch, should be imposed. If the
conditions in the main river (for population growth) become worse (e.g., from Fig. 7a
to b), then lower Q2/B2 in the small branch is required in order for the population to
persist (orR0 > 1) in the whole network.

We then consider network (4-a*), where two small branches (k2 and k3) join the
main river (k1&k4) at its midpoint. For simplicity, we assume that all the conditions in
the main river and in the small branches are the same as those in the above network (3-
a*). The dependence ofR0 on the flow discharge Q2(= Q3) and the width B2(= B3)
in the small branches is shown in Fig. 8, which again indicates that low upstream
discharge and large width in the small branches help the population persist in the
whole network. Comparing Figs. 7 and 8, we see that lower flow discharge per unit
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Fig. 7 The dependence ofR0 on the flow discharge Q2 and thewidth B2 in the small branch (k2) in network
(3-a*). The curves are contour lines for R0. Parameters: Dj = 0.6, m j = 0.0000007, r j = 0.0000093,
B1 = B3 = 20. a Q1 = 0.05; b Q1 = 0.09. Boundary conditions: (ZF-FF)
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Fig. 8 The dependence of R0 on the flow discharge and the width in the small branches (k2 and k3) in
network (4-a*). Parameters: Dj = 0.6, m j = 0.0000007, r j = 0.0000093, B1 = B4 = 20, B2 = B3,
Q2 = Q3. a Q1 = 0.05; b Q1 = 0.09. Boundary conditions: (ZF-FF)

width Q2/B2 in small branches is needed forR0 to go beyond 1 in network (4-a*) than
in network (3-a*), but when Q2/B2 is sufficiently small,R0 can be larger in network
(4-a*) than in network (3-a*). This implies that the threshold conditions for population
persistence in a large network may be stronger than those in a small network, but the
population may grow better in the large network once it persists.
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Fig. 9 The regions for persistence (R0 > 1) and extinction (R0 < 1) in parameter space in networks
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correspond toR0 = 1 under corresponding parameter conditions

5.2.3 The Influence of the Flow Discharge and Biological Conditions onR0

Not only the physical and hydraulic features but also biological characteristics in the
tributaries may be different from those in the main river. We further consider the co-
influence of the flow discharge and biotic factors on population dynamics in networks
(3-a*) and (4-a*). We assume constant flow discharge, diffusion rate, and birth rate
in the main river, but allow for variations of these parameters in the small branches,
in order to be applicable for different types of tributaries in river networks. Figure 9
shows the regions for population persistence (R0 > 1) or extinction (R0 < 1) in the
D2/D1-r2/r1 plane under different flow conditions. It turns out that given constant
conditions in the main river, the larger the diffusion rate D2 or the birth rate r2 is, or
the smaller the flow discharge Q2 is in the small river branches, the easier it is for the
population to persist (R0 > 1) in the whole network of (3-a*) or (4-a*). Comparing
the two figures in Fig. 9, we see that the parameter region forR0 > 1 in network (4-a*)
is smaller than that in network (3-a*) under the same flow conditions. This confirms
our previous observation that if more small rivers flow into the main river, then better
conditions in the small branches may be needed to ensure population persistence in
the whole river network.

5.2.4 The Globally Attractive Positive Steady State of (IBVP) in Network (3-a*)

We have proved in Theorem 3.3 (or Corollary 4.2) that if the population persists, then
it will eventually be stabilized at a positive steady state. We plot the spatial profile
of the globally attractive positive steady state (when R0 > 1) of (IBVP) in network
(3-a*), under different flow and boundary conditions, see Fig. 10. In simulations, we
assume that the birth rate and the diffusion rate are higher in the small branch than
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those in themain river. Results show that whenR0 is very large, the population density
is high in the small branch (in the upstream) and in the downstream main river, but
the population is mainly distributed in the downstream main river when R0 is only
slightly larger than 1. We also calculated the next-generation distribution (i.e., the
eigenfunction of the next-generation operator corresponding to R0) in these cases and
obtained similar profiles as those of the steady states in Fig. 10. Thus, we may say that
if a population can persist in such a river network, then one should always be able to
find a high population density in the downstream main river and that if the population
persists very well then high population density could also be found in the upstream
branch where the growth conditions are the best.

6 Discussion

Rivers connect to each other to form networks in the natural world. The geometric
structure in river networks varies from network to network; the physical and hydraulic
features in a river network vary from branch to branch. As a result, these characteris-
tics highly influence the flow profile in a river network and hence the dynamics of the
ecosystem in the network. In river populationmodels, the rivers are often treated as one-
dimensional intervals (see, e.g., Speirs andGurney 2001;Mckenzie et al. 2012; Jin and
Lewis 2011; Lam et al. 2016; Lutscher et al. 2005), or as discrete patches for different
branches in a network (see, e.g., Fagan 2002; Grant et al. 2010; Goldberg et al. 2010;
Mari et al. 2014). Only in a few recent works, the geometric structure of continuous
river networks has been incorporated into river populationmodels: Integro-differential
equations Ramirez (2012) and reaction–diffusion–advection (RDA) equations (Sarhad
and Anderson 2015; Sarhad et al. 2014; Vasilyeva 2019) were used to describe pop-
ulation dynamics in river networks. The conditions for population persistence were
established for linear (or the linearized) systems in these works, and the existence and
uniqueness of a positive steady state were also established in the most recent work
Vasilyeva (2019) for an RDA model with a logistic growth rate.

In this work, we considered an RDA model for populations living in river net-
works with general tree structures. We allowed for variations of physical, hydraulic,
and demographic conditions in the edges of the network and assumed different diffu-
sion rates, advection rates, and growth functions in different edges. In previous works
Sarhad and Anderson (2015), Sarhad et al. (2014), Vasilyeva (2019), these parame-
ters were assumed to be constants throughout the network and their methods highly
depended on this simplification as it allowed them to reduce the RDA model into a
diffusion model, and hence applying their methods to our model should not be triv-
ial if not impossible. We considered general boundary conditions ((2.5) and (2.7)) in
(IBVP), which not only include any combination of zero-flux, free flow, or hostile
conditions as considered in Ramirez (2012), Sarhad and Anderson (2015), Sarhad
et al. (2014), Vasilyeva (2019), but also allow for more general possibilities as those
in Lam et al. (2016), where the population flux at the upstream or downstream bound-
ary may be proportional to the population density there. The growth functions in our
model were assumed to be the general type of monostable functions that have often
been used in one-dimensional river population models. The logistic function used in
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Vasilyeva (2019) can be considered as an example. Most of the results in Sarhad et al.
(2014) and the results in Sarhad and Anderson (2015) were established in radially
symmetric trees, in which all tree features, including edge lengths, sectional areas,
junction conditions, and boundary conditions, depend only on the distance to the root.
The network considered in Vasilyeva (2019) is not a radial tree, but it is a simple
Y-shaped tree with 3 edges in total. In our model, the network was assumed to have
the general tree structure, which is not restricted to be radially symmetric or binary.

Fundamental analysis for parabolic and elliptic equations on networks has not been
new, see, e.g., the series of works by J. von Below. As there have been only few studies
on population dynamics in river networks, it has not been made clear what existing
theories are available for RDA models in river networks and/or what new theories
need to be generated. By adapting theories for parabolic and elliptic equations on
intervals and/or networks (Mugnolo 2012; Arendt et al. 2014; Fijavz̆ et al. 2007;
Protter and Weinberger 1967; von Below 1988a, 1991, 1994; Ladyzenskaja et al.
1968; Solonnikov 1965; Pao 1992; Ye et al. 2011), we developed the fundamental
theories for the parabolic and elliptic problems on river networks corresponding to
(IBVP), such as the strong maximum principle, Hopf boundary lemma, comparison
principle, the existence, uniqueness, and L p and Schauder estimates of solutions, as
well as the theory of the existence, uniqueness, and positivity of solutions for the
nonlinear problem (IBVP). We expect that the theories in “Appendix A” will serve as
a theoretical basis for future studies on RDA models for populations living in river
networks. In fact, our theories have already been applied in two recent works (Du et al.
2019, 2018).

We established the existence of the principal eigenvalue λ∗ of the corresponding
eigenvalue problem (3.5). By using the comparison principle, we proved that an RDA
model (with monostable-type growth functions) in metric trees has the same long-
term behaviors as in a one-dimensional river (see, e.g., Mckenzie et al. 2012): The
population density converges to 0 if λ∗ ≤ 0 and there exists a unique positive steady
state that is globally attractive if λ∗ > 0. While the existence and uniqueness of the
positive steady state were proved in a simpler network in Vasilyeva (2019), we have
obtained its global attractivity in general trees. In fact, “population persistence” in
this work represents the situation where the population asymptotically approaches the
unique positive steady state, while it represents instability of the trivial solution in
previous works on river networks (Ramirez 2012; Sarhad and Anderson 2015; Sarhad
et al. 2014; Vasilyeva 2019).

Although the principal eigenvalue of the eigenvalue problem can be used to math-
ematically define population persistence or extinction, the net reproductive rate is
a biologically more significant quantity that is often used to determine population
dynamics, as it represents the average number of offsprings that a single individual
produces during its lifetime. The net reproductive rate has not been established in
previous studies in population models on river networks. We extended the definition
of the next-generation operator for one-dimensional river models (see Mckenzie et al.
2012) to our RDA model in river networks and used it to define the net reproductive
rate R0. We were also able to prove that R0 can be equivalently used to determine
population persistence (R0 > 1) and extinction (R0 ≤ 1) in river networks. It is
difficult to calculate R0 based on its original definition as the spectral radius of the
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next-generation operator. The method used in Mckenzie et al. (2012) to calculate R0
for a one-dimensional river model cannot be applied to our model. We then converted
the calculation of R0 to calculation of the principal eigenvalue of a new general-
ized eigenvalue problem by using the theory in Wang and Zhao (2012), and we also
provided a method to approximate the eigenfunction of the next-generation operator
corresponding to R0, which we call the next-generation distribution. Due to the gen-
erality of our model, it is impossible to obtain an explicit formula or an approximation
of λ∗ or R0 in terms of the model parameters. However, we can discretize the eigen-
value problems to numerically calculate them. Noting the biological meaning of R0,
by studying the dependence of R0 on specific parameters, we can better understand the
influence of habitat and demography factors on population persistence or extinction.
The next-generation distribution can also help us determine the good or bad regions
in a river network.

The results in our numerical simulations coincide with existing findings in one-
dimensional rivers or in radial trees: In a given type of river network, it is easier for
the population to persist if the total river length is larger, the flow discharge/advection
is lower, or the diffusion rate or the growth rate is higher, see also, e.g., Sarhad et al.
(2014), Lutscher et al. (2005), Jin and Lewis (2014). We also found that in radial trees
with the same total length, the net reproductive rate is higher in the tree with lower
order (i.e., less branches), provided that all the biotic and physical conditions are the
same. This implies that a population can grow better in a radial river with simpler
structure if the river length is given. However, if the river networks do not admit the
radial symmetry, then this rule is no longer true and the persistence situation of the
population highly depends on the structures of the networks in concern. This verifies
the different influences of the geometric structures of radial and non-radial trees on
population dynamics and the necessity to study population models in general trees.

In our simulations, we particularly compared population dynamics in the situations
where one or two small branches flow into a main river. This special scenario can
be considered as a simplification of the real problem of adding or removing one
branch to or from a network, which may occur when one upstream branch in the
dessert disappears because of drought or when human beings artificially attach a new
upstream or downstream branch to a network for some economic, ecological, or other
reasons. In such scenarios, one may naturally ask questions, such as how will such
a phenomenon or activity influence the long-term behaviors of a population in the
network, will the loss of a branch in the dessert cause the extinction of a species, will
a new branch attached to the network be beneficial to persistence of a species. Our
results show that stronger (or better) conditions in the small branch(es) are required
for a population to persist in the network where two small branches flow into the
main river than in the network where only one small branch is connected to the main
river. However, if the population can persist in both networks, then it persists better
in the larger network (i.e., R0 is larger in the larger network than in the smaller one).
This phenomenon, to some extent, confirms our intuitive understanding that if the lost
branch in the desert does not have suitable conditions for population growth, then it
is not necessary to worry that losing it will cause the population to be extinct faster,
and that if the new attached channel is endowed with favorable conditions, then the
population can grow better than before.
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The theoretical results derived in thiswork (inSects. 2–4 and “AppendixA”) hold for
any general finite trees. The simulations in this work are all for small networks (of no
more than 7 branches) for calculation simplicity.We note that the phenomena observed
in the radial trees should be generally true for radial trees of larger order. However, due
to the complexity of non-radial trees, we would expect that the phenomena observed
in non-radial trees only apply in larger trees with the same or similar structures as
those in our examples. The influence of specific hydraulic, physical, and biological
factors on population dynamics in non-radial trees highly depends on the geometric
structure of the network.

Our theory for the principal eigenvalue and associated eigenfunction depends on
the tree structure of the network, which allows for the possibility of writing the dif-
ferential operator in (2.3) into a self-adjoint operator. If the network is not a tree,
then we cannot establish the principal eigenvalue by this method and the persistence
theory still remains open. As in Vasilyeva (2019), we assumed that the whole wetted
cross-sectional area is habitable. When the habitable areas are smaller than the wetted
cross-sectional areas Sarhad et al. (2014), it would also be interesting to understand
population dynamics in general networks with heterogeneity. Another potential future
work could be better estimation of the principal eigenvalue λ∗ of the eigenvalue prob-
lem on networks. The dynamics of interacting species in river networks could also be
an interesting future problem (see, e.g., Cuddington and Yodzis 2002).
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Appendix A Theory of Parabolic and Elliptic Equations on Networks

A.1 The StrongMaximum Principle and Comparison Principle

In this subsection, we establish the strong maximum principle and comparison
principle for parabolic equations on metric graphs, which are fundamental in the
investigation of existence, uniqueness, and positivity of solutions to the nonlinear
problem (IBVP).

The following strong maximum principle is an analogue of the classical one for
equations on open subsets in Euclidian spaces.

Lemma A.1 Assume that c(x, t) ≥ 0 and is bounded from above on �. Let u ∈
C(�) ∩ C2,1(�p) satisfy

∂u j

∂t
− Dj

∂2u j

∂x2j
+ v j

∂u j

∂x j

+ c j (x j , t)u j ≤ 0 (≥ 0), x j ∈ (0, l j ), j ∈ IN−1, t ∈ (0, T ],
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and

ui1(ei , t) = · · · = uim (ei , t),
im∑

j=i1

di j A j D j
∂u j

∂x j
(ei , t) ≤ 0 (≥ 0), ∀ei ∈ Er, t ∈ (0, T ].

Suppose that u ≤ M (u ≥ m) on � and u(x0, t0) = M (u(x0, t0) = m) at some point
(x0, t0) ∈ �p. If c(x, t) �≡ 0, suppose that M ≥ 0 (m ≤ 0). Then

u = M (u = m) on G × [0, t0].

Proof Suppose that u(x0, t0) = M at some point (x0, t0) ∈ �p. We distinguish two
cases: (i) x0 /∈ Er; (ii) x0 ∈ Er.

In Case (i), clearly x0 is an interior point of some edge k j . The direct application of
the strong maximum principle for Euclidean domains (see, for example, Protter and
Weinberger (1967), Theorem 4, Chapter 3) gives

u j (x j , t) = M, ∀(x j , t) ∈ [0, l j ] × [0, t0].

Let kh be an arbitrary edge such that kh ∩ k j = {ei }, where ei is an end point of k j . If
there exists an interior point y0 of kh such that uh(y0, t0) = M , then

uh(xh, t) = M, ∀(xh, t) ∈ [0, lh] × [0, t0], (A.1)

due to the strong maximum principle for domains. If such interior maximum point
does not exist, then it is necessary that

uh(xh, t0) < M, ∀xh ∈ (0, lh). (A.2)

Thus, we can claim that for some 0 < t̂ < t0, there holds

uh(xh, t) < M, ∀(xh, t) ∈ (0, lh) × (t̂, t0). (A.3)

Suppose that such a claim is false. Then we can find a sequence {(x̂n, t̂n)}∞n=1 with
x̂n ∈ (0, lh), t̂n < t̂n+1 for all n ≥ 1 and t̂n → t0 as n → ∞ such that uh(x̂n, t̂n) =
M for all n ≥ 1. By the strong maximum principle for domains again, one has
uh(xh, t̂n) = M for all xh ∈ [0, lh]. Since t̂n → t0 as n → ∞ and uh is continuous
on [0, lh] × [0, t0], it easily follows that (A.1) holds, which contradicts (A.2). Hence,
claim (A.3) is proved. In view of (A.3) and the fact that uh(xh, t) attains its maximum
M at the boundary point (ei , t0) of the region [0, lh] × (t̂, t0), one then applies the
classical Hopf boundary lemma for Euclidean domains (see (Protter and Weinberger
1967, Theorem 3, Chapter 3)) to conclude that dhi

∂uh
∂xh

(ei , t0) > 0. Recall that M is
the maximum value of u on �. So for any j = i1, . . . , im with j �= h such that
k j ∩ kh �= ∅, we have di j

∂u j
∂x j

(ei , t0) ≥ 0. Therefore, it holds
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im∑

j=i1

di j A j D j
∂u j

∂x j
(ei , t0) > 0,

which is impossible due to our assumption. This contradiction shows that (A.1) must
hold. As G is connected, we can assert that u = M in G × [0, t0].

We now consider Case (ii). Take k j to be an arbitrary edge such that x0 is its endpoint
and x0 ∈ Er. By what was proved in Case (i), we can suppose that u j (x j , t0) <

M, ∀x j ∈ (0, l j ). However, the same arguments as in Case (i) lead to a contradiction.
Thus, u j (x j , t) = M for all (x j , t) ∈ [0, l j ]× [0, t0] and in turn u = M in G ×[0, t0]
by the arbitrariness of k j . ��

We remark that von Below (1991), Theorem 1 covers the special case of Lemma
A.1, where c(x, t) ≡ 0 and

im∑

j=i1

di j A j D j
∂u j

∂x j
(ei , t) = 0, ∀ei ∈ Er, t ∈ (0, T ].

Hence, our result is more general and it is useful when dealing with upper and/or
lower solutions. As a direct application of Lemma A.1 as the classical Hopf lemma
for Euclidean domains (see, for example, Protter and Weinberger 1967, Theorem 3,
Chapter 3), we have the following Hopf boundary lemma for networks.

Lemma A.2 Assume that c(x, t) ≥ 0 and is bounded from above on �. Let u ∈
C(�) ∩ C2,1(�p) satisfy

∂u j

∂t
− Dj

∂2u j

∂x2j
+ v j

∂u j

∂x j
+ c(x j , t)u j ≤ 0 (≥ 0), x j ∈ (0, l j ), j ∈ IN−1, t > 0.

Suppose that u is continuously differentiable at some point (ei , t0) ∈ Eb × (0, T ],
u(ei , t0) = M (u(ei , t0) = m), u(x, t) < M (> m) for all (x, t) ∈ �p, and ei is a
vertex on k j . If c �≡ 0, assume that M ≥ 0 (m ≤ 0). Then di j ux j (ei , t0) > 0 (< 0).

As a corollary of Lemmas A.1 and A.2, we immediately obtain the following
comparison principle.
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Lemma A.3 Assume that c(x, t) is bounded on �. Let u ∈ C(�) ∩ C2,1(�p) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u j

∂t
− Dj

∂2u j

∂x2j
+ v j

∂u j

∂x j
+ c j (x j , t)u j ≥ 0, x j ∈ (0, l j ), j ∈ IN−1, t ∈ (0, T ),

α j,1u j (ei , t) − β j,1
∂u j

∂x j
(ei , t) ≥ 0, ∀ei ∈ Eu, t ∈ (0, T ),

α j,2u j (ei , t) + β j,2
∂u j

∂x j
(ei , t) ≥ 0, ∀ei ∈ Ed, t ∈ (0, T ),

ui1(ei , t) = · · · = uim (ei , t), ∀ei ∈ Er, t ∈ (0, T ),
im∑

j=i1

di j A j D j
∂u j

∂x j
(ei , t) ≥ 0, ∀ei ∈ Er, t ∈ (0, T ),

u j (x j , 0) ≥ 0, x j ∈ (0, l j ), j ∈ IN−1,

(A.4)
and assume that

∂u j
∂x j

(ei , t) exists for t ∈ (0, T ] and ei ∈ Eb if β j,s �= 0 for some

j ∈ IN−1, s ∈ {1, 2}. Then u(x, t) ≥ 0 for all (x, t) ∈ �. If u(x, 0) �≡ 0, then
u(x, t) > 0 for all (x, t) ∈ G\E0 × (0, T ].

Proof Denote v(x, t) = e−�t u(x, t), and take the constant � > 0 to be large so that
� + c > 0 on �. Elementary computation gives v ∈ C(�) ∩ C2,1(�p) satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v j

∂t
− Dj

∂2v j

∂x2j
+ v j

∂v j

∂x j
+ [c j (x j , t) + �]v j ≥ 0, x j ∈ (0, l j ), j ∈ IN−1, t ∈ (0, T ),

α j,1v j (ei , t) − β j,1
∂v j

∂x j
(ei , t) ≥ 0, ∀ei ∈ Eu, t ∈ (0, T ),

α j,2v j (ei , t) + β j,2
∂v j

∂x j
(ei , t) ≥ 0, ∀ei ∈ Ed, t ∈ (0, T ),

vi1(ei , t) = · · · = vim (ei , t), ∀ei ∈ Er, t ∈ (0, T ),
im∑

j=i1

di j A j D j
∂v j

∂x j
(ei , t) ≥ 0, ∀ei ∈ Er, t ∈ (0, T ),

v j (x j , 0) ≥ 0, x j ∈ (0, l j ), j ∈ IN−1.

(A.5)
It follows from Lemmas A.1 and A.2 that min

�
v(x, t) = m ≥ 0, which implies

u(x, t) ≥ 0 on �. When u(x, 0) �≡ 0 (equivalently, v(x, 0) �≡ 0), suppose that
u j (x∗, t∗) = 0 for some (x∗, t∗) ∈ �p. Then v j (x∗, t∗) = 0 = min� v(x, t), which
implies v ≡ 0 on � by Lemma A.1, a contradiction. Thus, u(x, t) > 0 for all (x, t) ∈
�p. Additionally, LemmaA.2 implies that u(x, t) > 0 for all (x, t) ∈ Eb\E0×(0, T ].

��

We remark that von Below (1994), Theorem 1 states another type of comparison
principle for parabolic problems on graphs.

123



Journal of Nonlinear Science (2019) 29:2501–2545 2533

A.2 Linear Parabolic Problem

In this subsection, we aim to establish the existence, uniqueness, and L p and Schauder
estimates of solutions to the following linear parabolic problem:

∂u j

∂t
= Dj

∂2u j

∂x2j
− v j

∂u j

∂x j
+ c j (x j , t)u j

+ g j (x j , t), x j ∈ (0, l j ), j ∈ IN−1, t ∈ (0, T ), (A.6)

associated with the initial condition, boundary and interior connection conditions:

(2.4), (2.5), (2.7), and (2.10), (A.7)

where T > 0 is a fixed number.
We would like to mention that when the initial condition u0 is smooth and satisfies

compatibility conditions, von Below (1988a) already studied the solvability of (A.6)–
(A.7). Here we want to discuss the same issue for the initial data u0 ∈ L p(G) (p > 1)
by appealing to the semigroup theory used in Mugnolo (2012), Arendt et al. (2014),
Fijavz̆ et al. (2007). To this end we need to make a transformation so that problems
(A.6)–(A.7) can be written in the form that the framework of Mugnolo (2012) can
apply.

Let

p j (x j ) = η j e
− v j

D j
x j

, ζ j (x j ) = p j (x j )

Dj
, (A.8)

where η j is a constant to be determined on edge k j . Then (A.6) can be written as

∂u j

∂t
= A j u j +c j (x j , t)u j +g j (x j , t), x j ∈ (0, l j ), j ∈ IN−1, t ∈ (0, T ), (A.9)

where

A j = 1

ζ j (x j )

∂

∂x j

[

p j (x j )
∂

∂x j

]

. (A.10)

Choose one upstream vertex, and reorder the vertices and edges such that the chosen
vertex is e1, the edge connecting to e1 is k1, and the other endpoint e2 of k1 con-
nects to edges k2, k3, . . ., and km . Then at e2, interface condition (2.10b) becomes
∑m

j=1 d2 j A j D j
∂u j
∂x j

(e2) = 0. Define η1 = 1 on the edge k1. Choose suitable η2, . . .,
ηm such that

A1D1 : A2D2 : · · · : AmDm = p1(e2) : p2(e2) : · · · : pm(e2),

where p j (e2) = p j (0) or = p j (l j ) depending on whether e2 is the starting
point or ending point of k j . Then the interface condition at e2 is equivalent to
∑m

j=1 d2 j p j (e2)
∂u j
∂x j

(e2) = 0. Since G is a tree, we can similarly choose the values
for other η j ’s and rewrite interface condition (2.10b) at all interior vertices as
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im∑

j=i1

di j p j (ei )
∂u j

∂x j
(ei ) = 0. (A.11)

Introduce the inner product for functions ψ, φ ∈ L2(G) as

〈ψ, φ〉 =
N−1∑

j=1

∫ l j

0
ζ j (x j )ψ jφ jdx j . (A.12)

Then the differential operatorAwith the domain given as in Mugnolo (2012), Lemma
4.11 is self-adjoint with respect to 〈·, ·〉, and similar analysis as in Mugnolo (2012)
shows thatA generates a compact, contractive, and positive strongly continuous semi-
group.

Denote

g(x, t) = g j (x j , t), x j ∈ (0, l j ), j ∈ IN−1, t ∈ (0, T ).

We now state the following solvability result, and L p and Schauder estimates for
problems (A.6)–(A.7).

Theorem A.4 Assume that c ∈ L∞(�), g ∈ L p(�) for fixed p > 1. Then the initial
boundary value problems (A.6)–(A.7) are well-posed on L p(G), i.e., for any initial
data u0 ∈ L p(G), (A.6)–(A.7) admit a unique strong solution u ∈ W 2,1

p (�) (for all
t > 0) that continuously depends on the initial data. Moreover, the following estimates
hold.

(i) If u0 ∈ W 2
p(G), then the unique solution u satisfies

‖u‖W 2,1
p (�)

≤ C(‖g‖L p(�) + ‖u0‖W 2
p(G))

for some constant C > 0 independent of u, u0, g.
(ii) If c ∈ Cα,α/2(�), g ∈ Cα(�), u0 ∈ C2+α(G) for some α ∈ (0, 1) and u0 satisfies

(A.7) at Eb × {0} and (2.10b) at Er × {0}, and [Dj
∂2u0j
∂x2j

− v j
∂u0j
∂x j

+ c j (·, 0)u0j +
g j (·, 0)](ei ) = [Dh

∂2u0h
∂x2h

−vh
∂u0h
∂xh

+c j (·, 0)u0h +gh(·, 0)](ei ) when k j ∩kh = {ei },
then the unique solution u ∈ C2+α,1+ α

2 (�) and satisfies

‖u‖
C2+α,1+ α

2 (�)
≤ C(‖g‖Cα(�) + ‖u0‖C2+α(G))

for some constant C > 0 independent of u, u0, g.
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Proof Note that (A.6) with interface condition (2.10b) can be written as (A.9) with
condition (A.11), and the differential operator A is self-adjoint and generates a com-
pact, contractive, and positive strongly continuous semigroup. Thus, by adjusting the
scalar product to (A.12) and defining corresponding functions and operators based on
the boundary conditions in (A.7), the analysis inMugnolo (2012) (see alsoArendt et al.
2014; Fijavz̆ et al. 2007) can be borrowed to show that problems (A.6)–(A.7) with the
initial data u0 ∈ L p(G) have a unique classical solution for t > 0 that continuously
depends on the initial data.

The Schauder estimates in assertion (ii) have been derived by von Below (1988a).
The L p-estimates in assertion (i) follow similarly as in the proof of the theorem in von
Below (1988a). The proof consists mainly of showing that the initial boundary value
problems (A.6)–(A.7) are equivalent to a well-stated initial boundary value problem
for a parabolic system, where the L p-estimate results of Ladyzenskaja et al. (1968),
Solonnikov (1965) for such a parabolic system can be applied. The details are omitted
here. ��

A.3 Nonlinear Problem (IBVP)

This subsection is devoted to the existence, uniqueness, and positivity of solutions to
the nonlinear problem (IBVP). Assumptions [H1] and [H2] are assumed throughout
this section.

We begin by introducing the definition of upper and lower solutions associated with
problem (IBVP).

Definition A.5 A function u ∈ C2,1(�) is an upper solution of problem (IBVP) if u
satisfies the following conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u j

∂t
− Dj

∂2u j

∂x2j
+ v j

∂u j

∂x j
≥ f j (x j , u j )u j , x j ∈ (0, l j ), j ∈ IN−1, t ∈ (0, T ),

α j,1u j (ei , t) − β j,1
∂u j

∂x j
(ei , t) ≥ 0, ∀ei ∈ Eu, t ∈ (0, T ),

α j,2u j (ei , t) + β j,2
∂u j

∂x j
(ei , t) ≥ 0, ∀ei ∈ Ed, t ∈ (0, T ),

ui1(ei , t) = · · · = uim (ei , t), ∀ei ∈ Er, t ∈ (0, T ),
∑im

j=i1
di j A j D j

∂u j
∂x j

(ei , t) ≥ 0, ∀ei ∈ Er, t ∈ (0, T ),

u j (x j , 0) ≥ u0j (x j ), x j ∈ (0, l j ), j ∈ IN−1.

(A.13)
A function u(x, t) ∈ C2,1(�) is a lower solution of problem (IBVP) if u satisfies the
following conditions:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u j

∂t
− Dj

∂2u j

∂x2j
+ v j

∂u j

∂x j
≤ f j (x j , u j )u j , x j ∈ (0, l j ), j ∈ IN−1, t ∈ (0, T ),

α j,1u j (ei , t) − β j,1
∂u j

∂x j
(ei , t) ≤ 0, ∀ei ∈ Eu, t ∈ (0, T ),

α j,2u j (ei , t) + β j,2
∂u j

∂x j
(ei , t) ≤ 0, ∀ei ∈ Ed, t ∈ (0, T ),

ui1(ei , t) = · · · = uim (ei , t), ∀ei ∈ Er, t ∈ (0, T ),
∑im

j=i1
di j A j D j

∂u j
∂x j

(ei , t) ≤ 0, ∀ei ∈ Er, t ∈ (0, T ),

u j (x j , 0) ≤ u0j (x j ), x j ∈ (0, l j ), j ∈ IN−1.

(A.14)

According to the definition of upper and lower solutions, one can easily see the
following result from Lemmas A.2 and A.3.

Lemma A.6 Assume that u and u are a pair of upper and lower solutions of problem
(IBVP) and u ≥ u on G×{0}. Then u ≥ u on�. If additionally u ≥, �≡ u on G×{0},
then u > u on (G\E0) × (0, T ].

With the aid of the above preliminaries, we are now able to state the main result of
this subsection.

Theorem A.7 For any u0 ∈ L p(G) (p > 1) with u0 ≥ 0 a.e. in G, problem (IBVP)
admits a unique classical solution u for all t > 0, which satisfies u ≥ 0 in �. If
additionally, u0 �≡ 0, then u(x, t) > 0 for all t > 0 and x ∈ G\E0.

Proof Note that 0 and M∗ = max
j∈IN−1

{Mj } form a pair of upper and lower solutions to

(IBVP), where Mj ’s are given in [H2]. Thus, in light of Theorem A.4 and Lemma
A.6, the existence of a strong solution follows from the standard iterations of lower
and upper solutions; the obtained solution is classical due to Theorem A.4 again. We
omit the details of the proof here and refer interesting readers to Pao (1992) and Ye
et al. (2011). The uniqueness and positivity of solutions are obvious consequences of
Lemma A.6. The proof is thus complete. ��

From now on, given u0 ∈ L p(G) for some p > 1, denote by u(x, t, u0) the unique
solution to problem (IBVP). Clearly, we have

Lemma A.8 For any ψ1, ψ2 ∈ L p(G) with ψ1 ≥, �≡ ψ2 on G, u(x, t, ψ1) >

u(x, t, ψ2) for all x ∈ G\E0 and t > 0.

We also have the following observation.

Lemma A.9 If [H3] is also satisfied, then for any u0 ∈ L p with u0 ≥ 0 on G and
λ ∈ (0, 1), u(x, t, λu0) ≥ λu(x, t, u0) on G for all t > 0.
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Proof For any λ ∈ (0, 1), clearly λu(x, t, u0) satisfies

∂λu j

∂t
= Dj

∂2λu j

∂x2j
− v j

∂λu j

∂x j
+ f j (x j , u j )λu j ,

≤ Dj
∂2λu j

∂x2j
− v j

∂λu j

∂x j
+ f j (x j , λu j )λu j , x j ∈ (0, l j ), j ∈ IN−1, t > 0,

where we used assumption [H3]. It follows from Lemma A.6 that λu(x, t, u0) ≤
u(x, t, λu0) on G for all t > 0. ��

A.4 Theory of Elliptic Equations

It is clear that Lemmas A.1 and A.2 imply the following strong maximum principle
for elliptic equations and Hopf-type boundary lemma.

Lemma A.10 Assume that c(x) ≥ 0 and is bounded from above on G. Let u ∈ C(G)∩
C2(G\Eb) satisfy

−Dj
∂2u j

∂x2j
+ v j

∂u j

∂x j
+ c j (x j )u j ≤ 0 (≥ 0), x j ∈ (0, l j ), j ∈ IN−1,

and

ui1(ei ) = · · · = uim (ei ),
im∑

j=i1

di j A j D j
∂u j

∂x j
(ei ) ≤ 0 (≥ 0), ∀ei ∈ Er.

Suppose that u ≤ M (u ≥ m) on G and u(x0) = M (u(x0) = m) at some point
x0 ∈ G\Eb. If c(x) �≡ 0, suppose that M ≥ 0 (m ≤ 0). Then

u = M (u = m) on G.

Lemma A.11 Assume that c(x) ≥ 0 and is bounded from above on G. Let u ∈ C(G)∩
C2(G\Eb) satisfy

−Dj
∂2u j

∂x2j
+ v j

∂u j

∂x j
+ c(x j )u j ≤ 0 (≥ 0), x j ∈ (0, l j ), j ∈ IN−1.

Suppose that u is continuously differentiable at some point ei ∈ Eb, u(ei ) = M
(u(ei ) = m), and u(x) < M (> m) for all x ∈ G. If c �≡ 0, assume that M ≥ 0 (m ≤
0). Then di j ux j (ei ) > 0 (< 0).

The following comparison principle immediately follows from Lemmas A.10 and
A.11.
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Lemma A.12 Assume that c(x) ≥ 0 is bounded from above on � and c jβ j,s �≡ 0 for
some j ∈ IN−1, s ∈ {1, 2}. Let u ∈ C(G) ∩ C2(G\Eb) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Dj
∂2u j

∂x2j
+ v j

∂u j

∂x j
+ c j (x j )u j ≥ 0, x j ∈ (0, l j ), j ∈ IN−1,

α j,1u j (ei ) − β j,1
∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Eu,

α j,2u j (ei ) + β j,2
∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Ed,

ui1(ei ) = · · · = uim (ei ),
∑im

j=i1
di j A j D j

∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Er,

(A.15)
and assume that

∂u j
∂x j

(ei ) exists for ei ∈ Eb if β j,s �= 0 for some j ∈ IN−1, s ∈ {1, 2}.
Then u(x) ≥ 0 for all x ∈ G. If u(x) �≡ 0, then u(x) > 0 for all x ∈ G\E0.

In what follows, we will establish the existence, uniqueness, and L p and Schauder
estimates of solutions to the following linear elliptic problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Dj
∂2u j

∂x2j
+ v j

∂u j

∂x j
+ c j (x j )u j = g j (x j ), x j ∈ (0, l j ), j ∈ IN−1,

α j,1u j (ei ) − β j,1
∂u j

∂x j
(ei ) = 0, ∀ei ∈ Eu,

α j,2u j (ei ) + β j,2
∂u j

∂x j
(ei ) = 0, ∀ei ∈ Ed,

ui1(ei ) = · · · = uim (ei ),
∑im

j=i1
di j A j D j

∂u j

∂x j
(ei ) = 0, ∀ei ∈ Er.

(A.16)
Indeed, by using the similar idea to that of von Below (1988a), we can write the
boundary value problem on G in (A.16) into an equivalent boundary value problem
for an elliptic system and then obtain the following result about the existence and a
priori estimates of solutions of (A.16).

Theorem A.13 The following assertions hold.

(i) Assume that c is bounded on G with c(x) ≥, �≡ 0 and g ∈ L p(G) (p > 1), then
(A.16) admits a unique strong solution u ∈ W 2

p(G) and

‖u‖W 2
p(G) ≤ C‖g‖L p(G),

where the constant C does not depend on u, g.
(ii) Assume that c ∈ Cα(G) with c(x) ≥, �≡ 0 and g ∈ Cα(G), then (A.16) admits a

unique solution u ∈ C2+α(G) and

‖u‖C2+α(G) ≤ C‖g‖Cα(G),

where the constant C does not depend on u, g.
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Next, we develop the theory of upper and lower solutions to establish the existence
and uniqueness of solution to the following nonlinear elliptic problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Dj
∂2u j

∂x2j
+ v j

∂u j

∂x j
= g j (x j , u j ), x j ∈ (0, l j ), j ∈ IN−1,

α j,1u j (ei ) − β j,1
∂u j

∂x j
(ei ) = 0, ∀ei ∈ Eu,

α j,2u j (ei ) + β j,2
∂u j

∂x j
(ei ) = 0, ∀ei ∈ Ed,

ui1(ei ) = · · · = uim (ei ),
∑im

j=i1
di j A j D j

∂u j

∂x j
(ei ) = 0, ∀ei ∈ Er.

(A.17)

Definition A.14 A function u ∈ C2(G) is an upper solution of (A.17) if u satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dj
∂2u j

∂x2j
− v j

∂u j

∂x j
+ g j (x j , u j ) ≤ 0, x j ∈ (0, l j ), j ∈ IN−1,

α j,1u j (ei ) − β j,1
∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Eu,

α j,2u j (ei ) + β j,2
∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Ed,

ui1(ei ) = · · · = uim (ei ),
∑im

j=i1
di j A j D j

∂u j

∂x j
(ei ) ≥ 0, ∀ei ∈ Er.

(A.18)
A function u(x, t) ∈ C2(G) is a lower solution of (A.17) if u satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dj
∂2u j

∂x2j
− v j

∂u j

∂x j
+ g j (x j , u j ) ≥ 0, x j ∈ (0, l j ), j ∈ IN−1,

α j,1u j (ei ) − β j,1
∂u j

∂x j
(ei ) ≤ 0, ∀ei ∈ Eu,

α j,2u j (ei ) + β j,2
∂u j

∂x j
(ei ) ≤ 0, ∀ei ∈ Ed,

ui1(ei ) = · · · = uim (ei ),
∑im

j=i1
di j A j D j

∂u j

∂x j
(ei ) ≤ 0, ∀ei ∈ Er.

(A.19)

Based on Lemma A.12 and Theorem A.13, one can use the standard iterations of
upper and lower solutions (see, for instance, Pao 1992; Ye et al. 2011) to conclude the
following result.

Theorem A.15 Let u and u be a pair of upper and lower solutions of (A.17) satisfying
u ≥ u on G and m = minG u < M = maxG u, and

|g j (x j , u j ) − g j (y j , v j )|
≤ K (|x j − y j |α + |u j − v j |), ∀(x j , u j ), (y j , v j ) ∈ G × [m, M], j ∈ IN−1
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for some constants K > 0 andα ∈ (0, 1). Then (A.17) admits a solution u ∈ C2+α(G)

which satisfies u ≤ u ≤ u. Moreover, (A.17) admits a minimal solution w̃ and a
maximal solution ũ in [u, u] in the sense that for any solution w of (A.17) satisfying
u ≤ w ≤ u, we have w̃ ≤ w ≤ ũ.

Appendix B Proof of Proposition 3.1

Choose ξ > 0 large enough so that f j (·, 0) − ξ < 0 for all j ∈ IN−1. For any g ∈ X ,
Theorem A.13 guarantees that the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Dj
∂2u j

∂x2j
+ v j

∂u j

∂x j
+ [ξ − f j (·, 0)]u j = g j (x j ), x j ∈ (0, l j ), j ∈ IN−1,

α j,1u j (ei ) − β j,1
∂u j

∂x j
(ei ) = 0, ∀ei ∈ Eu,

α j,2u j (ei ) + β j,2
∂u j

∂x j
(ei ) = 0, ∀ei ∈ Ed,

ui1(ei ) = · · · = uim (ei ),
∑im

j=i1
di j A j D j

∂u j

∂x j
(ei ) = 0, ∀ei ∈ Er,

(B.1)
has a unique solution u satisfying

‖u‖C2+α(G) ≤ C‖g‖Cα(G) ≤ C1‖g‖C1(G)

for some constants C > 0 and C1 > 0 independent of u and g.
Define the operator

T : X → X , u = Tg. (B.2)

Then T is a linear and continuous operator that maps a bounded set in X into a bounded
set in C2+α(G). Note that a bounded set in C2+α(G) is a sequentially compact set in
X . This implies that T maps a bounded set in X into a sequentially compact set in X .
Hence, T is a compact operator on X . Moreover, by Lemmas A.2 and A.3, Tg ≥ 0
if g ∈ X+, and u = Tg ∈ Xo. Therefore, T is strongly positive. Let r(T ) be the
spectral radius of T . It follows from the well-known Krein–Rutman theorem (see, for
example, Du (2006), Theorem 1.2) that r(T ) > 0 is a simple eigenvalue of T with
an eigenfunction g∗ ∈ X0, i.e., Tg∗ = r(T )g∗, and there is no other eigenvalue of T
associated with positive eigenfunctions. Thus, ψ∗ = Tg∗ satisfies −Lψ∗ + ξψ∗ =
(1/r(T ))ψ∗ in G, and hence, λ∗ = ξ − 1/r(T ) is a simple eigenvalue of (3.5) with
positive eigenfunction ψ∗ ∈ Xo and no other eigenvalues of (3.5) correspond to
positive eigenfunctions. Similarly as in the proof of Du (2006), Theorem 1.4, we can
obtain that if λ �= λ∗ is an eigenvalue of (3.5), then Re(λ) ≤ λ∗.
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Appendix C Proof of Theorem 3.3

We first prove (i). Case 1: λ∗ < 0. Letψ∗ be the eigenfunction of (3.5) associated with
λ∗. For any φ ∈ X+, since ψ∗ ∈ Xo, there exists σ > 0 such that 0 ≤ φ ≤ σψ∗ on
G. Let u(·, t, φ) be the solution of (IBVP)with initial condition φ and u(·, t, σψ∗) =
eλ∗tσψ∗ be the solution of (3.4) with initial condition σψ∗. By [H1], we have

∂u j

∂t
= Dj

∂2u j

∂x2j
− v j

∂u j

∂x j
+ f j (x j , 0)u j ≥ Dj

∂2u j

∂x2j
− v j

∂u j

∂x j
+ f j (x j , u j )u j

for x j ∈ (0, l j ), j ∈ IN−1, t > 0. Then

∂u j

∂t
−

[

Dj
∂2u j

∂x2j
− v j

∂u j

∂x j
+ f j (x j , u j )u j

]

= 0 ≤ ∂u j

∂t

−
[

Dj
∂2u j

∂x2j
− v j

∂u j

∂x j
+ f j (x j , u j )u j

]

for x j ∈ (0, l j ), j ∈ IN−1, t > 0. It follows from Lemma A.6 and the fact 0 ≤ φ ≤
σψ∗ that

0 ≤ u(·, t, φ) ≤ u(·, t, σψ∗)

for any t ≥ 0. Therefore,

0 ≤ lim
t→∞ u(·, t, φ) ≤ lim

t→∞ u(·, t, σψ∗) → 0 uniformly on G,

which implies that u ≡ 0 is globally attractive for all initial conditions in X+.
Case 2: λ∗ = 0. For any φ ∈ Xo, there exists some σ0 > 0 such that 0 ≤ φ ≤
u := σ0ψ

∗ and that u is an upper solution of (3.8). Let u(1) and u(2) be solutions
of (IBVP) with initial conditions φ and u, respectively. It follows from Lemma A.6
that 0 ≤ u(1)(x, t) ≤ u(2)(x, t) ≤ u(x). Note that u(2) is bounded and monotonically
decreasing in t by following the sameproof ofYeet al. (2011), Lemma3.2.4.Therefore,
the similar proof of Ye et al. (2011), Lemma 3.2.5 shows that limt→∞ u(2)(·, t) =
V ≥ 0 and V is a classical solution of (3.8). If V (x) > 0 at some x ∈ G, clearly
V ∈ Xo. Then, by Proposition 3.2, we can easily obtain λ∗ > 0, which gives rise to a
contradiction. Hence, V (x) ≡ 0 onG. Therefore, lim

t→∞ u(1)(x, t) = 0. So we conclude

that when λ∗ = 0, u ≡ 0 is globally attractive for (IBVP) with respect to all initial
conditions in X+. Thus, (i) is proved.

We next prove (ii). Assume λ∗ > 0. For sufficiently small ε > 0, we have
f j (x j , εψ∗

j ) ≥ f j (x j , 0) − λ∗ for all x j ∈ (0, l j ), j ∈ IN−1. This implies that w1 =
εψ∗ is a lower solution of (3.8).Note that for any constant K ∗ > max{M1, . . . , MN−1}
where Mj ’s are given in [H2], w2(x) = K ∗ is an upper solution of (3.8). Let ε > 0 be
sufficiently small such that w2(x) ≥ w1(x) = εψ∗(x) and K ∗ > minx∈G{εψ∗(x)}.
It follows from Theorem A.15 that (3.8) admits a positive solution u∗ ∈ Xo.
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Assume there are two distinct positive steady states of (IBVP): u∗
1 and u∗

2. Since
K ∗ can be arbitrarily large and ε can be arbitrarily small, without loss of generality,
assume that u∗

1 is theminimal solution of (3.8) and u∗
2 is themaximal solution of (3.8) in

[εψ∗, K ∗]. Then u∗
1 ≤ u∗

2 on G. It suffices to show u∗
1 = u∗

2. Suppose that u
∗
1 ≤, �= u∗

2
on G. Recall that u∗

1, u
∗
2 ∈ Xo. By defining τ 0 = sup{τ > 0 : u∗

1 ≥ τu∗
2 on G},

we then have τ 0 ∈ (0, 1) and u∗
1 ≥ τ 0u∗

2 on G. Due to [H3], we further observe that
u∗
1 ≥, �≡ τ 0u∗

2. Thus, by Lemmas A.2, A.8, and A.9, we obtain

u∗
1 = Qt (u

∗
1)  Qt (τ

0u∗
2) ≥ τ 0Qt (u

∗
2) = τ 0u∗

2, ∀t > 0,

where Qt is the solutionmap of (IBVP) defined as Qt (ψ) = u(x, t, ψ) for the solution
u(x, t, ψ) of (IBVP)with initial conditionψ . This implies that u∗

1(x)−τ 0u∗
2(x) ∈ Xo,

which in turn implies that u∗
1(x) − τ 0u∗

2(x) ≥ τ0u∗
2(x) on G for some small τ0 > 0.

This is a contradiction to the definition of τ 0. Therefore, there is only a unique positive
steady state u∗ of (IBVP).

For any u0 ∈ X+\{0}, the unique solution u of (IBVP) satisfies that u(·, t) ∈ Xo

for any t > 0. Thus, we can assume that uo ∈ Xo. Then there exist some ε0 > 0 and
σ0 ≥ 1 such that u = ε0ψ

∗ and u = σ0K ∗ are lower and upper solutions of (3.8),
respectively, and

u = ε0ψ
∗ ≤ uo ≤ σ0K

∗ = u on G.

Let u1, u2 be solutions of (IBVP) with initial conditions u and u, respectively. It
follows from Lemma A.6 that u(x) ≤ u1(x, t) ≤ u(x, t) ≤ u2(x, t) ≤ u(x). As
before, it can be proved that u1 and u2 are monotonically increasing and decreasing
in t, respectively (Ye et al. 2011, Lemma 3.2.4). Therefore, u1 and u2 are bounded
and monotonic with respect to t . Additionally, we can claim limt→∞ u1(·, t) = U
and limt→∞ u2(·, t) = V . Furthermore, we can prove U and V are solutions of (3.8)
[see Lemma 3.2.5 in Ye et al. (2011)]. Then u(x) ≤ U (x) ≤ V (x) ≤ u(x). Hence,
U (x) = V (x) = u∗, and limt→∞ u(x, t) = u∗(x). Therefore, we have proved that u∗
is globally attractive with respect to any initial values in X+\{0}.

Appendix D The Hydraulic Relation in a Gradually Varying Flow

The hydraulic relation in a gradually varying flow can be found in, e.g., Chaudhry
(1993). For self-completeness of this paper, we briefly provide the relation as below.
The governing equation for the gradually varying flow is given by

dy

dx
= S0(x) − S f (y)

1 − F2
r (y)

(D.1)

(see (5–7) in Chaudhry 1993), where x (unit: m) represents the longitudinal location
along the river, y(x) (unit: m) is the water depth at location x , S0(x) is the slope of the
channel bed at location x , S f is the friction slope, i.e., the slope of the energy grade
line, and Fr is the Froude number that is defined as the ratio between the flow velocity
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and the water wave propagation velocity. In the case where the river has a rectangular
cross section with a constant width B (unit: m) and a constant bed slope S0, the water
depth y(x) is stabilized at the normal depth

yn =
(

Q2n2

B2S0k2

) 3
10

, (D.2)

where Q (unit: m3/s) is the flow discharge, k = 1 is a dimensionless conversion
factor, and n (unit: s/m1/3) is Manning’s roughness coefficient, which represents the
resistance to water flows in channels and depends on factors such as the bed roughness
and sinuosity. The flow in such a river is called a uniform flow.

References

Anderson, K.E., Paul, A.J., Mccauley, E., Jackson, L.J., Post, J.R., Nisbet, R.M.: Instream flow needs in
streams and rivers: the importance of understanding ecological dynamics. Front. Ecol. Environ. 4,
309–318 (2006)

Arendt, W., Dier, D., Fijavz̆, M.K.: Diffusion in networks with time-dependent transmission conditions.
Appl. Math. Optim. 69, 315–336 (2014)

Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs,
vol. 186. American Mathematical Society, Providence (2013)

Bertuzzo, E., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., Rinaldo, A.: On spatially explicit models of
cholera epidemics. J. R. Soc. Interface 7, 321–333 (2010)

Chaudhry, M.H.: Open-Channel Flow. Prentice-Hall, Englewood Cliffs (1993)
Cuddington, K., Yodzis, P.: Predator-prey dynamics and movement in fractal environments. Am. Nat. 160,

119–134 (2002)
Du, Y.: Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Maximum

Principles and Applications, vol. 1. World Scientific Publishing Co. Pte. Ltd., Singapore (2006)
Du, Y., Lou, B., Peng, R., Zhou, M.: The fisher-KPP equation over simple graphs: Varied persistence states

in river networks (2018). arXiv:1809.06961
Du, K., Peng, R., Sun, N.: The role of protection zone on species spreading governed by a reaction–diffusion

model with strong Allee effect. J. Differ. Equ. 266, 7327–7356 (2019)
Fagan,W.F.: Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83(12),

3243–3249 (2002)
Fijavz̆, M.K., Mugnolo, D., Sikolya, E.: Variational and semigroup methods for waves and diffusion in

networks. Appl. Math. Optim. 55, 219–240 (2007)
Goldberg, E.E., Lynch, H.J., Neubert, M.G., Fagan, W.F.: Effects of branching spatial structure and life

history on the asymptotic growth rate of a population. Theor. Ecol. 3, 137–152 (2010)
Grant, E.H.C., Lowe, W.H., Fagan, W.F.: Living in the branches: population dynamics and ecological

processes in dendritic networks. Ecol. Lett. 10, 165–175 (2007)
Grant, E.H.C., Nichols, J.D., Lowe, W.H., Fagan, W.F.: Use of multiple dispersal pathways facilitates

amphibian persistence in stream networks. Proc. Natl. Acad. Sci. USA 107, 6936–6940 (2010)
Huang, Q., Jin, Y., Lewis, M.A.: R0 analysis of a Benthic-drift model for a stream population. SIAM J.

Appl. Dyn. Syst. 15(1), 287–321 (2016)
Jin, Y., Lewis, M.A.: Seasonal influences on population spread and persistence in streams: critical domain

size. SIAM J. Appl. Math. 71(4), 1241–1262 (2011)
Jin, Y., Lewis, M.A.: Seasonal invasion dynamics in a spatially heterogeneous river with fluctuating flows.

Bull. Math. Biol. 76(7), 1522–1565 (2014)
Jin, Y., Lutscher, F., Pei, Y.: Meandering rivers: how important is lateral variability for species persistence?

Bull. Math. Biol. 79(12), 2954–2985 (2017)
Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasi-linear Equations of Parabolic

Type. AMS, Providence (1968)

123

http://arxiv.org/abs/1809.06961


2544 Journal of Nonlinear Science (2019) 29:2501–2545

Lam, K.Y., Lou, Y., Lutscher, F.: The emergence of range limits in advective environments. SIAM J. Appl.
Math. 76(2), 641–662 (2016)

Lumer, G.: Connecting of local operators and evolution equations on networks. In: Proceedings of the
Colloquium on Convexity, Copenhagen, 1979. Potential theory. Copenhagen 1979, volume 787 of
Lecture Notes in Mathematics, pp. 219–234. Springer, Berlin (1980)

Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM
Rev. 47(4), 749–772 (2005)

Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull.
Math. Biol. 68, 2129–2160 (2006)

Mari, L., Casagrandi, R., Bertuzzo, E., Rinaldo, A., Gatto, M.: Metapopulation persistence and species
spread in river networks. Ecol. Lett. 17, 426–434 (2014)

Mckenzie, H.W., Jin, Y., Jacobsen, J., Lewis, M.A.: R0 analysis of a spatiotemporal model for a stream
population. SIAM J. Appl. Dyn. Syst. 11(2), 567–596 (2012)

Mugnolo, D.: Gaussian estimates for a heat equation on a network. Netw. Heterog. Media 2, 55–79 (2012)
Müller, K.: Investigations on the organic drift in North Swedish streams. Rep. Inst. Freshw. Res. Drot-

tningholm 35, 133–148 (1954)
Müller, K.: The colonization cycle of freshwater insects. Oecologia 52, 202–207 (1982)
Pachepsky, E., Lutscher, F., Nisbet, R.M., Lewis, M.A.: Persistence, spread and the drift paradox. Theor.

Popul. Biol. 67(1), 61–73 (2005)
Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)
Peterson, E.E., Ver Hoef, J.M., Isaak, D.J., Falke, J.A., Fortin, M.J., Jordan, C.E., McNyset, K., Monestiez,

P., Ruesch, A.S., Sengupta, A., Som, N., Steel, E.A., Theobald, D.M., Torgersen, C.E., Wenger, S.J.:
Modelling dendritic ecological networks in space: an integrated network perspective. Ecol. Lett. 16,
707–719 (2013)

Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice Hall, Englewood
Cliffs (1967)

Ramirez, J.M.: Population persistence under advection-diffusion in river networks. J. Math. Biol. 65(5),
919–942 (2012)

Sarhad, J.J., Anderson, K.E.: Modeling population persistence in continuous aquatic networks using metric
graphs. Fundam. Appl. Limnol. 186, 135–152 (2015)

Sarhad, J.J., Carlson, R., Anderson, K.E.: Population persistence in river networks. J. Math. Biol. 69(2),
401–448 (2014)

Solonnikov, V.A.: On boundary value problems for linear parabolic systems of differential equations of
general form. In: Boundary Value Problems of Mathematical Physics, Volume 83 of Trudy Mathe-
maticheskogo instituta im. V. A. Steklova RAN, pp. 3–163. Proceedings of the Steklov Institute of
Mathematics, vol. 83, pp. 1–184 (1965)

Speirs, D.C., Gurney, W.S.C.: Population persistence in rivers and estuaries. Ecology 82(5), 1219–1237
(2001)

Thieme, H.: Spectral bound and reproductive number for infinite-dimensional population structure and time
heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

Vasilyeva, O.: Population dynamics in river networks: analysis of steady states. J.Math. Biol. (2019). https://
doi.org/10.1007/s00285-019-01350-7

von Below, J.: Classical solvability of linear parabolic equations on networks. J. Differ. Equ. 72(2), 316–337
(1988a)

von Below, J.: Sturm-Liouville eigenvalue problems on networks.Math.Methods Appl. Sci. 10(4), 383–395
(1988b)

von Below, J.: A maximum principle for semilinear parabolic network equations. In: Differential Equations
with Applications in Biology, Physics, and Engineering (Leibnitz, 1989), volume 133 of Lecture Notes
in Pure and Applied Mathematics, pp. 37–45. Dekker, New York (1991)

von Below, J.: Nonlinear and dynamical node transition in network diffusion problems. In: Evolution
equations, control theory, and biomathematics (Han sur Lesse, 1991), Volume 155 of Lecture Notes
in Pure and Applied Mathematics, pp. 1–10. Dekker, New York (1994)

von Below, J., Lubary, J.A.: Instability of stationary solutions of reaction–diffusion–equations on graphs.
Results Math. 68(1–2), 171–201 (2015)

Wang,W., Zhao, X.-Q.: Basic reproduction numbers for reaction-diffusion epidemicmodels. SIAM J. Appl.
Dyn. Syst. 11(4), 1652–1673 (2012)

123

https://doi.org/10.1007/s00285-019-01350-7
https://doi.org/10.1007/s00285-019-01350-7


Journal of Nonlinear Science (2019) 29:2501–2545 2545

Yanagida, E.: Stability of nonconstant steady states in reaction–diffusion systems on graphs. Jpn. J. Ind.
Appl. Math. 18, 25–42 (2001)

Ye, Q., Li, Z., Wang, M., Wu, Y.: An Introduction to Reaction–Diffusion Equations, 2nd edn. Science Press,
Beijing (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Population Dynamics in River Networks
	Abstract
	1 Introduction
	2 Model
	2.1 The River Network—A Metric Tree
	2.2 The Population Model in the River Network

	3 The Eigenvalue Problem and Population Persistence
	3.1 The Eigenvalue Problem and Its Principal Eigenvalue
	3.2 Population Persistence or Extinction

	4 The Net Reproductive Rate mathcalR0
	4.1 Definition of the Net Reproductive Rate mathcalR0
	4.2 Calculation of mathcalR0

	5 Numerical Simulations
	5.1 The Influence of the River Network Structure on Population Persistence
	5.1.1 The Influence of the Total Length of the Network on R0
	5.1.2 The Influence of Boundary Conditions on R0

	5.2 Population Dynamics in Networks Consisting of a Main River and Small Tributaries
	5.2.1 The Influence of the Flow Discharge on mathcalR0 
	5.2.2 The Influence of the Flow Discharge and the Width of the Small Branches on mathcalR0
	5.2.3 The Influence of the Flow Discharge and Biological Conditions on mathcalR0
	5.2.4 The Globally Attractive Positive Steady State of (IBVP) in Network (3-a*)


	6 Discussion
	Acknowledgements
	Appendix A Theory of Parabolic and Elliptic Equations on Networks
	A.1 The Strong Maximum Principle and Comparison Principle
	A.2 Linear Parabolic Problem
	A.3 Nonlinear Problem (IBVP)
	A.4 Theory of Elliptic Equations

	Appendix B Proof of Proposition 3.1
	Appendix C Proof of Theorem 3.3
	Appendix D The Hydraulic Relation in a Gradually Varying Flow
	References




