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We prove that if a 7 × 7 sign pattern matrix is potentially 
stable, then it has at least 11 non-zero entries. The results for 
n × n matrix with n up to 6 are known previously. We prove 
the result by making a list of possible associated digraphs 
with at most 10 edges, and then use algebraic conditions to 
show all of these digraphs or matrices cannot be potentially 
stable. In relation to this, we also determine the minimum 
number of edges in a strongly connected digraph depending 
on its circumference.
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1. Introduction

The concept of stability of equilibrium is central to the studies of differential equations. 
By using the techniques of linearization and transforming the equilibrium to zero, the 

✩ Partially supported by NSF grant DMS-1331021.
* Corresponding author.

E-mail addresses: clh318@lehigh.edu (C.L. Hambric), cklixx@wm.edu (C.-K. Li), 
dcpelejo@math.upd.edu.ph (D.C. Pelejo), jxshix@wm.edu (J. Shi).
1 Current address: Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA.
https://doi.org/10.1016/j.laa.2019.03.002
0024-3795/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2019.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:clh318@lehigh.edu
mailto:cklixx@wm.edu
mailto:dcpelejo@math.upd.edu.ph
mailto:jxshix@wm.edu
https://doi.org/10.1016/j.laa.2019.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2019.03.002&domain=pdf


136 C.L. Hambric et al. / Linear Algebra and its Applications 572 (2019) 135–152
stability problem is reduced to u′ = Au, where u ∈ R
n and A is a real-valued n × n

matrix. The equilibrium u = 0 is asymptotically stable if each solution u of u′ = Au

converges to zero as t → ∞. From the theory of linear differential equation, this is 
equivalent to that each eigenvalue of A has negative real part. Hence it is desirable to 
know what kind of matrices are stable, and how to design a matrix to be stable [5].

Let Mn be the set of all n × n matrices with real-valued entries. A matrix A ∈ Mn is 
said to be stable if, for each of its eigenvalues λ1, λ2, . . . , λn, Re(λi) < 0. A system which 
is modeled by such a matrix A has stable equilibria, and given small perturbations of its 
initial conditions the system will return to these equilibrium points.

We define the sign pattern of a matrix A = [aij ] to be an n × n matrix S(A) = [sij ]
such that, for i, j ∈ {1, . . . , n}, sij = 0 when aij = 0, sij = − when aij < 0, and sij = +
when aij > 0. If some matrix A ∈ Mn is found to be stable, then the sign pattern S(A)
is said to be potentially stable, or PS for short. In the case where A ∈ Mn is an upper 
triangular, lower triangular, or diagonal matrix, or when A is permutationally similar to 
such a matrix, the problem becomes trivial due to the ease of calculating the eigenvalues 
of these matrices. Therefore we restrict our examination to irreducible matrices, or the 
matrices A ∈ Mn such that there does not exist a permutation matrix P such that

PAPT =
[
A11 0
A12 A22

]
, A11 ∈ Mk, A22 ∈ Mn−k.

The following result has been proved in [2].

Theorem 1. Let the minimum number of nonzero entries required for an n ×n irreducible 
sign pattern to be potentially stable be given by mn. Then⎧⎪⎪⎪⎨

⎪⎪⎪⎩
mn = 2n− 1, n = 2, 3,
mn = 2n− 2, n = 4, 5,
mn = 2n− 3, n = 6,
mn ≤ 2n− (�n

3 � + 1), n ≥ 7.

Hence the value of mn for n = 2, 3, 4, 5, 6 was determined in Theorem 1, as well as an 
upper bound for mn for any n ≥ 6 via an explicit construction. Previously other partial 
results have been obtained for the cases 3 ≤ n ≤ 5 [4,3]. In this paper we prove the 
following theorem:

Theorem 2. The minimum number of nonzero entries in an irreducible 7 × 7 real matrix 
is 11. Using the notation in Theorem 1, we have

m7 = 2(7) − 3 = 11.

Note that Theorem 1 has shown that 11 is an upper bound. One can follow the proof 
therein to construct the following irreducible 7 × 7 stable matrix.
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Example 3. The following 7 × 7 irreducible matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0
−3 0 1 0 0 0 0
0 0 0 1 0 0 0
0 −1 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0.1

−0.5 0 0 0 0 −10 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

has eigenvalues (approximately): −0.3506 ± 1.4949i, −0.0259 ± 1.0025i, −0.0974 ±
0.6283i, −0.0522, and is stable.

So here in order to prove this minimum, we need only show that there cannot exist 
a potentially stable 7 × 7 sign pattern with only 10 nonzero entries. Note that if there 
were a potentially stable 7 × 7 sign pattern with fewer than 10 nonzero entries, then we 
would similarly be able to construct a potentially stable pattern with 10 nonzero entries 
by adding additional nonzero entries (with small magnitudes) to an existing potentially 
stable pattern. Thus, it is sufficient to prove that no potentially stable pattern with only 
10 nonzero entries exists.

In order to prove that no such sign pattern exists, we first construct a list of all di-
graphs with 7 vertices and 10 edges which allow for correct minors (as defined by the 
relationship between cycles in the graph and the minors of the associated matrix in sub-
section 2.2). This construction is given in Section 3. Once we have constructed this list 
of digraphs, we will construct the associated set of nonequivalent matrix sign patterns 
which have correct minors. For that purpose we utilize a variant of Routh-Hurwitz stabil-
ity criterion to show that none of these candidate sign patterns have a stable realization 
(see Section 4). From this we will conclude that the minimum number of nonzero entries 
must be equal to 11.

2. Preliminaries

2.1. Digraphs

We define the digraph of an n × n matrix A = (aij) to be a directed graph with 
vertex set Vn = {1, . . . , n}, and for each i, j ∈ Vn, there exists an edge from vertex i
to vertex j if and only if aij 	= 0. For a digraph, we define a path as an ordered set 
of edges such that, for some vertices i, j, l ∈ {1, . . . , n}, if the mth edge in the set is 
defined by (i, j), then the (m + 1)th edge is defined by (j, l). We define the length of a 
path as the number of edges in the path. If for each pair of vertices p and q, such that 
p ∈ {1, . . . , n}, q ∈ {1, . . . , n} \ {p}, in a given digraph there exists a path which begins 
at p and ends at q, we say that the digraph is strongly connected. It is the case that for 
any A ∈ Mn, A is irreducible if and only if the digraph of A is strongly connected [1]. 
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We define a cycle to be a path which begins and ends at the same point, and which only 
intersects itself at this point. We refer to a cycle of length 1 as a loop. Also note that 
a permutation similarity which swaps the ith and jth rows/columns of A is reflected in 
the digraph of A by swapping the labels of the ith and jth vertices of the digraph.

The circumference of a digraph G is defined as the length of the longest cycle present 
within the graph. We write this as circ(G). Note that as the circumference decreases, 
the minimum number of edges needed to be strongly connected increases. The following 
theorem gives the minimum number of edges of a strongly connected digraph G on n
vertices given that circ(G) = k.

Theorem 4. Let k, n be integers such that 2 ≤ k ≤ n and n = a(k−1) + b for some a > 0
and 0 ≤ b < k − 1, define en,2 = 2(n − 1) and for k > 2, define

en,k =

⎧⎪⎨
⎪⎩

ka− 1 if b = 0, (a ≥ 2)
ka if b = 1
ka + b if b > 1

.

If G is a strongly connected digraph with n vertices, circ(G) = k, then |E| ≥ en,k. 
Moreover, the bound is best possible, i.e., there is a graph G0 with n vertices, circ(G0) = k

and en,k edges.

Proof. Let G be a strongly connected digraph with vertex set Vn = {1, . . . , n}, edge set 
E and 2 ≤ circ(G) = k.

Case 1: Suppose k = 2. We proceed by induction on n. When n = 2, we have 
(1, 2), (2, 1) ∈ E, and hence |E| ≥ e2,2 = 2. Suppose n ≥ 3 and any strongly 
connected graph Ḡ(Vn−1, Ē) with circ(G) = 2 satisfies |Ē| ≥ en−1,2 = 2(n − 2). 
Assume that |E| < en,2 = 2(n − 1). Note that we can relabel the vertices so that 
(n − 1, n), (n, n − 1) ∈ E. Now,

E ⊆ Vn × Vn = (Vn−1 × Vn−1)︸ ︷︷ ︸
S1

∪ (Vn−2 × {n})︸ ︷︷ ︸
S2

∪ ({n} × Vn−2)︸ ︷︷ ︸
S3

∪ {(n− 1, n), (n, n− 1), (n, n)}︸ ︷︷ ︸
S4

which is a disjoint union of sets. Thus,

|E| = |E ∩ S1| + |E ∩ S2| + |E ∩ S3| + |E ∩ S4| < 2(n− 1) (2.1)

Since (n − 1, n), (n, n − 1) ∈ E, we also have |E ∩ S4| ≥ 2 and so

|E ∩ S1| + |E ∩ S2| + |E ∩ S3| < 2(n− 2)
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Now, define the edge set Ē ⊆ Vn−1 × Vn−1 as follows

Ē = (E ∩ S1)︸ ︷︷ ︸
T1

∪{(j, n− 1) | (j, n) ∈ E ∩ S2}︸ ︷︷ ︸
T2

∪{(n− 1, j) | (n, j) ∈ E ∩ S3}︸ ︷︷ ︸
T3

That is, we obtain Ē by removing the edges (n − 1, n), (n, n − 1), (n, n) from E and 
merging vertices n and n − 1 into one vertex, labeling it as n − 1. Thus,

|Ē| ≤ |E ∩ S1| + |E ∩ S2| + |E ∩ S3| < 2(n− 2)

It is easy to verify that if i, j ∈ Vn−1 and there is a path from i to j in G, then there is a 
path from i to j in Ḡ. Thus, Ḡ is strongly connected. Also, if there is a cycle of length k
in Ḡ, then there is a cycle of length greater than or equal to k in G. Thus, circ(G) = 2. 
This contradicts the induction hypothesis. By mathematical induction, |E| ≥ en,2.

Case 2: Next, assume 3 ≤ k ≤ n and n = a(k − 1) + b. We will prove the theorem 
by induction on a. We start with the following base cases (i) b = 0, that is a = 2 and 
n = 2(k − 1); (ii) b = 1, that is, a = 1 and n = k; and (iii) a = 1 and b > 1, that is 
n = k + b − 1.

(i) Let n = 2(k − 1). That is, a = 2 and b = 0. Then en,k = 2k − 1 = n + 1. We are 
assuming G is strongly connected and circ(G) = k < n. We can relabel the vertices 
so that there is a k-cycle formed by vertices Vn − Vn−k, consisting of k edges. 
Additionally, there must an outgoing edge from each vertex j ∈ Vn−k. This gives us 
additional n −k distinct edges. Finally, there must be an outgoing edge from a vertex 
of Vn − Vn−k going to a vertex in Vn−k. Thus, |E| ≥ k + n − k + 1 = n + 1 = en,k.

(ii) Let n = k. That is a = 1 and b = 1 and en,k = k. It is clear that |E| ≥ k = en,k
since there must be an outgoing (equivalently, incoming) edge for each vertex.

(iii) Let n = k + b − 1 for some b > 1. That is a = 1 and en,k = k + b = n + 1. Using the 
same argument for n = 2(k − 1), we get that |E| ≥ n + 1 = en,k.

Assume that a ≥ 2 when b > 0 and a ≥ 3 when b = 0. Suppose further that any strongly 
connected graph Ḡ = (Vn−k+1, Ē) with circ(Ḡ) = k satisfies |Ē| ≥ en−k+1,k. Suppose 
|E| < en,k. We can relabel the vertices so that {n −k+1, . . . , n} form a k-cycle in G, where 
k < n. We will define the digraph Ĝ with vertex set Vk and edge set Ê = S1 ∪ S2 ∪ S3, 
where

S1 = E ∩
(
Vn−k+1 × Vn−k+1

)
S2 =

{
(j, n− k + 1) | (j, s) ∈ E ∩

(
Vn−k × (Vn − Vn−k+1)

)}
S3 =

{
(n− k + 1, j) | (j, s) ∈ E ∩

(
(Vn − Vn−k+1) × Vn−k

)}
That is, we remove the edges contained in the k-cycle and collapse vertices n −k+1, . . . , n
into one vertex labeled by n −k+1. Then |Ê| ≤ |E| −k < en,k−k = en−k+1,k. Note that 
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Ĝ is strongly connected and circ(Ĝ) ≤ k. Note that from Ĝ, we can define a strongly 
connected digraph Ḡ with circ(G) = k by rearranging its edges, relocating and realigning 
the edges if necessary without removing or introducing a new edge. This contradicts the 
induction hypothesis. By mathematical induction, |E| ≥ en,k.

For the last assertion, consider G0 to be the digraph on Vn constructed as follows. For 
k = 2, let the edge set of G0 be E = {(i, i + 1), (i + 1, i) | i = 1, . . . , n − 1}.

For k > 2, construct a k-cycle 1 → 2 → · · · → k → 1; if there are at least k−1 vertices 
left, construct another cycle k → k + 1 → · · · → 2k − 1 → k; if there are at least k − 1
vertices construct another cycle 2k − 1 → 2k → · · · → 3k − 2 → 2k − 1, until we have 
either k− 2 vertices left (when b = 0) or b − 1 vertices left with 1 ≤ b < k− 1 vertex. For 
the former case or if b > 0, use a vertex in the last k-cycle and the remaining vertices to 
form either a k − 1-cycle or a b-cycle. �

Suppose G is a strongly connected digraph with n vertices, edge set E, circumfer-
ence k and contains m loops. Note that removing the loops does not change the strong 
connectivity of G. It follows from the preceding theorem that |E| −m ≥ en,k.

2.2. Minors

The following lemma is from elementary algebra and it is useful for better defining 
the properties of the characteristic polynomial of a stable matrix:

Lemma 5. Let p(x) = x2 + cx + d be a quadratic polynomial with real valued coefficients 
c, d. Then p has roots λ1, λ2 with Re(λ1) < 0 and Re(λ2) < 0 if and only if c > 0 and 
d > 0.

An m ×m principal submatrix of A is a matrix B = [bij ] ∈ Mm, 1 ≤ m ≤ n such that 
bij = avivj for some v1 < . . . < vm ∈ {1, . . . , n}. A principal minor of A is defined as the 
determinant of some principal submatrix B = [bij ] of A. We denote the m ×m principal 
minor of A indexed by v1 < . . . < vm ∈ {1, . . . , n} as M(A)v1,...,vm

. For example,

A =
[1 1 0

1 0 1
0 1 0

]
=⇒ M(A)23 = det

([
0 1
1 0

])
, M(A)13 = det

([
1 0
0 0

])
.

There is a direct relationship between the minors of a matrix and its eigenvalues. The 
sum of all k × k principal minors of a matrix A is equal to the sum of all products of 
unique combinations of k eigenvalues of A. That is,

Ek =
∑

M(A)v1,...,vk
=

∑
λu1 · · ·λuk

. (2.2)

1≤v1<...<vk≤n 1≤u1<...<uk≤n
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Furthermore, the coefficient of tn−k in the characteristic polynomial PA(t) = det(tI−A)
of the A is equal to (−1)kEk. Due to the relationship between the minors and the 
eigenvalues of a matrix, we have the following lemma, which is well known:

Lemma 6. If A ∈ Mn(R) is stable, then the following are true:

1. For all k = 1, . . . , n, the sign of the sum of the k × k minors of A, Ek, is (−1)k.
2. The characteristic polynomial of A,

PA(t) = det(tI −A) =
n∑

k=0

(−1)kEkt
n−k,

has all positive coefficients.

Note that the above lemma gives us a necessary condition for a given matrix A to be 
stable. This condition will be very important in our work. If a given sign pattern can be 
realized by a real valued matrix A which meets the condition that the sign of the sum 
of the k× k minors of A is (−1)k, then we say that this sign pattern has correct minors. 
If for some k, the sum of k × k minors is equal to zero, then that sign pattern cannot 
be PS, as this would imply that either some of its eigenvalues are positive and some are 
negative, or that at least one of the eigenvalues is equal to zero.

The condition on the coefficients of PA(t) is necessary for the stability of A, however 

it is not sufficient. For example if A =
[−0.8 −0.81 −1.01

1 0 0
0 1 0

]
, then

PA(t) = t3 + 0.8t2 + 0.81t + 1.01 = (t + 1)(t− 0.1 + i)(t− 0.1 − i).

So PA(t) has positive coefficients, but A has eigenvalues λ = 0.1 ± i which have strictly 
positive real parts, and so A is not stable.

2.3. Digraph cycles

There is a direct relationship between the minors of a matrix and the cycles present 
in its digraph. If two or more cycles do not share any vertices, then we say that they are 
independent. If the digraph of a sign pattern contains a cycle made up of k edges, then 
this implies that at least one of its k×k minors is not equal to zero. Additionally, if there 
exist independent cycles of length a1, . . . , am, then this implies that, if 

∑m
i=1 ai ≤ n, at 

least one of its (
∑m

i=1 ai) ×(
∑m

i=1 ai) minors is not equal to zero. Fig. 1 provides examples 
of a digraph with correct minors, and one without.

Therefore, if a given digraph has independent cycles whose lengths add up to 1, . . . , n, 
then we can assign signs to the entries of the corresponding matrix such that it has 
correct minors.
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Fig. 1. A 4 × 4 matrix that has digraph (a) has at least one nonzero k× k minor for all k = 1, 2, 3, 4. On the 
other hand, a matrix with digraph (b) has all its 3 × 3 minors equal to zero and hence, cannot be stable.

Fig. 2. Minimum configuration considered in Case 1.

3. Candidate digraphs

In this section we construct all candidate digraphs with 7 vertices and 10 edges which 
allow correct minors for a stable matrix. In order to better organize this list, we classify 
the graphs based on its circumference (the maximum length of cycle in the graph).

Case 1: circ(G) = 7.
In this case there must be at least one loop (see Fig. 2 for the minimum configuration), 

and either there are at least two loops or there is exactly one loop and a 2-cycle.
Case 1.1: There are at least two loops. Then 9 edges have been utilized. Suppose 

another edge is added to create a k-cycle where k < 7. The possible sizes of nonzero 
minors are 1, 2, k, k + 1, k + 2, 7 (possibly less if the k cycle intersects any of the two 
loops.) Thus, there is at least one 3 < r < 7 such that the r × r minor of the adjacency 
matrix is zero. Therefore G is not potentially stable.

Case 1.2: There is exactly one loop and a 2-cycle of two adjacent (numbering-wise) 
vertices. This utilizes 9 edges. Suppose the remaining edge is contained in a k-cycle, 
where 2 ≤ k < 7. If the 2-cycle and the loop have a vertex in common, then the possible 
sizes of nonzero minors are 1, 2, k, k + 1, k + 2, 7, so we miss at least one minor, and 
therefore G is not potentially stable. Similarly, if the k-cycle has a vertex in common 
with either the loop or the 2-cycle, we get a non-PS adjacency matrix. Thus, the 2-cycle, 
loop and k cycle must be pairwise disjoint. In this case, the possible sizes of nonzero 
minors are 1, 2, 3, k, k + 1, k + 2, k + 3, 7. Thus, k = 4 or k = 3. In this case, we have the 
candidate digraphs as shown in Fig. 3.a-d.

Case 1.3: There is exactly one loop and a 2-cycle of two non-adjacent (numbering-wise) 
vertices. Suppose these two additional edges create a k-cycle and an r-cycle and nonzero 
minors of sizes 1, 2, 3, k, r, r+1, 7. Thus, (k, r) = (4, 5). In this case, we have the candidate 
digraph shown in Fig. 4.

Case 2: circ(G) = 6.
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Fig. 3. Candidate digraphs under Case 1.2.

Fig. 4. Candidate digraphs under Case 1.3.

Fig. 5. Minimum configuration considered in Case 2.

In this case there must be at least one loop. Either there is a loop on the vertex that 
does not belong to the 6-cycle or there is none (see the two possible configurations in 
Fig. 5.)

Case 2.1: There is a loop in the lone vertex (say v1) and another loop in another vertex. 
So far, we can guarantee nonzero minors of size 1, 2, 6, 7. For the two remaining edges, 
one must be outgoing from v1 and one must be incoming from v1. If these two edges 
form a k-cycle (which intersects a loop and the 6-cycle), then we get nonzero minors of 
size k and k + 1 and nothing else. Thus, G will not be potentially stable.

Case 2.2: There is a loop in the lone vertex and no loop in any other vertex. Suppose 
the outgoing and incoming edge to the lone vertex form a k-cycle (which intersects the 
loop and the 6-cycle), with k < 7. Then minors of size 1, k, 6, 7 are nonzero. Suppose 
the remaining edge gives rise to another cycle of length 1 < r < 7 (this means it must 
necessarily intersect the 6-cycle. This may give rise to nonzero minors of size r, r+1 and 
r + k (less if the r-cycle also intersects with the loop or the k-cycle). Thus, the r-cycle 
must not intersect with the k-cycle and {k, r, r+1, r+k} = {2, 3, 4, 5}. There is no choice 
but for k = 2 and r = 3. Thus, in this case, we have the candidate digraphs shown in 
Fig. 6.a and Fig. 6.b.

Case 2.3: There is no loop in the lone vertex. Hence, there is at least one loop inter-
secting the 6-cycle. Suppose the incoming and outgoing edges to the lone vertex forms 
a k-cycle, where 1 < k < 7. At this point, 9 edges have been accounted for and nonzero 
minors of sizes 1, 6, k, k + 1. Suppose the last edge gives rise to an r-cycle, where r < 7
that, by assumption, must intersect the 6-cycle. If this r-cycle intersects the loop or the 
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Fig. 6. Candidate digraphs under Case 2.2.

Fig. 7. Candidate digraphs under Case 2.3.

Fig. 8. Minimum configuration considered in Case 3.

k-cycle, then there will be a zero minor and thus, the adjacency matrix cannot be PS. If 
the r-cycle, loop and the k-cycle are pairwise disjoint, then we get additional nonzero mi-
nors of size r, r+1, r+k, r+k+1. We want {2, 3, 4, 5, 7} ⊆ {k, k+1, r, r+1, r+k, r+k+1}. 
Thus, either (r, k) = (2, 4) or (r, k) = (4, 2). Thus, in this case, we have the candidate 
digraphs shown in Fig. 7.a and Fig. 7.b.

Case 3: circ(G) = 5.
In this case a 5-cycle uses 5 edges, and another edge must form a loop. At least 

three out of the four remaining edges must be used to ensure strong connectedness of 
the graph. Either there is a loop intersecting the 5-cycle or there is none (see the two 
possible configurations in Fig. 8.)

Case 3.1: There is a loop intersecting the 5-cycle (the one we choose at the beginning, 
there may be more than one 5-cycle). Either there is an edge between the two remaining 
vertices or there is none.

Subcase 3.1.1: Suppose there is no edge connecting the two vertices (let’s call them v1

and v2). Then, two of the four remaining edges should connect v1 to vertices in the 5-cycle 
to form a k-cycle, where k ≤ 5. Similarly, the remaining two edges must connect v2 to 
vertices in the 5-cycle to form an r-cycle, where k ≤ 5. Assuming the k-cycle, r-cycle and 
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Fig. 9. Candidate digraph under Case 3.1.1.

Fig. 10. Candidate digraph under Case 3.1.3.

the loop are disjoint, then we have nonzero minors of size 1, 5, k, r, k+1, r+1, k+r, k+r+1. 
(Note that if they are not pairwise disjoint, there will be at least minor size that will be 
missing.) Thus, {2, 3, 4, 6, 7} ∈ {k, r, k+ 1, r+ 1, k+ r, k+ r+ 1}. Thus, (k, r) = (2, 4) or 
(k, r) = (4, 2). Thus, we have the candidate digraph shown in Fig. 9.

Subcase 3.1.2: Suppose v1 and v2 form a 2-cycle and v2 is not adjacent to any vertex 
in the 5-cycle. So far, we have accounted for 8 edges and nonzero minors of sizes 1, 2, 3, 5. 
The two remaining edges must be incoming and outgoing from v1 to make a strongly 
connected graph. Say these two remaining edges forms a k-cycle, where k ≤ 5. This adds 
nonzero minors of size k and k + 1, which is not enough to make a potentially stable 
adjacency matrix.

Subcase 3.1.3: Suppose v1 and v2 are part of a k-cycle, with 2 < k ≤ 5. So far, we have 
accounted for at least 9 edges and nonzero minors of sizes 1, k, 5, k+1, where ≥ 3. To get 
a nonzero 2 × 2 minor, either there must be another loop or there is a two cycle. Adding 
a loop can only guarantee at least 2 more nonzero minor sizes. Thus, there must be a 
2-cycle in the graph. If the two cycle is disjoint from the 5-cycle (that is, v1 and v2 form 
the 2-cycle), we only get nonzero minors of size {1, 2, 3, 5, k, k+1, 7} 	= {1, 2, 3, 4, 5, 6, 7}. 
Hence the two vertices in the 2-cycle must be part of the 5-cycle. In this case, we get 
nonzero minors, 1, 2, 3, k, k+ 1, k+ 2, k+ 3, 5. Thus, k = 4. Thus, we have the candidate 
digraph shown in Fig. 10.

Case 3.2: There is no loop intersecting the 5-cycle. Again, either there is an edge 
connecting the remaining two vertices v1 and v2 or there is none.

Subcase 3.2.1: There is no edge connecting the remaining two vertices v1 and v2. Then, 
two of the four remaining edges should connect v1 to vertices in the 5-cycle to form a 
k-cycle, where k ≤ 5. Similarly, the remaining two edges must connect v2 to vertices in 
the 5-cycle to form an r-cycle, where k ≤ 5. Assuming the k-cycle, r-cycle and the loop 
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Fig. 11. Candidate digraph under Case 3.2.2.

Fig. 12. Minimum configurations considered in Case 4.

are disjoint, then we have nonzero minors of size 1, 5, 6, k, r, r+ 1, r + k. Note that there 
is no choice of 2 ≤ k, r ≤ 5 that will give a complete set of nonzero minors. Thus, this 
case will not give a PS adjacency matrix.

Subcase 3.2.2: Suppose v1 and v2 form a 2-cycle and one of v1 or v2 is not adjacent to 
any vertex in the 5-cycle. So far, we have accounted for 8 edges and nonzero minors of 
sizes 1, 2, 5, 6, 7. The two remaining edges must be incoming and outgoing from v1, v2 to 
make a strongly connected graph. Say these two remaining edges forms a k-cycle, where 
k ≤ 5. This adds nonzero minors of size k and possibly (if the k-cycle does not contain 
the loop) k + 1. Thus, we have the candidate digraph shown in Fig. 11.

Subcase 3.2.3: Suppose v1 and v2 are part of a k-cycle, with 2 < k ≤ 5. So far, we 
have accounted for at least 9 edges and nonzero minors of sizes 1, 5, 6, k, where k ≥ 3. To 
get a nonzero 2 × 2 minor, there should be another loop or a 2-cycle. Adding a loop can 
only guarantee at most two more sizes of nonzero minors. If there is a 2-cycle between v1
and v2, we get additional nonzero minor sizes 2, 7, which is not enough for the graph to 
be PS. If the 2-cycle is disjoint with the k-cycle, we get additional nonzero minor sizes 
2, 3, k + 2. This is still not enough to get a PS matrix.

Case 4: circ(G) = 4.
Let v1, v2, v3, v4 form a 4-cycle. For each of v5, v6, v7, there must be incoming edges 

{5, in}, {6, in}, {7, in} and outgoing edges {5, out}, {6, out}, {7, out}. Note that

{{5, in}, {6, in}, {7, in}} ∩ {{5, out}, {6, out}, {7, out}}

must have at least 1 element since we still have to account for the loop. In Fig. 12, we 
list down all possible nonequivalent strongly connected digraphs with less than 9 edges 
and maximum cycle length 4.

For the digraphs in Fig. 12.a-b, adding a loop will give an adjacency matrix that has 
zero determinant. For the digraph in Fig. 12.c, a loop that is disjoint from the 2-cycle 
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Fig. 13. Candidate digraphs under Case 4.

and 4-cycle must be added to get all nonzero minors. For the digraph in Fig. 12.d, a loop 
must be added so that the loop, a 4-cycle and a 2-cycle are all disjoint. Finally, for the 
digraph in Fig. 12.e, a loop and a 2-cycle must be added as shown in the figure below to 
get nonzero minors. Thus, we have the candidate digraphs shown in Fig. 13.a-c.

Case 5: circ(G) = 3.
By our formula, e7,3 = 9, so any digraph with 7 vertices and a circumference of 3

must contain at least 9 edges in order to be strongly connected. Let v1, v2 and v3 form 
a 3-cycle. Since the graph needs at least 9 edges in order to be strongly connected, it 
can have at most 1 loop, giving a total of 9 + 1 = 10 edges. Then the graph must have 
a 2-cycle as well.

Case 5.1: Suppose the 2-cycle shares an edge with the 3-cycle (v1v2v3). Then, between 
the 2-cycle, the 3-cycle and the loop, we have used 5 of the 10 available edges. So there 
are 5 edges remaining with which to connect the vertices v4, v5, v6 and v7. Each of these 
vertices requires at least one incoming edge and one outgoing edge. Since circ(G) = 3, 
it would require at least 3 edges in order to connect any two of the remaining vertices to 
the original 3-cycle. From that point, it would require at least an additional 3 edges in 
order to connect the remaining two vertices. However there are only 5 edges available, 
and thus, the 2-cycle cannot share an edge with the 3-cycle.

Case 5.2: Suppose the 2-cycle does not share an edge with the 3-cycle (v1v2v3), say 
the 2-cycle is (v4v5) without loss of generality. Then, between the 2-cycle, the 3-cycle 
and the loop, we have used 6 of the 10 available edges. So there are 4 edges remaining 
with which to connect the vertices v6 and v7 with the cycle (v1v2v3) and the cycle (v4v5). 
Since the circumference of the graph is 4, it would require at least 3 edges in order to 
connect v6 and v7 to either the 3-cycle or the 2-cycle. Then there is at most 1 edge 
remaining, which is insufficient to connect the remaining separated cycles. Therefore the 
2-cycle cannot be separate from the 3-cycle, and so there are no digraphs with 7 vertices 
and a circumference of 3 which have correct minors.

Case 6: circ(G) = 2.
By our formula, e7,2 = 12, so any digraph with 7 vertices and a circumference of 

2 must contain at least 12 edges in order to be strongly connected. However we are 
assuming only 10 edges, and therefore we cannot have a circumference of 2.

Summarizing the above discussion, we reach the main result in this section:
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Fig. 14. List of potential digraphs with 7 vertices and 10 edges.

Proposition 7. Suppose that (V, E) is a strongly connected digraph with 7 vertices and 
10 edges which has all non-zero minors. Then (V, E) is equivalent to one of digraphs in 
Fig. 14.

4. Calculations

We now convert the graphs from Fig. 14 into properly signed matrices, and show that 
none of them can be realized by a stable matrix. First however, we prove the following 
lemma:

Lemma 8. Let A be a 7 × 7 real-valued matrix with the characteristic polynomial

PA(t) = t7 + c1t
6 + c2t

5 + c3t
4 + c4t

3 + c5t
2 + c6t + c7. (4.1)

If A is stable, then all of the following inequalities must hold:

(1) c2c4 − c6 > 0; (2) c1c2 − c3 > 0; (3) c1c6 − c7 > 0; (4) c2c5 − c7 > 0.

Proof. By Lemma 5, a matrix A is stable if and only if there exist a1, a2, a3, a4, b1, b2, b3 >

0 such that
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PA(t) = (t2 + b1t + a1)(t2 + b2t + a2)(t2 + b3t + a3)(t + a4). (4.2)

Comparing the coefficients of (4.1) and (4.2), we have:

c1 =a4 + b1 + b2 + b3,

c2 =a1 + a2 + a3 + a4(b1 + b2 + b3) + b1b2 + b1b3 + b2b3,

c3 =(a1 + a2 + a3)a4 + (a2 + a3)b1 + (a1 + a3 + a4b1)b2
+ (a1 + a2 + a4b1 + a4b2 + b1b2)b3,

c4 =a1a2 + a1a3 + a2a3 + a2a4b1 + a3a4b1 + a1a4b2 + a3a4b2 + a3b1b2

+ a1a4b3 + a2a4b3 + a2b1b3 + a1b2b3 + a4b1b2b3,

c5 =(a1a2 + a1a3 + a2a3)a4 + a3(a2b1 + a1b2 + a4b1b2) + a1a2b3 + a2a4b1b3

+ a1a4b2b3,

c6 =a1a2a3 + a2a3a4b1 + a1a3a4b2 + a1a2a4b3,

c7 =a1a2a3a4.

(4.3)

One readily sees that for each (i, j) ∈ {(1, 2), (2, 4), (1, 6), (2, 5)}, cicj contains all terms 
appearing in ci+j and that cicj contains other terms not present in ci+j.2 Thus, cicj−ci+j

can be expressed as the sum of products of some of the ak terms and b� terms. �
Now we use Lemma 8 to exclude all the 15 digraphs (or equivalently sign patterns) in 

Fig. 14 to be potentially stable. Here, we assume that the aij are positive real numbers 
for 1 ≤ i, j ≤ 7.

1.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 −a32 0 a34 0 0 0
0 0 0 0 a45 0 0
0 0 0 0 0 a56 0
0 0 0 −a64 0 0 a67
a71 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have: c1 = a11, c2 = a23a32, and 
c3 = a11a23a32 + a45a56a64. So 
c1c2 − c3 = − a45a56a64 < 0. Thus this
sign pattern is not potentially stable by 
Lemma 8 part 2.

2.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 −a32 0 a34 0 0 0
0 0 0 0 a45 0 0
0 0 0 0 0 a56 0
0 0 0 0 0 0 a67

−a71 0 0 0 −a75 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have: c1 = a11, c2 = a23a32, 
c3 = a11a23a32 + a56a67a75. So 
c1c2 − c3 = − a56a67a75 < 0. Thus this 
sign pattern is not potentially stable by 
Lemma 8 part 2.

2 In fact, because cj are the jth elementary symmetric function of the n eigenvalues of A expressed in 
terms of ak’s and b�’s in our problem, the product of the ith and jth elementary symmetric functions will 
contain all the terms of the (i + j)th elementary symmetric functions.
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3.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 −a32 0 a34 0 0 0
0 0 0 0 a45 0 0
0 0 0 0 0 a56 0
0 0 0 0 0 0 a67

±a71 0 0 −a74 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have: c2 = a23a32, 
c4 = a45a56a67a74, 
c6 = a23a32a45a56a67a74. So c2c4 − c6 = 0. 
Note that while both positive and 
negative values of a71 allow for correct 
minors, the value of a71 does not appear 
in our contradiction, and thus the 
contradiction holds regardless of the 
value of a71. Thus this sign pattern is not 
potentially stable by Lemma 8 part 1.

4.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 0 0 a34 0 0 0
0 0 −a43 0 a45 0 0
0 0 0 0 0 a56 0
0 0 0 0 0 0 a67

−a71 0 0 0 −a75 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have: c1 = a11, c2 = a34a43, 
c3 = a11a34a43 + a56a67a75. So 
c1c2 − c3 = −a56a67a75 < 0. Thus this 
sign pattern is not potentially stable by 
Lemma 8 part 2.

5.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 0 0 a34 0 0 a37
0 0 0 0 a45 0 0
0 0 0 0 0 a56 0
0 0 0 0 0 0 a67

−a71 0 −a73 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have:
c1 = a11, c2 = a37a73,
c3 = a11a37a73. So c1c2 − c3 = 0. Thus 
this sign pattern is not potentially stable 
by Lemma 8 part 2.

6.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
−a21 0 a23 0 0 0 0

0 0 0 a34 0 0 0
0 0 0 0 a45 0 0
0 0 −a53 0 0 a56 0
0 0 0 0 0 0 a67
0 −a72 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have:
c1 = a11, c6 = a23a43a45a56a67a72, 
c7 = a11a23a43a45a56a67a72. So 
c1c6 − c7 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8
part 3.

7.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
−a21 0 a23 0 0 0 0

0 0 0 a34 0 0 0
0 0 0 0 a45 0 0
0 0 0 0 0 a56 0
0 0 0 −a64 0 0 a67
0 −a72 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have:
c1 = a11, c6 = a23a43a45a56a67a72, 
c7 = a11a23a43a45a56a67a72. So 
c1c6 − c7 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8 part 3.

8.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 0 0 a34 0 0 0
0 0 0 0 a45 0 0
0 −a52 0 0 0 a56 0

−a61 0 0 0 0 0 a67
0 0 0 0 0 −a76 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have:
c2 = a67a76, c4 = a23a34a45a52, 
c6 = a67a76a23a34a45a52. So c2c4 − c6 = 0. 
Thus this sign pattern is not potentially 
stable by Lemma 8 part 2.
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9.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 −a32 0 a34 0 0 0
0 0 0 0 a45 0 0
0 0 0 0 0 a56 0

±a61 0 0 0 0 0 a67
0 0 0 −a74 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have:
c2 = a23a32, c5 = a11a45a56a67a74, 
c7 = a23a32a11a45a56a67a74. So 
c2c5 − c7 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8 part 4 
(regardless of the sign of the (6, 1) entry).

10.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 0 0 a34 0 0 0
0 0 0 0 a45 0 a47

±a51 0 0 0 0 a56 0
0 0 0 0 −a65 0 0
0 −a72 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have: c2 = a56a65, 
c4 = a23a34a47a72, 
c6 = a56a65a23a34a47a72. So 
c2c4 − c6 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8 part 2 
(regardless of the sign of the (5, 1) entry).

11.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 −a32 0 a34 0 0 0
0 0 0 0 a45 0 0

±a51 0 0 0 0 a56 0
0 0 0 0 0 0 a67
0 0 0 −a74 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have: c2 = a23a32, 
c4 = a45a56a67a74, 
c6 = a23a32a45a56a67a74. So 
c2c4 − c6 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8 part 2 
(regardless of the sign of the (5, 1) entry.

12.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
−a21 0 a23 0 0 0 0

0 0 0 a34 0 0 0
0 −a42 0 0 a45 0 0
0 0 0 0 0 a56 0
0 0 0 0 0 0 a67
0 0 −a73 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have:
c2 = a12a21, c5 = a34a45a56a67a73, 
c7 = a12a21a34a45a56a67a73. So 
c2c5 − c7 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8
part 4.

13.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 −a27

±a31 0 0 a34 0 0 0
0 0 0 0 a45 0 0
0 0 0 0 0 a56 0
0 0 −a63 0 0 0 0
0 −a72 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have: c2 = a27a72, 
c4 = a34a45a56a63, 
c6 = a27a72a34a45a56a63. So 
c2c4 − c6 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8 part 2 
(regardless of the sign of the (3, 1) entry).

14.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 0 0 0
0 0 0 a34 0 a36 0

±a41 0 0 0 a45 0 0
0 0 0 −a54 0 0 0
0 0 0 0 0 0 a67
0 −a72 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have:
c2 = a45a54, c5 = a11a23a36a67a72, 
c7 = a45a54a11a23a36a67a72. So 
c2c5 − c7 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8 part 4 
(regardless of the sign of the (4, 1) entry).
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15.

⎡
⎢⎢⎢⎢⎢⎣

−a11 a12 0 0 0 0 0
0 0 a23 0 a25 0 0
0 0 0 a34 0 0 0

±a41 0 −a43 0 0 0 0
0 0 0 0 0 a56 0
0 0 0 0 0 0 a67
0 −a72 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Here we have:
c2 = a43a34, c5 = a11a25a56a67a72, 
c7 = a43a34a11a25a56a67a72. So 
c2c5 − c7 = 0. Thus this sign pattern is 
not potentially stable by Lemma 8 part 4 
(regardless of the sign of the (4, 1) entry.
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