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Abstract. It is shown that the planar Schrödinger-Poisson system with a

general nonlinear interaction function has a nontrivial solution of mountain-

pass type and a ground state solution of Nehari-Pohozaev type. The conditions
on the nonlinear functions are much weaker and flexible than previous ones,

and new variational and analytic techniques are used in the proof.

1. Introduction. In this paper, we study the ground state solutions of the follow-
ing planar Schrödinger-Poisson system with a general nonlinearity:{

−∆u+ u+ φu = f(u), x ∈ R2,

∆φ = u2, x ∈ R2,
(1.1)

where the nonlinear function f satisfies the following basic assumptions:

(F1) f ∈ C(R,R), and there exist constants C0 > 0 and p ∈ (2,∞) such that

|f(u)| ≤ C0
(
1 + |u|p−1

)
, ∀ u ∈ R;

(F2) f(u) = o(|u|) as u→ 0;

(F3) inf
u6=0

F (u)

|u|2
> −∞, where F (u) :=

∫ u

0

f(s)ds.
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System (1.1) is a special form of the following nonlinear Schrödinger-Poisson
system {

−∆u+ V (x)u+ λφu = f(u), x ∈ RN ,
∆φ = u2, x ∈ RN ,

(1.2)

where λ ∈ R, V ∈ C(RN , (0,∞)) and f ∈ C(R,R). It is well known that the
solutions of (1.2) are related to the solitary wave solutions of the form ψ(x, t) =
e−iµtu(x), µ ∈ R to the following nonlinear Schrödinger-Poisson system{

−iψt −∆ψ + E(x)ψ + λφψ = f(ψ), x ∈ RN , t > 0,

∆φ = |ψ|2, x ∈ RN , t > 0,
(1.3)

where ψ : RN × R → C is the wave function, E(x) = V (x) − µ with µ ∈ R is
a real-valued external potential, λ ∈ R is a parameter, φ represents an internal
potential for a nonlocal self-interaction of the wave function and the nonlinear term
f describes the interaction effect among particles. System (1.3) arises from quantum
mechanics (see e.g. [5,7,24]) and in semiconductor theory [4,26,27]. For more details
in the physical aspects, we refer the readers to [3, 4].

The solution φ of the Poisson equation in (1.2) can be solved by φ = ΓN ∗ u2,
where ∗ is the convolution in RN , ΓN is the fundamental solution of the Laplacian,
which is given by

ΓN (x) =

{ 1
2π ln |x|, N = 2,

1
N(2−N)ωN

|x|2−N , N ≥ 3,

and ωN is the volume of the unit N -ball. With this formal inversion, system (1.2)
is converted into an equivalent integro-differential equation

−∆u+ V (x)u+ λ(ΓN ∗ u2)u = f(u), x ∈ RN . (1.4)

Denote by φN,u(x) = (ΓN ∗ u2)(x). Then at least formally, the energy functional
associated with (1.2) is

Iλ(u) =
1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx+

λ

4

∫
RN

φN,uu
2dx−

∫
RN

F (u)dx.

If u is a critical point of Iλ, then the pair (u, φN,u) is a weak solution of (1.2). For
the sake of simplicity, in many cases we just say u, instead of (u, φN,u), is a weak
solution of (1.2).

In recent years, the existence of nontrivial solutions, ground state solutions and
multiple solutions to (1.2) (or (1.4)) have been investigated extensively. The ma-
jority of the literature focuses on the study of (1.2) with N = 3 and λ < 0. In this
case, by the Hardy-Littlewood-Sobolev inequality, Iλ is a well-defined C1 functional
on a weighted Sobolev space, and the mountain pass geometry can be verified pro-
vided f(t) is superlinear at t = 0 and super-cubic at t = ∞. In this situation, the
existence, multiplicity and concentration of solutions of (1.2) was obtained under
various assumptions on V and f , see e.g. [1–4,8–12,14,15,18,19,21,30,31,37–39] and
so on. If f(t) is super-quadratic at t =∞, by using the Nehari-Pohozaev manifold
introduced in [28], the existence of Nehari-Pohozaev type ground state solutions of
(1.2) were established, see e.g. [2, 28,31,35,41] and so on.

Unlike the case of N = 3, there are only a few papers dealing with (1.2) with
N = 2. The approach for the N = 3 case cannot be easily adapted to N = 2
because that the logarithmic integral kernel 1/(2π) ln |x| is sign-changing and is



GROUND STATE SOLUTIONS OF NEHARI-POHOZAEV TYPE 5869

neither bounded from above nor from below, and Iλ is not well defined on H1(R2)
even if V ∈ L∞(R2) and infR2 V > 0.

A new variational framework for (1.2) with N = 2 within the functional space

E =

{
u ∈ H1(R2) :

∫
R2

∫
R2

ln(1 + |x|)u2(x)dx < +∞
}

was introduced in [29]. Considering the case N = 2, V (x) = a ∈ R, λ < 0 and
f(u) = 0 in (1.2), by using strict rearrangement inequalities, Stubbe [29] proved
that there exists, for any a ≥ 0, a unique ground state, which is a positive spher-
ically symmetric decreasing function. In the same case, Bonheure, Cingolani and
Van Schaftingen [6] derived the asymptotic decay of the unique positive, radially
symmetric solution, and also established its nondegeneracy. Cingolani and Weth [13]
developed a variational framework for the following Schrödinger-Poisson system{

−∆u+ V (x)u+ φu = |u|p−2u, x ∈ R2,

∆φ = u2, x ∈ R2,
(1.5)

where V ∈ L∞(R2) (i.e., N = 2, λ > 0 and f(u) = |u|p−2u in (1.2)). In particular,
when V (x) is 1-periodic in x1 and x2 and p ≥ 4, they proved that (1.5) admits high
energy solutions, and a ground state solution of Nehari type which is a minimizer
of I1 on the corresponding Nehari manifold. The key tool is a surprisingly strong
compactness condition for Cerami sequences which is not available for the corre-
sponding problem in higher space dimensions. Based on this strong compactness
condition, Du and Weth [16] provided a counterpart of the results in [13] in the case
where 2 < p < 4 and V is a positive constant. They showed that (1.5) with V ≡ 1
admits a nontrivial solution of mountain-pass type if p > 2, and a ground state so-
lution of Nehari-Pohozaev type which is a minimizer of I1 on the Nehari-Pohozaev
manifold (see definition below) if p ≥ 3. However the approach in [16] relies heavily
on the algebraic form f(u) = |u|p−2u with p ≥ 3, see [16, Lemma 4.1], and it is
difficult to generalize the results on existence of ground state solutions for (1.5) to
(1.1) with a general interaction function f(u). Also the smoothness of f(u) in [16]
is necessary for applying the Implicit Function Theorem to obtain certain results.

In this paper, we consider the existence of mountain-pass type solutions and also
ground state solutions of (1.1) under much weaker and more general assumptions
on f . As in [13], we define, for any measurable function u : R2 → R,

‖u‖2∗ =

∫
R2

ln(1 + |x|)u2(x)dx ∈ [0,∞].

Then the set

E =
{
u ∈ H1(R2) : ‖u‖∗ < +∞

}
is a Hilbert space equipped with the norm

‖u‖E =
(
‖u‖2 + ‖u‖2∗

)1/2
.

We consider the system (1.1), the associated scalar equation

−∆u+ u+ φ2,uu = f(u), x ∈ R2, (1.6)

and the associated energy functional Φ : E → R defined by

Φ(u) =
1

2

∫
R2

(
|∇u|2 + u2

)
dx+

1

4

∫
R2

φ2,u(x)u2dx−
∫
R2

F (u)dx, (1.7)
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where

φ2,u(x) = (Γ2 ∗ u2)(x) =
1

2π

∫
R2

ln |x− y| u2(y)dy.

Similar to [16, Lemma 2.4], we define the Pohozaev functional of (1.6):

P(u) := ‖u‖22 +

∫
R2

φ2,u(x)u2dx+
1

8π
‖u‖42 − 2

∫
R2

F (u)dx. (1.8)

It is well-known that any solution u of (1.1) satisfies P(u) = 0. Motivated by this
fact, we define the following functional on E:

J(u) =2〈Φ′(u), u〉 − P(u)

=2‖∇u‖22 + ‖u‖22 +

∫
R2

φ2,u(x)u2dx− 1

8π
‖u‖42 − 2

∫
R2

[f(u)u− F (u)]dx,

(1.9)

and define the Nehari-Pohozaev manifold of Φ by

M := {u ∈ E \ {0} : J(u) = 0}. (1.10)

Then every non-trivial solution of (1.1) is contained inM. In particular we call a so-
lution ū of (1.1) to be a ground state solution if ū 6= 0 satisfies Φ(ū) = infu∈M Φ(u).
Also a solution ū is a least energy solution of (1.1) if Φ(ū) is the smallest among all
non-trivial solutions of (1.1). Finally a solution ū is called a solution of Mountain-
Pass type of (1.1) if Φ(ū) = c where

c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)), Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, Φ(γ(1)) < 0} .

To state our main results, in addition to (F1)-(F3), we introduce the following
assumptions:

(F4) there exist constants α0, β0, c0 > 0 and κ > 1 such that

f(u)u− 3F (u) + α0u
2 ≥ 0, ∀ u ∈ R,

and ∣∣∣∣f(u)

u

∣∣∣∣ ≥ β0 ⇒
∣∣∣∣f(u)

u

∣∣∣∣κ ≤ c0 [f(u)u− 3F (u) + α0u
2
]

;

(F5) p = p0 ∈ (2, 4) in (F1), and there exist constants α1 > 0 and p1, p2 ∈ [2, 6−p0)
such that

f(u)u− 3F (u) ≥ −α1(|u|p1 + |u|p2), ∀ u ∈ R;

(F6) the function
f(u)u− F (u)− 1

2u
2

u3
is nondecreasing on both (−∞, 0) and (0,

∞).

Now, we state our results of this paper.

Theorem 1.1. Assume that f satisfies (F1)-(F3) and (F4) or (F5). Then (1.1) or
(1.6) has a solution of mountain-pass type u0 ∈ E such that Φ(u0) > 0. Moreover,
(1.1) or (1.6) has a least energy solution û ∈ E \ {0}.

Theorem 1.2. Assume that f satisfies (F1)-(F3) and (F6). Then (1.1) or (1.6)
has a ground state solution ū ∈ E \ {0} such that Φ(ū) = infu∈M Φ(u).

We remark that the assumptions (F4)-(F6) are weaker than some assumptions
which are easier to state and verify:

(F7) f(u)u− 3F (u) ≥ 0, ∀ u ∈ R;
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(F8) there exist constants α2 > 0 and p3, p4 ∈ [2, 3) such that

−α2(|u|p3 + |u|p4) ≤ f(u)u− 3F (u) ≤ 0, ∀ u ∈ R.

(F9) the function
f(u)u− F (u)

u3
is nondecreasing on both (−∞, 0) and (0,∞).

It is easy to see that (F7) implies (F4), (F8) implies (F5) and (F9) implies (F6).
Results in Theorems 1.1 and 1.2 in [16] are special cases of Theorems 1.1 and 1.2
as the function f(u) = |u|p−2u satisfies (F7) and (F9) when p ≥ 3, and it satisfies
(F8) when 2 < p < 3.

Our more general conditions (F4)-(F6) on the function f(u) allow for many other
examples other than the pure power function as in [16]. Table 1 below lists some
examples satisfying (F4) or (F5), and possibly (F6). Note that other than f1(u), all
other functions are not pure power functions, and some of them allow logarithmic
growth. The function f2(u) has different growth rates at u = 0 and u = ∞, and
the function f3(u) is asymptotically linear as u → ∞. This demonstrates that our
results can be applied to much more general situations compared to the special case
in [16]. The condition (F6) is a monotonicity one which is usually more restrictive.
But we note that (F6) does not always imply (F4). Indeed for f7(u) in Table 1,
F7(u) =

∫ u
0
f7(t)dt = u4

∫ u
0
|s|1+sin ssds. Since f(u)u ≥ 4F (u), then f satisfies

(F4). But it is easy to see that f does not satisfy (F6). The function f6(u) and
f2(u) with 2 < q < 3 ≤ p and 0 ≤ b ≤ b0 are two examples that satisfy (F6) but do
not satisfy (F9), while f5(u) satisfies (F9).

f(u) (F4) (F5) (F6)

f1(u) = |u|p−2u 3 ≤ p 2 < p ≤ 3 3 ≤ p
f2(u) =

(
|u|p−2 + b|u|q−2

)
u 2 < q < 3 < p 2 < q < p ≤ 3 2 < q < 3 ≤ p

0 ≤ b ≤ b0

f3(u) = u
[
1− 1

ln(e+u2)

]
YES YES NO

f4(u) = u ln(1 + u2) NO YES NO
f5(u) = |u|u ln(1 + u2) YES NO YES

f6(u) = 3|u|u ln
(
1 + u2

)
+ 2|u|3u

1+u2 YES NO YES

f7(u) = 4u3
∫ u

0
|s|1+sin ssds+ |u|5+sinuu YES NO NO

Table 1. Examples of nonlinear functions f(u) satis-
fying conditions in Theorems 1.1 and 1.2. Here b0 =

q(p−2)
(q−1)(3−q)

[
(p−1)(p−3)
p(q−2)

] q−2
p−2

[2(p− q)]
q−p
p−2 .

For reader’s convenience, we choose f2, f3 and f4 of Table 1 as examples and
furnish some details as follows.

(1) f2(u) =
(
|u|p−2 + b|u|q−2

)
u. Then F2(u) = 1

p |u|
p + b

q |u|
q.

• Case i) 2 < q < 3 < p. Let

α0 =
p− q
p− 2

(
(3− q)|b|

q

) p−2
p−q

[
p(q − 2)

(p− 2)(q − 3)

] p−2
p−q

.

By Young’s inequality, one has

f2(u)u− 3F2(u) + α0u
2 = u2

(
p− 3

p
|u|p−2 + α0 −

(3− q)b
q

|u|q−2

)
≥ 0, ∀u ∈ R.
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Let κ = p
p−1 . By an elemental calculation, one can derive that there exist

β0, c0 > 0 such that∣∣∣∣f2(u)

u

∣∣∣∣ ≥ β0 ⇒
∣∣∣∣f2(u)

u

∣∣∣∣κ ≤ c0 [f2(u)u− 3F2(u) + α0u
2
]
.

• Case ii) 2 < q < p ≤ 3. Note that

f(u)u− 3F (u) = −
(

3− p
p
|u|p +

(3− q)b
q

|u|q
)
.

When p = 3, f2 satisfies (F5) with p0 = 3, p1 = p2 = q and c1 = 1. When
p < 3, f2 satisfies (F5) with p0 = p1 = p, p2 = q and c1 = 1 + |b|.

• Case iii) 2 < q < 3 ≤ p and 0 ≤ b ≤ b0. By a simple calculation, we can
verify that f2 satisfies (F6).

(2) f3(u) = u
[
1− 1

ln(e+u2)

]
. Then

F3(u) =
u2

2

[
1− 1

ln(e+ u2)

]
−
∫ u

0

s3

ln2(e+ s2)
ds.

Let α0 = 1
2 . Then

f3(u)u− 3F3(u) + α0u
2 =

u2

2 ln(e+ u2)
+ 3

∫ u

0

s3

ln2(e+ s2)
ds ≥ 0.

Let κ = 2. By an elemental calculation, one can derive that there exist β0, c0 > 0
such that ∣∣∣∣f3(u)

u

∣∣∣∣ ≥ β0 ⇒
∣∣∣∣f3(u)

u

∣∣∣∣κ ≤ c0 [f3(u)u− 3F3(u) + α0u
2
]
.

Hence, f3 satisfies (F4). It is easy to see that f3 satisfies (F5) with α1 = 1, p0 = 3
and p1 = p2 = 2. Noting that

f3(u)u− F3(u)− 1
2u

2

u3
=
− u2

2 ln(e+u2) −
∫ u

0
s3

ln2(e+s2)
ds

u3
,

it follows that f3 does not satisfy (F6).

(3) f4(u) = u ln(1 + u2). Then F4(u) = 1
2u

2 ln(1 + u2)− 1
2u

2 + 1
2 ln(1 + u2), and

so

f4(u)u− F4(u) = −1

2
u2 ln(1 + u2) +

3

2
u2 − 3

2
ln(1 + u2). (1.11)

Noting that

lim
|u|→∞

f4(u)u− F4(u)

u2
= −∞,

it follows that f4 does not satisfy (F4). For δ ∈ (2, 3), by (1.11), one has

lim
|u|→∞

f4(u)u− F4(u)

|u|δ
= 0. (1.12)

Letting p0 = p1 = δ and p2 = 2, one can deduce from (1.12) that there exists α1 > 0
such that

f4(u)u− 3F4(u) ≥ −α1(|u|p1 + |u|p2), ∀ u ∈ R,
and so f4 satisfies (F5). Noting that

f4(u)u− F4(u)− 1
2u

2

u3
= −1

2
ln(1 + u2)

(
1

u
+

3

u3

)
+

1

u
,



GROUND STATE SOLUTIONS OF NEHARI-POHOZAEV TYPE 5873

it follows that f4 does not satisfy (F6).
To prove Theorem 1.1, based on the variational approach developed in [13, 16],

first we construct a Cerami sequence {un} of Φ with the extra property that
J(un)→ 0, this idea goes back to [17]. Then we prove the boundedness of {un} in
H1(R2) in the two cases that (F4) or (F5) holds (see Lemmas 2.3 and 2.4). The
proof of boundedness result in [16] can be modified to the case that (F4) holds, but
it does not work for the case that (F5) holds. For that case, we introduce sequences

tn = ‖∇un‖−1/2
2 and vn = t2n(un)tn where ut(x) = u(tx) to deduce that ‖vn‖2 → 0

and ‖vn‖42 ln tn → 0 if ‖∇un‖2 → ∞, and combining the fact that J(un) → 0, the
Gagliardo-Nirenberg inequality and subtle analysis, we obtain the boundedness of
{un} in H1(R2) by estimating Φ(vn) from two different directions (see Lemma 2.4).
Our proof of Theorem 1.2 is inspired by the approach used in [34, 35]. We first
establish a crucial inequality

Φ(u) ≥ Φ(t2ut) +
1− t4

4
J(u), u ∈ E, t > 0.

With this inequality in hand, then we can find a minimizing Cerami sequence for
Φ on M and show its boundedness in H1(R2).

The paper is organized as follows. In Section 2, we give the variational setting
and preliminaries. We complete the proofs of Theorems 1.1 and 1.2 in Sections 3
and 4 respectively. Throughout this paper, we let ut(x) := u(tx) for t > 0, H1(R2)
is the usual Sobolev space with the standard scalar product and norm

(u, v) =

∫
R2

(∇u · ∇v + uv) dx, ‖u‖ =

(∫
R2

(
|∇u|2 + u2

)
dx

)1/2

.

and denote the norm of Ls(R2) by ‖u‖s =
(∫

R2 |u|sdx
)1/s

for s ∈ [2,∞), Br(x) =

{y ∈ R2 : |y − x| < r}, and positive constants possibly different in different places,
by C1, C2, · · · .

2. Variational setting and preliminaries. We define the following symmetric
bilinear forms

(u, v) 7→ A1(u, v) =
1

2π

∫
R2

∫
R2

ln (1 + |x− y|)u(x)v(y)dxdy, (2.1)

(u, v) 7→ A2(u, v) =
1

2π

∫
R2

∫
R2

ln

(
1 +

1

|x− y|

)
u(x)v(y)dxdy, (2.2)

(u, v) 7→ A0(u, v) = A1(u, v)−A2(u, v) =
1

2π

∫
R2

∫
R2

ln |x− y|u(x)v(y)dxdy, (2.3)

where the definition is restricted, in each case, to measurable functions u, v : R2 → R
such that the corresponding double integral is well defined in Lebesgue sense. Noting
that 0 ≤ ln(1 + r) ≤ r for r ≥ 0, it follows from the Hardy-Littlewood-Sobolev
inequality (see [22] or [23, page 98]) that

|A2(u, v)| ≤ 1

2π

∫
R2

∫
R2

1

|x− y|
|u(x)v(y)|dxdy ≤ C1‖u‖4/3‖v‖4/3 (2.4)

with a constant C1 > 0. Using (2.1), (2.2) and (2.3), we define the functionals as
follows:
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I1 : H1(R2)→ [0,∞], I1(u) = A1(u2, u2)

=
1

2π

∫
R2

∫
R2

ln (1 + |x− y|)u2(x)u2(y)dxdy,

I2 : L8/3(R2)→ [0,∞), I2(u) = A2(u2, u2)

=
1

2π

∫
R2

∫
R2

ln

(
1 +

1

|x− y|

)
u2(x)u2(y)dxdy

and

I0 : H1(R2)→ R ∪ {∞}, I0(u) = A0(u2, u2)

=
1

2π

∫
R2

∫
R2

ln (|x− y|)u2(x)u2(y)dxdy.

Here I2 only takes finite values on L8/3(R2). Indeed, (2.4) implies

|I2(u)| ≤ C1‖u‖48/3, ∀ u ∈ L8/3(R2). (2.5)

Recall the definition of function space E in the introduction. It is easy to see
that E is compactly embedded in Ls(R2) for all s ∈ [2,∞). Moreover, since

ln(1 + |x− y|) ≤ ln(1 + |x|+ |y|) ≤ ln(1 + |x|) + ln(1 + |y|), ∀ x, y ∈ R2, (2.6)

we have

|A1(uv,wz)| ≤ 1

2π

∫
R2

∫
R2

[ln(1 + |x|) + ln(1 + |y|)] |u(x)v(x)||w(y)z(y)|dxdy

≤ ‖u‖∗‖v‖∗‖w‖2‖z‖2 + ‖u‖2‖v‖2‖w‖∗‖z‖∗, ∀ u, v, w, z ∈ E.(2.7)

According to [13, Lemma 2.2], we have I0, I1 and I2 are of class C1 on E, and

〈I ′i(u), v〉 = 4Ai(u
2, v), ∀ u, v ∈ E, i = 0, 1, 2. (2.8)

Then, (F1), (F2) and (2.8) imply that Φ ∈ C1(E,R), and that

Φ(u) =
1

2

∫
R2

(|∇u|2 + u2)dx+
1

4
[I1(u)− I2(u)]−

∫
R2

F (u)dx, (2.9)

〈Φ′(u), v〉 =

∫
R2

(∇u · ∇v + uv) dx+A1(u2, uv)−A2(u2, uv)−
∫
R2

f(u)vdx, (2.10)

J(u) = 2‖∇u‖22 + ‖u‖22 + I1(u)− I2(u)− 1

8π
‖u‖42 − 2

∫
R2

[f(u)u− F (u)]dx. (2.11)

Hence, the solutions of (1.1) are the critical points of the reduced functional (2.9).
To prove the existence of nontrivial solutions, we shall use the following general

minimax principle [20, Proposition 2.8], which is a somewhat stronger variant of [40,
Theorem 2.8].

Lemma 2.1. Let X be a Banach space. Let M0 be a closed subspace of the metric
space M and Γ0 ⊂ C(M0, X). Define

Γ̃ :=
{
γ ∈ C(M,X) : γ

∣∣
M0
∈ Γ0

}
.

If ϕ ∈ C1(X,R) satisfies

∞ > c := inf
γ∈Γ

sup
u∈M

ϕ(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

ϕ(γ0(u)),
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then, for every ε ∈ (0, (c− a)/2), δ > 0 and γ ∈ Γ̃ such that

sup
M

ϕ ◦ γ ≤ c+ ε,

there exists u ∈ X such that

(a) c− 2ε ≤ ϕ(u) ≤ c+ 2ε,
(b) dist (u, γ(M)) ≤ 2δ,
(c) ‖ϕ′(u)‖ ≤ 8ε/δ.

Similar to [16, Lemma 3.2], we will apply Lemma 2.1 to obtain a Cerami sequence
for the functional Φ with J(un)→ 0. This idea goes back to Jeanjean [17].

Lemma 2.2. Assume that (F1)-(F3) hold. Then there exists a sequence {un} ⊂ E
satisfying

Φ(un)→ c > 0, ‖Φ′(un)‖E∗(1 + ‖un‖E)→ 0 and J(un)→ 0, (2.12)

where

c := inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)), Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, Φ(γ(1)) < 0} .

Proof. First, we prove that 0 < c <∞. Note that for any fixed u ∈ E with u 6= 0,

I0
(
t2ut

)
=

t4

2π

∫
R2

∫
R2

ln |x− y|u2(tx)u2(ty)d(tx)d(ty)

=
t4

2π

∫
R2

∫
R2

(ln |tx− ty| − ln t)u2(tx)u2(ty)d(tx)d(ty)

=
t4

2π

∫
R2

∫
R2

(ln |x− y| − ln t)u2(x)u2(y)dxdy

= t4I0(u)− t4 ln t

2π
‖u‖42, ∀ t > 0. (2.13)

Combining (2.9) with (2.13), one has

Φ
(
t2ut

)
=

t4

2
‖∇u‖22 +

t2

2
‖u‖22 +

t4

4
I0(u)− t4 ln t

8π
‖u‖42

− 1

t2

∫
R2

F
(
t2u
)

dx, ∀ t > 0. (2.14)

By (F1)-(F3), there exists a constant Λ > 0 such that

F
(
t2u
)
≥ −Λ|t2u|2, ∀ t > 0. (2.15)

Then, it follows from (2.14) and (2.15) that

lim
t→0

Φ
(
t2ut

)
= 0, sup

t>0
Φ
(
t2ut

)
<∞, Φ

(
t2ut

)
→ −∞ as t→ +∞. (2.16)

Now, we choose T > 0 large enough such that Φ(T 2uT ) < 0. Let γT (t) = (tT )2utT
for t ∈ [0, 1]. Then γT ∈ C([0, 1], E) such that γT (0) = 0, Φ(γT (1)) < 0 and
maxt∈[0,1] Φ(γT (t)) <∞. This shows that Γ 6= ∅ and c <∞.

By (F1) and (F2), for every ε > 0, there exists a constant C(ε) > 0 such that

f(u)u ≤ εu2 + C(ε)|u|p, F (u) ≤ εu2 + C(ε)|u|p, ∀ u ∈ R. (2.17)
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Choosing ε = 1/4, by (2.5), (2.9), (2.17) and Sobolev embedding inequality, one
has

Φ(u) ≥ 1

2
‖u‖2 − C1

4
‖u‖48/3 −

1

4
‖u‖22 − C1‖u‖pp

≥ 1

4
‖u‖2 − C2‖u‖4 − C3‖u‖p, ∀ u ∈ E. (2.18)

From (2.18), it is easy to see that there exist constants ρ0 > 0 and a0 > 0 such that

Φ(u) ≥ 0, ∀ ‖u‖ ≤ ρ0 and Φ(u) ≥ a0, ∀ ‖u‖ = ρ0. (2.19)

For every γ ∈ Γ, since γ(0) = 0 and Φ(γ(1)) < 0, then it follows from (2.19) that
‖γ(1)‖ > ρ0. By the continuity of γ(t) and the intermediate value theorem, there
exists tγ ∈ (0, 1) such that ‖γ(tγ)‖ = ρ0. Thus, we have

sup
t∈[0,1]

Φ(γ(t)) ≥ Φ(γ(tγ)) ≥ a0 > 0, ∀ γ ∈ Γ,

which yields

∞ > c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) ≥ a0 > 0. (2.20)

Similar to [16, Lemma 3.2], we define a continuous map

h : Ẽ := R× E → E, h(s, v)(x) = e2sv(esx) for s ∈ R, v ∈ E and x ∈ R2,

where Ẽ is a Banach space equipped with the product norm ‖(s, v)‖Ẽ :=
(
|s|2+

‖v‖2E
)1/2

. We consider the following auxiliary functional:

Ψ(s, v) = Φ(h(s, v)) =
1

2

∫
R2

[
|∇h(s, v)|2 + |h(s, v)|2

]
dx

+
1

4
[I1(h(s, v))− I2(h(s, v))]−

∫
R2

F (h(s, v))dx

=
e4s

2

∫
R2

|∇v|2dx+
e2s

2

∫
R2

v2dx+
e4s

4
[I1(v)− I2(v)]

−se
4s

8π

(∫
R2

v2dx

)2

− 1

e2s

∫
R2

F (e2sv)dx.

It is easy to see that Ψ ∈ C1(Ẽ,R). As in the proof of [16, (3.3),(3.4)], we have

∂sΨ(s, v) = J(h(s, v)), ∂vΨ(s, v)w = Φ′(h(s, v))h(s, w) for s ∈ R and v, w ∈ E.
(2.21)

Now, we define a minimax value c̃ for Ψ by

c̃ = inf
γ̃∈Γ̃

max
t∈[0,1]

Ψ(γ̃(t)),

where

Γ̃ =
{
γ̃ ∈ C([0, 1], Ẽ) : γ̃(0) = (0, 0), Ψ(γ̃(1)) < 0

}
.

Since Γ =
{
h ◦ γ̃ : γ̃ ∈ Γ̃

}
, the minimax value of Φ and Ψ coincide, i.e., c = c̃. By

the definition of c, for every n ∈ N, there exists γn ∈ Γ such that

max
t∈[0,1]

Ψ(0, γn(t)) = max
t∈[0,1]

Φ(γn(t)) ≤ c+
1

n2
.

Next, we apply Lemma 2.1 to Ψ, M = [0, 1], M0 = {0, 1} and Ẽ, Γ̃ in place of
X, Γ. Let εn = 1/n2, δn = 1/n and γ̃n(t) = (0, γn(t)). Since (2.20) implies that
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εn = 1/n2 ∈ (0, c/2) for large n ∈ N, Lemma 2.1 yields the existence of (sn, vn) ∈ Ẽ
such that, as n→∞,

Ψ(sn, vn)→ c, (2.22)

‖Ψ′(sn, vn)‖Ẽ∗ (1 + ‖(sn, vn)‖Ẽ)→ 0, (2.23)

dist ((sn, vn), {0} × γn([0, 1]))→ 0. (2.24)

Moreover, (2.24) implies that sn → 0. Note that

〈Ψ′(sn, vn), (τ, w)〉 = 〈Φ′(h(sn, vn)), h(sn, w)〉+ J(h(sn, vn))τ, ∀ (τ, w) ∈ Ẽ.
(2.25)

Let un := h(sn, vn). By using the same way as [16, Lemma 3.2], we deduce that
{un} satisfies (2.12).

Next we show the boundedness of the Cerami sequence obtained in Lemma 2.2
under the assumption (F4) or (F5).

Lemma 2.3. Assume that (F1)-(F4) hold. Let {un} ⊂ E be a sequence satisfying
(2.12). Then {un} is bounded in H1(R2).

Proof. By (F4), (2.9), (2.11) and (2.12), one has

c+ o(1) = Φ(un)− 1

4
J(un)

=
1

4
‖un‖22 +

1

32π
‖un‖42 +

1

2

∫
R2

[f(un)un − 3F (un)] dx (2.26)

=

(
1

4
− α0

2

)
‖un‖22 +

1

32π
‖un‖42

+
1

2

∫
R2

[
f(un)un − 3F (un) + α0u

2
n

]
dx

≥ 1

32π
‖un‖42 −

α0

2
‖un‖22, (2.27)

which implies

‖un‖2 ≤ C4,

∫
R2

[
f(un)un − 3F (un) + α0u

2
n

]
dx ≤ C5 (2.28)

for some constants C4, C5 > 0. Now, we prove that {‖un‖} is also bounded. Arguing
by contradiction, suppose that ‖un‖ → ∞. Let vn := un

‖un‖ . Then ‖vn‖ = 1, and

‖vn‖2 → 0 due to (2.28). Set κ′ = κ/(κ−1). By the Gagliardo-Nirenberg inequality,
one has

‖vn‖2κ
′

2κ′ ≤ C6‖vn‖22‖∇vn‖2κ
′−2

2 = o(1). (2.29)

Set

Ωn :=

{
x ∈ R2 :

∣∣∣∣f(un)

un

∣∣∣∣ ≤ β0

}
.

Then, we have ∫
Ωn

∣∣∣∣f(un)

un

∣∣∣∣ v2
ndx ≤ β0‖vn‖22 = o(1). (2.30)
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Moreover, by (F4), (2.28), (2.29) and the Hölder inequality, we have∫
R2\Ωn

∣∣∣∣f(un)

un

∣∣∣∣ v2
ndx

≤

(∫
R2\Ωn

∣∣∣∣f(un)

un

∣∣∣∣κ dx

)1/κ(∫
R2\Ωn

|vn|2κ
′
dx

)1/κ′

≤ c
1/κ
0

(∫
R2\Ωn

[
f(un)un − 3F (un) + α0u

2
n

]
dx

)1/κ

‖vn‖22κ′

= o(1). (2.31)

From (2.5), (2.28) and the Gagliardo-Nirenberg inequality, we have

I2(un) ≤ C1‖un‖48/3 ≤ C7‖un‖32‖∇un‖2 ≤ C8‖∇un‖2. (2.32)

Thus, it follows from (2.9), (2.12), (2.30), (2.31) and (2.32) that

1 + o(1) =
‖un‖2 − 〈Φ′(un), un〉

‖un‖2

=
−I1(un) + I2(un) +

∫
R2 f(un)undx

‖un‖2

≤ C8

‖un‖
+

∫
Ωn

∣∣∣∣f(un)

un

∣∣∣∣ v2
ndx+

∫
R2\Ωn

∣∣∣∣f(un)

un

∣∣∣∣ v2
ndx

= o(1), (2.33)

which is a contradiction. Hence, {un} is bounded in H1(R2).

Lemma 2.4. Assume that (F1)-(F3) and (F5) hold. Let {un} ⊂ E be a sequence
satisfying (2.12). Then {un} is bounded in H1(R2).

Proof. First, we prove that {‖∇un‖2} is bounded. Arguing by contradiction, sup-

pose that ‖∇un‖2 → ∞. Inspired by [16, Proposition 3.3], we let tn = ‖∇un‖−1/2
2

and vn = t2n(un)tn . Then tn → 0 and

‖∇vn‖2 = 1, ‖vn‖qq = t2q−2
n ‖un‖qq, ∀ 2 ≤ q <∞. (2.34)

By (2.34) and the Gagliardo-Nirenberg inequality, one has

‖vn‖ss ≤ C9‖vn‖22‖∇vn‖s−2
2 = C10‖vn‖22, for s = p0, p1, p2. (2.35)

From (F5), (2.26), (2.34) and (2.35), we deduce

c+ o(1) = Φ(un)− 1

4
J(un)

≥ 1

32π
‖un‖42 −

α1

2

(
‖un‖p1p1 + ‖un‖p2p2

)
(2.36)

=
1

32π
t−4
n ‖vn‖42 −

α1

2

(
t−2p1+2
n ‖vn‖p1p1 + t−2p2+2

n ‖vn‖p2p2
)

≥ 1

32π
t−4
n ‖vn‖42 −

α1C10

2

(
t−2p1+2
n + t−2p2+2

n

)
‖vn‖22. (2.37)
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Multiplying the above inequalities by t4n and t4n| ln tn|, respectively, we have

1

32π
‖vn‖42 ≤ ct4n +

α1C10

2

[
t2(3−p1)
n + t2(3−p2)

n

]
‖vn‖22 + o(t4n)

≤ ct4n + 8πα2
1C

2
10

[
t4(3−p1)
n + t4(3−p2)

n

]
+

1

64π
‖vn‖42 + o(t4n) (2.38)

and

1

32π
| ln tn|‖vn‖42 ≤ ct4n| ln tn|+

α1C10

2

[
t2(3−p1)
n + t2(3−p2)

n

]
| ln tn|‖vn‖22

+o(t4n| ln tn|)

≤ ct4n| ln tn|+ 8πα2
1C

2
10

[
t4(3−p1)
n | ln tn|+ t4(3−p2)

n | ln tn|
]

+
1

64π
| ln tn|‖vn‖42 + o(t4n| ln tn|). (2.39)

Let τ > 0 and p0 − 3 ≤ τ < 3−max{p1, p2}. Since tn → 0 and |tn|q| ln tn| → 0 for
q > 0, it follows from (2.38), (2.39) and (F5) that

‖vn‖2 → 0, t−4τ
n ‖vn‖42 → 0, | ln tn|‖vn‖42 → 0. (2.40)

Thus, by (2.9), (2.11), (2.14) and (2.26), one has

c− Φ(vn) + o(1) = Φ(un)− Φ
(
t2n(un)tn

)
=

1− t4n
2
‖∇un‖22 +

1− t2n
2
‖un‖22 +

1− t4n
4

I0(un) +
t4n ln tn

8π
‖un‖42

+

∫
R2

[
1

t2n
F
(
t2nun

)
− F (un)

]
dx

=
1− t4n

4
J(un) +

t4n − 2t2n + 1

4
‖un‖22 +

1

32π
‖un‖42

+
1

2

∫
R2

[f(un)un − 3F (un)] dx+
t4n(4 ln tn − 1)

32π
‖un‖42

+

∫
R2

[
t4n
2
F (un) +

1

t2n
F
(
t2nun

)
− t4n

2
f(un)un

]
dx

= c+ o(1) +
t4n − 2t2n

4
‖un‖22 +

t4n(4 ln tn − 1)

32π
‖un‖42

+

∫
R2

[
t4n
2
F (un) +

1

t2n
F
(
t2nun

)
− t4n

2
f(un)un

]
dx. (2.41)

It follows from (2.17) with p = p0 that∣∣∣∣ t4n2 F (un) +
1

t2n
F
(
t2nun

)
− t4n

2
f(un)un

∣∣∣∣
≤
(
t4n + t2n

)
|un|2 + C11

(
t4n + t2p0−2

n

)
|un|p0 .

(2.42)

From (2.34),(2.35), (2.40), (2.41) and (2.42), one has

|Φ(vn)| =

∣∣∣∣ t4n − 2t2n
4

‖un‖22 +
t4n(4 ln tn − 1)

32π
‖un‖42

+

∫
R2

[
t4n
2
F (un) +

1

t2n
F (t2nun)− t4n

2
f(un)un

]
dx

∣∣∣∣+ o(1)
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≤ t2n + 2t4n
4

‖un‖22 +
t4n(4| ln tn|+ 1)

32π
‖un‖42

+
(
t4n + t2n

)
‖un‖22 + C11

(
t4n + t2p0−2

n

)
‖un‖p0p0 + o(1)

=
1 + 2t2n

4
‖vn‖22 +

4| ln tn|+ 1

32π
‖vn‖42

+
(
t2n + 1

)
‖vn‖22 + C11

(
t2(3−p0)
n + 1

)
‖vn‖p0p0 + o(1)

≤ C11t
−2τ
n ‖vn‖22 + o(1)

= o(1). (2.43)

Moreover, by (2.5), (2.17), (2.34), (2.40) and the Gagliardo-Nirenberg inequality,
one has

0 ≤ I2(vn) ≤ C1‖vn‖48/3 ≤ C12‖vn‖32 · ‖∇vn‖2 = o(1) (2.44)

and ∣∣∣∣∫
R2

F (vn)dx

∣∣∣∣ ≤ ‖vn‖22 + C13‖vn‖p0p0 ≤ ‖vn‖
2
2 + C14‖vn‖22 = o(1). (2.45)

Thus, it follows from (2.9), (2.34), (2.43), (2.44) and (2.45) that

o(1) = Φ(vn)

=
1

2
‖∇vn‖22 +

1

2
‖vn‖22 +

1

4
[I1(vn)− I2(vn)]−

∫
R2

F (vn)dx

≥ 1

2
+ o(1). (2.46)

This contradiction shows that {‖∇un‖2} is bounded. Next, we prove {‖un‖2} is
also bounded. By (2.36) and the Gagliardo-Nirenberg inequality, we have

1

32π
‖un‖42 ≤ c+

α1

2

(
‖un‖p1p1 + ‖un‖p2p2

)
+ o(1)

≤ c+
α1C15

2

(
‖un‖22‖∇un‖

p1−2
2 + ‖un‖22‖∇un‖

p2−2
2

)
+ o(1)

≤ c+ C16‖un‖22 + o(1), (2.47)

which implies that {‖un‖2} is also bounded. Hence, {un} is bounded in H1(R2).

To find nontrivial critical points of Φ, we present the following important lemma.

Lemma 2.5. [13, Lemma 2.1] Let {un} be be a sequence in L2(R2) such that
un → u ∈ L2(R2) \ {0} a.e. on R2. If {vn} be a bounded sequence in L2(R2) such
that

sup
n∈N

A1(u2
n, v

2
n) <∞,

then {‖vn‖∗} is bounded. If, moreover,

A1(u2
n, v

2
n)→ 0 and ‖vn‖2 → 0 as n→∞,

then ‖vn‖∗ → 0 as n→∞.



GROUND STATE SOLUTIONS OF NEHARI-POHOZAEV TYPE 5881

3. Least energy solutions. In this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. In view of Lemmas 2.2-2.4, there exists a sequence {un} ⊂ E
satisfying (2.12) and ‖un‖2 ≤M1 for some constant M1 > 0. If

δ := lim sup
n→∞

sup
y∈R2

∫
B2(y)

|un|2dx = 0,

then by Lions’ concentration compactness principle [25] or [40, Lemma 1.21], un → 0
as n → ∞ in Ls(R2) for s > 2. This, together with (2.5), implies that I2(un) → 0
as n→∞. By (2.17), for ε = c/(3M1), there exists Cε > 0 such that∫

R2

∣∣∣∣12f(un)un − F (un)

∣∣∣∣dx ≤ 3

2
ε‖un‖22 + Cε‖un‖pp ≤

c

2
+ o(1). (3.1)

Thus, it follows from (2.9), (2.10), (2.12) and (3.1) that

c+ o(1) = Φ(un)− 1

2
〈Φ′(un), un〉

= −1

4
I1(un) +

1

4
I2(un) +

∫
R2

[
1

2
f(un)un − F (un)

]
dx

≤ c

2
+ o(1). (3.2)

This contradiction shows δ > 0.
Going if necessary to a subsequence, we may assume the existence of yn ∈ R2

such that ∫
B1(yn)

|un|2dx >
δ

2
. (3.3)

Let ũn(x) = un(x+ yn). Then ∫
B1(0)

|ũn|2dx >
δ

2
. (3.4)

Note that

‖ũn‖2∗ =

∫
R2

ln(1 + |x− yn|)u2
ndx ≤ ‖un‖2∗ + ln(1 + |yn|)‖un‖22. (3.5)

Thus ũn ∈ E for every n ∈ N. Since ‖ũn‖ = ‖un‖ and Ii(ũn) = Ii(un) for i = 0, 1, 2,
then (2.12) implies

Φ(ũn)→ c > 0, 〈Φ′(ũn), ũn〉 → 0, n→∞. (3.6)

Passing to a subsequence, we have ũn ⇀ u0 in H1(R2), ũn → u0 in Lsloc(R2) for
s ∈ [2,∞) and ũn → u0 a.e. on R2 as n→∞. Thus, (3.4) implies that u0 6= 0. By
(2.5), (2.10), (2.17), (3.6) and Sobolev embedding inequality that

‖ũn‖2 + I1(ũn) + o(1) = I2(ũn) +

∫
R2

f(ũn)ũndx

≤ C1‖ũn‖48/3 + ‖ũn‖22 + C1‖ũn‖pp

≤ C2‖ũn‖4 + ‖ũn‖2 + C3‖ũn‖p, (3.7)

which implies that supn∈N I1(ũn) = supn∈NA1(ũ2
n, ũ

2
n) <∞ due to the boundedness

of {‖ũn‖}. Applying Lemma 2.5, {‖ũn‖∗} is bounded. Hence, {ũn} is bounded in
E. We may thus assume, passing to a subsequence again if necessary, that as n→∞
ũn ⇀ u0 in E, ũn → u0 in Ls(R2) for s ∈ [2,∞), ũn → u0 a.e. on R2. (3.8)
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Now, we prove that Φ′(u0) = 0. To this end, we claim that

〈Φ′(u0), w〉 = lim
n→∞

〈Φ′(ũn), w〉 = lim
n→∞

〈Φ′(un), w(· − yn)〉 = 0, ∀ w ∈ E. (3.9)

In fact, it is easy to see that

‖w(·−yn)‖2E = ‖w‖2+

∫
R2

ln(1+|x+yn|)w2dx ≤ ‖w‖2E+ln(1+|yn|)‖w‖22, ∀ w ∈ E.

(3.10)
Moreover, by (3.4), we have

‖un‖2∗ =

∫
R2

ln(1 + |x+ yn|)ũ2
ndx

≥
∫
B1(0)

ln(1 + |x+ yn|)ũ2
ndx

≥ δ ln |yn|
2

≥ δ ln(1 + |yn|)
4

, ∀ |yn| ≥ 2. (3.11)

From (3.10) and (3.11), we deduce

‖w(· − yn)‖2E ≤ ‖w‖2E +

(
4‖un‖2∗
δ

+ ln 3

)
‖w‖22, ∀ w ∈ E, n ∈ N. (3.12)

Thus, it follows from (2.10), (2.12) and (3.12) that

|〈Φ′(ũn), w〉| = |〈Φ′(un), w(· − yn)〉|

≤ ‖Φ′(un)‖E∗
[
‖w‖2E +

(
4‖un‖2∗
δ

+ ln 3

)
‖w‖22

]1/2

= o(1), ∀ w ∈ E. (3.13)

Then it follows from (3.13) that

〈Φ′(ũn), u0〉 = o(1). (3.14)

By (2.5) and (3.8), one has

|A2

(
ũ2
n, ũn(ũn − u0)

)
| ≤ C1‖ũn‖38/3‖ũn − u0‖8/3 = o(1). (3.15)

Using (F1), (F2), (3.8) and Lebesgue’s dominated convergence theorem, a standard
argument shows that ∫

R2

f(ũn)(ũn − u0)dx = o(1). (3.16)

According to [13, Lemma 2.6], we have

A1

(
ũ2
n, (ũn − u0)w

)
= o(1), ∀ w ∈ E. (3.17)

Thus, it follows from (3.6), (3.8), (3.14), (3.15), (3.16) and (3.17) that

o(1) = 〈Φ′(ũn), ũn − u0〉
= ‖ũn‖2 − ‖u0‖2 +A1

(
ũ2
n, (ũn − u0)2

)
+A1

(
ũ2
n, (ũn − u0)u0

)
−A2

(
ũ2
n, ũn(ũn − u0)

)
−
∫
R2

f(ũn)(ũn − u0)dx

= ‖ũn‖2 − ‖u0‖2 +A1

(
ũ2
n, (ũn − u0)2

)
+ o(1), (3.18)

which, together with ũn ⇀ u0 in H1(R2), yields

‖ũn − u0‖ → 0, A1

(
ũ2
n, (ũn − u0)2

)
→ 0. (3.19)
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Applying Lemma 2.5, we have ‖ũn− u0‖∗ → 0. Hence, ‖ũn− u0‖E → 0. From this
and (2.7), we have

|A1(ũ2
n − u2

0, u0w)| ≤ ‖ũn − u0‖∗‖ũn + u0‖∗‖u0‖2‖w‖2
+‖ũn − u0‖2‖ũn + u0‖2‖u0‖∗‖w‖∗

= o(1), ∀ w ∈ E. (3.20)

Similar to (3.15) and (3.16), we can get

A2

(
ũ2
n, (ũn − u0)w

)
= o(1), A2

(
ũ2
n − u2

0, u0w
)

= o(1) (3.21)

and ∫
R2

[f(ũn)− f(u0)]wdx = o(1), ∀ w ∈ E. (3.22)

Then, from (2.10), (3.8), (3.17), (3.20), (3.21) and (3.22), we deduce that

〈Φ′(ũn)− Φ′(u0), w〉
= (ũn − u0, w) +A1

(
ũ2
n, (ũn − u0)w

)
+A1

(
ũ2
n − u2

0, u0w
)

−A2

(
ũ2
n, (ũn − u0)w

)
−A2

(
ũ2
n − u2

0, u0w
)
−
∫
R2

[f(ũn)− f(u0)]wdx

= o(1), ∀ w ∈ E. (3.23)

Therefore, (3.9) follows from (3.13) and (3.23). This shows that u0 ∈ E is a non-
trivial solution of (1.1), and Φ(u0) = c > 0.

Set

K := {u ∈ E \ {0} : Φ′(u) = 0}.
Since u0 ∈ K, we have K 6= ∅. By (F1) and (F2), there exist C4 > 0 and q1 ≥ 4
such that

|f(u)u| ≤ 1

2
u2 + C4|u|q1 , ∀ u ∈ R. (3.24)

Since 〈Φ′(u), u〉 = 0, ∀u ∈ K, by (2.10), (3.24) and Sobolev embedding inequality,
one has

‖u‖2 ≤ ‖u‖2 + I1(u) = I2(u) +

∫
R2

f(u)udx (3.25)

≤ C5‖u‖4 +
1

2
‖u‖2 + C6‖u‖q1 , ∀ u ∈ K,

which implies

‖u‖ ≥ %0 := min
{

1, 2−1/2(C5 + C6)−1/2
}
> 0, ∀ u ∈ K. (3.26)

It is easy to see that infK Φ > −∞. Next, we let {un} ⊂ K and Φ(un) → infK Φ.
Then, the sequence {un} satisfies (2.12). Under assumptions of Theorem 1.1, we
conclude from Lemmas 2.3 and 2.4 that {un} is bounded in H1(R2). We claim that
{un} does not vanish. Otherwise, if {un} is a vanishing sequence, then by Lions’
concentration compactness principle [25] or [40, Lemma 1.21], we have un → 0 in
Ls(R2) for 2 < s <∞. Thus, using (2.5) and (2.17), it is easy to see that

I2(un) = o(1),

∫
R2

f(un)undx = o(1).

From this, (3.25) and (3.26), we deduce a contradiction. By the same argument as
above, there exists û ∈ K such that Φ(û) = infK Φ > −∞. This shows that û ∈ E
is a least energy solution of (1.1).
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4. Ground state solutions. In this section, we give the proof of Theorem 1.2.
Inspired by [34–36], first, we establish some new inequalities to find ground state
solutions for (1.1).

Lemma 4.1. Assume that (F1), (F2) and (F6) hold. Then

g(t, u) :=
1− t4

2
f(u)u+

t4 − 3

2
F (u)+

1

t2
F (t2u)+

(1− t2)2

4
u2 ≥ 0, ∀ t > 0, u ∈ R.

(4.1)

Proof. Using (F1) and (F2), it is easy to see that (4.1) holds for u = 0. For any
fixed u 6= 0, by (F6), one has

d(g(t, u))

dt
= 2t3|u|3

[
f(t2u)t2u− F (t2u)

t6|u|3
− f(u)u− F (u)

|u|3
− (1− t2)

2t2|u|

]
{
≥ 0, t ≥ 1,
≤ 0, 0 < t < 1,

which implies that g(t, u) ≥ g(1, u) = 0 for t > 0.

Lemma 4.2. Assume that (F1), (F2) and (F6) hold. Then

Φ(u) ≥ Φ(t2ut) +
1− t4

4
J(u), ∀ u ∈ E, t > 0, (4.2)

Φ(u) ≥ 1

4
J(u) +

1

32π
‖u‖42, ∀ u ∈ E. (4.3)

Proof. By an elementary computation, one has

1− t4 + 4t4 ln t ≥ 0, ∀ t > 0. (4.4)

From (2.11), (2.14), (4.1) and (4.4), we deduce that

Φ(u)− Φ(t2ut) =
1

2

∫
R2

[
(1− t4)|∇u|2 + (1− t2)u2

]
dx+

1− t4

4
I0(u)

+
t4 ln t

8π
‖u‖42 +

∫
R2

[
1

t2
F (t2u)− F (u)

]
dx

=
1− t4

4
J(u) +

(1− t2)2

4

∫
R2

u2dx+
1− t4 + 4t4 ln t

32π
‖u‖42

+

∫
R2

[
1− t4

2
f(u)u+

t4 − 3

2
F (u) +

1

t2
F (t2u)

]
dx

≥ 1− t4

4
J(u), ∀ u ∈ E, t > 0.

This shows that (4.2) holds. Note that (F1), (F2) and (4.1) imply

lim
t→0

g(t, u) =
1

2
f(u)u− 3

2
F (u) +

1

4
u2 ≥ 0, u ∈ R. (4.5)

Thus, it follows from (2.9), (2.11) and (4.5) that

Φ(u)− 1

4
J(u) =

1

32π
‖u‖42 +

∫
R2

[
1

2
f(u)u− 3

2
F (u) +

1

4
u2

]
dx

≥ 1

32π
‖u‖42, ∀ u ∈ E.

This shows that (4.3) holds.
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From Lemma 4.2, we have the following corollary immediately.

Corollary 4.3. Assume that (F1), (F2) and (F6) hold. Then

Φ(u) = max
t>0

Φ(t2ut), ∀ u ∈M. (4.6)

Lemma 4.4. Assume that (F1)-(F3) and (F6) hold. Then for any u ∈ E \ {0},
there exists a constant t(u) > 0 such that t(u)2ut(u) ∈M.

Proof. Let u ∈ E \ {0} be fixed and define a function ζ(t) := Φ(t2ut) on (0,∞).
Clearly, by (2.11) and (2.14), we have

ζ ′(t) = 0 ⇔
∫
R2

(
2t3|∇u|2 + tu2

)
dx+ t3I0(u)− 4t3 ln t+ t3

8π
‖u‖42

+
2

t3

∫
R2

F (t2u)dx− 2

t

∫
R2

f(t2u)udx = 0

⇔ J(t2ut) = 0 ⇔ t2ut ∈M, ∀ t > 0.

It is easy to verify, using (F1)-(F3), that limt→0 ζ(t) = 0, ζ(t) > 0 for t > 0 small
and ζ(t) < 0 for t large. Therefore maxt∈(0,∞) ζ(t) is achieved at t0 = t(u) > 0 so

that ζ ′(t0) = 0 and t20ut0 ∈M.

Lemma 4.5. Assume that (F1)-(F3) and (F6) hold. Then

inf
u∈M

Φ(u) := m = inf
u∈E\{0}

max
t>0

Φ(t2ut). (4.7)

Proof. Combining Corollary 4.3 and Lemma 4.4, we obtain the conclusion stated
here.

Lemma 4.6. Assume that (F1)-(F3) and (F6) hold. Then

(i) there exists % > 0 such that ‖u‖ ≥ %, ∀ u ∈M;
(ii) m = infu∈M Φ(u) > 0.

Proof. (i) By (F1) and (F2), there exist C1 > 0 and q2 ≥ 4 such that

|f(u)u|+ |F (u)| ≤ 1

4
u2 + C1|u|q2 , ∀ u ∈ R. (4.8)

Since J(u) = 0, ∀u ∈ M, by (2.11), (4.8) and Sobolev embedding inequality, one
has

‖u‖2 ≤ 2‖∇u‖22 + ‖u‖22 + I1(u) = I2(u) +
1

8π
‖u‖42 + 2

∫
R2

[f(u)u− F (u)]dx

≤ C2‖u‖4 +
1

2
‖u‖2 + C3‖u‖q2 , ∀ u ∈M, (4.9)

which implies

‖u‖ ≥ % := min
{

1, 2−1/2(C2 + C3)−1/2
}
, ∀ u ∈M. (4.10)

(ii) Let {un} ⊂ M be such that Φ(un) → m. There are two possible cases: 1)
infn∈N ‖un‖2 > 0 or 2) infn∈N ‖un‖2 = 0.

Case 1). infn∈N ‖un‖2 := %1 > 0. In this case, from (4.3), one has

m+ o(1) = Φ(un) ≥ 1

32π
‖un‖42 ≥

1

32π
%4

1. (4.11)

Case 2). infn∈N ‖un‖2 = 0. In view of (4.10), passing to a subsequence, we have

‖un‖2 → 0, ‖∇un‖2 ≥ %. (4.12)
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By (2.5) and the Gagliardo-Nirenberg inequality, one has

0 ≤ I2(un) ≤ C1‖un‖48/3 ≤ C4‖un‖32‖∇un‖2, ‖un‖pp ≤ C5‖un‖22‖∇un‖
p−2
2 . (4.13)

Moreover, using (4.12), it is easy to see that

| ln(‖∇un‖2)|
‖∇un‖22

≤ C6. (4.14)

Let tn = ‖∇un‖−1/2
2 . Since J(un) = 0, it follows from (2.5), (2.14), (2.17), (4.6),

(4.12), (4.13) and (4.14) that

m+ o(1) = Φ(un) ≥ Φ(t2n(un)tn)

=
t4n
2
‖∇un‖22 +

t2n
2
‖un‖22 +

t4n
4

[I1(un)− I2(un)]− t4n ln tn
8π

‖un‖42

− 1

t2n

∫
R2

F (t2nun)dx

≥ t4n
2
‖∇un‖22 −

t4n
4
I2(un)− t4n ln tn

8π
‖un‖42

− 1

t2n

∫
R2

[
|t2nun|2 + C7|t2nun|p

]
dx

≥ t4n
2
‖∇un‖22 −

C4

4
t4n‖un‖32‖∇un‖2 −

t4n ln tn
8π

‖un‖42

−t2n‖un‖22 − C8t
2p−2
n ‖un‖22‖∇un‖

p−2
2

=
1

2
− C4‖un‖32

4‖∇un‖2
+

ln(‖∇un‖2)

16π‖∇un‖22
‖un‖42 −

‖un‖22
‖∇un‖2

− C8‖un‖22
‖∇un‖2

=
1

2
+ o(1).

Cases 1) and 2) show that m = infu∈M Φ(u) > 0.

In the following, we will show that the Cerami sequence {un} obtained in Lemma
2.2 is a minimizing sequence for Φ. This idea goes back to Tang [32,33].

Lemma 4.7. Assume that (F1)-(F3) and (F6) hold. Then there exists a sequence
{un} ⊂ E satisfying

Φ(un)→ c ∈ (0,m], ‖Φ′(un)‖E∗(1 + ‖un‖E)→ 0, J(un)→ 0. (4.15)

Proof. In view of Lemmas 4.5 and 4.6, we choose vk ∈M such that

0 < m ≤ Φ(vk) < m+
1

k
, k ∈ N. (4.16)

Applying Lemma 2.2, there exists a sequence {un}n∈N ⊂ E satisfying (2.12).
Now we choose Tk > 0 such that Φ(T 2

k (vk)Tk
) < 0. Let γk(t) = (tTk)2(vk)tTk

for t ∈ [0, 1]. Then γk ∈ Γ. Moreover, using (2.19), it is easy to see that
c ∈ [a0, supt>0 Φ(t2(vk)t)]. By virtue of Corollary 4.3, one has Φ(vk) = supt>0 Φ(t2

(vk)t). Hence, by (4.16), one has

c ≤ sup
t>0

Φ(t2(vk)t) < m+
1

k
, k ∈ N. (4.17)

Let k →∞. Then we deduce the conclusion by Lemma 2.2.
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Proof of Theorem 1.2. In view of Lemma 4.7, there exists a sequence {un} ⊂ E
satisfying (4.15). Then, it follows from (4.3) and (4.15) that

c+ o(1) = Φ(un)− 1

4
J(un) ≥ 1

32π
‖un‖42. (4.18)

This shows that {‖un‖2} is bounded. Now, we prove that {‖∇un‖2} is also bounded.
Arguing by contradiction, suppose that ‖∇un‖2 →∞. By the Gagliardo-Nirenberg
inequality, one has

‖un‖pp ≤ C1‖un‖22‖∇un‖
p−2
2 , 0 ≤ I2(un) ≤ C1‖un‖48/3 ≤ C2‖un‖32‖∇un‖2. (4.19)

Let tn = (2
√
m/‖∇un‖2)1/2. Since tn → 0, we have t4n ln tn → 0. Thus, it follows

from (2.5), (2.14), (2.17), (4.2), (4.15), (4.18) and (4.19) that

m+ o(1) ≥ c+ o(1) = Φ(un)

≥ Φ(t2n(un)tn) +
1− t4n

4
J(un)

=
t4n
2
‖∇un‖22 +

t2n
2
‖un‖22 +

t4n
4

[I1(un)− I2(un)]− t4n ln tn
8π

‖un‖42

− 1

t2n

∫
R2

F (t2nun)dx

≥ t4n
2
‖∇un‖22 −

t4n
4
I2(un)− t2n‖un‖22 − C3t

2p−2
n ‖un‖pp + o(1)

≥ t4n
2
‖∇un‖22 − C2t

4
n‖un‖32‖∇un‖2 − t2n‖un‖22

−C4t
2p−2
n ‖un‖22‖∇un‖

p−2
2 + o(1)

= 2m− 4C2m

‖∇un‖2
‖un‖32 −

2
√
m

‖∇un‖2
‖un‖22 −

C4(2
√
m)p−1

‖∇un‖2
‖un‖22 + o(1)

= 2m+ o(1). (4.20)

This contradiction implies that {‖∇un‖2} is also bounded, and so {un} is bounded
in H1(R2). By the same argument as in the first part of the proof of Theorem 1.1,
we conclude that there exists ū ∈ E\{0} such that Φ′(ū) = 0 and Φ(ū) = c ∈ (0,m].
Moreover, since ū ∈ M, we have Φ(ū) ≥ m. This shows that ū ∈ E is a ground
state solution for (1.1) with Φ(ū) = m = infM Φ > 0.
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