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a b s t r a c t

In this paper, a reaction–diffusion equation with age structure and nonlocal effect
for the maturation, growth and spatial distribution of phytoplankton in a water
column is derived, and the threshold dynamics for the model is completely clas-
sified. It is shown that the death rate and maturation time of the phytoplankton
both affect the dynamics of the model. The phytoplankton species could die out if
the death rate is greater than a critical death rate. However, when the death rate
is less than the critical value, there exists another threshold for the maturation
period such that the unique positive steady state (respectively, the trivial steady
state) is globally attractive if the maturation period is less (respectively, greater)
than the threshold value.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Phytoplankton are drifting organisms that live in the water column of oceans, seas, lakes and rivers, and
they play a fundamental role in the global carbon cycle and marine food webs. The growth of phytoplankton
needs two essential resources: light and nutrients, but in eutrophic ecosystems with ample nutrient supply,
phytoplankton tend to compete only for light. Reaction–diffusion models have been proposed to study the
effect of incomplete mixing on the growth of the phytoplankton species in an eutrophic environment [1–4].

It is known that the propagation of the phytoplankton could be accomplished through cell division or
production of spores, see [5] for modeling the phytoplankton species which reproduce by simple division.
Therefore, it takes time for the phytoplankton population from birth to maturity. Also for some algae, such
as some kinds of Cyanophyta and Rhodophyta, the nonmotile aplanospores are the dominant contribution
for propagation. Hence in these cases, the effect of maturation time should be incorporated into the
mathematical modeling of phytoplankton growth and spatial distribution in a water column.
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Here considering the maturation time of phytoplankton, we derive a reaction–diffusion model of phyto-
plankton population concentration with age structure by using the baseline model in [1,4] and the diffusive
age structured population models in [6–8]. Let z(x, t, a) be the density of the phytoplankton of age a at
depth x and time t, and let τ be the period of maturation. Then the density of the mature phytoplankton is

u(x, t) =
∫ ∞

τ

z(x, t, a)da. (1.1)

We start from the standard age-structured equation (see [7]):

∂z(x, t, a)
∂t

+ ∂z(x, t, a)
∂a

= D(a)∂
2z(x, t, a)
∂x2 − d(a)z(x, t, a), (1.2)

where D(a) and d(a) are the diffusion coefficient and death rate of the phytoplankton, respectively, and x

is the depth of the water column where x = 0 is the water surface and x = L is the bottom of the water
column. The birth rate of the phytoplankton is given by (see [1,4])

z(x, t, 0) = g(I(x, t))u(x, t) = g

(
I0e

−k0x−k
∫ x

0
u(s,t)ds

)
u(x, t), (1.3)

where g(I) is the growth rate per capita of the phytoplankton species as a function of light intensity I(x, t),
and it satisfies

g(0) = 0, g′(I) > 0 for I ≥ 0; (1.4)

and the light intensity I(x, t) takes the form

I(x, t) = I0e
−k0x exp

(
−k

∫ x

0
u(s, t)ds

)
. (1.5)

For the simplicity of modeling, we impose the following two assumptions:

(i) The diffusion and death rates of the immature and mature phytoplankton are constants, respectively.
(ii) The diffusion rate of the immature phytoplankton is very small, and we assume it is equal to zero. That

is, the immature phytoplankton (spore etc.) are nonmotile.

From these assumptions, we have

D(a) =
{

0, a ≤ τ,

D, a > τ.
, d(a) =

{
γ, a ≤ τ,

d, a > τ.

Combining these assumptions, we have

∂u

∂t
=

∫ ∞

τ

∂z

∂t
da = D

∂2u

∂x2 − du−
∫ ∞

τ

∂z

∂a
da

=D∂
2u

∂x2 − du+ z(x, t, τ),
(1.6)

where z(x, t, τ) is the adult recruitment term. Since

∂z(x, t, a)
∂t

+ ∂z(x, t, a)
∂a

= −γz(x, t, a) for a ≤ τ, (1.7)

invoking Eq. (1.3), we have
z(x, t, τ) = e−γτg(I(x, t− τ))u(x, t− τ).
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Fig. 1. Threshold dynamics of model (1.8) with respect to parameters d and τ .

Therefore the density of the mature phytoplankton u(x, t) satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u

∂t
= D

∂2u

∂x2 + e−γτg(I(x, t− τ))u(x, t− τ) − du, x ∈ (0, L), t > 0,
∂u(0, t)
∂x

= ∂u(L, t)
∂x

= 0, t > 0,

u(x, t) = ϕ(x, t) ≥ 0, x ∈ (0, L), t ∈ [−τ, 0],

(1.8)

where D, d, γ > 0 and τ ≥ 0, g and I satisfy Eqs. (1.4) and (1.5) respectively. Without loss of generality,
we assume that L = 1 and I0 = 1 throughout the paper. Notice that when τ = 0, (1.8) becomes the
previous model studied in [1,4]. In that case, detailed mathematical analysis for the single and two species
cases is derived in [1], and further investigation on the nonlocal phytoplankton models could also be found
in [2,9–11] and references therein. Mathematical models of phytoplankton growth and nutrient abundance
have also been constructed and analyzed [12–18].

Denote
Ψ0(x) := −g(e−k0x), d∗ = −λ1(Ψ0), (1.9)

where λ1(Ψ) is defined as the smallest eigenvalue of the following equation{
−Dψ′′ + Ψ(x)ψ = λψ, x ∈ (0, 1),
ψ′(0) = 0, ψ′(1) = 0.

(1.10)

For the case of τ = 0, Du and Hsu [1] obtained that if d ≥ d∗, model (1.8) has no positive steady state,
and the trivial steady state 0 attracts all the solutions u(x, t) with the initial condition u(x, 0) ≥ 0, and if
d ∈ (0, d∗), Eq. (1.8) has a unique positive steady state ϕd which attracts all the solutions u(x, t) with the
initial condition u(x, 0) ≥ (̸̸≡)0. In this paper, we mainly deal with the dynamics of model (1.8) for the case
of τ > 0, and our main results are as follows:

(i) If d ≥ d∗, then u(x, t) converges uniformly to the trivial steady state as t → ∞.
(ii) If d < d∗, then there exists τd > 0 such that when 0 < τ < τd, u(x, t) converges uniformly to the

positive steady state ϕd as t → ∞, and when τ ≥ τd, u(x, t) converges uniformly to the trivial steady
state as t → ∞. Moreover τd is strictly decreasing in d and τd → 0 as d → d−

∗ (see Fig. 1).

Delayed reaction–diffusion equations have been investigated extensively, regarding the stability of the
equilibrium, and the associated steady state and Hopf bifurcations, see [19–24] and references therein. Here
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the time delay could account for the maturation time for population species or the incubation period for
diseases, and a large time delay may lead to temporal oscillation [25–30] or be harmless [31–35]. For instance,
the following diffusive Nicholson’s blowflies model{

ut = d∆u+ pu(x, t− τ)e−au(x,t−τ) − δu, x ∈ Ω , t > 0,
∂nu = 0, x ∈ ∂Ω , t > 0,

(1.11)

was studied in [36], and it was shown that if 1 ≤ p/δ ≤ e, the delay is harmless, which means that the positive
equilibrium is globally asymptotically stable regardless of the magnitude of delay τ , and if p/δ > e2, delay
may be harmful and make the positive equilibrium unstable through Hopf bifurcation. For the gap range
e < p/δ ≤ e2, it was proved in [37] that the delay is harmless. Dirichlet boundary value problem of (1.11) is
also considered in [38,39]. Moreover, we refer to [40–46] and references therein for the effect of delay on the
diffusive logistic population model.

The rest of this paper is organized as follows. In Section 2, we prove the global existence of solutions
of (1.8). In Section 3, motivated by the method of [1], we obtain the global attractivity of the nonnegative
steady states for model (1.8). Some numerical simulations are included to support our theoretical results at
the end.

2. Global existence

In this section, we show that the solution of model (1.8) exists on [−r,∞). Firstly, denote X = C([0, 1],R),
C = C([−τ, 0], X), and A : Dom(A) ⊂ X → X by

Aψ = d2ψ

dx2 − dψ.

where
Dom(A) = {ϕ(x) ∈ C2([0, 1],R) : ϕx(0) = ϕx(1) = 0}.

Moreover, denote C+ := {ψ(x, t) ∈ C : ψ(x, t) ≥ 0 for 0 ≤ x ≤ 1,−τ ≤ t ≤ 0} and X+ = {ψ(x) ∈ X : ψ(x) ≥
0 for 0 ≤ x ≤ 1}. It is known that A generates an analytic, compact and strongly positive semigroup T (t)
on X. Define F : C → X by

F (Φ) = e−γτg

(
e

−k0x−k
∫ x

0
Φ(s,−τ)ds

)
Φ(x,−τ), (2.1)

where Φ ∈ C. Then we consider the following integral equation⎧⎨⎩u(t) = T (t)ϕ(0) +
∫ t

0
T (t− s)F (us)ds, t > 0,

u(t) = ϕ ∈ C, −τ ≤ t ≤ 0.
(2.2)

for which the solution is called the mild solution of (1.8). Here us = u(x, s+ θ)(θ ∈ [−τ, 0]) ∈ C.

Proposition 2.1. For any ϕ ∈ C+, Eq. (2.2) has a unique solution u(t, ϕ) existing on [0,∞), and u(t, ϕ) is
a classical solution of Eq. (1.8) when t > τ .

Proof. We first prove that for any ϕ ∈ C+, there exists a unique solution u(t, ϕ) defined on its maximal
interval of existence [−r, tϕ). For any R > 0, if ∥Φ∥C , ∥Ψ∥C ≤ R, we have

∥F (Φ)(x) − F (Ψ)(x)∥X

≤∥g
(
e

−k0x−k
∫ x

0
Φ(s,−τ)ds

)
Φ(x,−τ) − g

(
e

−k0x−k
∫ x

0
Ψ(s,−τ)ds

)
Ψ(x,−τ)∥X

=(g(1) +R max
x∈[0,1]

|g′(x)|)∥Φ − Ψ∥C ,

(2.3)
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which implies that F : C → X is locally Lipschitz continuous. It follows from [24, Chapter 2, Theorem 2.6]
that, for any ϕ ∈ C, there exists a unique solution u(t, ϕ) of (2.2) on its maximal interval [−r, tϕ), and u(t, ϕ)
is a classical solution of Eq. (1.8) when t > τ . Moreover, a direct calculation implies that ∥F (Φ)(x)∥X ≤
g(1)∥Φ∥C for any Φ ∈ C, which yields tϕ = ∞ from [24, Chapter 2, Theorem 2.3]. □

Then we can arrive at the following global existence result.

Theorem 2.2. For any initial value ϕ ∈ C+, the corresponding solution u(t, ϕ) of (2.2) satisfies u(t, ϕ) ∈ X+

for any t ∈ (0,∞). Especially, if ϕ(x, 0) ∈ X+ and ϕ(x, 0) ̸≡ 0, then u(t, ϕ) ⊂ Int(X+) for any t ∈ (0,∞),
where

Int(X+) = {ϕ ∈ X+ : ϕ(x) > 0 for x ∈ [0, 1]}.

Proof. For any initial value ϕ ∈ C+, the corresponding solution u(t, ϕ) satisfies⎧⎨⎩u(t) = T (t)ϕ(0) +
∫ t

0
T (t− s)F (us)ds, t > 0,

u(0) = ϕ(x, 0).

Since g(I) ≥ 0 for any I ≥ 0, it follows that F (us) ∈ X+ for any 0 < s ≤ τ . Noticing that T (t) is a strongly
positive semigroup on X, we have u(t, ϕ)(x) ≥ T (t)ϕ(0)(x) ≥ 0 for t ∈ [0, τ ]. Therefore, by the method of
step, we obtain that the corresponding solution u(t, ϕ) of (2.2) satisfies u(t, ϕ) ∈ X+ for any t ∈ [0,∞). Then,
by virtue of the maximum principle, we see that u(t, ϕ) ⊂ Int(X+), if ϕ(x, 0) ∈ X+ and ϕ(x, 0) ̸≡ 0. □

3. Globally attractivity

In this section, we aim to prove the threshold dynamics for model (1.8). Firstly, we modify the arguments
in the proof of [1, Lemma 3.1] to derive the following comparison lemma for the delayed case.

Lemma 3.1. Assume that u, ũ ∈ C2,1([0, 1] × (0,∞)) ∩ C([0, 1] × [−τ,∞)) satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)
∂t

≤ D
∂2u(x, t)
∂x2 − du(x, t)

+ e−γτg

(
e

−k0x−k
∫ x

0
u(s,t−τ)ds

)
u(x, t− τ), x ∈ (0, 1), t > 0,

∂u(0, t)
∂x

= ∂u(1, t)
∂x

= 0, t > 0,

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ũ(x, t)
∂t

≥ D
∂2ũ(x, t)
∂x2 − dũ(x, t),

+ e−γτg

(
e

−k0x−k
∫ x

0
ũ(s,t−τ)ds

)
ũ(x, t− τ) x ∈ (0, 1), t > 0,

∂ũ(0, t)
∂x

= ∂ũ(1, t)
∂x

= 0, t > 0.

If u(x, t) < ũ(x, t) for x ∈ [0, 1], t ∈ [−τ, 0], then

v(x, t) =
∫ x

0
u(s, t)ds < ṽ(x, t) =

∫ x

0
ũ(s, t)ds (3.1)

for any x ∈ (0, 1], t > 0.
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Proof. We only prove that v(x, t) < ṽ(x, t) for x ∈ (0, 1], t ∈ [0, τ ], and then Eq. (3.1) can be obtained by
the method of step.

Noticing that v(x, t) =
∫ x

0 u(s, t)ds, we have

∂v

∂t
≤D∂2v

∂x2 − dv + e−γτ

∫ x

0
g

(
e−k0x−kv(s,t−τ)

)
u(s, t− τ)ds

=D∂2v

∂x2 − dv − k0k
−1e−γτ

∫ x

0
g

(
e−k0s−kv(s,t−τ)

)
ds

+ k−1e−γτ

∫ x

0
g

(
e−k0x−kv(s,t−τ)

)
d(k0s+ kv(s, t− τ))

=D∂2v

∂x2 − dv − k0k
−1e−γτ

∫ x

0
g

(
e−k0s−kv(s,t−τ)

)
ds+G(k0x+ kv(x, t− τ)),

where G(x) = k−1e−γτ
∫ x

0 g(e−y)dy. Denote w(t) := v(1, t) =
∫ 1

0 u(s, t)ds, which satisfies

w′(t) ≤ −dw +G(k0 + kv(1, t− τ)) − k0k
−1e−γτ

∫ 1

0
g

(
e−k0s−kv(s,t−τ)

)
ds.

Similarly, we have

∂ṽ

∂t
≥ D

∂2ṽ

∂x2 − dṽ +G(k0x+ kṽ(x, t− τ)) − k0k
−1e−γτ

∫ x

0
g

(
e−k0s−kṽ(s,t−τ)

)
ds.

Letting w̃(t) := ṽ(1, t) =
∫ 1

0 ũ(s, t)ds, we also obtain that

w̃′(t) ≥ −dw +G(k0 + kṽ(1, t− τ)) − k0k
−1e−γτ

∫ 1

0
g

(
e−k0s−kṽ(s,t−τ)

)
ds.

Since u(x, t) < ũ(x, t) for x ∈ [0, 1], t ∈ [−τ, 0], it follows that v(x, t−τ) < ṽ(x, t−τ) for x ∈ (0, 1], t ∈ [0, τ ].
Since G and g are strictly increasing, it follows from the comparison principle that w̃(t) > w(t) for t ∈ [0, τ ].
Consequently, we have⎧⎪⎪⎨⎪⎪⎩

∂(ṽ − v)
∂t

≥ D
∂2(ṽ − v)
∂x2 − d(ṽ − v), x ∈ (0, 1), 0 < t ≤ τ,

(ṽ − v)(0, t) = 0, (ṽ − v)(1, t) = (w̃ − w)(t) > 0, 0 < t ≤ τ,

(ṽ − v)(x, 0) > 0, x ∈ (0, 1).

Then, by virtue of the strong maximum principle, we obtain that v(x, t) < ṽ(x, t) for x ∈ (0, 1], t ∈ [0, τ ].
This completes the proof. □

Next we derive the following boundedness lemma, and the proof here modifies the arguments in the proof
of [1, Lemma 3.2].

Lemma 3.2. Let u(x, t) be the unique solution of (1.8) with the initial value ϕ ∈ C+ and ϕ(x, 0) ̸≡ 0. Then
there exists C > 0 such that u(x, t) ≤ C for x ∈ [0, 1], t > 0.

Proof. It follows from Proposition 2.1 that u(x, t) is a classical solution of (1.8) for t > τ and, for t > τ ,
u(x, t) satisfies

∂u

∂t
=D∂

2u

∂x2 + e−γτg

(
e

−k0x−k
∫ x

0
u(s,t−τ)ds

)
u(x, t− τ) − du

≤D∂
2u

∂x2 − du+ ( max
0≤x≤1

g′(x))e−k
∫ x

0
u(s,t−τ)ds

u(x, t− τ).
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Denote w(t) :=
∫ 1

0 u(s, t)ds, and consequently, we have

w′(t) + dw ≤ ( max
0≤x≤1

g′(x))
∫ 1

0
e

−k
∫ x

0
u(s,t−τ)ds

u(x, t− τ)dx,

which implies that there exists C1 > 0 such that w(t) < C1 for all t > 0.
Denote W (t) := max

x∈[0,1],s∈[0,t]
u(x, s). If the conclusion of this lemma is not true, then W (t) → ∞ as

t → ∞. Therefore, there exists {tn}∞
n=1 such that tn → ∞ and W (tn) = max

x∈[0,1]
u(x, tn) → ∞. Without

loss of generality, we assume tn > 3τ/2 for any n ≥ 1, and define vn(x, t) :=
u(x, t+ tn − 3τ

2 )
W (tn) . A direct

computation yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vn(x, t)
∂t

= D
∂2vn(x, t)

∂x2 − dvn(x, t),

+ e−γτg

(
e

−k0x−k
∫ x

0
u(s,t+tn− 5τ

2 )ds
)
vn(x, t− τ), x ∈ (0, 1), t > τ,

∂vn(0, t)
∂x

= ∂vn(1, t)
∂x

= 0, t > τ,

0 ≤ vn(x, t) ≤ 1, x ∈ (0, 1), t ∈ [0, τ ].

Let z(t) be the solution of the following ordinary differential equation⎧⎨⎩
dz(t)
dt

= g(1) − dz(t), τ < t ≤ 2τ,
z(τ) = 1.

It follows from the comparison principle that 0 ≤ vn(x, t) ≤ z(t) ≤ 1 + g(1)
d for τ ≤ t ≤ 2τ and

n = 1, 2, . . .. This, combined with the regularity theory and embedding theorem, implies that {vn(x, t)}
is bounded in C1+α,α([0, 1] × [τ, 2τ ]) for some α ∈ (0, 1). Then {vn(x, t)} has a convergent subsequence in
C1,0([0, 1]×[τ, 2τ ]), and without loss of generality, we assume vn(x, t) → v∗ in C1,0([0, 1]×[τ, 2τ ]). Therefore,
v∗ is the weak solution of the following inequalities⎧⎪⎨⎪⎩

∂v∗(x, t)
∂t

≥ D
∂2v∗(x, t)
∂x2 − dv∗(x, t), x ∈ [0, 1], t ∈ (τ, 2τ),

∂v∗(0, t)
∂x

= ∂v∗(1, t)
∂x

= 0, t ∈ (τ, 2τ).

Since max
x∈[0,1]

vn(x, 3τ
2 ) = 1 for each n ≥ 1, it follows that v∗ is not identically zero. Then by virtue of the

strong maximum principle (see [47, Theorem 6.43]), we obtain that v∗(x, 3τ
2 ) ≥ δ > 0 for x ∈ [0, 1], and

correspondingly vn(x, 3τ
2 ) ≥ δ

2 for x ∈ [0, 1] and sufficiently large n. This implies that u(x, tn) ≥ δ
2W (tn) for

sufficiently large n and x ∈ [0, 1], which contradicts the boundedness of w(t). Therefore, there exists C > 0
such that u(x, t) ≤ C for all x ∈ [0, 1] and t > 0. □

The following result regarding the nonnegative steady state of system (1.8) is the key to the our main
results on the global dynamics.

Theorem 3.3. Assume that d, D, k0, k, γ, τ > 0.

(i) If d ≥ d∗, then the trivial steady state u = 0 is the only nonnegative steady state of system (1.8).
(ii) If d < d∗, then there exists τd > 0 such that system (1.8) has a unique positive steady state u = ϕd for

0 < τ < τd, and the trivial steady state u = 0 is the only nonnegative steady state of system (1.8) for
τ ≥ τd.
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Proof. It is known that if Φ1 ≥ Φ2, λ1(Φ1) ≥ λ1(Φ2) and equality holds only if Φ1 ≡ Φ2. Then it follows
that for τ ∈ (0,∞), −λ1(−g(e−k0x)e−γτ ) < d∗ = −λ1(Ψ0) and −λ1(−g(e−k0x)e−γτ ) is a strictly decreasing
function of τ . Therefore, if d ≥ d∗, then d ≥ −λ1(−g(e−k0x)e−γτ ) for any τ > 0. This, combined with [1,
Theorem 2.1], implies that the trivial steady state 0 is the only nonnegative steady state of system (1.8).
This completes part (i).

Noticing that lim
τ→∞

−λ1(−g(e−k0x)e−γτ ) = 0, and lim
τ→0

−λ1(−g(e−k0x)e−γτ ) = d∗, we see that if 0 < d <

d∗, there exits τd > 0 such that −λ1(−g(e−k0x)e−γτ ) > d for 0 < τ < τd and −λ1(−g(e−k0x)e−γτ ) ≤ d for
τ ≥ τd. Similarly, invoking [1, Theorem 2.1], we see that system (1.8) has a unique positive steady state ϕd

for 0 < τ < τd, and the trivial steady state 0 is the only nonnegative steady state of system (1.8) for τ ≥ τd.
This completes part (ii). □

Now based on Lemmas 3.1, 3.2 and Theorem 3.3, we obtain the following result on the global attractivity
of nonnegative steady states.

Theorem 3.4. Assume that d, D, k0, k, γ, τ > 0, and let u(x, t) be the unique solution of (1.8) with the
initial value ϕ ∈ C+ and ϕ(x, 0) ̸≡ 0.

(i) If d ≥ d∗, then u(x, t) converges uniformly to the trivial steady state 0 as t → ∞.
(ii) If d < d∗, then when 0 < τ < τd, u(x, t) converges uniformly to the positive steady state ϕd as t → ∞,

and when τ ≥ τd, u(x, t) converges uniformly to the trivial steady state 0 as t → ∞, where τd and ϕd

are defined as in Theorem 3.3.

Proof. It follows from Proposition 2.1 and Theorem 2.2 that u(x, t) is a classical solution of (1.8) when
t > τ and u(x, t) > 0 for x ∈ [0, 1], t > 0. By time translation, we could assume that u(x, t) is a classical
solution of (1.8) when t > 0 and u(x, t) = ϕ(x, t) > 0 for x ∈ [0, 1], t ∈ [−τ, 0].

We first consider the case that d < d∗ and 0 < τ < τd. Since in this case −λ1(−g(e−k0x)e−γτ ) > d,
there exists sufficiently small δ > 0 such that d < −λ1(Φδ) where Φδ = −g(e−k0x−kδx)e−γτ . Let ϕδ be the
corresponding eigenfunction with respect to λ1(Φδ). Noticing that the initial value ϕ(x, t) > 0 for x ∈ [0, 1]
and −τ ≤ t ≤ 0, we can choose ϵ > 0 such that ϵϕδ < min

(x,t)∈[0,1]×[−τ,0]
ϕ(x, t) and ϵϕδ < δ for x ∈ [0, 1]. Let

u(x, t) be the solution of (1.8) with initial value u0(x, t) = ϵϕδ for (x, t) ∈ [0, 1]× [−τ, 0]. Then, for 0 < t ≤ τ ,
we have

∂u(x, t)
∂t

=D∂
2u(x, t)
∂x2 + e−γτg

(
e

−k0x−k
∫ x

0
ϵϕδds

)
ϵϕδ − du(x, t)

>D
∂2u(x, t)
∂x2 + λ1(Φδ)u(x, t) − Φδϵϕδ.

It follows that, for (x, t) ∈ (0, 1) × (0, τ ],

∂(u− ϵϕδ)
∂t

> D
∂2(u− ϵϕδ)

∂x2 + λ1(Φδ)(u− ϵϕδ)(x, t).

Noticing that (u − ϵϕδ)(x, 0) > 0, from the strong maximum principle, we conclude u(x, t) > ϵϕδ for
0 < t ≤ τ . Therefore, for any fixing s ∈ (0, τ), we have u(x, s + t) > u(x, t) for (x, t) ∈ [0, 1] × [−τ, 0].
This, combined with Lemma 3.1, implies that v(x, t) < v(x, t + s) for (x, t) ∈ (0, 1] × [−τ,∞), where
v(x, t) =

∫ x

0 u(s, t)ds, and hence v(x, t) is strictly increasing in t. Invoking Lemma 3.2, we see that
there exists a constant C > 0 such that u(x, t), v(x, t) ≤ C for (x, t) ∈ [0, 1] × (0,∞). Then we have
limt→∞ v(x, t) = v∗(x). Moreover, by virtue of the regularity theory and embedding theorem, we see that,
for any sequence tn → ∞, {u(·, tn)} has a subsequence {u(·, tnk

)} satisfying lim
k→∞

u(·, tnk
) = u∗ in C1([0, 1]).
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Taking the limit of
∫ x

0 u(x, tnk
)dx = v(x, tnk

) as k → ∞, we have
∫ x

0 u∗(s)ds = v∗(x), which yields u∗ = v′
∗.

Therefore, lim
t→∞

u(x, t) = v′
∗ in C1([0, 1]). Note that, for any ϕ ∈ C∞

c (0, 1),

∫ 1

0
utϕdx = −D

∫ 1

0
uxϕxdx− d

∫ 1

0
uϕdx

+
∫ 1

0
e−γτg(e−k0x−

∫ x

0
u(s,t−τ)ds)u(x, t− τ)ϕdx, t > 0.

(3.2)

Since
w′(t) = −dw(t) +

∫ 1

0
e−γτg(e−k0x−

∫ x

0
u(s,t−τ)ds)u(x, t− τ)dx,

where w(t) =
∫ 1

0 u(s, t)ds, we see that w′(t) is uniformly continuous on [0,∞), and consequently, lim
t→∞

w′(t)
= 0. Then taking the limits of Eq. (3.2) on both sides as t → ∞, we have

0 = lim
t→0

∫ 1

0
utϕdx = −D

∫ 1

0
(v′

∗)xϕxdx− d

∫ 1

0
v′

∗ϕdx+
∫ 1

0
e−γτg(e−k0x−

∫ x

0
v′

∗ds)v′
∗ϕdx. (3.3)

Therefor, v′
∗ is a nonnegative steady state of model (1.8). Noticing that v′

∗ ̸≡ 0, we see from the maximum
principle that v′

∗ = ud.
Denote ΦM (x) = −g(e−k0x−Mx)e−γτ and ϕM is the corresponding positive eigenfunction with respect to

λ1(ΨM ) satisfying ∥ϕM ∥∞ = 1 . We choose M as that in [1] such that

d > −λ1(ΦM ), 1
2 < ϕM ≤ 1, and ϕ(x, t) < 2M for (x, t) ∈ [0, 1] × [−τ, 0].

Let u(x, t) be the solution of (1.8) with the initial value u0 = 2MϕM (x) for x ∈ [0, 1], t ∈ [−τ, 0]. Then,
by using the similar procedure as that for u(x, t), we can obtain that v(x, t) is strictly decreasing and
lim

t→∞
v(x, t) =

∫ x

0
ϕd(s)ds, where v(x, t) =

∫ x

0 u(s, t)ds.
Since u0(x, t) < ϕ(x, t) < u(x, t) for x ∈ [0, 1] and t ∈ [−τ, 0], it follows from Lemma 3.1 that

v(x, t) < v(x, t) < v(x, t) for x ∈ [0, 1] and t ∈ [0,∞], where v(x, t) =
∫ x

0 u(s, t)ds. This implies that

lim
t→∞

v(x, t) =
∫ x

0
ϕd(s)ds. Therefore, repeating the procedure as that for u(x, t), we can show that u(x, t)

converges uniformly to ϕd as t → ∞.
Finally, we deal with the case of d ≥ d∗ and the case of d < d∗, τ ≥ τd. In these two cases, we can choose

u(x, t) as that in the case of d < d∗, 0 < τ < τd. Note that 0 is the only nonnegative steady state for these
two cases. Therefore, we can obtain u(x, t) converges uniformly to 0 as t → ∞ for these two cases. □

Remark 3.5. Here we remark that τd satisfies

−λ1(−g(e−k0x)e−γτd) = d.

Note that −λ1(−g(e−k0x)e−γτ ) is a strictly decreasing function of τ , and satisfies

lim
τ→∞

−λ1(−g(e−k0x)e−γτ ) = 0, lim
τ→0

−λ1(−g(e−k0x)e−γτ ) = d∗.

It follows that τd is a strictly decreasing function of d, and satisfies

lim
d→d∗

τd = 0, lim
d→0

τd = ∞.

Moreover, we can give a diagram to show the threshold dynamics of model (1.8) with respect to parameters
d and τ , see Fig. 1.
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Fig. 2. The effect of delay in (1.8). Here D = 1, γ = 1, k0 = 0, k1 = 1, d = 0.5 and g(x) = x. (Left): τ = 0.3; (Right): τ = 1.

Finally some numerical simulations for model (1.8) are shown to support our theoretical results. Here we
show numerically that: (see Fig. 2)

(i) when delay τ is small, the solution of (1.8) converges to the unique positive steady state as t → ∞;
(ii) when delay τ is large, the solution of (1.8) converges to the trivial steady state as t → ∞.

Therefore, the time delay can lead to population extinction but it cannot lead to temporal oscillation.

4. Discussion

Our theoretical results show that, for the large death rate case (d ≥ d∗), the dynamics of model (1.8) is
similar to the one found in [1] in the sense that there is a critical death rate d∗ such that a large death rate
drives the phytoplankton population to die out. This critical death rate d∗ for model (1.8) is the same as
the one found in [1]. But for the small death rate case (d < d∗), we find that there is a threshold maturation
value τd > 0 so that the population is also destined to extinction when τ ≥ τd and the population density
u(x, t) converges uniformly to the positive steady state ϕd as t → ∞ when 0 < τ < τd. We point out that
this steady state ϕd also depends on the maturation time τ , and it follows from the comparison principle
that ϕd(τ2) < ϕd(τ1) if τ2 > τ1. This result is biologically reasonable. As the maturation time increases, the
density of the phytoplankton species will decrease, and finally the species could die out. Our results also
imply that the time delay cannot induce temporal oscillation for this reaction–diffusion model with nonlocal
delay effect. Instead the threshold maturation value τd induces a global extinction of the population.

As is pointed out in [2], the phytoplankton could also sink due to their own weight. Therefore, it is natural
to include the advection term in model (1.8). That is,⎧⎪⎨⎪⎩

ut = Duxx − αux + e−γτg(I(x, t− τ))u(x, t− τ) − du, x ∈ (0, L), t > 0,
Dux(0, t) − αu(0, t) = Dux(L, t) − αu(L, t) = 0, t > 0,
u(x, t) = ϕ(x, t) ≥ 0, ϕ(x, 0) ̸≡ 0, x ∈ (0, L), t ∈ [−τ, 0],

(4.1)

where advection a represents the sinking effects. It was shown in [2] that the dynamics of (4.1) is similar
to the one found in [1] when τ = 0. By virtue of the similar arguments in Section 3 and [2, Section 4], we
could also prove that the dynamics of model (4.1) is similar to that of model (1.8) (here we omit the proof
for simplicity). That is,
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(i) if d ≥ d∗, then u(x, t) converges uniformly to the trivial steady state as t → ∞.
(ii) if d < d∗, then there exists τd > 0 such that when 0 < τ < τd, u(x, t) converges uniformly to the

positive steady state ϕd as t → ∞, and when τ ≥ τd, u(x, t) converges uniformly to the trivial steady
state as t → ∞.

Here d∗ = −λ1(Φ0), where Φ0 is defined as in (1.9), and λ1(Φ0) is the smallest eigenvalue of{
−Dψ′′ − αψ′ + Φ0ψ = λψ, x ∈ (0, L),
ψx(0) = ψx(L) = 0.

(4.2)
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