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In this paper, we revisit a diffusive Leslie–Gower predator–preymodel with Holling-type II
functional responses and Dirichlet boundary condition. It is shown that multiple positive
steady state solutions exist under certain conditions on the parameters, while for another
parameter region, the positive steady state solution is unique and locally asymptotically
stable. Results are proved by using bifurcation theory, fixed point index theory, energy
estimates and asymptotic behavior analysis.
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1. Introduction

In this paper, we revisit the following steady state equation of the diffusive Leslie–Gower predator–prey model with
Holling-type II functional responses and Dirichlet boundary condition which was considered in [43]:

−1u = u

a1 − bu −

c1v
u + k1


, x ∈ Ω,

−1v = v


a2 −

c2v
u + k2


, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)

whereΩ ⊂ RN (N ≥ 1) is a bounded domainwith a smooth boundary ∂Ω , the parameters ai, b, ci, ki (i = 1, 2) are positive
numbers, and u and v are the population densities of the prey and predator species.

The system (1.1) is based on a classical predator–prey model of Leslie and Gower [24]:
du
dt

= u (a1 − bu − c1v) ,

dv
dt

= v

a2 −

c2v
u


,

(1.2)

which was regarded as a prototypical predator–prey system in the ecological studies. But the interaction terms in (1.2) are
unbounded, which is not reasonable in the real world. By using Holling type II functional response [19] in both prey and
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predator interaction terms, a Leslie–Gower predator–prey system with saturated functional responses is obtained in the
following form (see [1]):

du
dt

= u

a1 − bu −

c1v
u + k1


,

dv
dt

= v


a2 −

c2v
u + k2


.

(1.3)

The model (1.3) is proposed based on the biological fact that if the predator v is more capable of switching from its favorite
food (the prey u) to other food options, then it has better ability to survive when the prey population is low; here a1 and a2
are the growth rates per capita of prey u and predator v, respectively; b measures the strength of intraspecific competition
among individuals of species u, and it is related to the carrying capacity of the prey; c1 is the maximum value of the per
capita reduction rate of u due to v, and c2 is the maximum growth per capita of v due to predation of u; k1 and k2 measure
the extent to which environment provides protection to prey u and predator v, respectively.

On the other hand, the spatial component of ecological interactions has been identified as an important factor in
how ecological communities are shaped, and understanding the role of space is challenging both theoretically and
empirically [30]. Empirical evidence suggests that the spatial scale and structure of environment can influence population
interactions [6]. The reaction–diffusion model

ut − d11u = u

a1 − bu −

c1v
u + k1


, x ∈ Ω, t > 0,

vt − d21v = v


a2 −

c2v
u + k2


, x ∈ Ω, t > 0,

(1.4)

which corresponds to the ODE dynamics of (1.3) was proposed in [3,4]. Here d1 and d2 are the diffusion coefficients of prey
u and predator v respectively. Hopf and Turing bifurcations of (1.4) with no-flux boundary condition were analyzed in [3,4]
(see also [38,42]) and numerical simulations showed rich pattern formation dynamics and self-organization of various
patterns.

It is known that elliptic systems with homogeneous Dirichlet boundary condition are usually more difficult to analyze,
as shown in [5,7,10,13–16,22,23,25,28,29] for several other diffusive ecological interaction models, since the only possible
constant steady state is (0, 0) and the ODE dynamics is not embedded in the PDE models. There are more references for the
corresponding Neumann boundary value problems, which we do not list here but refer to [6,17,31].

The positive steady state solutions of problem (1.4) with d1 = d2 = 1 and homogeneous Dirichlet boundary condition,
i.e. system (1.1), were first considered in [43] by one of the authors. The existence of one positive solution to (1.1) under
some conditions on the parameters was showed in [43], while the nonexistence of positive solutions to (1.1) in some other
parameter regions was also proved. The multiplicity or uniqueness of positive solutions to (1.1) is not known except some
very limited cases. In this paperwewill prove some further results on the existence,multiplicity, uniqueness and bifurcation
structure of positive solutions to (1.1). In particular, we prove that when fixing other parameters a2, b, c2, k2, but choosing
small c1, k1 with c1/k1 ≥ K > 0, then for a1 in a certain interval, there exist at least two positive solutions to (1.1) (see
Section 3 for more details). The existence of multiple steady state solutions indicate that the system (1.4) can have possible
bistable dynamics. In Section 5, a numerical simulation of (1.4) shows that for the same system parameters, two solution
trajectories of (1.4) with slightly different initial conditions converge to two different steady state solutions. The choice of
parameters in the numerical simulation is guided by theoretical work in Section 3. On the other hand, in Section 4, the
uniqueness of a positive solution to (1.1) is proved under some conditions, which shows the richness of the dynamics of
(1.4) for different parameters.

We remark that for reaction–diffusion Lotka–Volterra ormore generallyGause typepredator–prey systemswithDirichlet
boundary conditions, the positive steady state solution is often unique if the domain Ω is one-dimensional or spherical
(see [7,10,23]), while in some other situations multiplicity of positive steady solutions have been shown [15,16]. We also
comment that another variation of (1.3) was proposed by Tanner [41], and the diffusive Holling–Tanner predator–prey
system has also been considered extensively [8,9,27,32,33].

The organization of the remaining part of the paper is as follows. We introduce some basic notations and recall some
previous results in Section 2. In Section 3,we study themultiplicity of positive solutions of problem (1.1), and the uniqueness
of the positive solution under certain condition is studied in Section 4. The conclusion with some numerical simulations is
in Section 5. In the paper, we use ∥ · ∥X as the norm of Banach space X, ⟨·, ·⟩ as the duality pair of a Banach space X and its
dual space X∗. For a linear operator L, we use N (L) as the null space of L and R(L) as the range space of L, and we use L[w]

to denote the image of w under the linear mapping L. For a multilinear operator L, we use L[w1, w2, . . . , wk] to denote the
image of (w1, w2, . . . , wk) under L, andwhenw1 = w2 = · · · = wk, we use L[w1]

k instead of L[w1, . . . , w1]. For a nonlinear
operator F , we use Fu as the partial derivative of F with respect to u.
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2. Preliminaries

In order to state the main results of this paper and [43], we introduce some notations and basic facts which are well-
known (see for example [2,6,31]). For any q ∈ C(Ω), the linear eigenvalue problem

−1u + q(x)u = ρu, x ∈ Ω,
u = 0, x ∈ ∂Ω

(2.1)

has an infinite sequence of eigenvalues, ρ1 < ρ2 ≤ ρ3 ≤ · · ·, which are bounded below. It is also known that the principal
eigenvalue

ρ = ρ1 = ρ1 (−∆ + q(x)) (2.2)

is simple, and all solutions of (2.2) with ρ = ρ1 (−∆ + q(x)) are multiples of a particular eigenfunction, which does not
change sign in Ω and its normal derivative does not vanish on the boundary ∂Ω . Furthermore ρ1 is strictly increasing in
the sense that for q1(x), q2(x) ∈ C


Ω̄


, q1(x) ≤ q2(x) and q1(x) ≢ q2(x) implies that ρ1 (−∆ + q1(x)) < ρ1 (−∆ + q2(x)).

In particular we denote λ1 = ρ1(−∆) and its corresponding normalized positive eigenfunction ω(x) satisfies maxx∈Ω

ω(x) = 1.
Next consider the logistic type problem

−1φ + q(x)φ = aφ − f (x)φ2, x ∈ Ω,
φ = 0, x ∈ ∂Ω,

(2.3)

where a > 0, q(x), f (x) are continuous functions on Ω̄ and f (x) > 0. It is well known that if a ≤ ρ1 (−∆ + q(x)) , φ = 0 is
the unique nonnegative solution of (2.3), while (2.3) has a unique positive solution if a > ρ1 (−∆ + q(x)). In the paper we
denote the unique positive solution of

−1u = u(a − σu), x ∈ Ω,
u = 0, x ∈ ∂Ω

(2.4)

by θ(a, σ ) when a > λ1, where a, σ are positive constants. In particular we denote θ(a1, b) by û(x) when a1 > λ1 and
θ(a2, c2/k2) by v̂(x) when a2 > λ1.

With the notations introduced above, one of the main results derived in [43] can be summarized as follows.

Theorem 2.1 ([43, Theorem 1.1]). Assume that a2 > λ1, and b, c1, c2, k1, k2 > 0. If (1.1) has a positive solution, then a1 > λ1;
moreover if a1 > ρ1


−∆ +

c1
k1

v̂

, then (1.1) has a positive solution.

The result in Theorem 2.1 shows that there is a gap between the sufficient condition and necessary condition for the
existence of positive solutions of problem (1.1). What happens when a1 is in this gap? In this paper, we provide an answer
to this question and also give further discussion on the positive solutions to (1.1). In the following we always assume that
a1 > λ1 and a2 > λ1, since apparently (1.1) has no positive solution if a1 ≤ λ1 or a2 ≤ λ1.

For later applications, we recall the following a priori estimates of nonnegative solutions of (1.1). The proof can be found
in Lemma 2.1 in [43], and we omit it here.

Lemma 2.2. Let (u, v) be a nonnegative solution to problem (1.1). Then

0 ≤ u(x) <
a1
b

, 0 ≤ v(x) <
a2
c2

a1
b

+ k2


, x ∈ Ω.

If in addition a1 > λ1 +
a1c1
k1κ

and (u, v) is a positive solution of (1.1), then

θ


a1 −

a1c1
k1κ

, b


(x) ≤ u(x) ≤ û(x), v̂(x) ≤ v(x) ≤ θ(a2, κ)(x), x ∈ Ω, (2.5)

where θ(a, σ ) is the unique positive solution of (2.4), and κ =
bc2

a1+bk2
.

Finally we review the fixed point index theory (see [12,26,36]) which will be used in Section 3. Let E be a Banach space
and W ⊂ E is a closed convex set. Then W is called a total wedge if γW ⊂ W for all γ ≥ 0 and W − W = E. For y ∈ W ,
define Wy = {x ∈ E : y + γ x ∈ W for some γ > 0} and Sy = {x ∈ W y : −x ∈ W y}. Then W y is a wedge containing
W, y, −y, while Sy is a closed subset of E containing y. Let T be a compact linear operator on E which satisfies T (W y) ⊂ W y.
We say that T has property α on W y if there is a t ∈ (0, 1) and a ω ∈ W y�Sy such that (I − tT )ω ∈ Sy. Let G : W → W be a
compact operator with a fixed point y ∈ W which is Fréchet differentiable at y. Let L = G′(y) be the Fréchet derivative of
G at y. Then L maps W y into itself. We denote by indexW (G, O) the degree of I − G in O relative to W and indexW (G, y) the
fixed point index of G at y relative to W , where O ⊂ W is a bounded open set with respect to the relative topology of W .
The following result is standard in the theory of fixed point index.
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Lemma 2.3 ([12,26,36]). Assume that I − L has no non-trivial kernel in W y. Then, we have the following.

1. If L has property α on W y, then indexW (F , y) = 0.
2. If L does not have property α on W y, then indexW (F , y) = (−1)σ , where σ is the sum of multiplicities of all eigenvalues of

L which is greater than 1.

Now we recall some related results which have been proved in [43]. Let E = C0(Ω̄) × C0(Ω̄) and W = {(u, v) ∈ E :

u, v ≥ 0} be the positive cone in E such that E = W − W , where C0(Ω̄) := {u ∈ C(Ω̄) : u(x) = 0, x ∈ ∂Ω}. Define the set
O and the operator G by

O =


(u, v) ∈ W : 0 ≤ u(x) <

a1
b

, 0 ≤ v(x) <
a2
c2

a1
b

+ k2


,

G(u, v) = (−∆ + M)−1

u

a1 − bu −

c1v
u + k1


+ Mu

v


a2 −

c2v
u + k2


+ Mv

 ,

(2.6)

where M is a large positive constant to ensure F : O → W . The set O contains all nonnegative solutions of (1.1) by
Lemma 2.2, and G is compact by the standard regularity theory of elliptic equations [18]. Furthermore, a positive solution
of (1.1) is equivalent to a positive fixed point of G. Then the degree indexW (G, O) and the fixed point indices of G at trivial
solution (0, 0), semi-trivial solutions (û, 0) and (0, v̂) are as follows.

Lemma 2.4 ([43]). Assume a1 > λ1 and a2 > λ1. Then

1. indexW (G, O) = 1;
2. indexW (G, (0, 0)) = 0;
3. indexW (G, (û, 0)) = 0;
4. indexW (G, (0, v̂)) = 0 if a1 > ã1 and indexW (G, (0, v̂)) = 1 if a1 < ã1.

3. Multiplicity and bifurcation of positive solutions

In this section, we use the bifurcation method to show that (1.1) may have multiple positive solutions. To simplify the
notation we define

ã1 ≡ ρ1


−∆ +

c1
k1

v̂(x)


.

Our main result in this section is that, there exists a positive constant a∗

1 ∈ (λ1, ã1) such that problem (1.1) has at least two
positive solutions for a1 ∈ (ã1 − ε, ã1) for some small ε > 0, and has at least one positive solution for a1 ∈ [a∗

1, ã1].
From the definitions in Section 2, (1.1) has a semi-trivial non-negative solution (u, v) = (0, v̂(x)) for any a1 > 0 as long

as a2 > λ1. Here we use a1 as a bifurcation parameter, and consider the bifurcation of positive solutions from the branch of
semi-trivial solutions: {(a1, 0, v̂) : a1 > λ1}. By linearizing (1.1) at (a1, 0, v̂), we obtain the following eigenvalue problem:

1ξ + a1ξ −
c1v̂
k1

ξ = µξ, x ∈ Ω,

1η +
c2v̂2

k2
ξ + a2η −

2c2v̂
k2

η = µη, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω.

(3.1)

A necessary condition for bifurcation is that the principal eigenvalue µ1 of (3.1) is zero, which occurs if a1 = ã1.
Let Φ be the positive eigenfunction corresponding to ã1, i.e., (ã1, Φ) satisfies−1Φ +

c1
k1

v̂(x)Φ = ã1Φ, x ∈ Ω,

Φ = 0, x ∈ ∂Ω.

(3.2)

We assume that Φ is normalized so that


Ω
Φ2dx = 1. Since

ρ1


−∆ + 2

c2
k2

v̂ − a2


> ρ1


−∆ +

c2
k2

v̂ − a2


= 0,
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then −∆ + 2 c2
k2

v̂ − a2 is invertible, and

−∆ + 2 c2

k2
v̂ − a2

−1
maps positive functions to positive functions because of the

maximum principle. Define

Ψ =
c2
k22


−∆ + 2

c2
k2

v̂ − a2

−1

(v̂2Φ) (3.3)

then both Φ and Ψ are positive in Ω .
With the functions defined above, we have the following result regarding the bifurcation of positive solutions of (1.1)

from (a, 0, v̂(x)) at a1 = ã1.

Theorem 3.1. Assume a1 > λ1 and a2 > λ1. Then a1 = ã1 is a bifurcation value of (1.1)where positive solutions bifurcate from
the line of semi-trivial solutions Γ0 = {(a1, 0, v̂) : a1 > 0}; near (ã1, 0, v̂), all the positive solutions of (1.1) lie on a smooth
curve Γ1 = {(a1(s), u(s), v(s)) : s ∈ (0, δ)} for some δ > 0 such thata1(s) = ã1 + sã2 + sã3(s),

u(s) = sΦ + su1(s, x),
v(s) = v̂(x) + sΨ + sv1(s, x),

(3.4)

where s → (ã3(s), u1(s, x), v1(s, x)) is a smooth function from (0, δ) to R × X × X for X = W 2,p(Ω) ∩ W 1,p
0 (Ω) with p > N,

such that ã3(0) = 0, u1(0, x) = v1(0, x) = 0, and

ã2 =
1
k1


Ω


bk1 −

c1
k1

v̂


Φ3

+ c1Φ2Ψ


dx. (3.5)

Moreover a1 = ã1 is the unique bifurcation value for which positive solutions bifurcate from Γ0.

Proof. We apply a bifurcation result of Crandall and Rabinowitz [11]. Let X = W 2,p(Ω) ∩ W 1,p
0 (Ω) and let Y = Lp(Ω),

where p > N . Define a nonlinear mapping F : R × X × X → Y × Y by

F(a1, u, v) =

1u + u

a1 − bu −

c1v
u + k1


1v + v


a2 −

c2v
u + k2


 . (3.6)

We consider the bifurcation at (a1, u, v) = (ã1, 0, v̂). From straightforward calculations, we obtain that

F(u,v)(a1, u, v)[ξ, η] =

1ξ + a1ξ − 2buξ −
c1k1v

(u + k1)2
ξ −

c1u
u + k1

η

1η +
c2v2

(u + k2)2
ξ + a2η −

2c2v
u + k2

η

 ,

Fa1(a1, u, v) =


u
0


, Fa1(u,v)(a1, u, v)[ξ, η] =


ξ
0


,

F(u,v)(u,v)(a1, u, v)[ξ, η]
2

=

 −2bξ 2
+ 2

c1k1v
(u + k1)3

ξ 2
− 2

c1k1
(u + k1)2

ξη

−2
c2v2

(u + k2)3
ξ 2

+ 4
c2v

(u + k2)2
ξη − 2

c2
u + k2

η2

 .

(3.7)

At (a1, u, v) = (ã1, 0, v̂), it is easy to verify that the kernel N (Fu,v(ã1, 0, v̂)) = span{(Φ, Ψ )}, the range space

R(Fu,v(ã1, 0, v̂)) =


(f , g) ∈ Y × Y :


Ω

f (x)Φ(x)dx = 0


,

and

Fa1(u,v)(ã1, 0, v̂)[Φ, Ψ ] = (Φ, 0) ∉ R(Fu,v(ã1, 0, v̂)) since


Ω

Φ2(x)dx ≠ 0.

Thus we can apply [11, Theorem 1.7] to conclude that the set of positive solutions to (1.1) near (ã1, 0, v̂) is a smooth curve

Γ1 = {(a1(s), u(s), v(s)) : s ∈ (0, δ)}, (3.8)
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such that a1(0) = ã1, u(s) = Φs+ o(s), v(s) = v̂ + Ψ s+ o(s). Moreover, a′

1(0) can be calculated by (see for example [39]):

a′

1(0) = ã2 = −
⟨l, F(u,v)(u,v)(ã1, 0, v̂)[Φ, Ψ ]

2
⟩

2⟨l, Fa1(u,v)(ã1, 0, v̂)[Φ, Ψ ]⟩

=
2b


Ω

Φ3dx − 2c1k−2
1


Ω

v̂Φ3dx + 2c1k−1
1


Ω

Φ2Ψ dx
2


Ω

Φ2dx

=
1
k1


Ω


bk1 −

c1
k1

v̂


Φ3

+ c1Φ2Ψ


dx, (3.9)

where l is a linear functional on Y × Y defined as ⟨l, [f , g]⟩ =


Ω
f (x)Φ(x)dx.

Finally we prove that a1 = ã1 is the unique bifurcation point where positive solutions of problem (1.1) bifurcate from
(0, v̂). Suppose that there is a sequence {(a1n, un, vn)}

∞

n=1 of positive solutions of (1.1) with

lim
n→∞

(a1n, un, vn) = (ã, 0, v̂) ∈ R × X . (3.10)

Then, we find from the first equation of (1.1) with a1 = a1n that, for every n ≥ 1,

− ∆


un

∥un∥Lp(Ω)


= a1n

un

∥un∥Lp(Ω)

− b
u2
n

∥un∥Lp(Ω)

−
c1vn

(un + k1)
·

un

∥un∥Lp(Ω)

, (3.11)

or, equivalently,

un

∥un∥Lp(Ω)

= (a1n − ã)(−∆)−1


un

∥un∥Lp(Ω)


+ (−∆)−1


ã

un

∥un∥Lp(Ω)

− b
u2
n

∥un∥Lp(Ω)

−
c1vn

(un + k1)
·

un

∥un∥Lp(Ω)


. (3.12)

By the compactness of (−∆)−1, it is easy to see that, along some subsequence, re-labeled by n, we have that

lim
n→∞

un

∥un∥Lp(Ω)

= φ > 0 (3.13)

for some φ ∈ W 2,p(Ω) with ∥φ∥Lp(Ω) = 1. Thus, passing to the limit as n → ∞ in the previous identities, we find that

φ = (−∆)−1

ãφ −

c1
k1

v̂φ


, (3.14)

or, equivalently,−1φ +
c1
k1

v̂φ = ãφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

(3.15)

Therefore, ã = ã1. The proof is completed. �

Next we discuss the stability of the positive solutions bifurcating from the semi-trivial solutions.

Theorem 3.2. Assume the conditions of Theorem 3.1 are satisfied, and let ã2 be defined as in (3.5). If ã2 ≠ 0, then for s ∈ (0, δ),
the positive solution (a1(s), u(s), v(s)) bifurcating from (ã1, 0, v̂) is non-degenerate. Moreover, (u(s), v(s)) is unstable if ã2 < 0,
and stable if ã2 > 0.

Proof. Denote a1 = a1(s) and (u, v) = (u(s), v(s)). Then the corresponding linearized problem at (u, v) can be written as

L(s)


ξ
η


= µ(s)


ξ
η


, L(s) =


M11 M12
M21 M22


, (3.16)

where

M11 = −∆ − a1 + 2bu +
c1k1v

(u + k1)2
, M12 =

c1u
u + k1

,

M21 = −
c2v2

(u + k2)2
, M22 = −∆ − a2 +

2c2v
u + k2

.
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Then letting s → 0+, we get

L(s) → L0 =

−∆ − ã1 +
c1
k1

v̂ 0

−
c2
k22

v̂2
−∆ − a2 +

2c2
k2

v̂

 . (3.17)

Since ã1 = ρ1


−∆ +

c1
k1

v̂

, 0 is the first eigenvalue of the operator −∆ − ã1 +

c1
k1

v̂. On the other hand, since

ρ1


−∆ − a2 + 2 c2

k2
v̂


> ρ1


−∆ − a2 +

c2
k2

v̂


= 0, 0 is the first eigenvalue of L0 with the corresponding eigenfunction
(Φ, Ψ ). Moreover, all the other eigenvalues of L0 are positive and apart from 0. By the perturbation theory of linear
operators [21], we know that for the small s > 0, L(s) has a unique eigenvalue µ(s) satisfying µ(s) → 0 as s → 0+ and all
other eigenvalues of L(s) have positive real parts and apart from 0. In the following, we denote L(s) = L and µ(s) = µ.

Now we determine the sign of Re(µ) for s > 0 small enough. Let (ξ , η) be the corresponding eigenfunction to µ such
that (ξ , η) → (Φ, Ψ ) as s → 0+, then (ξ , η) satisfies

−1ξ −


a1 − 2bu −

c1k1v
(u + k1)2


ξ +

c1u
u + k1

η = µξ, x ∈ Ω,

−1η −


a2 −

2c2v
u + k2


η −

c2v2

(u + k2)2
ξ = µη, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω.

(3.18)

Multiplying the first equation of (3.18) by u and integrating the result over Ω , we obtain

−


Ω

u1ξdx −


Ω

uξ

a1 − 2bu −

c1k1v
(u + k1)2


dx +


Ω

c1u2

u + k1
ηdx = µ


Ω

uξdx. (3.19)

By multiplying ξ to the first equation of (1.1) with (u, v) = (u(s), v(s)) and integrating the result over Ω , we have

−


Ω

u1ξdx = −


Ω

ξ1udx =


Ω

ξu

a1 − bu −

c1v
u + k1


dx. (3.20)

Combining (3.20) with (3.19) yields

µ


Ω

uξdx =


Ω

ξu2

b −

c1v
(u + k1)2


dx +


Ω

c1u2

u + k1
ηdx. (3.21)

Recall that (u, v) =

Φs + O(s2), v̂ + Ψ s + O(s2)


and (ξ , η) → (Φ, Ψ ) as s → 0+. Taking the real part in (3.21), then

dividing the results by s2 and letting s → 0+, we have

lim
s→0+

Re(µ)

s
=


Ω

Φ3

b −

c1
k21

v̂

dx +


Ω

c1
k1

Φ2Ψ dx
Ω

Φ2dx

=
1
k1


Ω


bk1 −

c1
k1

v̂


Φ3

+ c1Φ2Ψ


dx

= ã2 ≠ 0, (3.22)

which implies Re(µ) ≠ 0 for s > 0 small. Since all the other eigenvalues of L have positive real parts and apart from 0, then
the stability assertions follow from (3.22). �

By using the bifurcation results proved above and the fixed point index used in [43], we have the following multiplicity
result on the positive solutions of (1.1).

Theorem 3.3. Assume the conditions of Theorem3.1 are satisfied, and let ã2 be defined as in (3.5). If ã2 < 0, there exists a positive
constant a∗

1 ∈ (λ1, ã1) and ε ∈ (0, ã1 − a∗

1] such that problem (1.1) has at least two positive solutions for a1 ∈ (ã1 − ε, ã1), and
has at least one positive solution for a1 ∈ [a∗

1, ã1].

Proof. From Theorem 3.1, (1.1) has a curve Γ = {(a1(s), u(s), v(s)) : s ∈ (0, δ)} of positive solutions near (ã1, 0, v̂).
Since ã2 < 0, we get a1(s) < ã1 for s > 0 small. Assume that (1.1) has a unique positive solution (ũ, ṽ) when
a1 < ã1 but near ã1. By Theorem 3.1, we know that (ũ, ṽ) must be the positive solution bifurcating from (ã1, 0, v̂). That is
(ũ, ṽ) = (u(s), v(s)), which is non-degenerate by Theorem 3.2. Therefore (I − G(u,v))(ũ, ṽ) : W (ũ,ṽ) → W (ũ,ṽ) is invertible.
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Fig. 1. Possible bifurcation diagrams of positive solutions when ã2 < 0. Left: ã1 = a∗

1 + ε; right: ã1 > a∗

1 + ε. Here the line C is u = a1/b.

Since W(ũ,ṽ) \ S(ũ,ṽ) = ∅,G(u,v)(ũ, ṽ) does not have property α on W(ũ,ṽ). Consequently, indexW (G, (ũ, ṽ)) = 1 or −1. Notice
that λ1 < a1 < ã1 and a2 > λ1, applying Lemma 2.4, we have

1 = indexW (G, O)

= indexW (G, (0, 0)) + indexW (G, (û, 0)) + indexW (G, (0, v̂)) + indexW (G, (ũ, ṽ))

= 0 + 0 + 1 ± 1,

which is a contradiction. So when a1 < ã1 and near to ã1, there exist at least two positive solutions of (1.1).
From a global bifurcation result of Rabinowitz [34] (see also [40]), the curve Γ of the bifurcating positive solutions is

contained in a connected component S0 of the set of positive solutions of (1.1). Moreover either the closure of S0 contains
another trivial solution on {(a1, 0, v̂) : a1 > 0}, or S0 is unbounded. By Theorem 3.1, a1 = ã1 is the unique bifurcation
value to positive solutions of problem (1.1) from the line of trivial solutions {(a1, 0, v̂) : a1 > 0}, so the first alternative is
not possible and S0 must be unbounded. Furthermore, 0 < u < ã1/b for λ1 ≤ a1 ≤ ã1 by Lemma 2.2. Finally, there is no
positive solution when a1 ≤ λ1 by Theorem 2.1. Thus the projection of S0 contains an interval [a∗

1, ∞) for some a∗

1 satisfying
λ1 < a∗

1 < ã1. In particular, (1.1) has at least one positive solution for a1 ∈ [a∗

1, ã1]. �

Two possible bifurcation diagrams are shown in Fig. 1. We also remark that ã2 < 0 can be achieved by fixing
c2, k2 > 0, a2 > λ1, letting c1 = k1 = ε > 0. Then as ε → 0, v̂, Φ and Ψ are all independent of ε, while limε→0+

k1ã2 = −


Ω
v̂Φ3dx < 0. So ã2 is negative if ε > 0 is small enough.

4. Uniqueness of a positive solution

In this section, we study the uniqueness of the positive solution to problem (1.1) under some conditions on the
parameters. Our first result is as follows.

Theorem 4.1. Suppose that a1 > λ1, a2 > λ1, and b, c2, k2 > 0 are fixed parameters, then there exists a constant δ > 0 such
that when 0 < c1/k1 ≤ δ, the problem (1.1) has a unique positive solution which is locally asymptotically stable.

For the proof of Theorem 4.1, we first prove the following lemma about the asymptotic behavior of positive solutions of
(1.1) when c1/k1 is sufficiently small.

Lemma 4.2. Assume that a1 > λ1 and a2 > λ1.
1. Suppose that (ui, vi) is a positive solution of (1.1) with c1 = c1i and k1 = k1i, and c1i/k1i → 0 as i → ∞, then (ui, vi)

converges to (û, v∗) uniformly as i → ∞, where v∗ is the unique positive solution of−1v = v


a2 −

c2v
û + k2


, x ∈ Ω,

v = 0, x ∈ ∂Ω.

(4.1)

2. There exists a positive constant δ small enough such that any positive solution of (1.1) is non-degenerate and linearly stable
if c1/k1 ≤ δ.

Proof. 1. It is clear that (û, v∗) is the unique positive solution of the following problem
−1u = u(a1 − bu), x ∈ Ω,

−1v = v


a2 −

c2v
u + k2


, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(4.2)
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Assume that c1i/k1i → 0 as i → ∞, and (ui, vi) is a positive solution of (1.1) with c1 = c1i and k1 = k1i. By Lemma 2.2,
∥ui∥L∞(Ω) ≤ a1/b and ∥vi∥L∞(Ω) ≤ a2k2/c2 and the upper bounds are both independent of i (thus independent of c1i and k1i),
then ∥(ui, vi)∥[C2+α(Ω)]2 with 0 < α < 1 are uniformly bounded by regularity theory of elliptic equations [18]. Then there
exists a subsequence of {(ui, vi)}

∞

i=1, relabeled by itself, and two non-negative functions u, v ∈ C2+β(Ω̄) with 0 < β < α

such that (ui, vi) → (u, v) in [C2+β(Ω̄)]2 as i → ∞. Then (u, v) must be a solution of (4.2). From the strong maximum
principle, we know that each of u and v is either >0 in Ω or ≡ 0 in Ω . So if we can show that u, v > 0 in Ω , then the proof
is completed as the positive solution of (4.2) is unique hence it must be the limit of the sequence {(ui, vi)}.

To the contrary, we assume that u ≡ 0, ∥ui∥∞ → 0 as i → ∞. Let ūi = ui/∥ui∥L∞(Ω), then ūi satisfies−1ūi = ūi


a1 − bui −

c1ivi

ui + k1i


, x ∈ Ω,

ūi = 0, x ∈ ∂Ω.

(4.3)

Similar to the arguments above, ∥ui∥C2+α(Ω) are uniformly bounded, thus there exists a subsequence of {ūi}
∞

i=1, relabeled by
itself, and a non-negative function ū ∈ C2+β(Ω̄) with 0 < β < α such that ūi → ū in C2+β(Ω̄) as i → ∞. Obviously,
∥ū∥L∞(Ω) = 1 and ū satisfies

−1ū = a1ū, x ∈ Ω,
ū = 0, x ∈ ∂Ω.

(4.4)

Therefore a1 = λ1 must hold, which contradicts with the assumption that a1 > λ1.
On the other hand, if we assume that v ≡ 0, the same arguments as above show that there exists a non-negative function

v̄ ∈ C2+β(Ω̄) such that v̄i := vi/∥vi∥L∞(Ω) → v̄ in C2+β(Ω̄) as i → ∞. Furthermore, ∥v̄∥L∞(Ω) = 1 and v̄ satisfies
−1v̄ = a2v̄, x ∈ Ω,
v̄ = 0, x ∈ ∂Ω.

(4.5)

Therefore, a2 = λ1, which again contradicts with the assumption that a2 > λ1. Hence the limit (u, v) > (0, 0) must be the
unique positive solution of (4.2).

2. To the contrary, we assume that there exist sequences {c1i} and {k1i} such that c1i/k1i → 0, µi with Re(µi) ≤ 0 and
(ξi, ηi) with ∥ξi∥

2
L2(Ω)

+ ∥ηi∥
2
L2(Ω)

= 1 satisfying


−1ξi −


a1 − 2bui −

c1ik1ivi

(ui + k1i)2


ξi +

c1iui

ui + k1i
ηi = µiξi, x ∈ Ω,

−1ηi −
c2v2

i

(ui + k2)2
ξi −


a2 −

2c2vi

ui + k2


ηi = µiηi, x ∈ Ω,

ξi = ηi = 0, x ∈ ∂Ω,

(4.6)

where (ui, vi) is a positive solution of (1.1) with c1 = c1i and k = k1i. Multiplying (4.6) 1 by ξ̄i and (4.6) 2 by η̄i, integrating
the results over Ω , and then adding the results, we obtain

µi =


Ω


|∇ξi|

2
+ |∇ηi|

2 dx +


Ω


c1ik1ivi

(ui + k1i)2
+ 2bui − a1


|ξi|

2dx

+


Ω


c1iui

ui + k1i
ηiξ̄i −

c2v2
i

(ui + k2)2
ξiη̄i


dx +


Ω


2c2vi

ui + k2
− a2


|ηi|

2dx. (4.7)

Since Re(µi) ≤ 0, ∥ξi∥2
L2(Ω)

+∥ηi∥
2
L2(Ω)

= 1 and {(ui, vi)} is uniformly bounded, then we obtain that both Re(µi) and Im(µi)

are uniformly bounded. So {µi}
∞

i=1 are uniformly bounded and there exists a subsequence of {µi}
∞

i=1, denoted by itself, such
that limi→∞ µi = µ with Re(µ) ≤ 0. Using the boundedness of {µi}

∞

i=1 and Lp-theory of elliptic equations [18], we get that
for any p > n, {ξi}∞i=1 and {ηi}

∞

i=1 are uniformly bounded inW 2,p(Ω). SinceW 2,p(Ω) is embedded in C1(Ω̄) compactly, there
exist subsequences of {ξi}∞i=1 and {ηi}

∞

i=1, denoted by themselves, such that limi→∞ ξi = ξ and limi→∞ ηi = η in C1(Ω̄) and
∥ξ∥

2
L2(Ω)

+ ∥η∥
2
L2(Ω)

= 1. Letting i → ∞ in (4.6), we obtain that (µ, ξ, η) satisfies the following equation in the sense of
distribution

−1ξ −

a1 − 2bû


ξ = µξ, x ∈ Ω,

−1η −


a2 −

2c2
û + k2

v∗


η −

c2(v∗)2

(û + k2)2
ξ = µη, x ∈ Ω,

ξ = η = 0, x ∈ ∂Ω.

(4.8)
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Since ξ, η ∈ C1(Ω̄), by the regularity theory of elliptic equations [18], we get (ξ , η) ∈ C2+α(Ω̄) × C2+α(Ω̄) for some
α ∈ (0, 1) and (µ, ξ, η) satisfies (4.8) in the classical sense. Furthermore µ is a real number with µ ≤ 0.

If ξ ≢ 0, we can see that µ is an eigenvalue of the following problem
−1φ −


a1 − 2bû


φ = µφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.
(4.9)

So we have 0 ≥ µ ≥ ρ1

−∆ + 2bû − a1


> ρ1


−∆ + bû − a1


= 0, which is a contradiction. On the other hand, if

ξ ≡ 0, η ≢ 0, then µ is an eigenvalue of the following problem−1φ −


a2 −

2c2
û + k2

v∗


φ = µφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

(4.10)

So, 0 ≥ µ ≥ ρ1


−∆ +

2c2
û+k2

v∗
− a2


> ρ1


−∆ +

c2
û+k2

v∗
− a2


= 0 since v∗ is the unique solution of problem (4.1),

again a contradiction. This shows that the stated result holds. �

Now we are ready to prove Theorem 4.1 by using Lemmas 2.4 and 4.2.

Proof of Theorem 4.1. The existence of a positive solution easily follows from Theorem 2.1 as since a1 > λ1 is fixed and
ρ1


−∆ +

c1
k1

v̂


→ λ1 as c1/k1 → 0. Hence we only need to show the uniqueness and local stability. Recall that G is the
operator defined in (2.6) and O is the region that positive solutions lie in. By the compactness, G has at most finitely many
positive fixed points in the region O. We denote all the positive fixed points of G in O by (ui, vi) for i = 1, 2, . . . , ℓ. From
part 2 of Lemma 4.2, we have indexW (F , (ui, vi)) = 1 for each i ∈ {1, 2, . . . , ℓ}. According to the additive property of
Leray–Schauder degree, we get

1 = indexW (F , O)

= indexW (F , (0, 0)) + indexW (F , (û, 0)) + indexW (F , (0, v̂)) +

l
i=1

indexW (F , (ui, vi))

= 0 + 0 + 0 + ℓ = ℓ.

Hence ℓ ≡ 1 which asserts the uniqueness. The local stability has been proved in Lemma 4.2. �

The next theorem uses some specific inequalities on parameters to ensure the existence of a unique positive solution of
problem (1.1).

Theorem 4.3. Assume a1 > λ1 +
a1c1
k1κ

, where κ =
bc2

a1+bk2
. Let

Λ = max

sup
x∈Ω

û(x)
v̂(x)

, sup
x∈Ω

θ(a2, κ)(x)

θ

a1 −

a2c1
k1κ

, b


(x)

 . (4.11)

Then problem (1.1) has a unique positive solution provided that

a2c1 < bk21κ, (4.12)

and 
c21
k21

+
c22
k42

−
2c1c2
k2

max


1
k1

,
1
k2


+

4c1c2
k1

min


1
k1

,
1
k2


Λ ≤

4bc2
k2

. (4.13)

Proof. The existence of a positive solution follows from the first result of Theorem 2.1 since a1 > λ1 +
a1c1
k1κ

≥

ρ1


−∆ +

c1
k1

v̂

and a2 > λ1. We only have to prove the uniqueness. Assume that (1.1) has two different positive solutions

(u1, v1) and (u2, v2). Let A = u1 − u2 and B = v1 − v2, then A ≢ 0 or B ≢ 0 and (A, B) satisfies
−1A −


a1 − bu1 −

c1v1

u1 + k1


A + bu2A −

c1u2v2

(u1 + k1)(u2 + k1)
A +

c1u2

u1 + k1
B = 0, x ∈ Ω,

−1B −


a2 −

c2v2

u + k2


B +

c2v1

u2 + k2
B −

c2v2
1

(u1 + k2)(u2 + k2)
A = 0, x ∈ Ω,

A = B = 0, x ∈ ∂Ω.

(4.14)
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Since (u1, v1) is a positive solution of (1.1), we get ρ1


−∆ −


a1 − bu1 −

c1v1
u1+k1


= 0. From the variational

characterization of the principal eigenvalue, we have
Ω


−1ξ −


a1 − bu1 −

c1v1

u1 + k1


ξ


ξdx ≥ 0, for any ξ ∈ H2(Ω) ∩ H1

0 (Ω). (4.15)

In particular, (4.15) holds for ξ = A. Then combine the first equation of (4.14) with (4.15), we obtain
Ω


b −

c1v2

(u1 + k1)(u2 + k2)


u2A2

+
c1u2AB
u + k1


dx ≤ 0. (4.16)

Similarly, we get
Ω


c2v1B2

u2 + k2
−

c2v2
1AB

(u1 + k2)(u2 + k2)


dx ≤ 0. (4.17)

Let

I :=


Ω


b −

c1v2

(u1 + k1)(u2 + k1)


u2A2

+


c1u2

u1 + k1
−

c2v2
1

(u1 + k2)(u2 + k2)


AB +

c2v1

u2 + k2
B2


dx.

From (4.16) and (4.17), we obtain that

I ≤ 0. (4.18)

In the following, we will prove I > 0 to get a contradiction, if stated conditions are satisfied. From Lemma 2.2, we have

θ


a1 −

a1c1
k1κ

, b


(x) ≤ ui(x) ≤ û(x), v̂(x) ≤ vi(x) ≤ θ(a2, κ)(x), x ∈ Ω. (4.19)

Since c1v2
(u1+k1)(u2+k1)

≤
a2c1
k21κ

< b, we get that

b −
c1v2

(u1 + k1)(u2 + k1)
> 0. (4.20)

Let

△ :=


c1u2

u1 + k1
−

c2v2
1

(u1 + k2)(u2 + k2)

2

− 4

b −

c1v2

(u1 + k1)(u2 + k1)


c2u2v1

u2 + k1
.

By using the estimates in (4.19), we obtain that

△ = u2v1


c21u2

v1(u1 + k1)2
+

c22v1

u2(u1 + k2)2(u2 + k2)2
−

2c1c2v1

(u1 + k1)(u1 + k2)(u2 + k2)

−
4bc2

u2 + k2
+

4c1c2v2

(u1 + k1)(u2 + k1)(u2 + k2)


< u2v1


c21
k21

+
c22
k42

−
2c1c2
k2

max


1
k1

,
1
k2


+

4c1c2
k1

min


1
k1

,
1
k2


Λ −

4bc2
k2


≤ 0. (4.21)

Combining (4.20), (4.21) with A ≢ 0 or B ≢ 0, we obtain that

I > 0, (4.22)

which contradicts with (4.18). The proof is completed. �

For the quantities in Theorem 4.3, we remark that since a1 > λ1 +
a1c1
k1κ

and a2 > λ1, θ

a1 −

a1c1
k1κ

, b


(x) and θ(a2, κ)(x)
exist and both of them are positive inΩ . Thus the condition (4.11) is well-defined. Moreover the conditions (4.12) and (4.13)
are satisfied if c1/k1 is sufficiently small, which is consistent with Theorem 4.1, but the result in Theorem 4.3 gives a more
explicit estimate for the small constant δ in Theorem 4.1.

5. Conclusions

In this paper we prove some further existence, multiplicity results for the steady state equation (1.1) of the diffusive
Leslie–Gower predator–prey model with Holling-type II functional responses and Dirichlet boundary condition (1.4). To
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Fig. 2. Numerical simulation of the system (1.4) with N = 1, Ω = (0, 3π), parameters d1 = d2 = 1, c1 = k1 = 0.01, b = c2 = k2 = 1, a1 = 0.7, a2 = 4
and initial values u0(x) = 0.06 sin(x/3), v0(x) = 0.3 sin(x/3). As t → ∞, the solution converges to the semi-trivial steady state solution (0, v̂(x)).

Fig. 3. Numerical simulation of the system (1.4) with N = 1, Ω = (0, 3π), parameters d1 = d2 = 1, c1 = k1 = 0.01, b = c2 = k2 = 1, a1 = 0.7, a2 = 4
and initial values u0(x) = 0.07 sin(x/3), v0(x) = 0.3 sin(x/3). As t → ∞, the solution converges to a positive steady state solution.

illustrate the multiplicity results shown in Section 3, we show an example of numerical simulation in Figs. 2 and 3. In both
figures, we consider the one-dimensional spatial domain Ω = (0, 3π), so the principal eigenvalue λ1 = 1/9 ≈ 0.11. For
the parameters we choose d1 = d2 = 1, c1 = k1 = 0.01, b = c2 = k2 = 1, a1 = 0.7 and a2 = 4, so a1 > λ1 and a2 > λ1
are satisfied, and following the remark at the end of Section 3, we choose c1, k1 small but c1/k1 much larger. One can indeed
show that ã2 < 0 in this case. In Fig. 2, we use the initial condition u0(x) = 0.07 sin(x/3), v0(x) = 0.3 sin(x/3), and in
Fig. 3, we use u0(x) = 0.07 sin(x/3) and the same v0. Then one can see that a small difference in the initial prey populations
triggers a drastic difference of asymptotic fates, and it also shows that there exist two stable asymptotic states in this case.
The existence of at least two stable steady states has profound impact on the ecological conservation, as a sudden collapse
of the ecosystem is more likely to occur in such systems [20,35,37].

The bistability of the dynamics of (1.4) only holds when the parameters are carefully chosen. In Section 3, we have shown
that if the parameters a1 > λ1, b, c2, k2 > 0 are fixed, c1, k1 > 0 are small and c1/k1 ≥ K > 0, then the bistability occurs
for a2 ∈ (a∗

2, a
∗∗

2 ) for some a∗

2, a
∗∗

2 satisfying 0 < a∗

2 < a∗∗

2 . For many other choices of parameters, the system (1.1) may
have zero or one positive solution; see the related results in [43] and the uniqueness result in Section 4. In particular, the
uniqueness result in Section 4 requires 0 < c1/k1 ≤ δ for some δ > 0. Thus the bistability and uniqueness results indicate
that the quantity c1/k1 may play an important role in the number of positive solutions of (1.1).

We also comment that for the case k2 = 0 (the Holling–Tanner model), time-periodic orbits of (1.4) with Neumann
boundary conditions have been found [26]. The periodic orbits are usually found through Hopf bifurcations, but Hopf bifur-
cations from spatially nonhomogeneous steady state solutions are usually difficult to obtain because of the inhomogeneity
of the steady state solutions. Thus the existence of time-periodic orbits of (1.4) with Dirichlet boundary condition remains
an open question.
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