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Abstract. A delayed diffusive predator-prey system with Holling type-II preda-

tor functional response subject to Neumann boundary conditions is considered

here. The stability/instability of nonnegative equilibria and associated Hopf
bifurcation are investigated by analyzing the characteristic equations. By the

theory of normal form and center manifold, an explicit formula for determining

the stability and direction of periodic solution bifurcating from Hopf bifurca-
tion is derived.

1. Introduction. A diffusive predator-prey system with Holling type-II functional
response [9] is a prototypical reaction-diffusion model describing a pair of species
with consumer-resource interaction [15, 26]. The equation is in the form

∂u

∂t
− d1∆u = u

(
1− u

k

)
− muv

u+ 1
, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = −rv +

muv

u+ 1
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(1.1)

Here Ω is a bounded domain in RN , N ≥ 1, with a smooth boundary ∂Ω; ν is the
outward unit normal vector on ∂Ω; u(x, t) and v(x, t) are the densities of the prey
and predator at time t > 0 and a spatial position x ∈ Ω respectively; d1, d2 > 0
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are the diffusion coefficients of the species; k > 0 is the carrying capacity of prey;
r > 0 is the mortality rate of predator; m > 0 is the measure of the interaction
strength between two species. This reaction-diffusion model (1.1) has been widely
used in ecological and biological applications (see e.g. [14, 15, 17]). More biological
explanation of this predator-prey system can be found in [15, 26].

System (1.1) has been analyzed or simulated by some researchers. Medvinsky
et.al. [15] showed that (1.1) possesses a rich structure of spatiotemporal dynamics
through extensive numerical simulations. In [26], Yi, Wei and Shi investigated the
bifurcations of non-constant equilibria and periodic orbits of (1.1) with parameter
β, and they obtained that in some situations spatially nonhomogeneous periodic
orbits and nonhomogeneous steady state solutions exist in (1.1). Peng and Shi [16]
gave some further results on the steady state solutions, that is when m is sufficient
large, system (1.1) had no nonconstant positive steady state solutions. System (1.1)
was also considered in [12].

Time-delay in some interactions of an evolution system may have significant
impact on the underlying dynamics. Hence reaction-diffusion systems with time
delays have been proposed as models for the population ecology and biology in
recent years (see [3, 6, 10, 11, 19, 20, 21, 24, 25]). There are many results of various
delayed diffusive predator-prey systems, regarding bifurcations at equilibria, and
local/global stability of the constant equilibrium (see e.g. [3, 10, 19, 21, 24, 25] and
references therein). As for predator-prey systems, the delay effect on the growth
rate per capita of predator or prey is often considered (see [10, 23, 27]). In this
paper we consider the delay effect on the growth rate per capita of predator, then
system (1.1) becomes

∂u

∂t
− d1∆u = u

(
1− u

k

)
− muv

u+ 1
, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = −rv +

mu(t− τ)v

u(t− τ) + 1
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, t) = u0(x, t) ≥ 0, v(x, t) = v0(x, t) ≥ 0, x ∈ Ω, t ∈ [−τ, 0],

(1.2)

where τ ≥ 0 represents the delay effect on growth rate per capita of predator.
System (1.2) has three nonnegative constant equilibria (0, 0), (k, 0) and (β, vβ),

where

β =
r

m− r
, vβ =

(k − β)(1 + β)

km
, (1.3)

when m > (1+k)r
k (or equivalently 0 < β < k), and only two nonnegative constant

equilibria (0, 0) and (k, 0) when 0 < m ≤ (1+k)r
k . In the following we use β as a

bifurcation parameter. In [26], it was shown that when the parameters β and k
satisfy

(i) k > 1 and (k − 1)/2 ≤ β < k; or
(ii) 0 < k ≤ 1 and 0 < β < k,

the positive equilibrium (β, vβ) is locally asymptotically stable with respect to the
dynamics of (1.1), or equivalently the one for (1.2) with τ = 0. In the case of (i),
β = (k−1)/2 is a Hopf bifurcation point for (1.1) so that a stable oscillatory pattern
emerges for β < (k − 1)/2. In this paper, our main result is that under (i), the
positive equilibrium (β, vβ) will lose its stability with respect to the dynamics of
(1.2) for a large delay τ . More precisely, we show that there is a strictly increasing
function τ0

0 (β) defined for (k − 1)/2 ≤ β < k satisfying τ0
0 ((k − 1)/2) = 0 and



DIFFUSIVE PREDATOR-PREY SYSTEM 483

limβ→k τ
0
0 (β) = ∞, so that for (k − 1)/2 < β < k, (β, vβ) is locally asymptotically

stable for τ < τ0
0 (β), and it is unstable for τ > τ0

0 (β). Moreover a Hopf bifurcation
occurs at τ = τ0

0 (β) so the constant equilibrium loses the stability to a spatially
homogenous periodic orbit. For the case of (ii), we have similar results.

Our result shows that a stable oscillatory pattern in (1.2) can be induced by
either a larger delay τ or a smaller β, hence a combined impact of the delay τ ,
the interaction strength m and the predator mortality rate r can destabilize the
positive equilibrium state so the system (1.2) exhibits oscillatory behavior. Such
delay-induced Hopf bifurcations occur in (1.2) for all the β values for which (β, vβ)
is locally asymptotically stable for system (1.1). This is different from a similar
diffusive Leslie-Gower predator-prey system [1] studied by the authors recently, in
which the global stability of the constant equilibrium persists for all delay values
τ > 0. For system (1.2), it is not known whether or not (β, vβ) can be globally
asymptotically stable when τ > 0, although the global stability of (β, vβ) when
τ = 0 can be established by a Lyapunov functional for k − 1 < β < k (see [26]).

The rest of this paper is organized as follows. In Section 2, we analyze the
stability/instability of nonnegative equilibria of system (1.2) through the study of
associated characteristic equations and show the occurrence of Hopf bifurcation at
the positive equilibrium (β, vβ). We also give a detailed description of the distribu-
tion of the characteristic values of the associated characteristic equations of (β, vβ).
In Section 3, we investigate the stability and direction of bifurcating periodic orbits
by using normal form [8, 22] and the center manifold theorem due to Lin, So and
Wu [13]. Some numerical simulations are also presented in Section 3. Throughout
the paper, we denote by N0 the set of all the nonnegative integers and R+ the set
of all the positive real numbers.

2. Stability analysis of equilibria and bifurcation. In this section, we consider
system (1.2) on the spatial domain Ω = (0, lπ), with l ∈ R+,



∂u

∂t
− d1

∂2u

∂x2
= u

(
1− u

k

)
− muv

u+ 1
, x ∈ (0, lπ), t > 0,

∂v

∂t
− d2

∂2v

∂x2
= −rv +

mu(t− τ)v

u(t− τ) + 1
, x ∈ (0, lπ), t > 0,

∂u(x, t)

∂x
=
∂v(x, t)

∂x
= 0, x = 0, lπ, t > 0,

u(x, t) = u0(x, t) ≥ 0, v(x, t) = v0(x, t) ≥ 0, x ∈ [0, lπ], t ∈ [−τ, 0].

(2.1)

In this section, we assume that m > (1+k)r
k , then system (2.1) has three nonnega-

tive equilibria (0, 0), (k, 0) and (β, vβ) (defined in (1.3)). It is easy to show that the
equilibria (0, 0) and (k, 0) are unstable with respect to the ODE dynamics, hence
they are also unstable with respect to (2.1). In the remaining part of this section,
we shall analyze the stability/instability of positive constant equilibrium (β, vβ).

Since we use β as the bifurcation parameter, we substitute m = r
β + r into

system (2.1). Note that if m > (1+k)r
k , then 0 < β < k. Transforming the positive

equilibrium (β, vβ) to the origin via the translation û = u − β, v̂ = v − vβ and
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dropping the hats for simplicity of notation, then we have
ut − d1uxx = (u+ β)

(
1− u+ β

k
− r(β + 1)(v + vβ)

β(u+ β + 1)

)
, x ∈ (0, lπ), t > 0,

vt − d2vxx = −r(v + vβ) +

(
r

β
+ r

)
(uτ + β)(v + vβ)

uτ + β + 1
, x ∈ (0, lπ), t > 0,

∂u(x, t)

∂x
=
∂v(x, t)

∂x
= 0, x = 0, lπ, t > 0,

(2.2)
where u = u(x, t), uτ = u(x, t − τ), v = v(x, t). Denote X = C([0, lπ],R2). In the
abstract space C([−τ, 0], X), system (2.2) can be regarded as the following abstract
functional differential equation

dU(t)

dt
= d∆U(t) + L(Ut) + F (Ut), (2.3)

where d∆ = (d1∆, d2∆),

dom(d∆) =
{

(u, v)T : u, v ∈ C2([0, lπ],R), ux, vx = 0, x = 0, lπ
}
,

and L : C([−τ, 0], X)→ X, F : C([−τ, 0], X)→ X are given by

L(φ) =


β(k − 1− 2β)

k(1 + β)
φ1(0)− rφ2(0)

k − β
k(β + 1)

φ1(−τ)

 , F (φ) =

(
F1(φ)
F2(φ)

)
,

for φ = (φ1, φ2)T ∈ C([−τ, 0], X), where

F1(φ) =
(k − β)

k(1 + β)
φ1(0) + rφ2(0) + β − β2 + φ2

1(0)

k

−
(
r

β
+ r

)
(φ1(0) + β)(φ2(0) + vβ)

φ1(0) + β + 1
,

F2(φ) =− (k − β)

k(1 + β)
φ1(−τ)− rφ2(0)− rvβ

+

(
r

β
+ r

)
(φ1(−τ) + β)(φ2(−τ) + vβ)

φ1(−τ) + β + 1
.

Then the linearization of system (2.2) near (β, vβ) is

dU(t)

dt
= d∆U(t) + L(Ut). (2.4)

From Wu [22], we obtain that the characteristic equation for the linearized system
(2.4) is

λy − d∆y − L(eλ·y) = 0, y ∈ dom(d∆), y 6= 0. (2.5)

It is well known that the eigenvalue problem

−ψ′′ = µψ, x ∈ (0, lπ), ψ′(0) = ψ′(lπ) = 0

has eigenvalues µn = n2

l2 , (n = 0, 1, 2, · · · ), with the corresponding eigenfunctions
ψn(x) = cos nl x. Substituting

y =

∞∑
n=0

cos
n

l
x

(
y1n

y2n

)
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into characteristic equation (2.5), we obtain
β(k − 1− 2β)

k(1 + β)
− d1n

2

l2
−r

(k − β)

k(β + 1)
e−λτ −d2n

2

l2

( y1n

y2n

)
= λ

(
y1n

y2n

)
, n = 0, 1, 2, · · · .

Therefore the characteristic equation (2.5) is equivalent to

∆n(λ, τ) = λ2 +Anλ+Bn + Ce−λτ = 0, n = 0, 1, 2, · · · , (2.5n)

where

An =
(d1 + d2)n2

l2
− β(k − 1− 2β)

k(1 + β)
,

Bn =
d1d2n

4

l4
− d2n

2

l2
β(k − 1− 2β)

k(1 + β)
,

C =
r(k − β)

k(β + 1)
.

The stability/instability of positive equilibrium (β, vβ) can be determined by the
distribution of the roots of Eqs. (2.5n), n = 0, 1, 2, · · · , that is, the equilibrium
(β, vβ) is locally asymptotically stable if all the roots of Eqs. (2.5n), n = 0, 1, 2, · · ·
have negative real parts. From the result of Ruan and Wei [18, Corollary 2.4], the
sum of the multiplicities of the roots of Eq. (2.5n) in the open right half plane
changes only if a root appears on or crosses the imaginary axis.

In the following, fixing parameters d1, d2, k, r, l in (2.2), we use τ as the main
bifurcation parameter while the value of β may vary in different places. It can be
verified that if 0 < k ≤ 1, then 0 is not a root of Eqs. (2.5n), n = 0, 1, 2, · · · , when
β ∈ (0, k), and if k > 1, then 0 is not a root of Eqs. (2.5n), n = 0, 1, 2, · · · , when
β ∈ [(k − 1)/2, k).

If ±iσ(σ > 0) is a pair of roots of Eq. (2.5n), then we have{
σ2 −Bn = C cosστ,

σAn = C sinστ,
n = 0, 1, 2, · · · , (2.6n)

which leads to

σ4 + (A2
n − 2Bn)σ2 +B2

n − C2 = 0, n = 0, 1, 2, · · · , (2.7n)

where

A2
n − 2Bn =

d2
2n

4

l4
+

(
d1n

2

l2
− β(k − 1− 2β)

k(1 + β)

)2

,

B2
n − C2 =

d2
2n

4

l4

(
d1n

2

l2
− β(k − 1− 2β)

k(1 + β)

)2

− r2(k − β)2

k2(β + 1)2
.

(2.8)

Since limn→∞(B2
n − C2) = +∞ for any 0 < β < k, then there exists a minimal

N0(β) ≥ 0 such that Eq. (2.7n) has no positive root for n > N0(β) and Eq. (2.7n)
has one positive root at most for 0 ≤ n ≤ N0(β).

For 0 ≤ n ≤ N0(β), if Eq. (2.7n) has a positive root σn satisfying

σ2
n =
−(A2

n − 2Bn) +
√

(A2
n − 2Bn)2 − 4(B2

n − C2)

2
, (2.9)
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then Eq. (2.5n) has a pair of imaginary roots ±iσn when

τ = τ jn = τ0
n +

2jπ

σn
, j = 0, 1, 2, · · · , (2.10)

where τ0
n satisfies

τ0
n =


arccos

σ2
n −Bn
C

σn
, if An ≥ 0

2π − arccos
σ2
n −Bn
C

σn
, if An < 0.

(2.11)

From dependence of An, Bn and C on β, τ jn = τ jn(β) can be regarded as a function
of β. Let N = max0<β<kN0(β). Here we give some properties of curves τ = τ jn(β),
for 0 ≤ n ≤ N, j ∈ N0.

Lemma 2.1. Denote by Dn the domain of τ = τ jn(β), 0 ≤ n ≤ N and j ∈ N0.
Then

Dn = {β : 0 < β < k, B2
n − C2 < 0}. (2.12)

Proof. From Eq. (2.11), we know that τ0
n(β) is the minimal positive τ -value for Eq.

(2.5n) possessing a couple of purely imaginary roots. Eq. (2.5n) has a couple of
purely imaginary roots if and only if Eq. (2.7n) has a positive root. Since A2

n−2Bn
is always nonnegative, Eq. (2.5n) has a couple of purely imaginary roots if and only
if B2

n − C2 < 0. Then we obtain that the domain of τ0
n(β) is

Dn = {β : 0 < β < k, B2
n − C2 < 0}, 0 ≤ n ≤ N.

Since the domain of τ jn(β) is same as that of τ0
n(β) when j ≥ 1, then the domain of

τ jn(β) is also Dn for j ≥ 1.

Let λn(τ) = γn(τ) + iσn(τ) be the root of Eq. (2.5n) satisfying γn(τ jn) = 0
and σn(τ jn) = σn when τ is close to τ jn. Then we have the following transversality
condition.

Lemma 2.2. γ′n(τ jn(β)) > 0, for β ∈ Dn, 0 ≤ n ≤ N , and j ∈ N0.

Proof. Substituting λn(τ) into Eq. (2.5n) and taking the derivatives with respect
to τ yields [

dγn
dτ

∣∣∣τ=τj
n

]−1

=Re

[(
2eλτ

C
+
Ane

λτ

Cλ
− τ

λ

) ∣∣∣τ=τj
n

]
=

2 cosσnτ
j
n

C
+
An sinσnτ

j
n

Cσn
.

Since σn and τ jn satisfy σ2
n−Bn = C cosσnτ

j
n and σnAn = C sinσnτ

j
n, and from the

expression of σ2
n in (2.9), then we have[

dγn
dτ

∣∣∣τ=τj
n

]−1

=
2σ2

n − 2Bn
C2

+
A2
n

C2

=

√
(A2

n − 2Bn)2 − 4B2
n + 4C2

C2
.

Therefore γ′n(τ jn) > 0.
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It is clear from (2.10) that τ j+1
n (β) > τ jn(β), and the following proposition show

that τ jn+1(β) > τ jn(β), hence we have a complete ordering of the bifurcation values

τ jn(β).

Proposition 2.3. Let τ jn(β) be defined as in (2.10) and (2.11).

1. If k > 1, then for any β ∈ [(k − 1)/2, k), τ jn+1(β) > τ jn(β) for 0 ≤ n <
N0(β), j ∈ N0.

2. If k ≤ 1, then for any β ∈ (0, k), τ jn+1(β) > τ jn(β) for 0 ≤ n < N0(β), j ∈ N0.

Proof. If k > 1, from (2.9),

σ2
n =
−(A2

n − 2Bn) +
√

(A2
n − 2Bn)2 − 4(B2

n − C2)

2

=
2√

(A2
n − 2Bn)2

(C2 −B2
n)2

+
4

C2 −B2
n

+
A2
n − 2Bn
C2 −B2

n

,

where A2
n − 2Bn and B2

n − C2 are given in (2.8). Since when β ∈ [(k − 1)/2, k),
A2
n − 2Bn is strictly increasing in n and C2 − B2

n is strictly decreasing in n for
0 ≤ n < N0(β), then we obtain σ2

n+1(β) < σ2
n(β) when β ∈ [(k − 1)/2, k). Since

when β ∈ [(k − 1)/2, k), then An ≥ 0, and consequently from (2.11),

τ0
n =

arccos
σ2
n −Bn
C

σn
.

Hence we can obtain τ0
n+1(β) > τ0

n(β), 0 ≤ n < N0(β).

Since σn+1 < σn, then from (2.10) we can obtain that τ jn+1(β) > τ jn(β), j ≥ 1,
0 < n < N0(β). Similarly we can obtain the second conclusion.

In the case of k ≤ 1, then An > 0 whenever β ∈ Dn and consequently from
(2.11),

τ jn(β) =
arccos

σ2
n −Bn
C

+ 2jπ

σn
. (2.13)

Then we can arrive at the following results of curves τ jn(β) when k ≤ 1.

Proposition 2.4. Suppose d1, d2, k, r, l are all positive constants. Define ln =(
d1d2n

4

r

) 1
4

, for n ∈ N0, then
⋃∞
n=0(ln, ln+1] = R+. If k ≤ 1, then for any l ∈

(ln, ln+1], there exist {βp}np=0 such that βn < · · · < βp+1 < βp < · · · < β0 = k which
satisfy the following properties:

1. Dp = (0, βp) for 0 ≤ p ≤ n, Dp = ∅ for p > n, and N = max0<β<kN0(β) = n;
2. τ jp (β) is a strictly increasing function for β ∈ (0, βp) where 0 ≤ p ≤ n and

j ∈ N0;
3. For j ∈ N0 and 0 ≤ p ≤ n, limβ→βp τ

j
p (β) = +∞, limβ→0 τ

0
p (β) > 0 for

1 ≤ p ≤ n, and limβ→0 τ
0
0 (β) = 0.

Proof. When k ≤ 1, B2
p−C2 is strictly increasing in β for p ∈ N0. Since for any l ∈

(ln, ln+1], limβ→0(B2
p −C2) < 0 for 0 ≤ p ≤ n and limβ→0(B2

p −C2) ≥ 0 for p > n,
then there exist {βp}np=0 such that βn < · · · < βp+1 < βp < · · · < β0 = k satisfying
Dp = (0, βp) for 0 ≤ p ≤ n and Dp = ∅ for p > n. So N = max0<β<kN0(β) = n.
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To prove that τ0
p (β) is strictly increasing in β, we observe that

σ2
p =
−(A2

p − 2Bp) +
√

(A2
p − 2Bp)2 − 4(B2

p − C2)

2

=
2√

(A2
p − 2Bp)

2

(C2 −B2
p)2

+
4

C2 −B2
p

+
A2
p − 2Bp

C2 −B2
p

,

and

σ2
p

C
=
−(A2

p − 2Bp) +
√

(A2
p − 2Bp)2 − 4(B2

p − C2)

2C

=
2√

(A2
p − 2Bp)

2C2

(C2 −B2
p)2

+
4C2

C2 −B2
p

+
C(A2

p − 2Bp)

C2 −B2
p

.

Since C2 − B2
p is strictly decreasing in β,

C2−B2
p

C is strictly decreasing in β,
Bp

C is

strictly increasing in β, and A2
p− 2Bp is strictly increasing in β, we can obtain that

σp and
σ2
p

C are strictly decreasing in β. So from (2.13), τ jp (β) is a strictly increasing
function when β ∈ (0, βp) for 0 ≤ p ≤ n, j ∈ N0.

Since limβ→βp
σp(β) = 0 for 0 ≤ p ≤ n, limβ→0 σp(β) > 0 for 1 ≤ p ≤ n, and

limβ→0 arccos
σ2
0−B0

C = 0, then from (2.13) we can obtain limβ→βp
τ0
p (β) = +∞ for

0 ≤ p ≤ n, limβ→0 τ
0
p (β) > 0 for 1 ≤ p ≤ n and limβ→0 τ

0
0 (β) = 0.

To visualize the curves τ jn(β) described in Proposition 2.4, we choose d1 =
0.5, d2 = 1, r = 1, l = 1 and k = 1, then in this case l ∈ (l1, l2] and N = 2.

So from Proposition 2.4, there exist β0 and β1 as the asymptotes of τ j0 (β) and

τ j1 (β), see Fig. 1.
In the case of k > 1, the description of curves τ jn(β), (0 ≤ n ≤ N, j ∈ N0), is

much more complicated. The difficulty is that in this case τ jn is defined piecewisely
when 0 < β < k. When β ≥ (k − 1)/2, we still have An ≥ 0, so

τ jn(β) =
arccos

σ2
n −Bn
C

+ 2jπ

σn
.

Then using the same method from Proposition 2.4 we first give the following de-
scription of τ jn(β) when β ≥ (k − 1)/2.

Proposition 2.5. Suppose d1, d2, k, l are all positive constant. Define l̃n =(
d1d2n

4k
r

) 1
4

, n ∈ N0, then
⋃∞
n=0(l̃n, l̃n+1] = R+. When k > 1, for any l ∈ (l̃n, l̃n+1],

there exist {β̃p}np=0 such that β̃n < · · · < β̃p+1 < β̃p < · · · < β̃0 = k satisfying:

1. [(k− 1)/2, k)
⋂
Dp = [(k− 1)/2, β̃p) for 0 ≤ p ≤ n, [(k− 1)/2, k)

⋂
Dp = ∅ for

p > n, and N = max0<β<kN0(β) ≥ max(k−1)/2≤β<kN0(β) = n;

2. τ jp (β) is a strictly increasing function for β ∈ [(k − 1)/2, β̃p), 0 ≤ p ≤ n,
j ∈ N0;

3. limβ→β̃p
τ jp (β) = +∞ for 0 ≤ p ≤ n, j ∈ N0, limβ→(k−1)/2 τ

0
P (β) > 0, for

1 ≤ p ≤ n, and limβ→(k−1)/2 τ
0
0 (β) = 0.
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Figure 1. Graph of τ jp (β) when k ≤ 1. Here β0 = 1, β1 = 0.25
and p = 0, 1, where we use d1 = 0.5, d2 = 1, r = 1, l = 1 and
k = 1. We only show the curves for j = 0, 1.

To visualize the curves τ jn(β) described in Proposition 2.5, we choose d1 =

0.5, d2 = 1, r = 1, l = 1 and k = 1.5, then in this case l ∈ (l̃1, l̃2]. So from

Proposition 2.5, we obtain that there exist β̃0 and β̃1 as the asymptotes of τ j0 (β)

and τ j1 (β), see Fig. 2.
Propositions 2.3, 2.4 and 2.5 show that when k ≤ 1 or k > 1 but β > (k − 1)/2,

the curves of pure imaginary roots of Eq. (2.5n) have similar structure, and Lemma
2.2 guarantees the transversality condition for Hopf bifurcations at such points.
Thus we have the following results:

Theorem 2.6. Suppose d1, d2, k, l, r are all positive constants, and either k > 1
and (k − 1)/2 ≤ β < k, or 0 < k ≤ 1 and 0 < β < k.

(i) if τ ∈ [0, τ0
0 (β)), then all the roots of Eqs. (2.5n), (n ≥ 0) have negative real

parts, and the positive equilibrium (β, vβ) is locally asymptotically stable.
(ii) if τ = τ0

0 (β), then all the roots of Eq. (2.50) except ±iσ0 and the ones of Eqs.
(2.5n), (n ≥ 1) have negative real parts, and system (2.1) undergoes a Hopf
bifurcation at (β, vβ).

(iii) if τ > τ0
0 (β), the positive equilibrium (β, vβ) is unstable with at least two

roots of Eqs. (2.5n), (n ≥ 0) with positive real parts. Moreover whenever τ
increases through one of curves τ jn(β), 0 ≤ n ≤ N, j ∈ N0, the sum of the
multiplicities of the roots of Eqs. (2.5n) with positive real parts will increase
by two.

Proof. When k > 1, (k − 1)/2 < β < k or k ≤ 1, 0 < β < k, then β(k−1−2β)
k(1+β) < 0.

Hence it is easy to verify that all the roots of Eqs. (2.5n), (n ≥ 0) have negative
real parts when τ = 0. Hence, from the transversality condition in Lemma 2.2,
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Figure 2. Graph of τ jp (β), when k > 1. Here β̃0 = 1.5, β̃1 = 0.375,
and p = 0, 1, where we use d1 = 0.5, d2 = 1, r = 1, l = 1 and
k = 1.5. We only show the curves for j = 0, 1.

Proposition 2.3-2.5 and the result of Ruan and Wei [18, Corollary 2.4], we can
obtain the conclusion.

Remark 2.7. For a fixed β as in Theorem 2.6, denote P(β) = {τ jn(β), 0 ≤ n <
N, j ∈ N0 : τ jn 6= τkm, for any m 6= n, j 6= k}. then system (2.1) also undergoes a
Hopf bifurcation at (β, vβ) when τ ∈ P(β).

To visualize the curves τ jn(β) in Theorem 2.6, we choose k = 1.5 and plot τ jp , p =
0, 1 for 0 ≤ j ≤ 9 when β > (k − 1)/2 = 0.25 (see Fig. 3). From Fig. 3 we know
that τ0

0 (β) is the lowest curve. So fixing β and increasing τ , we can see that (β, vβ)
loses its stability when τ pass through τ0

0 (β) and a Hopf bifurcation occurs at
(β, vβ) when τ passes through each bifurcation value in P(β). We can see when β
is close to 0.25, the Hopf bifurcation value τ0

1 (β) belongs to P(β) and then system
undergoes a Hopf bifurcation of spatially inhomogeneous periodic orbits at (β, vβ)
when τ = τ0

1 (β).
Theorem 2.6 shows the effect of delay on the dynamics of predator-prey system

(2.2). From [26], we know that when 0 < k ≤ 1 or k > 1 but k − 1 ≤ β < k,
the constant positive equilibrium (β, vβ) is globally asymptotically stable (when
(k − 1)/2 ≤ β < k − 1, (β, vβ) is locally asymptotically stable). However From
Theorem 2.6 we can see that when 0 < k ≤ 1 or k > 1 but (k − 1)/2 ≤ β < k, a
large delay could destabilize the constant equilibrium.

For k > 1 and 0 < β ≤ (k−1)/2, the constant equilibrium (β, vβ) is unstable even
when τ = 0. In [26], Yi, Wei and Shi studied the Hopf bifurcations and equilibrium
bifurcations of system (2.2) when τ = 0 and using β, (0 < β ≤ (k − 1)/2) as
bifurcation parameter. In this parameter range, the curves τ jn(β) are not always
defined, and they may have vertical asymptotes where the curves blow up to infinity.
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Figure 3. Graph of τ jp (β) where d1 = 0.5, d2 = 1, r = 1, l = 1
and k = 1.5. Here p = 0, 1. We only show the curves for j =
0, 1, · · · , 9.

But we point out that the values β so that τ0
n(β) = 0 are coincident to the Hopf

bifurcation points found in [26], since when τ = 0, the characteristic equation
λ2 +Anλ+Bn +Ce−λτ = 0 becomes λ2 +Anλ+Bn +C = 0, which is the same as
the characteristic equation at (β, vβ) without delay effect (see Eq. (2.39) of [26]).
Hence the Hopf bifurcations described in [26] also exist for the system with delay
effect (2.2). Similar to Theorem 2.6, this shows that the Hopf bifurcations are
jointly driven by two parameters τ (delay) and β (internal system parameter). We
will not describe the Hopf bifurcations for this parameter range in details, but only
state the following stability results from our discussions:

Proposition 2.8. Suppose d1, d2, k, l, r are all positive constants, and k, β satisfy
k > 1 and 0 < β < (k − 1)/2. Then for any τ ≥ 0, the positive equilibrium (β, vβ)
is unstable with at least two roots of Eqs. (2.5n), (n ≥ 0) with positive real parts.
Moreover whenever τ increases through one of curves τ jn(β), 0 ≤ n ≤ N, j ∈ N0,
the sum of the multiplicities of the roots of Eqs. (2.5n) with positive real parts will
increase by two.

Proof. When k > 1, 0 < β < (k− 1)/2, then β(k−1−2β)
k(1+β) > 0. It’s easy to verify that

Eqs. (2.5n), (n = 0, 1, 2, · · · ) have at lest a pair of roots with positive real parts
when τ = 0. Hence, from the transversality condition of Lemma 2.2 and the result
of Ruan and Wei [18, Corollary 2.4], we derive the conclusion.

To conclude our discussion of the dynamics of (2.2), we show that when 0 < m ≤
(1+k)r
k , the dynamics is much simpler. Indeed when 0 < m ≤ (1+k)r

k , system (2.1)
has only two nonnegative equilibria (0, 0) and (k, 0). It is easy to verify that (0, 0)

is always unstable and (k, 0) is locally asymptotically stable when 0 < m ≤ (1+k)r
k .



492 SHANSHAN CHEN, JUNPING SHI AND JUNJIE WEI

Furthermore we can show that (k, 0) is globally asymptotically stable with respect
to all solutions with non-negative initial values.

Theorem 2.9. Suppose d1, d2, l, k, m, r are all positive constants. When 0 <

m < (1+k)r
k , then the constant equilibrium (k, 0) of (2.1) is globally asymptotically

stable with respect to solutions with nonnegative initial value (u0(x, t), v0(x, t)), (x, t)
∈ Ω× [−τ, 0] and u(x, 0) 6≡ 0, v(x, 0) 6≡ 0.

Proof. Let (u(x, t), v(x, t)) be a solution of system (2.1) with nonnegative initial
value (u0(x, t), v0(x, t)), (x, t) ∈ Ω × [−τ, 0] and u(x, 0) 6≡ 0, v(x, 0) 6≡ 0. Since

0 < m < (1+k)r
k , we can choose ε0 such that m(k+ε)

k+ε+1 < r for any ε ∈ (0, ε0). Because

∂u

∂t
− d1∆u = u

(
1− u

k

)
− muv

u+ 1
≤ u

(
1− u

k

)
,

then for any given sufficiently small ε satisfying 0 < ε < min{1/m, ε0}, there exists
t0(u0, v0) such that u(x, t) ≤ k + ε and consequently,

∂v

∂t
− d2∆v = −rv +

mu(t− τ)v

u(t− τ) + 1
≤ v

(
−r +

m(k + ε)

k + ε+ 1

)

for t > t0(u0, v0)+τ . Since −r+ m(k+ε)
k+ε+1 < 0, then for the above given ε, there exists

t1(u0, v0) such that for any t > t1(u0, v0), ‖v(x, t)‖C1(Ω) < ε and consequently,

∂u

∂t
− d1∆u = u

(
1− u

k

)
− muv

u+ 1
≥ u

(
1−mε− u

k

)
.

So limt→∞ u(x, t) = k, limt→∞ v(x, t) = 0 in C1(Ω).

3. Direction and stability of the Hopf bifurcation. In the previous section,
we have already obtained that system (2.1) undergoes a Hopf bifurcation at (β, vβ)
when τ ∈ P(β). In this section, we shall study the direction of the Hopf bifurca-
tion and the stability of the bifurcating periodic solutions by employing the center
manifold theorem due to Lin, So and Wu [13] and normal form method (see Wu
[22], Hassard et al. [8]) for partial differential equations with delay. This proce-
dure of computing normal form can also be carried out by the method of Faria
(see [4, 5, 2]). Then we compute the direction and stability of the Hopf bifurcation
when τ = τ0 ≡ τ0

0 (β) ∈ P(β). The direction of the Hopf bifurcation when τ is
equal to other Hopf bifurcation values in P(β) can also be analyzed using the same
procedure.

Setting τ = τ0 + µ, then µ = 0 is the Hopf bifurcation value of system (2.3).
Re-scaling the time by t → t

τ to normalize the delay, system (2.3) can be written
in the form

dU(t)

dt
= τ0d∆U(t) + τ0L0(Ut) +G(Ut, µ), (3.1)
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where

L0(φ) =


β(k − 1− 2β)

k(1 + β)
φ1(0)− rφ2(0)

k − β
k(β + 1)

φ1(−1)

 ,

G(φ, µ) = µd∆φ(0) + µL0(φ) + (µ+ τ0)F0(φ),

F0(φ)

=


(k − β)

k(1 + β)
φ1(0) + rφ2(0) + β − β2 + φ2

1(0)

k
− m(φ1(0) + β)(φ2(0) + vβ)

φ1(0) + β + 1

− (k − β)

k(1 + β)
φ1(−1)− rφ2(0)− rvβ +

m(φ1(−1) + β)(φ2(0) + vβ)

φ1(−1) + β + 1

 ,

for φ ∈ C = C([−1, 0], X).
From Section 2, we know that ±iσ0τ0 is a pair of simple purely imaginary eigen-

values of the linear system

dU(t)

dt
= τ0d∆U(t) + τ0L0(Ut) (3.2)

and the linear functional differential equation

dz(t)

dt
= τ0L0(zt). (3.3)

By Riesz representation theorem, there exists a 2 × 2 matrix η(θ, µ), (θ ∈ [−1, 0]),
whose elements are of bounded variation functions such that

(τ0 + µ)L0(φ) =

∫ 0

−1

dη(θ, µ)φ(θ), for φ(θ) ∈ C([−1, 0],R2). (3.4)

In fact, we have

dη(θ, µ) = (τ0 + µ)Eδ(θ) + (τ0 + µ)Fδ(θ + 1)

where

E =

 β(k − 1− 2β)

k(1 + β)
−r

0 0

 , F =

 0 0
k − β
k(1 + β)

0

 .

Then (3.4) is satisfied.
For φ(θ) ∈ C1([−1, 0],R2), define A(0) as

A(0)(φ(θ)) =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(θ, 0)φ(θ), θ = 0,

and for ψ = (ψ1, ψ2) ∈ C1([0, 1], (R2)∗), define

A∗(ψ(s)) =

−
dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1
ψ(−ξ)dη(θ, 0), s = 0.

Then A(0) and A∗ are adjoint operators under the bilinear form

(ψ(s), φ(θ))0 = ψ(0)φ(0)−
∫ 0

−1

∫ θ

0

ψ(ξ − θ)dη(0, θ)φ(ξ)dξ,

where ψ(s) ∈ C([0, 1], (R2)∗) and φ(θ) ∈ C([−1, 0],R2) (see Hale [7, Chapter 7],
Hassard et.al. [8]).
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It can be verified that ±iσ0τ0 are the eigenvalues of A(0) and A∗, and q(θ) =
(q1, q2)T eiσ0τ0θ(θ ∈ [−1, 0]) and q∗(s) = 1

D
(q∗1 , q

∗
2)eiσ0τ0s(s ∈ [0, 1]) are the eigenvec-

tors of A(0) and A∗ corresponding to the eigenvalue iσ0τ0 and −iσ0τ0, respectively,
where

(q1, q2) =

(
1,
β(k − 1− 2β)

rk(1 + β)
− iσ0

r

)
, (q∗1 , q

∗
2) =

(
1,− ir

σ0

)
,

D = 2 +
iβ(k − 1− 2β)

σ0k(1 + β)
+
ir(k − β)τ0e

−iσ0τ0

σ0k(1 + β)
.

Let Φ = (q(θ), q(θ)), Ψ = (q∗(s), q∗(s))T , then (Ψ,Φ)0 = I, where I =

(
1 0
0 1

)
.

Then the center subspace of system (3.3) is P = span{q(θ), q(θ)}, and the adjoint
subspace is P ∗ = span{q∗(s), q∗(s)}.

Let f0 = (f1
0 , f

2
0 )T , where

f1
0 =

(
1
0

)
, f2

0 =

(
0
1

)
.

By using the notation from Wu [22], we also define c · f0 = c1f
1
0 + c2f

2
0 for c =

(c1, c2)T ∈ C2, (ψ · f0)(θ) = ψ(θ) · f0 for ψ(θ) ∈ [−1, 0] and

〈u, v〉 =
1

lπ

∫ lπ

0

u1v1dx+
1

lπ

∫ lπ

0

u2v2dx

for u = (u1, u2), v = (v1, v2) ∈ X = C([0, lπ],R2). Hence 〈φ, f0〉 = (〈φ, f1
0 〉, 〈φ, f2

0 〉)T
where φ ∈ C = C([−1, 0], X).

Then the center subspace of linear system (3.2) is given by PCNC, where

PCNφ = Φ(Ψ, 〈φ, f0〉)0 · f0, φ ∈ C,
PCNC = {(q(θ)z + q(θ)z) · f0 : z ∈ C},

and C = PCNC ⊕ PSC, where PsC is the stable subspace.
From Wu [22], we know that the infinitesimal generator AU of linear system (3.2)

satisfies

AUψ = ψ̇(θ).

Moreover ψ ∈ dom(AU ) if and only if

ψ̇(θ) ∈ C, ψ(0) ∈ dom(4), ψ̇(θ)(0) = τ0∆ψ(0) + τ0L0(ψ).

As the formulas to be developed for the bifurcation direction and stability are all
relative to µ = 0 only, we set µ = 0 in system (3.1) and obtain a center manifold

W (z, z) = W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ · · · (3.5)

with the range in PSC. The flow of system (3.1) in the center manifold can be
written as follows:

ut = Φ(z(t), z(t))T · f0 +W (z(t), z(t)),

where

ż(t) = iσ0τ0z(t) + q∗(0)〈G(Φ(z(t), z(t))T · f0 +W (z, z), 0), f0〉. (3.6)

We rewrite (3.6) as

ż(t) = iσ0τ0z(t) + g(z, z) (3.7)
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with

g(z, z) =q∗(0)〈G(Φ(z(t), z(t))T · f0 +W (z, z), 0), f0〉

=g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · .

(3.8)

Denote

f(u, v) =
m(u+ β)(v + vβ)

u+ β + 1
,

and then from Taylor formula we have

f(u, v) =β − β2

k
+

(k − β)u

k(1 + β)
+ rv − (k − β)u2

k(1 + β)2

+
muv

(β + 1)2
+

(k − β)u3

k(1 + β)3
− mu2v

(β + 1)3
+O(4),

(3.9)

where O(4) = O(||(u, v)||4), and G(φ, 0) = τ0(G1, G2)T , where

G1 =(
k − β

k(1 + β)2
− 1

k
)φ2

1(0)− m

(β + 1)2
φ1(0)φ2(0)

− k − β
k(1 + β)3

φ3
1(0) +

m

(β + 1)3
φ2

1(0)φ2(0) +O(4),

G2 =− k − β
k(1 + β)2

φ2
1(−1) +

m

(β + 1)2
φ1(−1)φ2(0)

+
k − β

k(1 + β)3
φ3

1(−1)− m

(β + 1)3
φ2

1(−1)φ2(0) +O(4).

(3.10)

From (3.8) and (3.10), we have

g20 =
2q∗1τ0
D

[(
k − β

k(1 + β)2
− 1

k

)
q2
1 −

m

(1 + β)2
q1q2

]
+

2q∗2τ0
D

[
− k − β
k(1 + β)2

q2
1e
−2iσ0τ0 +

m

(1 + β)2
q1q2e

−iσ0τ0

]
,

g11 =
q∗1τ0
D

[
2

(
k − β

k(1 + β)2
− 1

k

)
q1q1 −

m

(1 + β)2
(q1q2 + q1q2)

]
+
q∗2τ0
D

[
−2

k − β
k(1 + β)2

q1q1 +
m

(1 + β)2
(q1q2e

−iσ0τ0 + q1q2e
iσ0τ0)

]
,

g02 =
2q∗1τ0
D

[(
k − β

k(1 + β)2
− 1

k

)
q2

1 −
m

(1 + β)2
q1q2

]
+

2q∗2τ0
D

[
− k − β
k(1 + β)2

q2
1e

2iσ0τ0 +
m

(1 + β)2
q1q2e

iσ0τ0

]
,
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g21 =
2q∗1τ0
D

(
k − β

k(1 + β)2
− 1

k

)
1

lπ

∫ lπ

0

(W 1
20(0)q1 + 2W 1

11(0)q1)dx

− 2q∗2τ0
D

k − β
k(1 + β)2

1

lπ

∫ lπ

0

(2e−iσ0τ0W 1
11(−1)q1 + eiσ0τ0W 1

20(−1)q1)dx

− q∗1τ0m

D(1 + β)2

1

lπ

∫ lπ

0

(W 1
20(0)q2 + 2W 1

11(0)q2)dx

− q∗1τ0m

D(1 + β)2

1

lπ

∫ lπ

0

(+W 2
20(0)q1 + 2W 2

11(0)q1)dx

+
q∗2τ0m

D(1 + β)2

1

lπ

∫ lπ

0

(W 1
20(−1)q2 + 2W 1

11(−1)q2)dx

+
q∗2τ0m

D(1 + β)2

1

lπ

∫ lπ

0

(W 2
20(0)q1e

iσ0τ0 + 2W 2
11(0)q1e

−iσ0τ0)dx

+
2τ0m

D(1 + β)3
(q∗1q

2
1q2 + 2q∗1q1q2q1 − q∗2q2

1q2e
−2iσ0τ0 − 2q∗2q1q2q1)

+
2(k − β)τ0
Dk(1 + β)3

(3q∗2q
2
1q1e

−iσ0τ0 − 3q∗1q
2
1q1).

So in order to compute g21, we need to compute W20(θ) and W11(θ).
Since W (z(t), (z(t)) satisfies

Ẇ =AUW +X0G(Φ(z, z)T · f0 + w(z, z), 0)

− Φ(Ψ, 〈X0G(Φ(z, z)T · f0 + w(z, z), 0), f0〉)0 · f0

=AUW +H20
z2

2
+H11zz +H02

z2

2
+ · · · ,

(3.11)

then by using the chain rule

Ẇ =
∂W (z, z)

∂z
ż +

∂W (z, z)

∂z
ż,

we have that 
[2iσ0τ0 −AU ]W20 = H20,

−AUW11 = H11,

[−2iσ0τ0 −AU ]W02 = H02.

(3.12)

Note that for −1 ≤ θ < 0,

−Φ(Ψ, 〈X0G(Φ(z, z)T · f0 +w(z, z), 0), f0〉)0 · f0 = H20
z2

2
+H11zz +H02

z2

2
+ · · · ,

then we have for −1 ≤ θ < 0,

H20(θ) = −[g20q(θ) + g02q(θ)] · f0, (3.13)

H11(θ) = −[g11q(θ) + g11q(θ)] · f0, (3.14)

therefore from (3.12)

W20(θ) =
ig20

σ0τ0
q(θ) · f0 +

ig02

3σ0τ0
q(θ) · f0 + E1e

2iσ0τ0θ,

and

W11(θ) = − ig11

σ0τ0
q(θ) · f0+

ig11

σ0τ0
q(θ) · f0 + E2.
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From (3.12) with θ = 0, the definition of AU and

H20(0) = −[g20q(0)+g02q(0)]·f0+τ0


(

k − β

k(1 + β)2
− 1

k

)
q21 − m

(1 + β)2
q1q2

− k − β

k(1 + β)2
q21e

−2iσ0τ0 +
m

(1 + β)2
q1q2e

−iσ0τ0

,
we obtain

E1 = E11 · E12, and E2 = E21 · E22, (3.15)

where

E11 =

 2iσ0 −
β(k − 1− 2β)

k(1 + β)
r

− k − β
k(1 + β)

e−2iσ0τ0 2iσ0


−1

,

E12 =


(

k − β
k(1 + β)2

− 1

k

)
q2
1 −

m

(1 + β)2
q1q2

− k − β
k(1 + β)2

q2
1e
−2iσ0τ0 +

m

(1 + β)2
q1q2e

−iσ0τ0

 .

and

E21 =

 −
β(k − 1− 2β)

k(1 + β)
r

− k − β
k(1 + β)

0


−1

,

E22 =

 2

(
k − β

k(1 + β)2
− 1

k

)
q1q1 −

m

(1 + β)2
(q1q2 + q1q2)

−2
k − β

k(1 + β)2
q1q1 +

m

(1 + β)2
(q1q2e

−iσ0τ0 + q1q2e
iσ0τ0)

 .

Then g21 can be determined.
Based on the above analysis, we can see that each gij can be determined by the

parameters. Thus we can compute the following quantities which determine the
direction and stability of bifurcating periodic orbits:

C1(0) =
i

2σ0τ0
0

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21

2
, µ2 = −Re(C1(0))

Re(λ′(τ0
0 ))

,

β2 = 2Re(C1(0)), T2 = − Im(C1(0)) + µ2Im(λ′(τ0
0 ))

σ0τ0
0

.

Theorem 3.1. For system (2.1),

(i) µ2 determines the direction of the Hopf bifurcation: if µ2 > 0 (µ2 < 0), then
the bifurcating periodic solutions exist for τ > τ0 = τ0

0 (τ < τ0 = τ0
0 );

(ii) β2 determines the stability of bifurcating periodic solutions: the bifurcating
periodic solutions are orbitally asymptotically stable (unstable) if β2 < 0 (β2 >
0);

(iii) T2 determines the period of the bifurcating periodic solutions: the period in-
creases (decreases) if T2 > 0 (T2 < 0).

A general conclusion regarding the direction and stability of bifurcating periodic
orbits cannot be stated due to the complicated nature of computation. But for
given parameter values, a calculation can be carried out by using the formulas
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above. In the following, we present some numerical simulations to illustrate the
analytic results.

Figure 4. The solution of system (2.1) tends to the positive equi-
librium (1, 1/3) . Here τ = 2.1 and the initial values: u(x, t) =
1 + 0.01t cosx, v(x, t) = 1/3 + 0.01t sinx, t ∈ [−2.1, 0], x ∈ [0, π].

Figure 5. The solution of system (2.1) tends to a periodic or-
bit. Here τ = 3.7 and the initial values: u(x, t) = 1 +
0.01t cosx, v(x, t) = 1/3 + 0.01(x2 + t), t ∈ [−3.7, 0], x ∈ [0, π].

We use a set of parameters as in Section 2:

d1 = 0.5, d2 = 1, k = 1.5, l = 1,

and we also choose m = 2, r = 1. In this case β = 1, and we examine the effect
of delay on the dynamics of the system (2.1). We can compute that τ0

0 = 3.6276,
σ0 = 0.2887, and Re(C1(0)) < 0. From Theorem 2.6 and Theorem 3.1 we obtain
that for τ ∈ (0, 3.6276), the positive equilibrium (1, 1/3) is stable. When τ is in a
small right-side neighborhood of 3.6276, system (2.1) has stable periodic solutions
which bifurcate from the constant equilibrium (1, 1/3). The results are illustrated
in Fig. 4 and Fig. 5 in which the left panel shows the graph of u(x, t) and the right
panel shows the one of v(x, t).

Finally we indicate that how the procedure described in this section can be
modified for the Hopf bifurcation in more general situation when τ = τ jn ∈ P(β).
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We replace τ0 and σ0 in the calculation above by τ jn and σn respectively. Then in
this case,

E =

 β(k − 1− 2β)

k(1 + β)
− d1n

2

l2
−r

0 −d2n
2

l2

 , F =

 0 0
k − β
k(1 + β)

0

 ,

and

(q1, q2) =

(
1,
β(k − 1− 2β)

rk(1 + β)
− iσn

r
− d1n

2

rl2

)
, (q∗1 , q

∗
2) =

1,
−r

q2d2n
2

l2
− iσn

 ,

D = q1q∗1 + q2q∗2 +
q1q∗2τ0e

−iσnτ
j
n(k − β)

k(1 + β)
.

Also in this case, denote

f1
0 =

(
γn
0

)
, f2

0 =

(
0
γn

)
,

where γn =
√

2 cos
nx

l
, and for u = (u1, u2), v = (v1, v2) ∈ X = C([0, lπ],R2),

define

〈u, v〉 = 〈u1, v1〉0 + 〈u2, v2〉0,

where

〈s, h〉0 =
1

lπ

∫ lπ

0

shdx

for s, h ∈ C([0, lπ],R). Hence we can compute g20, g11, g02 and g21 as follows:

g20 =
2q∗1τ0
D

[(
k − β

k(1 + β)2
− 1

k

)
q2
1 −

m

(1 + β)2
q1q2

]
〈γ2
n, γn〉0

+
2q∗2τ0
D

[
− k − β
k(1 + β)2

q2
1e
−2iσnτ

j
n +

m

(1 + β)2
q1q2e

−iσnτ
j
n

]
〈γ2
n, γn〉0,

g11 =
q∗1τ0
D

[
2

(
k − β

k(1 + β)2
− 1

k

)
q1q1 −

m

(1 + β)2
(q1q2 + q1q2)

]
〈γ2
n, γn〉0

+
q∗2τ0
D

[
−2

k − β
k(1 + β)2

q1q1 +
m

(1 + β)2
(q1q2e

−iσnτ
j
n + q1q2e

iσnτ
j
n)

]
〈γ2
n, γn〉0,

g02 =
2q∗1τ0
D

[(
k − β

k(1 + β)2
− 1

k

)
q2

1 −
m

(1 + β)2
q1q2

]
〈γ2
n, γn〉0

+
2q∗2τ0
D

[
− k − β
k(1 + β)2

q2
1e

2iσnτ
j
n +

m

(1 + β)2
q1q2e

iσnτ
j
n

]
〈γ2
n, γn〉0,
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g21 =
2q∗1τ0
D

(
k − β

k(1 + β)2
− 1

k

)(
q1〈W 1

20(0)γn, γn〉0 + 2q1〈W 1
11(0)γn, γn〉0

)
− 2q∗2τ0

D

k − β
k(1 + β)2

(
2e−iσnτ

j
nq1〈W 1

11(−1)γn, γn〉0
)

− 2q∗2τ0
D

k − β
k(1 + β)2

(
eiσnτ

j
nq1〈W 1

20(−1)γn, γn〉0
)

− q∗1τ0m

D(1 + β)2

(
〈W 1

20(0)γn, γn〉0q2 + 2〈W 1
11(0)γn, γn〉0q2

)
− q∗1τ0m

D(1 + β)2

(
〈W 2

20(0)γn, γn〉0q1 + 2〈W 2
11(0)γn, γn〉0q1

)
+

q∗2τ0m

D(1 + β)2

(
〈W 1

20(−1)γn, γn〉0q2 + 2〈W 1
11(−1)γn, γn〉0q2

)
+

q∗2τ0m

D(1 + β)2

(
〈W 2

20(0)γn, γn〉0q1e
iσnτ

j
n + 2〈W 2

11(0)γn, γn〉0q1e
−iσnτ

j
n

)
+

2τ0m

D(1 + β)3
(q∗1q

2
1q2 + 2q∗1q1q2q1 − q∗2q2

1q2e
−2iσnτ

j
n − 2q∗2q1q2q1)〈γ3

n, γn〉0

+
2(k − β)τ0
Dk(1 + β)3

(3q∗2q
2
1q1e

−iσnτ
j
n − 3q∗1q

2
1q1)〈γ3

n, γn〉0.

Since 2σn is not the eigenvalue of characteristic equation (2.5), then E1 can be
uniquely determined by

2iσnE1 − d∆E1 − L(e2iσn·E1)

=


(

k − β
k(1 + β)2

− 1

k

)
q2
1 −

m

(1 + β)2
q1q2

− k − β
k(1 + β)2

q2
1e
−2iσnτ

j
n +

m

(1 + β)2
q1q2e

−iσnτ
j
n

 γ2
n,

where d∆ and L is defined in (2.3). Similarly E2 is uniquely determined by

− d∆E2 − L(E2)

=

 2

(
k − β

k(1 + β)2
− 1

k

)
q1q1 −

m

(1 + β)2
(q1q2 + q1q2)

−2
k − β

k(1 + β)2
q1q1 +

m

(1 + β)2
(q1q2e

−iσnτ
j
n + q1q2e

iσnτ
j
n)

 γ2
n.

Then we can easily obtain E1 has the expression as e1+e2 cos 2nx
l where e1, e2 ∈ C2,

and E2 has the expression as f1 + f2 cos 2nx
l where f1, f2 ∈ C2, and we omit

the detailed computation. With these modifications, we are able to compute the
direction of Hopf bifurcation in the more general situation where the diffusion term
also plays a role.
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