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A reaction–diffusion model with logistic type growth, nonlocal de-
lay effect and Dirichlet boundary condition is considered, and com-
bined effect of the time delay and nonlocal spatial dispersal pro-
vides a more realistic way of modeling the complex spatiotemporal
behavior. The stability of the positive spatially nonhomogeneous
positive equilibrium and associated Hopf bifurcation are investi-
gated for the case of near equilibrium bifurcation point and the
case of spatially homogeneous dispersal kernel.
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1. Introduction

Partial functional-differential equations have been proposed as mathematical models for various
biological phenomena by many researchers in recent years. And the theory of partial functional-
differential equations and related bifurcation theory have been developed to analyze various mathe-
matical questions arisen from models of population biology, biochemical reactions, neural conduction
and other applications [8,22,27,33,40].

For the models with a single population, the global stability and the Hopf bifurcation of the diffu-
sive Nicholson’s blowflies equation have been investigated by many researchers (see Refs. [34,35,37,
42,44]). Another prototypical delayed reaction–diffusion equation is the diffusive Hutchinson equation
(or diffusive logistic equation with delay effect) following the pioneering work of Hutchinson [25].
For the Neumann boundary value problem, the diffusive Hutchinson equation has been considered
in [29,43], and they considered the stability and related Hopf bifurcation from the homogeneous
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equilibrium. Busenberg and Huang [4] studied the Hopf bifurcation of the diffusive logistic equation
with delay effect and Dirichlet boundary condition proposed in Green and Stech [21]:

{
∂u(x, t)

∂t
= d�u(x, t) + λu(x, t)

(
1 − u(x, t − τ )

)
, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

(1.1)

For a one-dimensional spatial domain Ω = (0,π), they showed that when λ > d but close to d, the
unique spatially nonhomogeneous positive equilibrium loses the stability for a large delay τ and a
Hopf bifurcation occurs so that the system exhibits oscillatory pattern. Su, Wei and Shi [36] studied
the Hopf bifurcation of a delayed reaction–diffusion population model with more general growth rate
per capita, which generalized the work of [4], and see also Yan and Li [41] for the higher-dimensional
case.

It has been pointed out by several authors that, in a reaction–diffusion model with time-delay
effect, the effects of diffusion and time delays are not independent of each other, and the individuals
which were at location x at previous times may not be at the same point in space presently. Hence
the localized density-dependent growth rate per capita 1 − u(x, t − τ ) in (1.1) is not realistic. Instead,
following the approach in [3,18–20], it is more reasonable to consider the diffusive logistic population
model with nonlocal delay effect as follows:

⎧⎪⎨
⎪⎩

∂u(x, t)

∂t
= d�u(x, t) + λu(x, t)

(
1 −

∫
Ω

K (x, y)u(y, t − τ )dy

)
, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.2)

where u(x, t) is the population density at time t and location x, d > 0 is the diffusion coefficient, τ > 0
is the time delay representing the maturation time, and λ > 0 is a scaling constant; Ω is a connected
bounded open domain in Rn (n � 1), with a smooth boundary ∂Ω , and Dirichlet boundary condition
is imposed so the exterior environment is hostile; K (x, y) is a kernel function which describes the
dispersal behavior of the population. The nonlocal growth rate per capita in (1.2) incorporates the
possible dispersal of the individuals during the maturation period, hence it is a more realistic model
than (1.1).

We consider Eq. (1.2) with the following initial condition:

u(x, s) = η(x, s), x ∈ Ω, t ∈ [−τ ,0], (1.3)

where η ∈ C := C([−τ ,0], Y ) and Y = L2(Ω). Then from [24,30], the operator d� generates an ana-
lytic strongly positive semigroup T (t) on Y with the domain D(d�) = H2(Ω) ∩ H1

0(Ω). Throughout
the paper, we impose the following assumption on the dispersal kernel function K (x, y):

(A) The kernel function K (x, y) is a continuous and nonnegative function on Ω × Ω , and the linear
Fredholm integral operator

L
(
φ(x)

) :=
∫
Ω

K (x, y)φ(y)dy

is strictly positive on C+(Ω), which is the space of positive continuous functions, in the sense
that

L
(
C+(Ω) \ {0})⊂ C+(Ω) \ {0}.
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Define F : C → Y by

F (φ)(x) = λφ(0)

(
1 −

∫
Ω

K (x, y)φ(−τ )(y)dy

)
, (1.4)

then F is locally Lipschitz continuous. Therefore, from [24,40], for each φ ∈ C , there exists a maximum
tφ > 0 such that

⎧⎪⎪⎨
⎪⎪⎩

u(t) = T (t)φ(0) +
t∫

0

T (t − s)F (us)ds, t > 0,

u(0) = φ,

(1.5)

has a unique solution uφ(t) which exists on [−τ , tφ) and uφ(t) is a classical solution of (1.2) for t > τ .
This shows the local existence of the solutions to (1.2).

Define by λ∗ the principal eigenvalue of the following eigenvalue problem

{−d�u(x) = λu(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(1.6)

and let φ be the corresponding eigenfunction of λ∗ such that φ(x) > 0. Our main results in this
paper is in the spirit of [4,36] for the local growth rate case: for a general bounded domain Ω ,
there exists a λ∗ satisfying 0 < λ∗ − λ∗ � 1, such that for any λ ∈ (λ∗, λ∗], Eq. (1.2) has a positive
spatially nonhomogeneous equilibrium solution uλ and there exists a τ0(λ) > 0 such that uλ is locally
asymptotically stable when τ ∈ [0, τ0(λ)) and it is unstable when τ > τ0(λ). Moreover, there exists a
sequence of values {τn(λ)}∞n=0, such that for Eq. (1.2), a Hopf bifurcation occurs at τ = τn(λ) from the
positive equilibrium uλ . On the other hand, for a special case that the kernel function K (x, y) ≡ 1 and
Ω = (0,π) (for convenience), we show that the above stability/instability result and Hopf bifurcation
can be proved for any λ > λ∗ , not just when 0 < λ − λ∗ � 1. For the original diffusive Hutchinson
equation (1.1), it was conjectured and showed by numerical simulation that such stability/instability
result and Hopf bifurcation indeed occur for all λ > λ∗ . Our result here for the case K (x, y) ≡ 1 further
verifies this conjecture. We conjecture that such results hold for all kernels satisfying the assumption
(A) and general bounded domain Ω .

It is known that nonzero equilibrium and periodic solutions in a Dirichlet boundary value problem
are all spatially nonhomogeneous [21,24], hence it usually poses more difficulties for the stability
and bifurcation analysis. Nonlocal delay effect brings some more technical hurdles as the resulting
linearized equation is not self-adjoint when the delay τ 
= 0, and some a priori estimates for the
nonlocal equations are also considerably harder. Here we further develop the methods in [4,36,41] to
overcome these difficulties. On the other hand, for the special case K (x, y) ≡ 1, we find that although
the equilibrium and periodic solutions are both spatially nonhomogeneous, but they can be explicitly
solved, which makes it possible to consider the stability and bifurcation for all λ > λ∗ . Indeed in this
case, we find that the periodic solutions could have a fixed spatial profile with a temporal oscillation
(see the remark at the end of Section 3).

The traveling wave solutions for an equation in form of Eq. (1.2) have been considered in many pa-
pers, for example, [1,2,9,17,39] and the references therein. On the other hand, spatiotemporal pattern
formation for the nonlocal Fisher–KPP type equation (again without delay effect) has been studied in
[15,16,26,28]. It is shown in [5] that a Hopf bifurcation can occur for a reaction–diffusion equation
with a nonlinear and nonlocal boundary condition. But there are very few stability/bifurcation results
for the emergence of spatially nonhomogeneous time-periodic patterns for reaction–diffusion model
with combined nonlocal and delay effect.

The rest of the paper is organized as follows. In Section 2, we study the stability/instability of
the positive spatially nonhomogeneous equilibrium solution and the associated Hopf bifurcation of
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Eq. (1.2) when λ > λ∗ and is close to λ∗ . In Section 3, we consider the case of K (x, y) ≡ 1 and
spatial dimension n = 1 but for any λ > λ∗; and we consider the direction of Hopf bifurcation and the
stability of the bifurcating periodic orbits in Section 4. Some numerical simulations are given at the
end.

Throughout the paper, we denote the spaces X = H2(Ω) ∩ H1
0(Ω), Y = L2(Ω), C = C([−τ ,0], Y ),

and C = C([−1,0], Y ). For any subspace Z of X , Y , C or C , we also define the complexification of Z
to be ZC := Z ⊕ i Z = {x1 + ix2 | x1, x2 ∈ Z}. For a linear operator L : Z1 → Z2, we denote the domain of
L by D(L) and the range of L by R(L). For the complex-valued Hilbert space YC , we use the standard
inner product 〈u, v〉 = ∫

Ω
u(x)v(x)dx.

2. Nonlocal equation with general kernel function

2.1. Existence of positive equilibrium

In this subsection we consider the existence of the positive equilibrium solutions of Eq. (1.2), which
satisfy the following equation:

⎧⎪⎨
⎪⎩

d�u(x) + λu(x)

(
1 −

∫
Ω

K (x, y)u(y)dy

)
= 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(2.1)

It is well known that we have the following decompositions:

X = N (d� + λ∗) ⊕ X1,

Y = N (d� + λ∗) ⊕ Y1,

where

N (d� + λ∗) = span{φ},

X1 =
{

y ∈ X:
∫
Ω

φ(x)y(x)dx = 0

}
,

and

Y1 = R(d� + λ∗) =
{

y ∈ Y :
∫
Ω

φ(x)y(x)dx = 0

}
.

Then we have the following result on the existence of the positive equilibrium solutions of Eq. (1.2).

Theorem 2.1. There exist λ∗ > λ∗ and a continuously differential mapping λ �→ (ξλ,αλ) from [λ∗, λ∗] to
X1 × R+ so Eq. (1.2) has an equilibrium solution

uλ = αλ(λ − λ∗)
[
φ + (λ − λ∗)ξλ

]
, λ ∈ [λ∗, λ∗], (2.2)

where

αλ∗ =
∫
Ω

φ2(x)dx

λ∗
∫
Ω

∫
Ω

K (x, y)φ2(x)φ(y)dy dx
, (2.3)
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and ξλ∗ ∈ X1 is the unique solution of the equation

(d� + λ∗)ξ + φ

(
1 − λ∗αλ∗

∫
Ω

K (·, y)φ(y)dy

)
= 0. (2.4)

Proof. Since the kernel function K (x, y) satisfies the assumption (A), then

∫
Ω

∫
Ω

K (x, y)φ2(x)φ(y)dy dx > 0, (2.5)

and αλ∗ is well defined. Because d�+λ∗ is bijective from X1 to R(d�+λ∗), we also have ξλ∗ is well
defined. Define m : X1 × R × R → Y by

m(ξ,α,λ) = (d� + λ∗)ξ + φ + (λ − λ∗)ξ − λ
[
φ + (λ − λ∗)ξ

]
m1(ξ,α,λ),

where

m1(ξ,α,λ) = α

∫
Ω

K (·, y)
[
φ(y) + (λ − λ∗)ξ(y)

]
dy. (2.6)

From Eqs. (2.3) and (2.4), we see that m(ξλ∗ ,αλ∗ , λ∗) = 0, and

D(ξ,α)m(ξλ∗ ,αλ∗ , λ∗)[η,ε] = (d� + λ∗)η − λ∗εφ

∫
Ω

K (·, y)φ(y)dy.

Here D(ξ,α)m(ξλ∗ ,αλ∗ , λ∗)[η,ε] is the Fréchet derivative of m with respect to (ξ,α). From Eq. (2.5)
we have

φ

∫
Ω

K (·, y)φ(y)dy /∈ R(d� + λ∗).

So D(ξ,α)m(ξλ∗ ,αλ∗ , λ∗) is bijective from X1 × R to Y . Then from the implicit function theorem, there
exist a λ∗ > λ∗ and a continuously differentiable mapping λ �→ (ξλ,αλ) ∈ X1 × R+ such that

m(ξλ,αλ,λ) = 0, λ ∈ [λ∗, λ∗].
Hence αλ(λ − λ∗)[φ + (λ − λ∗)ξλ] ∈ X solves Eq. (2.1). �
Remark 2.2. The existence of positive equilibrium solutions near (λ, u) = (λ∗,0) can also be obtained
by using the “bifurcation from simple eigenvalue theorem” of Crandall and Rabinowitz [6]. Moreover
one can apply the global bifurcation theorem in Rabinowitz [31] to show that the curve {(λ, uλ): λ ∈
(λ∗, λ∗]} belongs to a global continuum which is unbounded in R × X+ , where X+ is the positive
cone in X .
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2.2. Eigenvalue problems

Let λ ∈ (λ∗, λ∗], and let uλ be the positive equilibrium solution of Eq. (1.2) obtained in Theorem 2.1.
In the following, we will always assume λ ∈ (λ∗, λ∗] unless otherwise specified, and 0 < λ∗ − λ∗ � 1.
But the value of λ∗ may be chosen smaller than the one in Theorem 2.1 when further perturbation
arguments are used. Linearizing system (1.2) at uλ , we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v(x, t)

∂t
= d�v(x, t) + λv(x, t)

(
1 −

∫
Ω

K (x, y)uλ(y)dy

)

− λuλ(x)

∫
Ω

K (x, y)v(y, t − τ )dy, x ∈ Ω, t > 0,

v(x, t) = 0, x ∈ ∂Ω, t > 0.

(2.7)

Define a linear operator A(λ) :D(A(λ)) → Y by

A(λ) = d� + λ

(
1 −

∫
Ω

K (·, y)uλ(y)dy

)
,

with domain D(A(λ)) = X , then A(λ) is the infinitesimal generator of a compact C0-semigroup [30].
From [40], the semigroup induced by the solutions of Eq. (2.7) has the infinitesimal generator Aτ (λ)

given by

Aτ (λ)ψ = ψ̇, (2.8)

where

D
(

Aτ (λ)
)=

{
ψ ∈ CC ∩ C1

C: ψ(0) ∈ XC, ψ̇(0) = A(λ)ψ(0) − λuλ

∫
Ω

K (·, y)ψ(−τ )(y)dy

}
,

and C1
C = C1([−τ ,0], YC). The spectral set of Aτ (λ) is

σ
(

Aτ (λ)
)= {

μ ∈ C: �(λ,μ,τ )ψ = 0, for some ψ ∈ XC \ {0}},
where

�(λ,μ,τ )ψ := A(λ)ψ − λuλ

∫
Ω

K (·, y)ψ(y)dy e−μτ − μψ. (2.9)

Then Aτ (λ) has a purely imaginary eigenvalue μ = iν (ν 
= 0) for some τ � 0 if and only if

A(λ)ψ − λuλ

∫
Ω

K (·, y)ψ(y)dy e−iθ − iνψ = 0, ψ(
= 0) ∈ XC, (2.10)

is solvable for some value of ν > 0 and θ ∈ [0,2π). So if there exists a pair (ν, θ) such that Eq. (2.10)
has a solution ψ , then

�(λ, iν, τn)ψ = 0, τn = θ + 2nπ

ν
, n = 0,1,2, · · · .
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Next we shall show that, for λ ∈ (λ∗, λ∗], there exists a unique pair (ν, θ) which solves Eq. (2.10). First
we give two lemmas which will be used later.

Lemma 2.3. If z ∈ XC and 〈φ, z〉 = 0, then |〈(d� + λ∗)z, z〉| � (λ2 − λ∗)‖z‖2
YC , where λ2 is the second

eigenvalue of (1.6).

This is similar to Lemma 2.3 of [4] and we omit its proof here.

Lemma 2.4. If (ν, θ,ψ) solves Eq. (2.10) with ψ(
= 0) ∈ XC , then ν
λ−λ∗ is bounded for λ ∈ (λ∗, λ∗].

Proof. We see that if (ν, θ,ψ) solves Eq. (2.10) with ψ(
= 0) ∈ XC , then

〈
A(λ)ψ − λuλ

∫
Ω

K (·, y)ψ(y)dy e−iθ − iνψ,ψ

〉
= 0, (2.11)

and for some θ1 ∈ [0,2π),

〈
λuλ

∫
Ω

K (·, y)ψ(y)dy,ψ

〉
=
∣∣∣∣
〈
λuλ

∫
Ω

K (·, y)ψ(y)dy,ψ

〉∣∣∣∣eiθ1 .

Since A(λ) is self-adjoint, then separating the real and imaginary parts of Eq. (2.11), we have

ν〈ψ,ψ〉 = −λ sin(θ + θ1)

∣∣∣∣
〈
uλ

∫
Ω

K (·, y)ψ(y)dy,ψ

〉∣∣∣∣.
Then

|ν|
λ − λ∗

� λαλ

∣∣sin(θ + θ1)
∣∣(‖φ‖∞ + (λ − λ∗)‖ξλ‖∞

)
max
Ω×Ω

K (x, y)‖ψ‖2
L1/‖ψ‖2

YC

� λαλ

(‖φ‖∞ + (λ − λ∗)‖ξλ‖∞
)

max
Ω×Ω

K (x, y)|Ω|.

From the continuity of mapping λ �→ (‖ξλ‖∞,αλ), we have the conclusion. �
Now, for λ ∈ (λ∗, λ∗], suppose that (ν, θ,ψ) is a solution of Eq. (2.10) with ψ(
= 0) ∈ XC . Ignoring

a scalar factor, we see that ψ can be represented as

ψ = βφ + (λ − λ∗)z, 〈φ, z〉 = 0, β � 0,

‖ψ‖2
YC = β2‖φ‖2

YC + (λ − λ∗)2‖z‖2
YC = ‖φ‖2

YC . (2.12)

Substituting (2.2), (2.12) and ν = (λ − λ∗)h into Eq. (2.10), we obtain the following system equivalent
to Eq. (2.10):

g1(z, β,h, θ, λ) := (d� + λ∗)z + [
βφ + (λ − λ∗)z

](
1 − λm1(ξλ,αλ,λ) − ih

)
− λαλ

[
φ + (λ − λ∗)ξλ

] ∫
Ω

K (·, y)
[
βφ(y) + (λ − λ∗)z(y)

]
dy e−iθ ,
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g2(z, β,λ) := (
β2 − 1

)‖φ‖2
YC + (λ − λ∗)2‖z‖2

YC , (2.13)

where m1(ξ,α,λ) is defined in (2.6). We define G : (X1)C × R3 × R → YC × R by G = (g1, g2) and
note that

G(zλ∗ , βλ∗ ,hλ∗ , θλ∗ , λ∗) = 0,

where

zλ∗ = (1 − i)ξλ∗ , βλ∗ = 1, hλ∗ = 1, θλ∗ = π

2
, (2.14)

and ξλ∗ is defined as in Theorem 2.1. Then we have the following result on the solvability of G = 0.

Theorem 2.5. There exists a continuously differentiable mapping λ �→ (zλ,βλ,hλ, θλ) from [λ∗, λ∗] to XC ×
R3 such that G(zλ,βλ,hλ, θλ, λ) = 0. Moreover, if λ ∈ (λ∗, λ∗), and (zλ,βλ,hλ, θλ, λ) solves the equation
G = 0 with hλ > 0, and θλ ∈ [0,2π), then (zλ,βλ,hλ, θλ) = (zλ,βλ,hλ, θλ).

Proof. Let T = (T1, T2) : (X1)C × R3 �→ YC × R be defined by

T = D(z,β,h,θ)G(zλ∗ , βλ∗ ,hλ∗ , θλ∗ , λ∗).

Thus, we have

T1(χ,κ, ε,ϑ) = (d� + λ∗)χ − iεφ + λ∗ϑαλ∗φ
∫
Ω

K (·, y)φ(y)dy

+ κ(1 − i)φ

(
1 − λ∗αλ∗

∫
Ω

K (·, y)φ(y)dy

)
,

T2(κ) = 2κ‖φ‖2
YC .

Since αλ∗ is defined as in Eq. (2.3), then T is bijective from (X1)C × R3 to YC × R. Then from
the implicit function theorem, we see that there exists a continuously differentiable mapping λ �→
(zλ,βλ,hλ, θλ) from [λ∗, λ∗] to XC × R3 such that G(zλ,βλ,hλ, θλ, λ) = 0. Hence the existence is
proved, and it remains to prove the uniqueness. From the implicit function theorem, we need to
verify that if G(zλ,βλ,hλ, θλ, λ) = 0, hλ > 0 and θλ ∈ [0,2π), then

(
zλ,βλ,hλ, θλ

)→ (zλ∗ , βλ∗ ,hλ∗ , θλ∗) =
(

(1 − i)ξλ∗ ,1,1,
π

2

)

as λ → λ∗ in the norm of XC × R3. From Lemma 2.4 and Eq. (2.13), we see that {hλ}, {βλ} and {θλ}
are bounded. From Lemma 2.3 and the first equation of Eq. (2.13), we have

∥∥zλ
∥∥2

YC
� 1

λ2 − λ∗
∣∣〈(1 − λm1(αλ, ξλ,λ) − ihλ

)[
βλφ + (λ − λ∗)zλ

]
, zλ

〉∣∣
+
∣∣∣∣
〈
λαλ

[
φ + (λ − λ∗)ξλ

] ∫
Ω

K (x, y)
[
βλφ + (λ − λ∗)zλ

]
, zλ

〉∣∣∣∣.
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The boundedness of {hλ}, {αλ} and {ξλ} implies that there exists M > 0 such that ‖1−λm1(αλ, ξλ, λ)−
ihλ‖∞ � M , and

∥∥λαλ

[
φ + (λ − λ∗)ξλ

]∥∥∞ max
Ω×Ω

K (x, y) � M

for λ ∈ [λ∗, λ∗]. Thus we have

∥∥zλ
∥∥2

YC
� M|βλ|

λ2 − λ∗
(
1 + |Ω|)‖φ‖YC

∥∥zλ
∥∥

YC
+ 1 + |Ω|

λ2 − λ∗
M(λ − λ∗)

∥∥zλ
∥∥2

YC
.

Hence for sufficiently small λ∗ , {zλ} is bounded in YC when λ ∈ [λ∗, λ∗]. Since the operator
d� + λ∗ : (X1)C �→ (Y1)C has a bounded inverse, by applying (d� + λ∗)−1 on g1(zλ,βλ,hλ, θλ, λ) = 0,
we find that {zλ} is also bounded in XC , and hence {(zλ,βλ,hλ, θλ): λ ∈ (λ∗, λ∗]} is precompact in
YC × R3. Therefore, there is a subsequence {(zλn

, βλn
,hλn

, θλn
)} such that

(
zλn

, βλn
,hλn

, θλn)→ (
zλ∗ , βλ∗ ,hλ∗ , θλ∗), λn → λ∗ as n → ∞.

By taking the limit of the equation (d� + λ∗)−1G(zλn
, βλn

,hλn
, θλn

, λn) = 0 as n → ∞, we have that
G(zλ∗ , βλ∗ ,hλ∗ , θλ∗ , λ∗) = 0. Also, we can verify that

G(z, β,h, θ, λ∗) = 0

has a unique solution given by (z, β,h, θ) = (zλ∗ , βλ∗ ,hλ∗ , θλ∗ ) defined in (2.14), thus

(
zλ∗ , βλ∗ ,hλ∗ , θλ∗)= (zλ∗ , βλ∗ ,hλ∗ , θλ∗).

Hence, (zλ,βλ,hλ, θλ) → (zλ∗ , βλ∗ ,hλ∗ , θλ∗ ) as λ → λ∗ in the norm of XC × R3. �
Hence we have the following conclusion about the eigenvalue problem:

Corollary 2.6. For each λ ∈ (λ∗, λ∗], the eigenvalue problem

�(λ, iν, τ )ψ = 0, ν � 0, τ � 0, ψ(
= 0) ∈ XC,

has a solution, or equivalently, iν ∈ σ(Aτ (λ)) if and only if

ν = νλ = (λ − λ∗)hλ, τ = τn = θλ + 2nπ

νλ

, n = 0,1,2, · · · , (2.15)

and

ψ = rψλ, ψλ = βλφ + (λ − λ∗)zλ,

where r is a nonzero constant, and zλ,βλ,hλ, θλ are defined as in Theorem 2.5.

For later application, it is also useful to consider the adjoint operator of Aτ (λ). Since the domain
of �(λ, iν, τ ) is XC , which is dense in YC , and for ψ, ψ̃ ∈ XC ,

〈
ψ̃,�(λ, iν, τ )ψ

〉= 〈
�̃(λ, iν, τ )ψ̃,ψ

〉
, (2.16)
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where

�̃(λ, iν, τ )ψ̃ = A(λ)ψ̃ + iνψ̃ − λ

∫
Ω

K (y, ·)uλ(y)ψ̃(y)dy eiντ .

Then from [30], we have that �̃(λ, iν, τ ) is the adjoint operator of �(λ, iν, τ ), and its point spectrum
is the same as that of �(λ, iν, τ ):

σp
(
�(λ, iν, τ )

)= σp
(
�̃(λ, iν, τ )

)
.

Similar to the study of Eq. (2.10), we can conclude that if the corresponding adjoint equation

A(λ)ψ̃ − λ

∫
Ω

K (y, ·)uλ(y)ψ̃(y)dy eiθ̃ + iν̃ψ̃ = 0, ψ̃(
= 0) ∈ XC, (2.17)

is solvable for some value of ν̃ > 0, θ̃ ∈ [0,2π), then

�̃(λ, iν̃, τ̃n)ψ̃ = 0, τ̃n = θ̃ + 2nπ

ν̃
, n = 0,1,2, · · · .

Similar to Theorem 2.5, we can show that, for λ ∈ (λ∗, λ∗], there is a unique (ν̃, θ̃ , ψ̃) which solves
Eq. (2.17) with ψ̃(
= 0) ∈ XC . Ignoring a scalar factor, we see that ψ̃ can be represented as

ψ̃ = β̃φ + (λ − λ∗)z̃, 〈φ̃, z̃〉 = 0, β̃ � 0,

‖ψ̃‖2
YC = β̃2‖φ‖2

YC + (λ − λ∗)2‖z̃‖2
YC = ‖φ‖2

YC . (2.18)

Substituting (2.18) and ν = (λ − λ∗)h̃ into Eq. (2.17), we obtain the following system equivalent to
Eq. (2.17):

g̃1(z̃, β̃, h̃, θ̃ , λ) := (d� + λ∗)z̃ + [
β̃φ̃ + (λ − λ∗)z̃

](
1 − λm1(ξλ,αλ,λ) + ih̃

)
− λαλ

∫
Ω

K (y, ·)[φ(y) + (λ − λ∗)ξλ(y)
][

β̃φ(y) + (λ − λ∗)z̃(y)
]

dy eiθ̃ ,

g̃2(z̃, β̃, λ) := (
β̃2 − 1

)‖φ‖2
YC + (λ − λ∗)2‖z̃‖2

YC ,

where m1(ξ,α,λ) is defined in Eq. (2.6). We define G̃ : (X1)C ×R3 ×R → YC ×R by G̃ = (g̃1, g̃2) and
note that

G̃(z̃λ∗ , β̃λ∗ , h̃λ∗ , θ̃λ∗ , λ∗) = 0,

where

β̃λ∗ = 1, h̃λ∗ = 1, θ̃λ∗ = π

2
, (2.19)
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and z̃λ∗ ∈ (X1)C is the unique solution of equation

⎧⎪⎨
⎪⎩

(d� + λ∗)z = −φ

[
1 − λ∗αλ∗

∫
Ω

K (·, y)φ(y)dy

]
− iφ + iλ∗αλ∗

∫
Ω

K (y, ·)φ2(y)dy,

〈φ, z〉 = 0.

(2.20)

Since the right-hand side term of the first equation in Eq. (2.20) belongs to (Y1)C , then the uniqueness
of the solution of Eq. (2.20) can be easily obtained. Hence we have the following result similar to
Theorem 2.5 and Corollary 2.6 (with a similar proof):

Theorem 2.7.

1. There exists a continuously differentiable mapping λ �→ (z̃λ, β̃λ, h̃λ, θ̃λ) from [λ∗, λ∗] to XC × R3 such
that G̃(z̃λ, β̃λ, h̃λ, θ̃λ, λ) = 0. Moreover, if λ ∈ (λ∗, λ∗), and (zλ,βλ,hλ, θλ, λ) solves the equation G̃ = 0
with hλ > 0, and θλ ∈ [0,2π), then (zλ,βλ,hλ, θλ) = (z̃λ, β̃λ, h̃λ, θ̃λ).

2. For each λ ∈ (λ∗, λ∗], the eigenvalue problem

�̃(λ, iν̃, τ̃ )ψ̃ = 0, ν̃ � 0, τ̃ � 0, ψ̃(
= 0) ∈ XC,

has a solution, if and only if

ν̃ = ν̃λ = (λ − λ∗)h̃λ, τ̃ = τ̃n = θ̃λ + 2nπ

ν̃λ

, n = 0,1,2, · · · , (2.21)

and

ψ̃ = rψ̃λ, ψ̃λ = β̃λφ + (λ − λ∗)z̃λ,

where r is a nonzero constant, and z̃λ, β̃λ, h̃λ, θ̃λ are defined as above.

Remark 2.8. For a fixed λ ∈ (λ∗, λ∗), if 0 ∈ σp(�(λ, iνλ, τn)), then we have that 0 ∈ σp(�̃(λ, iνλ, τn)).
From the uniqueness of (hλ, θλ) and (h̃λ, θ̃λ) in Theorems 2.5 and 2.7, we must have that hλ = h̃λ and
θλ = θ̃λ , and consequently νλ = ν̃λ and τ̃n = τn . Therefore in the following we will use (hλ, θλ, νλ, τn)

only and not the ones with tilde. On the other hand, the corresponding eigenfunction and its com-
ponents (βλ, zλ,ψλ) of �(λ, iνλ, τn) are possibly different from the ones for the adjoint operator
�̃(λ, iνλ, τn).

2.3. Stability and Hopf bifurcations

We first analyze the stability of the positive equilibrium uλ of Eq. (1.2) when τ = 0.

Proposition 2.9. For each λ ∈ (λ∗, λ∗], all the eigenvalues of Aτ (λ) have negative real parts when τ = 0, and
hence the positive equilibrium uλ of Eq. (1.2) is locally asymptotically stable when τ = 0.

Proof. If the conclusion is not true, then there exists a sequence {λn}∞n=1, such that λn > λ∗ for n � 1,
limn→∞ λn = λ∗ , and for n � 1, the corresponding eigenvalue problem

⎧⎪⎨
⎪⎩

A
(
λn)ψ − λnuλn

∫
Ω

K (x, y)ψ(y)dy = μψ, x ∈ Ω,

ψ(x) = 0, x ∈ ∂Ω,

(2.22)



Author's personal copy

S. Chen, J. Shi / J. Differential Equations 253 (2012) 3440–3470 3451

has an eigenvalue μλn with nonnegative real part and the eigenfunction ψλn satisfying ‖ψλn ‖YC = 1.
For each n � 1, we write ψλn as ψλn = cλn uλn + φλn , where cλn ∈ C and cλn = 〈uλn ,ψλn 〉/〈uλn , uλn 〉.
Here uλn is the positive solution of Eq. (1.2) when λ = λn satisfying Eq. (2.2), and φλn ∈ XC satis-
fies 〈φλn , uλn 〉 = 0. If φλn ≡ 0, then substituting ψλn = cλn uλn and μ = μλn into the first equation of
Eq. (2.22), we have

−μλn uλn = λnuλn

∫
Ω

K (·, y)uλn (y)dy. (2.23)

Since the kernel function K satisfies assumption (A), then we have a contradiction. Hence φλn 
≡ 0 for
each n � 1. Since

〈
A
(
λn)φλn , uλn

〉= 〈
φλn , A

(
λn)uλn 〉 and A

(
λn)uλn = 0,

multiplying by ψλn = uλn + φλn the first equation of Eq. (2.22) when μ = μλn , we have that

〈
A
(
λn)φλn , φλn

〉= λn
〈
ψλn , uλn

∫
Ω

K (·, y)ψλn (y)dy

〉
+ μλn . (2.24)

Since uλn is the principal eigenfunction of A(λn) with principal eigenvalue 0, then 〈A(λn)φλn , φλn 〉 < 0,
and consequently

0 �Re(μλn) �Re

[
−λn

〈
ψλn , uλn

∫
Ω

K (·, y)ψλn (y)dy

〉]
� σ‖uλn‖∞ max

Ω×Ω

K (x, y)|Ω|,

where σ = maxn λn . Hence limn→∞Re(μλn ) = 0. Similarly, we have that

∣∣Im(μλn )
∣∣= ∣∣∣∣Im

[
−λn

〈
ψλn , uλn

∫
Ω

K (·, y)ψλn (y)dy

〉]∣∣∣∣� σ‖uλn‖∞ max
Ω×Ω

K (x, y)|Ω|,

thus limn→∞ Im(μλn ) = 0. Similar to the proof of Lemma 2.3, we have that

∣∣〈A(λn)φλn , φλn
〉∣∣� ∣∣λ2

(
λn)∣∣ · ‖φλn‖2

YC ,

where λ2(λ
n) is the second eigenvalue of A(λn). So

∣∣λ2
(
λn)∣∣ · ‖φλn‖2

YC �
∣∣∣∣λn

〈
ψλn , uλn

∫
Ω

K (·, y)ψλn (y)dy

〉∣∣∣∣+ |μλn |. (2.25)

Since all the eigenvalues of A(λ) continuously depend on λ, then we have that

lim
n→∞λ2

(
λn)= λ2 − λ∗ > 0,

where λ2 is the second eigenvalue of Eq. (1.6). Since

∣∣∣∣λn
〈
ψλn , uλn

∫
Ω

K (·, y)ψλn (y)dy

〉∣∣∣∣� σ‖uλn‖∞ max
Ω×Ω

K (x, y)|Ω|,
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then we have that limn→∞ ‖φλn ‖YC = 0. Since ψλn = cλn uλn +φλn and ‖ψλn ‖L2 = 1, then we have that

lim
n→∞|cλn |(λn − λ∗

)
lim

n→∞

∥∥∥∥ uλn

λn − λ∗

∥∥∥∥
YC

= 1,

and hence limn→∞ |cλn |(λn − λ∗) > 0 from Theorem 2.1. We denote

λn
〈
ψλn , uλn

∫
Ω

K (·, y)ψλn (y)dy

〉

in Eq. (2.25) by Dλn , then

Dλn

λn − λ∗
= 1

λn − λ∗
λn
〈
cλn uλn + φλn , uλn

∫
Ω

K (·, y)(cλn uλn + φλn)dy

〉

= |cλn |2(λn − λ∗
)2

λn
∫
Ω

∫
Ω

K (x, y)
u2

λn (x)uλn (y)

(λn − λ∗)3
dx dy

+ cλn
(
λn − λ∗

)
λn
∫
Ω

∫
Ω

K (x, y)
φλn(x)uλn (x)uλn (y)

(λn − λ∗)2
dx dy

+ cλn
(
λn − λ∗

)
λn
∫
Ω

∫
Ω

K (x, y)
φλn (y)u2

λn (x)

(λn − λ∗)2
dx dy

+ λn
∫
Ω

∫
Ω

K (x, y)
φλn (x)φλn (y)uλn (x)

λn − λ∗
dx dy. (2.26)

Since limn→∞ ‖φλn ‖YC = 0, then limn→∞ ‖φλn ‖L1 = 0, and hence each of the last three terms of
Eq. (2.26) goes to zero as n → ∞. Since K (x, y) satisfies assumption (A) and uλn satisfies Eq. (2.2),
then

lim
n→∞

∫
Ω

∫
Ω

K (x, y)
u2

λn (x)uλn (y)

(λn − λ∗)3
dx dy = α3

λ∗

∫
Ω

∫
Ω

K (x, y)φ2(x)φ(y)dx dy > 0,

and hence the first term of Eq. (2.26) tends to a positive constant as n → ∞. So there exists N∗ ∈ N
such that for each n � N∗ , Re(Dλn ) > 0, which implies that

Re(μλn ) = 〈
A
(
λn)φλn , φλn

〉−Re(Dλn) < 0. (2.27)

This is a contradiction with Re(μλn ) � 0 for n � 1. Therefore all the eigenvalues of Aτ (λ) have nega-
tive real parts when τ = 0. �

Next we prove some estimates needed for stability and bifurcation results.

Lemma 2.10. Assume that λ ∈ (λ∗, λ∗], and let ψλ and ψ̃λ be the eigenfunctions defined as in Corollary 2.6
and Theorem 2.7 respectively, then for n = 0,1,2, · · · ,

Sn(λ) :=
∫
Ω

ψ̃λ(y)ψλ(y)dy − λτn

∫
Ω

∫
Ω

uλ(x)K (x, y)e−iθλ ψ̃λ(x)ψλ(y)dx dy 
= 0. (2.28)
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Proof. From the expressions of uλ , ψλ , ψ̃λ , τn , and θλ, θ̃λ → π/2 as λ → λ∗ , we obtain from the
Dominated Convergence Theorem that

lim
λ→λ∗

∫
Ω

ψ̃λ(y)ψλ(y)dy =
∫
Ω

φ2(y)dy

and

lim
λ→λ∗

λτn

∫
Ω

∫
Ω

uλ(x)K (x, y)e−iθλ ψ̃λ(x)ψλ(y)dx dy

= −iαλ∗λ∗
(

π

2
+ 2nπ

)∫
Ω

∫
Ω

K (x, y)φ2(x)φ(y)dy dx. (2.29)

Then from (2.3),

Sn(λ) →
[

1 + i

(
π

2
+ 2nπ

)]∫
Ω

φ2(x)dx, as λ → λ∗. (2.30)

So we have Sn(λ) 
= 0 for λ ∈ (λ∗, λ∗] and n = 0,1,2, · · · . �
Theorem 2.11. Assume that λ ∈ (λ∗, λ∗], then μ = iνλ is a simple eigenvalue of Aτn for n = 0,1,2, · · · .

Proof. From Corollary 2.6 we have N [Aτn (λ) − iνλ] = Span[eiνλ·ψλ]. Suppose that for some φ1 ∈
D(Aτn (λ)) ∩ D([Aτn (λ)]2), we have

[
Aτn(λ) − iνλ

]2
φ1 = 0.

Then [
Aτn (λ) − iνλ

]
φ1 ∈ N

[
Aτn (λ) − iνλ

]= Span
[
eiνλ·ψλ

]
.

So there is a constant a such that [
Aτn (λ) − iνλ

]
φ1 = aeiνλ·ψλ.

Hence

φ̇1(θ) = iνλφ1(θ) + aeiνλθψλ, θ ∈ [−τn,0],
φ̇1(0) = A(λ)φ1(0) − λuλ

∫
Ω

K (·, y)
(
φ1(−τn)

)
(y)dy. (2.31)

The first equation of Eq. (2.31) yields

φ1(θ) = φ1(0)eiνλθ + aθeiνλθψλ,

φ̇1(0) = iνλφ1(0) + aψλ. (2.32)

From Eqs. (2.31) and (2.32) we have
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�(λ, iν, τn)φ1(0) = [
A(λ) − iνλ

]
φ1(0) − λuλ

∫
Ω

K (·, y)φ1(0)(y)dy e−iθλ

= a

(
ψλ − λτnuλ

∫
Ω

K (·, y)ψλ(y)dy e−iθλ

)
. (2.33)

From Eq. (2.16) and Remark 2.8, we have

0 = 〈
�̃(λ, iν̃, τ̃n)ψ̃λ,φ1(0)

〉= 〈
�̃(λ, iν, τn)ψ̃λ,φ1(0)

〉
= 〈

ψ̃λ,�(λ, iν, τn)φ1(0)
〉

= a

(∫
Ω

ψ̃λ(y)ψλ(y)dy − λτn

∫
Ω

∫
Ω

uλ(x)K (x, y)e−iθλ ψ̃λ(x)ψλ(y)dx dy

)
.

As a consequence of Lemma 2.10 we have a = 0, which leads to φ1 ∈ N [Aτn (λ) − iνλ]. By induction
we obtain

N
[

Aτn(λ) − iνλ

] j = N
[

Aτn(λ) − iνλ

]
, j = 1,2,3, · · · , n = 0,1,2, · · · .

Therefore, λ = iνλ is a simple eigenvalue of Aτn for n = 0,1,2, · · · . �
Since μ = iνλ is a simple eigenvalue of Aτn , from the implicit function theorem, there are a

neighborhood O n × Dn × Hn ⊂ R × C × XC of (τn, iνλ,ψλ) and a continuously differential function
(μ,ψ) : O n → Dn × Hn such that for each τ ∈ O n , the only eigenvalue of Aτ (λ) in Dn is μ(τ), and

μ(τn) = iνλ, ψ(τn) = ψλ,

�
(
λ,μ(τ ), τ

)= [
A(λ) − μ(τ)

]
ψ(τ ) − λuλ

∫
Ω

K (x, y)
(
ψ(τ )

)
(y)dy e−μ(τ)τ = 0, τ ∈ O n.

(2.34)

Then we have the following transversality condition.

Theorem 2.12. Assume that λ ∈ (λ∗, λ∗], and μ(τ) is the eigenvalue of Aτ defined as above, then

dRe(μ(τn))

dτ
> 0, n = 0,1,2, · · · .

Proof. Differentiating Eq. (2.34) with respect to τ at τ = τn , we have

dμ(τn)

dτ

[
−ψλ + λτnuλe−iθλ

∫
Ω

K (·, y)ψλ(y)dy

]

+ �(λ, iνλ, τn)
dψ(τn)

dτ
+ iνλλuλ

∫
Ω

K (·, y)ψλ(y)dy e−iθλ = 0. (2.35)

Multiplying the equation by ψ̃λ(x) and integrating on Ω , we see that
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dμ(τn)

dτ
= iνλλe−iθλ

∫
Ω

∫
Ω

uλ(x)K (x, y)ψλ(y)ψ̃λ(x)dx dy∫
Ω

ψ̃λ(x)ψλ(x)dx − λτne−iθλ
∫
Ω

∫
Ω

uλ(x)K (x, y)ψλ(y)ψ̃λ(x)dx dy

= 1

|Sn|2
(

iνλλe−iθλ

∫
Ω

ψ̃λ(x)ψλ(x)dx

∫
Ω

∫
Ω

uλ(x)K (x, y)ψλ(y)ψ̃λ(x)dx dy

− iνλλ
2τn

∣∣∣∣
∫
Ω

∫
Ω

uλ(x)K (x, y)ψλ(y)ψ̃λ(x)dx dy

∣∣∣∣
2)

. (2.36)

From the expressions of uλ , τn , the fact that

θλ, θ̃λ → π

2
, ψλ → φ, ψ̃λ → φ, (λ − λ∗)νλ = θλ → π

2
as λ → λ∗,

and the Dominated Convergence Theorem, we have that

lim
λ→λ∗

dRe(μ(τn))

dτ
= αλ∗πλ∗

2 limλ→λ∗ |Sn(λ)|2
∫
Ω

φ2(x)dx

∫
Ω

∫
Ω

K (x, y)φ2(x)φ(y)dx dy > 0,

where αλ∗ > 0 is defined in Eq. (2.3). �
From Corollary 2.6, Proposition 2.9, and Theorem 2.12 we see that:

Theorem 2.13. For λ ∈ (λ∗, λ∗], the infinitesimal generator Aτ (λ) has exactly 2(n + 1) eigenvalues with
positive real parts when τ ∈ (τn, τn+1], n = 0,1,2, · · · .

Then we have the following results on the stability and the associated Hopf bifurcations of the
positive steady state solution uλ .

Theorem 2.14. For λ ∈ (λ∗, λ∗], the positive equilibrium solution uλ of Eq. (1.2) is locally asymptotically stable
when τ ∈ [0, τ0) and is unstable when τ ∈ (τ0,∞). Moreover at τ = τn (n = 0,1,2, · · ·), a Hopf bifurcation
occurs so that a branch of spatially nonhomogeneous periodic orbits of Eq. (1.2) emerges from (τn, uλ).

More precisely, there exist ε0 > 0 and continuously differentiable function [−ε0, ε0] �→ (τn(ε), Tn(ε),
un(ε, x, t)) ∈ R × R × X satisfying τn(0) = τn, Tn(0) = 2π/νλ , and un(ε, x, t) is a Tn(ε)-periodic solution of
Eq. (1.2) such that un = uλ + εvn(ε, x, t) where vn satisfies vn(0, x, t) is a 2π/νλ-periodic solution of (2.7).
Moreover there exists δ > 0 such that if Eq. (1.2) has a nonconstant periodic solution u(x, t) of period T for
some τ > 0 with

|τ − τn| < δ,

∣∣∣∣T − 2π

νλ

∣∣∣∣< δ, max
t∈R, x∈Ω

∣∣u(x, t) − uλ(x)
∣∣< δ,

then τ = τn(ε) and u(x, t) = un(ε, x, t + θ) for some |ε| < ε0 and some θ ∈ R.

We comment that local Hopf bifurcation theorems for evolution equation in a Banach space with
delays have been proved in [40] (see Theorem 4.6 on page 211). With Corollary 2.6, Proposition 2.9,
and Theorem 2.12, all conditions in the result of [40] are verified, hence the conclusions in Theo-
rem 2.14 hold. Note that the direction of the Hopf bifurcation curve τn(ε) can be calculated from the
first Lyapunov coefficient μ2, which will be done in Section 4. The nonlinear terms in the equation
play an important role for the direction of Hopf bifurcation. If the first Lyapunov coefficient μ2 
= 0,
then a family of periodic orbits exists for a left-hand side or right-hand side neighborhood of τ = τn .
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3. Eigenvalue problem with homogeneous kernel

In this section we analyze Eq. (1.2) when K (x, y) ≡ 1, n = 1 and Ω = (0, L) where L > 0. Following
the method of [4, Section 5], we obtain the following dimensionless form:⎧⎪⎪⎨

⎪⎪⎩
∂u(x, t)

∂t
= ∂2u(x, t)

∂x2
+ λu(x, t)

(
1 −

π∫
0

u(y, t − τ )dy

)
, x ∈ (0,π), t > 0,

u(x, t) = 0, x = 0, π, t > 0.

(3.1)

We can easily verify that Eq. (3.1) has a unique positive equilibrium solution uλ(x) = λ−1
2λ

sin x for any
λ > 1 (here λ∗ = 1). Linearizing Eq. (3.1) at uλ , we have that:⎧⎪⎪⎨

⎪⎪⎩
∂v(x, t)

∂t
= ∂2 v(x, t)

∂x2
+ v − λ − 1

2
sin x

π∫
0

v(y, t − τ )dy, x ∈ (0,π), t > 0,

v(x, t) = 0, x = 0, π, t > 0.

(3.2)

Following the approach in Section 2, we still denote the infinitesimal generator of Eq. (3.2) by Aτ (λ).
Then μ is an eigenvalue of Aτ (λ) if and only if μ is an eigenvalue of the following nonlocal elliptic
eigenvalue problem:⎧⎪⎪⎨

⎪⎪⎩
�(λ,μ,τ )ψ := ψ ′′ + ψ − λ − 1

2
e−μτ sin x

π∫
0

ψ(y)dy − μψ = 0, x ∈ (0,π),

ψ(0) = ψ(π) = 0.

(3.3)

Lemma 3.1. Suppose that λ > 1 and τ � 0. Then μ ∈ C is an eigenvalue of the problem (3.3) if and only if one
of the following is satisfied:

1. μ = −n2 + 1 for n = 2,3,4, · · · ; or
2. μ satisfies

(λ − 1)e−μτ + μ = 0. (3.4)

Proof. Substituting the Fourier series ψ =∑∞
n=1 cn sin nx into Eq. (3.3), we have:

∞∑
n=2

cn
(−n2 + 1 − μ

)
sin nx −

[
(λ − 1)

∞∑
n=0

c2n+1

2n + 1
e−μτ + μc1

]
sin x = 0. (3.5)

Suppose that μ ∈ C is an eigenvalue of (3.3), and μ 
= −n2 + 1 for each of n = 2,3,4, · · · , then (3.5)
implies each cn = 0 for n � 2, and if c1 
= 0, then (3.4) is satisfied.

On the other hand, if (3.4) is not satisfied and for some m = 2,3,4, · · · , μ = −m2 + 1, then cn = 0
for n � 2 and n 
= m. If m is even, then c1 = 0 as well, hence μ = −m2 + 1 is an eigenvalue with an
eigenfunction φm(x) = sin mx; if m is odd, then μ = −m2 + 1 is an eigenvalue with an eigenfunction
in form φm(x) = sin x + cm sin mx, where cm satisfies

(λ − 1)

(
1 + cm

m

)
e(−m2+1)τ − m2 + 1 = 0.

If μ satisfies (3.4), then μ is an eigenvalue with an eigenfunction φ1(x) = sin x. �
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It is clear that μ = −n2 + 1, n = 2,3, · · · , are the fixed eigenvalues for all τ � 0. For eigenvalues
satisfying (3.4), we have the following further result:

Lemma 3.2. Suppose that λ > 1 and τ � 0. Then μ ∈ C is an eigenvalue of (3.3) satisfying (3.4). Then either

1. μ ∈ R, and for each τ ∈ [0, τ∗), there are exactly two such real-valued eigenvalues μ±
1 (τ ) satisfying

1 − λ � μ+
1 (τ ) > μ−

1 (τ ), where τ∗ = 1
e(λ−1)

. Moreover

lim
τ→0+ μ+

1 (τ ) = 1 − λ, lim
τ→0+ μ−

1 (τ ) = −∞, and lim
τ→τ−∗

μ±
1 (τ ) = −e(λ − 1),

which is the unique real-valued eigenvalue for τ = τ∗; or
2. μ = α ± iβ ∈ C with β > 0, where α and β satisfy

(λ − 1)e−ατ cosβτ = −α, (λ − 1)e−ατ sinβτ = β. (3.6)

Moreover for each τ > τ∗ , there are infinitely many such complex-valued eigenvalues αn ± iβn (βn > 0),
for n ∈ N ∪ {0}, where αn satisfies

τ (λ − 1)e−αnτ

(
1 − α2

n e2αnτ

(λ − 1)2

)1/2

= arccos
−αneαnτ

λ − 1
+ 2nπ (3.7)

and βn satisfies

βn = (λ − 1)e−αnτ

(
1 − α2

n e2αnτ

(λ − 1)2

)1/2

. (3.8)

Proof. In the case of μ ∈ R, since λ > 1, then μ = −(λ− 1)e−μτ < 0. So from Eq. (3.4), we have that

τ = ln (−μ) − ln (λ − 1)

−μ
. (3.9)

Since τ � 0, then the domain of μ is (−∞,−(λ − 1)]. Differentiating Eq. (3.9) with respect to μ, we
have that

τ ′(μ) = ln (−μ) − 1 − ln (λ − 1)

μ2
. (3.10)

From Eq. (3.10), we have that there exists μ∗ = −e(λ − 1) such that τ ′(μ∗) = 0, τ ′(μ) > 0 when
τ ∈ (−∞,μ∗), and τ ′(μ) < 0 when τ ∈ (μ∗,−(λ − 1)). Hence when τ ∈ (−∞,μ∗), τ (μ) is strictly
increasing, when τ ∈ (μ∗,−(λ − 1)), τ (μ) is strictly decreasing, and when μ = μ∗ , τ (μ) obtains its
maximum value. Setting τ∗ = τ (μ∗) = 1

e(λ−1)
, we obtain the first result.

If μ = α ± iβ ∈ C with β > 0, substituting μ = α + iβ into Eq. (3.4), we obtain that α and β satisfy
Eq. (3.6). Since β > 0, then from the second equation of Eq. (3.6), we have that βτ ∈ (2nπ, (2n + 1)π)

for n ∈ N ∪ {0}. Hence solving the first equation of Eq. (3.6), we have that

β = 1

τ

(
arccos

−αeατ

λ − 1
+ 2nπ

)
, (3.11)

for some n ∈ N, and

sinβτ = (
1 − cos2 βτ

)1/2 =
(

1 − α2e2ατ

(λ − 1)2

)1/2

. (3.12)

Substituting Eqs. (3.11) and (3.12) into the second equation of Eq. (3.6), we have Eq. (3.7). �
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Fig. 1. Relation between Re(μ) and τ for Eq. (3.4). Here λ = 2. μ = −3 is a fixed real-valued eigenvalue; on the left side of
τ = τ∗ is the curve of real-valued eigenvalues μ satisfying (λ − 1)e−μτ + μ = 0; and on the right side of τ = τ∗ are the curves
of real part αn of complex-valued eigenvalues αn ± iβn . The curve α0(τ ) connects with the curve of real eigenvalues at τ = τ∗ ,
and at τ = π/2, α0(τ ) = 0 which gives rise of the first Hopf bifurcation point.

Lemmas 3.1 and 3.2 completely classify the eigenvalues of the nonlocal eigenvalue problem (3.3),
and the variation of the eigenvalues with respect to the delay τ is shown in Fig. 1. It can be shown
that αn(τ ) is strictly increasing in τ , and

lim
τ→τ+∗

α0(τ ) = −e(λ − 1) and lim
τ→τ+∗

αn(τ ) = −∞, for n ∈ N.

The spectral properties of nonlocal linear elliptic eigenvalue problem (without delay effect) have
been studied in [7,13,14]. It is known that such problem may have different spectral properties com-
pared to the linear elliptic eigenvalue problem without integral nonlocal terms. The following can be
noticed for the nonlocal eigenvalue problem (3.3) even with τ = 0:

1. The eigenspace of (3.3) may not be one-dimensional. When μ = −n2 +1 is also a root of (3.4), the
eigenspace is two-dimensional. However as shown in [7], usually the eigenspace of such nonlocal
problem is at most two-dimensional.

2. The eigenvalue problem (3.3) with τ = 0 always has a principal eigenvalue μ0 satisfying (3.4)
with a positive eigenfunction sin x. But μ0 may not be the largest eigenvalue of (3.3). For exam-
ple when τ = 0 and λ < 4, the maximum eigenvalue of (3.3) is 1 − λ which is also the principal
eigenvalue; but when τ = 0 and λ � 4, then the maximum eigenvalue is −3 with the correspond-
ing eigenfunction sin 2x, and hence the maximum eigenvalue is not the principal eigenvalue.

We can now state our main result for the Hopf bifurcations along the unique positive equilibrium
uλ(x) = λ−1

2λ
sin x for any λ > 1:

Theorem 3.3. For each λ > 1, there exist

τn(λ) = (4n + 1)π

2(λ − 1)
, n = 0,1,2, · · · , (3.13)
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such that when τ = τn(λ), n = 0,1,2, · · · , Aτ (λ) has a pair of simple purely imaginary roots ±iνλ =
±i(λ − 1). Moreover when τ < τ0 , all the eigenvalues of (3.3) have negative real parts, and when τ ∈
(τn, τn+1] (n = 0,1,2, · · ·), the eigenvalue problem (3.3) has exactly 2n + 2 eigenvalues with positive real
parts.

Proof. When τ = 0, from Lemma 3.1 we obtain that all the eigenvalues of characteristic equation
(3.3) have negative real parts. For any τ � 0, from Lemmas 3.1 and 3.2, we also have that 0 is not an
eigenvalue of (3.3). If μ = ±iβ (β > 0) is a pair of purely imaginary eigenvalue, then

(λ − 1) cosβτ = 0, (λ − 1) sin βτ = β.

Hence only when τ = τn(λ) defined as in (3.13), the characteristic equation (3.3) has a pair of purely
imaginary root ±iνλ = ±i(λ − 1), and �(λ, iνλ, τn(λ)) sin x = 0. Then in this case the adjoint equation
of �(λ,μ,τ ) becomes:

⎧⎪⎪⎨
⎪⎪⎩

�̃(λ,μ,τ )ψ̃ := ψ̃ ′′ + ψ̃ − λ − 1

2
eμτ

π∫
0

sin yψ̃(y)dy + μψ̃ = 0, x ∈ (0,π),

ψ̃(0) = ψ̃(π) = 0.

(3.14)

Substituting μ = iνλ = i(λ − 1), τ = τn(λ), and ψ̃ =∑∞
n=1 c̃n sin nx into Eq. (3.14), we have that

c̃1 sin x
[−(λ − 1)eiνλτn(λ) + iνλ

]+
∞∑

n=1

c̃2n sin 2nx
[
1 − (2n)2 + iνλ

]

= −
∞∑

n=1

[(
1 − (2n + 1)2 + iνλ

)
c̃2n+1 − λ − 1

2n + 1
c̃1eiνλτn(λ)

]
sin(2n + 1)x.

Hence in this case we can solve that

ψ̃λ(x) = sin x +
∞∑

n=1

iνλ

(2n + 1)(1 + iνλ − (2n + 1)2)
sin(2n + 1)x, (3.15)

and �̃(λ, iνλ, τn(λ))ψ̃ = 0. Substituting ψλ = sin x, ψ̃λ into Eq. (2.28), we have

Sn(λ) = π

2
+
(

π2

4
+ nπ2

)
i 
= 0.

Using the same method in Theorem 2.11, we can prove that ±iνλ is a pair of simple purely imagi-
nary roots of Aτn (λ). By using the implicit function theorem, then there is a continuously differential
function (μ(τ ),ψ(τ )), which is defined in a neighborhood of τn , such that

μ(τn) = iνλ, ψ(τn) = ψλ, �
(
λ,μ(τ ), τ

)
ψ(τ ) = 0.

Then using the same method as in Theorem 2.12, we have dRe(μ(τn))
dτ > 0. Then the conclusions in the

theorem follow. �
We can now state the result on the stability of positive equilibrium and the associated Hopf bifur-

cation for Eq. (3.1) with any λ > 1.
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Theorem 3.4. Consider the nonlocal problem (3.1). For each λ > 1 and n ∈ N ∪ {0}, there exists a τn(λ)

defined as in (3.13) such that a Hopf bifurcation occurs for Eq. (3.1) at the unique positive equilibrium solution
uλ = λ−1

2λ
sin x when τ = τn(λ). Moreover, uλ is locally asymptotically stable when 0 � τ < τ0(λ), and it is

unstable when τ > τ0(λ).

In Theorem 3.4, the meaning of occurrence of a Hopf bifurcation is the same as that in Theo-
rem 2.14, which is not repeated here. We remark that the results in Theorems 3.3 and 3.4 are proved
for any λ > 1 because the equilibrium solution and associated eigenvalues are explicitly expressed,
which is impossible for general kernel functions and general domains in higher dimension. It is also
interesting to compare Eq. (3.1) and the classical Fisher–KPP equation with delay:

⎧⎨
⎩

∂v(x, t)

∂t
= ∂2 v(x, t)

∂x2
+ λv(x, t)

(
1 − v(x, t − τ )

)
, x ∈ (0,π), t > 0,

v(x, t) = 0, x = 0, π, t > 0.

(3.16)

It is well known that Eq. (3.16) has a unique positive equilibrium solution vλ for λ > 1, and as λ → ∞,
vλ(x) → 1 uniformly on any compact subset of (0,π). Hence the profiles of equilibrium solutions for
Eqs. (3.1) and (3.16) are different. For Eq. (3.16), the transition to oscillatory pattern for large delay
τ is only known for λ near λ∗ = 1, and here we showed that such transition always occurs for the
nonlocal equation (3.1).

Finally we make the following observation: suppose that a solution u(x, t) of Eq. (3.1) is in a
separable form

u(x, t) = λ − 1

2λ
sin x · w(t). (3.17)

Here we recall that uλ(x) = λ−1
2λ

sin x is the unique positive equilibrium of Eq. (3.1) for λ > 1. Then it
is easy to verify that w(t) satisfies the well-known (non-spatial) Hutchinson equation

dw

dt
= (λ − 1)w(t)

(
1 − w(t − τ )

)
. (3.18)

It is also well known that the Hopf bifurcation points of Eq. (3.18) are also given by (3.13) [27,32,33],
hence all the bifurcating periodic orbits obtained in Theorem 3.4 are indeed in separable form (3.17).
This shows that the dynamics of Eq. (3.18) is embedded in the dynamics of Eq. (3.1) if the initial
value is also in separable form (3.17). This is interesting for a Dirichlet boundary value problem,
while it is common for Neumann (no-flux) boundary value problem. It would be interesting to know
the stability of periodic solution with such separable form for all λ > 1, and whether a symmetry-
breaking bifurcation can occur so that non-separable periodic orbits can arise.

4. The direction of the Hopf bifurcation

In this section, we analyze the direction of the Hopf bifurcation of Eq. (1.2) obtained in The-
orem 2.14 using τ as bifurcation parameter. Here we combine the methods in Faria [10–12] and
Hassard et al. [23]. Similar approach has also been used in [38,41].

We first transform the equilibrium to the origin via the translations U (t) = u(·, t) − uλ and τ =
τn + γ , then γ = 0 is the Hopf bifurcation value of system (1.2). Re-scaling the time by t → t

τ to
normalize the delay, system (1.2) can be written in the following form

dU (t)

dt
= τnd�U (t) + τn L0(Ut) + J (Ut , γ ), (4.1)

where
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Ut ∈ C, L0(ψ) = λ

(
1 −

∫
Ω

K (·, y)uλ(y)dy

)
ψ(0) − λuλ

∫
Ω

K (·, y)ψ(−1)(y)dy,

J (ψ,γ ) = γ �ψ(0) + γ L0(ψ) − (γ + τn)λψ(0)

∫
Ω

K (·, y)ψ(−1)(y)dy,

for ψ ∈ C , and C = C([−1,0], Y ). Denote Aτn to be the infinitesimal generator of the linearized equa-
tion

dU (t)

dt
= τnd�U (t) + τn L0(Ut). (4.2)

Then

Aτnψ = ψ̇,

D(Aτn) =
{
ψ ∈ CC ∩ C1

C: ψ(0) ∈ XC, ψ̇(0) = τn A(λ)ψ(0) − λτnuλ

∫
Ω

K (·, y)ψ(−1)(y)dy

}
,

where C1
C = C1([−1,0], YC). So Eq. (4.1) can be written in the following abstract form

dUt

dt
=Aτn Ut + X0 J (Ut, γ ), (4.3)

where

X0(θ) =
{

0, θ ∈ [−1,0),

I, θ = 0.

From Theorem 2.14, we know that Aτn has only one pair of purely imaginary eigenvalues ±iνλτn

which are simple. The corresponding eigenfunction with respect to iνλτn (or −iνλτn) is ψλ(x)eiνλτnθ

(or ψλ(x)e−iνλτnθ ) for θ ∈ [−1,0], where ψλ(x) is defined in Corollary 2.6.
Following [11], we introduce the formal duality 〈〈·,·〉〉 in C by

〈〈ψ̃,ψ〉〉 = 〈
ψ̃(0),ψ(0)

〉− λτn

0∫
−1

〈
ψ̃(s + 1), uλ

∫
Ω

K (·, y)ψ(s)(y)dy

〉
ds, (4.4)

for ψ ∈ CC and ψ̃ ∈ C∗
C := C([0,1], YC). Using similar consideration in [22], we give two lemmas

about the formal adjoint operator of Aτn .

Lemma 4.1. Define an operator A∗
τn

:D(A∗
τn

) → C∗ by A∗
τn

ψ̃(s) = − ˙̃
ψ(s) with

D
(A∗

τn

)=
{
ψ̃ ∈ C∗

C ∩ (C∗
C
)1

: ψ̃(0) ∈ XC,
˙̃
ψ(0) = τn A(λ)ψ̃(0) − λτn

∫
Ω

K (y, ·)uλ(y)ψ̃(1)(y)dy

}
,

where (C∗
C)1 = C1([0,1], YC). Then A∗

τn
and Aτn satisfy

〈〈A∗
τn

ψ̃,ψ
〉〉= 〈〈ψ̃,Aτnψ〉〉, for ψ ∈ D(Aτn ) and ψ̃ ∈ D

(A∗
τn

)
. (4.5)
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Proof. For ψ ∈ D(Aτn ) and ψ̃ ∈ D(A∗
τn

),

〈〈ψ̃,Aτnψ〉〉 = 〈
ψ̃(0), (Aτnψ)(0)

〉− λτn

0∫
−1

〈
ψ̃(s + 1), uλ

∫
Ω

K (·, y)ψ̇(s)(y)dy

〉
ds

=
〈
ψ̃(0), τn A(λ)ψ(0) − λτnuλ

∫
Ω

K (·, y)ψ(−1)(y)dy

〉

− λτn

[〈
ψ̃(s + 1), uλ

∫
Ω

K (·, y)ψ(s)(y)dy

〉]0

−1

+ λτn

0∫
−1

〈
˙̃
ψ(s + 1), uλ

∫
Ω

K (·, y)ψ(s)(y)dy

〉
ds

= 〈
τn A(λ)ψ̃(0),ψ(0)

〉− λτn

〈
ψ̃(1), uλ

∫
Ω

K (·, y)ψ(0)(y)dy

〉

− λτn

0∫
−1

〈
− ˙̃

ψ(s + 1), uλ

∫
Ω

K (·, y)ψ(s)(y)dy

〉
ds

=
〈
τn A(λ)ψ̃(0) − λτn

∫
Ω

K (y, ·)uλ(y)ψ̃(1)(y)dy,ψ(0)

〉

− λτn

0∫
−1

〈
− ˙̃

ψ(s + 1), uλ

∫
Ω

K (·, y)ψ(s)(y)dy

〉
ds

= 〈〈A∗
τn

ψ̃,ψ
〉〉
. �

Lemma 4.2. The operator A∗
τn

has only one pair of purely imaginary eigenvalues ±iνλτn which are simple,
and the corresponding eigenfunction with respect to −iνλτn (or iνλτn) is ψ̃λ(x)eiνλτns (or ψ̃λ(x)eiνλτns) for
s ∈ [0,1], where ψ̃λ is defined in Theorem 2.7.

Proof. If μ is an eigenvalue of A∗
τn

, then there exists ψ̃ ∈ D(A∗
τn

) such that A∗
τn

ψ̃ = μψ̃ . From the

definition of A∗
τn

, we have that − ˙̃
ψ = μψ̃ , and hence ψ̃(s) = ψ̃(0)e−μs , where ψ̃(0) ∈ XC satisfies

τn A(λ)ψ̃(0) − λτn

∫
Ω

K (y, ·)uλ(y)ψ̃(0)(y)dx e−μ = μψ̃(0).

Hence from Theorem 2.7 and Remark 2.8, we have that A∗
τn

has only one pair of purely imaginary
eigenvalues ±iνλτn . The simplicity can be proved as in Theorem 2.11. �

Lemma 4.2 implies that Aτn and A∗
τn

are adjoint operators under the bilinear form (4.4). The
center subspace of Eq. (4.1) is P = span{p(θ), p(θ)}, where p(θ) = ψλeiνλτnθ is the eigenfunction of
Aτn with respect to iνλτn . Similarly the formal adjoint subspace of P with respect to the bilinear
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form (4.4) is P∗ = span{q(s),q(s)}, where q(s) = ψ̃λeiνλτns is the eigenfunction of A∗
τn

with respect to
−iνλτn . Then CC can be decomposed as CC = P ⊕ Q , where

Q = {
ψ ∈ CC: 〈〈ψ̃,ψ〉〉 = 0 for all ψ̃ ∈ P∗}.

Let Φ = (p(θ), p(θ)), Ψ = 1
Sn(λ)

(q(s),q(s))T , where Sn(λ) is defined in Lemma 2.10, then 〈〈Ψ,Φ〉〉 = I ,

where I is the identity matrix in R2×2.
As the formulas to be developed for the bifurcation direction and stability are all relative to γ = 0

only, we set γ = 0 in Eq. (4.1) and obtain a center manifold

w(z, z) = w20(θ)
z2

2
+ w11(θ)zz + w02(θ)

z2

2
+ · · · (4.6)

with the range in Q . The flow of Eq. (4.1) on the center manifold can be written as:

Ut = Φ · (z(t), z(t)
)T + w

(
z(t), z(t)

)
,

where

ż(t) = d

dt

〈〈
q(s), Ut

〉〉
= 〈〈

q(s),Aτn Ut
〉〉+ 1

Sn(λ)

〈〈
q(s), X0 J (Ut,0)

〉〉
= 〈〈A∗

τn
q(s), Ut

〉〉+ 1

Sn(λ)

〈
q(0), J (Ut ,0)

〉
= iνλτnz(t) + 1

Sn(λ)

〈
q(0), J

(
Φ
(
z(t), z(t)

)T + w
(
z(t), z(t)

)
,0
)〉
. (4.7)

We rewrite (4.7) as

ż(t) = iνλτnz(t) + g(z, z) (4.8)

with

g(z, z) = 1

Sn(λ)

〈
q(0), J

(
Φ
(
z(t), z(t)

)T + w
(
z(t), z(t)

)
,0
)〉

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (4.9)

Hence we have that

g20 = − 2λτn

Sn(λ)
e−iνλτn

∫
Ω

∫
Ω

ψ̃λ(x)ψλ(x)K (x, y)ψλ(y)dx dy,

g11 = − λτn

Sn(λ)
eiνλτn

∫
Ω

∫
Ω

ψ̃λ(x)ψλ(x)K (x, y)ψλ(y)dx dy

− λτn

Sn(λ)
e−iνλτn

∫
Ω

∫
Ω

ψ̃λ(x)ψλ(x)K (x, y)ψλ(y)dx dy,
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g02 = − 2λτn

Sn(λ)
eiνλτn

∫
Ω

∫
Ω

ψ̃λ(x)ψλ(x)K (x, y)ψλ(y)dx dy,

g21 = − 2λτn

Sn(λ)

∫
Ω

∫
Ω

ψ̃λ(x)ψλ(x)K (x, y)w11(−1)(y)dx dy

− λτn

Sn(λ)

∫
Ω

∫
Ω

ψ̃λ(x)ψλ(x)K (x, y)w20(−1)(y)dx dy

− λτn

Sn(λ)
eiνλτn

∫
Ω

∫
Ω

ψ̃λ(x)w20(0)(x)K (x, y)ψλ(y)dx dy

− 2λτn

Sn(λ)
e−iνλτn

∫
Ω

∫
Ω

ψ̃λ(x)w11(0)(x)K (x, y)ψλ(y)dx dy. (4.10)

So in order to compute g21, we need to compute w20(θ) and w11(θ).
Since w(z(t), z(t)) satisfies

ẇ =Aτn w + X0 J
(
Φ(z, z)T + w(z, z),0

)− Φ
〈〈
Ψ, X0 J

(
Φ(z, z)T + w(z, z),0

)〉〉
=Aτn w + H20

z2

2
+ H11zz + H02

z2

2
+ · · · , (4.11)

then by using the chain rule

ẇ = ∂ w(z, z)

∂z
ż + ∂ w(z, z)

∂z
ż,

we have that

{
(2iνλτn −Aτn)w20 = H20,

−Aτn w11 = H11,

(−2iνλτn −Aτn )w02 = H02.

(4.12)

Note that for −1 � θ < 0,

−Φ
〈〈
Ψ, X0 J

(
Φ(z, z)T + w(z, z),0

)〉〉= H20
z2

2
+ H11zz + H02

z2

2
+ · · · ,

and then we see that for −1 � θ < 0,

H20(θ) = −(g20 p(θ) + g02 p(θ)
)
, (4.13)

H11(θ) = −(g11 p(θ) + g11 p(θ)
)
. (4.14)

Therefore from (4.12), w20 and w11 can be expressed as

w20(θ) = ig20

νλτn
p(θ) + ig02

3νλτn
p(θ) + Ee2iνλτnθ (4.15)
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and

w11(θ) = − ig11

νλτn
p(θ) + ig11

νλτn
p(θ) + F . (4.16)

From Eqs. (4.11) and (4.12) with θ = 0, the definition of Aτn and

H20(0) = −(g20 p(0) + g02 p(0)
)− 2λτne−iνλτnψλ

∫
Ω

K (·, y)ψλ(y)dy,

we find that E satisfies

(2iνλτn −Aτn)Ee2iνλτnθ
∣∣
θ=0 = −2λτne−iνλτnψλ

∫
Ω

K (·, y)ψλ(y)dy,

that is,

�(λ,2iνλ, τn)E = 2λe−iνλτnψλ

∫
Ω

K (·, y)ψλ(y)dy. (4.17)

From Corollary 2.6, we have 2iνλ is not the eigenvalue of Aτn (λ), and hence

E = 2λe−iνλτn�(λ,2iνλ, τn)
−1
(

ψλ

∫
Ω

K (·, y)ψλ(y)dy

)
,

where �(λ,μ,τ ) is defined in Eq. (2.9). Similarly,

F = λ�(λ,0, τn)−1
(

eiνλτnψλ

∫
Ω

K (·, y)ψλ(y)dy + e−iνλτnψλ

∫
Ω

K (·, y)ψλ(y)dy

)
. (4.18)

Now we compute the functions E and F in the following lemma.

Lemma 4.3. For λ ∈ (λ∗, λ∗], let E and F be defined as in (4.15) and (4.16). Then

E = 1

λ − λ∗
(cλuλ + ϕλ), F = ϕ̃λ

λ − λ∗
, (4.19)

where uλ is the positive solution of Eq. (1.2) satisfying (2.2), ϕλ , ϕ̃λ satisfy

〈uλ,ϕλ〉 = 0, lim
λ→λ∗

‖ϕλ‖YC = 0, lim
λ→λ∗

‖ϕ̃λ‖YC = 0,

and the constant cλ satisfies limλ→λ∗ (λ − λ∗)cλ = 2i
α2

λ∗ (2i−1)
.

Proof. We only prove the estimate for E , and the one for F is similar. Substituting Eq. (4.19) into
Eq. (4.17), we have that
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A(λ)ϕλ − λuλ

∫
Ω

K (·, y)(cλuλ + ϕλ)dy e−2iνλτn − 2iνλ(cλuλ + ϕλ)

= 2λe−iνλτn(λ − λ∗)ψλ

∫
Ω

K (·, y)ψλ(y)dy. (4.20)

Multiplying Eq. (4.20) by uλ , we have that

cλ

(
λ

∫
Ω

∫
Ω

K (x, y)u2
λ(x)uλ(y)dx dy e−2iνλτn + 2iνλ‖uλ‖2

YC

)

= −λ

∫
Ω

∫
Ω

K (x, y)u2
λ(x)ϕλ(y)dx dy e−2iνλτn

− 2λe−iνλτn (λ − λ∗)
∫
Ω

∫
Ω

K (x, y)uλ(x)ψλ(x)ψλ(y)dx dy. (4.21)

Multiplying Eq. (4.20) by ϕλ , we have that

〈
A(λ)ϕλ,ϕλ

〉− λcλ

∫
Ω

∫
Ω

K (x, y)ϕλ(x)uλ(x)uλ(y)dx dy e−2iνλτn

= λ

∫
Ω

∫
Ω

K (x, y)uλ(x)ϕλ(x)ϕλ(y)dx dy e−2iνλτn + 2iνλ‖ϕλ‖2
YC

+ 2λe−iνλτn(λ − λ∗)
∫
Ω

∫
Ω

K (x, y)ϕλ(x)ψλ(x)ψλ(y)dx dy. (4.22)

From the expression of νλ , uλ , ψλ and τn , we have that

ψλ → φ, uλ/(λ − λ∗) → αλ∗φ, νλ/(λ − λ∗) → 1, and νλτn → π

2
+ 2nπ.

So from Eq. (4.21), we have that

(λ − λ∗)cλ = − (λ − λ∗)λ
∫
Ω

∫
Ω

K (x, y)u2
λ(x)ϕλ(y)dx dy e−2iνλτn

(λ
∫
Ω

∫
Ω

K (x, y)u2
λ(x)uλ(y)dx dy + 2iνλ‖uλ‖YC)

− 2λe−iνλτn(λ − λ∗)2
∫
Ω

∫
Ω

K (x, y)uλ(x)ψλ(x)ψλ(y)dx dy

(λ
∫
Ω

∫
Ω

K (x, y)u2
λ(x)uλ(y)dx dy + 2iνλ‖uλ‖YC)

,

and hence there exist constants λ̃ > λ∗ , M0, M1 > 0 such that for any λ ∈ (λ∗, λ̃), |(λ − λ∗)cλ| �
M0‖ϕλ‖YC + M1. From Eq. (4.22), and the expression of νλ , uλ , ψλ and τn , we have that there exist
constants λ̌ > λ∗ , M3, M4, M5 > 0 such that for any λ ∈ (λ∗, λ̌),

∣∣λ2(λ)
∣∣ · ‖φλ‖2

YC � M3(λ − λ∗)‖ϕλ‖YC
(
M0‖ϕλ‖YC + M1

)
+ (λ − λ∗)M4‖ϕλ‖2

YC + M5(λ − λ∗)‖ϕλ‖YC ,
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where λ2(λ) is the second eigenvalue of A(λ). Since limλ→λ∗ λ2(λ) = λ2 − λ∗ > 0, where λ2 is the
second eigenvalue of Eq. (1.6), then we have that limλ→λ∗ ‖ϕλ‖YC = 0. Together with (4.21), we have
that

lim
λ→λ∗

(λ − λ∗)cλ = 2i

α2
λ∗(2i − 1)

. �

It is well known that the following quantities determine the direction and stability of bifurcating
periodic orbits (see [23,40]):

C1(0) = i

2νλτn

(
g11 g20 − 2|g11|2 − |g02|2

3

)
+ g21

2
, μ2 = − Re(C1(0))

Re(μ′(τn))
,

β2 = 2Re
(
C1(0)

)
, T2 = −Im(C1(0)) + μ2Im(μ′(τn))

τn
.

Here

1. μ2 determines the direction of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), then the bifurcating
periodic solutions exist for τ > τn (τ < τn), and the bifurcation is called forward (backward);

2. β2 determines the stability of bifurcating periodic solutions: the bifurcating periodic solutions are
orbitally asymptotically stable (unstable) if β2 < 0 (β2 > 0);

3. T2 determines the period of the bifurcating periodic solutions: the period increases (decreases) if
T2 > 0 (T2 < 0).

From Eqs. (4.10), (4.15), (4.16) and (4.19), we can compute g20, g11, g02 and g21 for the pe-
riodic orbits emerging from the Hopf bifurcation of Eq. (1.2) obtained in Theorem 2.14. Since
limλ→λ∗ ψλ(x) = limλ→λ∗ ψ̃λ(x) = φ(x), then

lim
λ→λ∗

Sn(λ) = 1

2

(
2 + i(π + 4nπ)

) ∫
Ω

φ2(x)dx, lim
λ→λ∗

(λ − λ∗)F = 0,

lim
λ→λ∗

(λ − λ∗)τn = lim
λ→λ∗

νλτn = π

2
+ 2nπ, lim

λ→λ∗
(λ − λ∗)E = 2i

αλ∗(2i − 1)
φ.

So we compute that

lim
λ→λ∗

(λ − λ∗)g20 = 2i(π + 4nπ)

αλ∗(2 + i(π + 4nπ))
, lim

λ→λ∗
(λ − λ∗)g11 = 0,

lim
λ→λ∗

(λ − λ∗)g02 = −2i(π + 4nπ)

αλ∗(2 + i(π + 4nπ))
,

lim
λ→λ∗

(λ − λ∗)2 g21 = 2(π + 4nπ)(1 − 3i)

α2
λ∗(10 + 5i(π + 4nπ))

+ 8iπ(1 + 4n)

3α2
λ∗ |2π + i(π + 4nπ)|2 .

Then we can compute that limλ→λ∗ Re((λ−λ∗)2 g21) < 0 and limλ→λ∗ Re((λ−λ∗)2C1(0)) < 0. Hence
we have the following results:

Theorem 4.4. For λ ∈ (λ∗, λ∗], let τn(λ) given as in (2.15) be the Hopf bifurcation points for Eq. (1.2) where
spatially nonhomogeneous periodic orbits of Eq. (1.2) emerge from (τn, uλ). Then for each n ∈ N ∪ {0}, the
direction of the Hopf bifurcation at τ = τn is forward and the bifurcating periodic solution from τ = τ0 is
locally asymptotically stable.
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Fig. 2. Spatially homogeneous kernel K (x, y) = 1. Left: τ = 1; right: τ = 1.6.

Similarly we can consider the direction of Hopf bifurcations and stability of bifurcating periodic
orbits of Eq. (3.1) for all λ > 1. In this case, from the proof of Theorem 3.3, ψλ , ψ̃λ and Sn(λ) can all
be explicitly calculated for all λ > 1, and the normal form calculation earlier also holds here. From
Eqs. (4.17) and (4.18), we can also solve that

E = 4iλ

(2i − 1)(λ − 1)
sin x, F = 0,

and by substituting the explicit form of ψλ , ψ̃λ , and Sn(λ) into Eq. (4.10), we have that

g20 = 4i(π + 4nπ)λ

(λ − 1)(2 + i(π + 4nπ))
, g11 = 0,

g02 = −4i(π + 4nπ)λ

(λ − 1)(2 + i(π + 4nπ))
,

g21 = 8(π + 4nπ)(1 − 3i)λ2

(λ − 1)2(10 + 5i(π + 4nπ))
+ 32iπ(1 + 4n)λ2

3(λ − 1)2|2 + i(π + 4nπ)|2 .

Then again we obtain that Re(g21) < 0 and Re(C1(0)) < 0. Hence we have the following results:

Theorem 4.5. For each λ > 1, let τn(λ) given as in (3.13) be the Hopf bifurcation points for Eq. (3.1) where
spatially nonhomogeneous periodic orbits of Eq. (3.1) emerge from (τn, uλ). Then for each n ∈ N ∪ {0}, the
direction of the Hopf bifurcation at τ = τn is forward and the bifurcating periodic solution from τ = τ0 is
locally asymptotically stable.

The results in Theorems 4.4 and 4.5 show that the Hopf bifurcation at τn is forward, hence for
some εn > 0, there exists a spatially inhomogeneous periodic orbit for (1.2) (or (3.1) respectively)
when τ ∈ (τn, τn + εn). This in a sense shows that a true Hopf bifurcation occurs at τ = τn . Finally
we show two numerical simulations of Eq. (1.2) to demonstrate our results. In Fig. 2, the numerical
simulations with a homogeneous kernel K (x, y) ≡ 1 are shown, and in Fig. 3, the ones with a nonho-
mogeneous kernel K (x, y) = |x−y|

π are shown respectively. In each figure, λ = 2, Ω = (0,π), d = 1, and

the initial value is u(x, t) = 0.5 sin2 x. In each case, the convergence to the spatially nonhomogeneous
equilibrium uλ occurs when τ is less than the first Hopf bifurcation point τ0, and an oscillatory pat-
tern emerges for τ > τ0. While each simulation verifies the occurrence of spatially nonhomogeneous
temporal oscillation, one can notice that the spatial profiles of the periodic solutions are different due
to the different dispersal kernel. In particular, the spatial profile in Fig. 2 is concave (indeed it is sin x
in this case), and the one in Fig. 3 is not.
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Fig. 3. Spatially nonhomogeneous kernel K (x, y) = |x−y|
π . Left: τ = 1; right: τ = 1.6.

References

[1] Shangbing Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equa-
tions 232 (1) (2007) 104–133.

[2] Henri Berestycki, Grégoire Nadin, Benoit Perthame, Lenya Ryzhik, The non-local Fisher–KPP equation: Travelling waves and
steady states, Nonlinearity 22 (12) (2009) 2813–2844.

[3] N.F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction–diffusion population model,
SIAM J. Appl. Math. 50 (6) (1990) 1663–1688.

[4] Stavros Busenberg, Wenzhang Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects,
J. Differential Equations 124 (1) (1996) 80–107.

[5] Jixun Chu, Arnaud Ducrot, Pierre Magal, Shigui Ruan, Hopf bifurcation in a size-structured population dynamic model with
random growth, J. Differential Equations 247 (3) (2009) 956–1000.

[6] Michael G. Crandall, Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971) 321–340.
[7] Fordyce A. Davidson, Niall Dodds, Spectral properties of non-local differential operators, Appl. Anal. 85 (6–7) (2006) 717–

734.
[8] Thomas Erneux, Applied Delay Differential Equations, Surv. Tutor. Appl. Math. Sci., vol. 3, Springer-Verlag, New York, 2009.
[9] Jian Fang, Xiaoqiang Zhao, Monotone wavefronts of the nonlocal Fisher–KPP equation, Nonlinearity 24 (2011) 3043–3054.

[10] Teresa Faria, Normal forms for semilinear functional differential equations in Banach spaces and applications. II, Discrete
Contin. Dyn. Syst. 7 (1) (2001) 155–176.

[11] Teresa Faria, Wenzhang Huang, Stability of periodic solutions arising from Hopf bifurcation for a reaction–diffusion equa-
tion with time delay, in: Differential Equations and Dynamical Systems, Lisbon, 2000, in: Fields Inst. Commun., vol. 31,
Amer. Math. Soc., Providence, RI, 2002, pp. 125–141.

[12] Teresa Faria, Wenzhang Huang, Jianhong Wu, Smoothness of center manifolds for maps and formal adjoints for semilinear
FDEs in general Banach spaces, SIAM J. Math. Anal. 34 (1) (2002) 173–203.

[13] Pedro Freitas, A nonlocal Sturm–Liouville eigenvalue problem, Proc. Roy. Soc. Edinburgh Sect. A 124 (1) (1994) 169–188.
[14] Pedro Freitas, Guido Sweers, Positivity results for a nonlocal elliptic equation, Proc. Roy. Soc. Edinburgh Sect. A 128 (4)

(1998) 697–715.
[15] M.A. Fuentes, M.N. Kuperman, V.M. Kenkre, Nonlocal interaction effects on pattern formation in population dynamics, Phys.

Rev. Lett. 91 (2003) 158104.
[16] S. Genieys, V. Volpert, P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of

resources, Math. Model. Nat. Phenom. 1 (1) (2006) 65–82 (electronic).
[17] S.A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol. 41 (3) (2000) 272–284.
[18] S.A. Gourley, N.F. Britton, A predator–prey reaction–diffusion system with nonlocal effects, J. Math. Biol. 34 (3) (1996)

297–333.
[19] S.A. Gourley, J.W.-H. So, Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain,

J. Math. Biol. 44 (1) (2002) 49–78.
[20] S.A. Gourley, J.W.H. So, J.H. Wu, Nonlocality of reaction–diffusion equations induced by delay: Biological modeling and

nonlinear dynamics, J. Math. Sci. 124 (4) (2004) 5119–5153.
[21] David Green Jr., Harlan W. Stech, Diffusion and hereditary effects in a class of population models, in: Differential Equations

and Applications in Ecology, Epidemics, and Population Problems, Claremont, CA, 1981, Academic Press, New York, 1981,
pp. 19–28.

[22] Jack Hale, Theory of Functional Differential Equations, second ed., Appl. Math. Sci., vol. 3, Springer-Verlag, New York, 1977.
[23] Brian D. Hassard, Nicholas D. Kazarinoff, Yieh Hei Wan, Theory and Applications of Hopf Bifurcation, London Math. Soc.

Lecture Note Ser., vol. 41, Cambridge University Press, Cambridge, 1981.
[24] Wenzhang Huang, Global dynamics for a reaction–diffusion equation with time delay, J. Differential Equations 143 (2)

(1998) 293–326.



Author's personal copy

3470 S. Chen, J. Shi / J. Differential Equations 253 (2012) 3440–3470

[25] G.E. Hutchinson, Circular causal systems in ecology, in: Ann. New York Acad. Sci., vol. 50(4), 1948, pp. 221–246.
[26] V.M. Kenkre, N. Kumar, Nonlinearity in bacterial population dynamics: Proposal for experiments for the observation of

abrupt transitions in patches, Proc. Natl. Acad. Sci. USA 105 (48) (2008) 18752.
[27] Yang Kuang, Delay Differential Equations with Applications in Population Dynamics, Math. Sci. Eng., vol. 191, Academic

Press, Boston, MA, 1993.
[28] A.L. Lin, B.A. Mann, G. Torres-Oviedo, B. Lincoln, J. Käs, H.L. Swinney, Localization and extinction of bacterial populations

under inhomogeneous growth conditions, Biophys. J. 87 (1) (2004) 75–80.
[29] M.C. Memory, Bifurcation and asymptotic behavior of solutions of a delay-differential equation with diffusion, SIAM J.

Math. Anal. 20 (3) (1989) 533–546.
[30] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44, Springer-

Verlag, New York, 1983.
[31] Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971) 487–513.
[32] S. Ruan, Delay differential equations in single species dynamics, in: Delay Differential Equations and Applications, in: NATO

Sci. Ser. II Math. Phys. Chem., vol. 205, Springer-Verlag, Dordrecht, 2006, pp. 477–517.
[33] Hal Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts Appl. Math., vol. 57,

Springer-Verlag, New York, 2011.
[34] Joseph W.-H. So, Jianhong Wu, Yuanjie Yang, Numerical steady state and Hopf bifurcation analysis on the diffusive Nichol-

son’s blowflies equation, Appl. Math. Comput. 111 (1) (2000) 33–51.
[35] Joseph W.-H. So, Yuanjie Yang, Dirichlet problem for the diffusive Nicholson’s blowflies equation, J. Differential Equa-

tions 150 (2) (1998) 317–348.
[36] Ying Su, Junjie Wei, Junping Shi, Hopf bifurcations in a reaction–diffusion population model with delay effect, J. Differential

Equations 247 (4) (2009) 1156–1184.
[37] Ying Su, Junjie Wei, Junping Shi, Bifurcation analysis in a delayed diffusive Nicholson’s blowflies equation, Nonlinear Anal.

Real World Appl. 11 (3) (2010) 1692–1703.
[38] Ying Su, Junjie Wei, Junping Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous

density dependence, J. Dynam. Differential Equations (2012), http://dx.doi.org/10.1007/s10884-012-9268-z, in press.
[39] Zhi-Cheng Wang, Wan-Tong Li, Shigui Ruan, Travelling wave fronts in reaction–diffusion systems with spatio-temporal

delays, J. Differential Equations 222 (1) (2006) 185–232.
[40] Jianhong Wu, Theory and Applications of Partial Functional-Differential Equations, Appl. Math. Sci., vol. 119, Springer-

Verlag, New York, 1996.
[41] Xiang-Ping Yan, Wan-Tong Li, Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model,

Nonlinearity 23 (6) (2010) 1413–1431.
[42] Taishan Yi, Xingfu Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition:

A non-monotone case, J. Differential Equations 245 (11) (2008) 3376–3388.
[43] K. Yoshida, The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology,

Hiroshima Math. J. 12 (2) (1982) 321–348.
[44] Xiao-Qiang Zhao, Global attractivity in a class of nonmonotone reaction–diffusion equations with time delay, Can. Appl.

Math. Q. 17 (1) (2009) 271–281.


