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and bifurcation theory. The effects of decay order, decay rate and
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1. Introduction

Autocatalytic chemical reactions have been identified as one of main nonlinear mechanisms in
biochemical procedures [8,22]. Several canonical forms of the reactions have been proposed as cor-
nerstones of more complicated chemical reaction chains or networks. Well-known examples include
Lotka–Volterra model [19,34], Brusselator model [24], and Gray–Scott model [9].

A simplest autocatalytic chemical reaction is of the following form:

A + pB → (p + 1)B, (1.1)
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where A is the reactant and B is the autocatalyst, and the integer p � 1 is the order of the reaction
(number of autocatalyst molecules involved in a reaction). While the most common case is p = 1, the
higher order reactions with p � 2 have been considered in recent years [8,9].

For a general p � 2, Jakab et al. [12] proposed a reaction–diffusion model based on the single
autocatalytic reaction (1.1):

⎧⎪⎨
⎪⎩

∂a

∂t
= D A�a − k1abp,

∂b

∂t
= D B�b + k1abp,

lim|x|→∞a(x, t) = a0, and lim|x|→∞ b(x, t) = 0,
(1.2)

where a(x, t) and b(x, t) are the concentrations of the reactant and the autocatalyst respectively, D A

and D B are diffusion coefficients of A and B respectively, and k1 is the reaction rate. The boundary
condition means that there is plenty supply of the reactant, but only limited supply of the catalyst. It
was discovered that a threshold phenomenon exists for n � 3 that only when the initial concentration
is over some critical mass, the chemical reaction wave can propagate in a form of traveling wave. The
threshold phenomenon was rigorously proved in Shi and Wang [32] with a careful study of steady
state solutions and comparison methods. It was shown that both the spatial dimension n and reaction
order p play important roles in the threshold dynamics. The threshold set was proved to be “thin” so
it is called hair-triggered instability following Aronson and Weinberger [1]. The dynamics of (1.2) with
zero boundary condition was considered in [2,17], in which the self-similarity of the profile of the
solution (approaching to zero) was studied. The traveling wave solution of (1.2) in one-dimensional
space was studied by Chen and Qi [4–6].

In (1.2), the spatial domain is assumed to be the whole Rn . This is an idealized assumption when
the chemical reactor is sufficiently large or the boundary effect can be ignored. On the other hand,
when the boundary effect of the reactor is included, one can assume the reactor Ω to be a bounded
region in Rn . The chemicals A and B can diffuse from a reservoir of constant composition across the
boundary ∂Ω into Ω , thus the boundary conditions of A and B are assumed to be

a(x, t) = a0, and b(x, t) = 0, x ∈ ∂Ω. (1.3)

The typical geometry of the reactor Ω is spherical (n = 3, and Ω = B3), or cylindrical (n = 2, and
Ω = B2). Hence it is reasonable to consider Ω = Bn , the unit ball in Rn . The bifurcation of steady
state solutions of the equations in (1.2) on a ball domain with boundary condition (1.3) have been
considered in Ouyang and Shi [25,26], and also in Zhao et al. [36] for the case of b(x, t) = b0 > 0
small (see also [15]).

The non-constant steady state solutions found in [32] are unstable. But if there is a decay of the
autocatalyst B , then the steady states may be stabilized. Hence in Jakab et al. [13] (see also [10]), an
additional decay step was proposed as

B → C, (1.4)

and the decay rate is k2bq for some q � 1 and k2 > 0. Thus the equations governing the reaction and
diffusion of the reactants A and B are

∂a

∂t
= D A�a − k1abp,

∂b

∂t
= D B�b + k1abp − k2bq, (1.5)

subject to the boundary conditions (1.3). In this paper we consider the case of Ω being a bounded
domain in Rn . Systems with similar form as (1.5) have arisen from many other applications, such as
interface growth and pattern formation in bacterial colonies [20,21].
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With a rescaling

ā = a

a0
, b̄ = b

a0
, and t̄ = D At,

and dropping the bars of the new variables for convenience, we obtain the dimensionless equations
with boundary and initial conditions:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂a

∂t
= �a − λabp, x ∈ Ω, t > 0,

∂b

∂t
= D�b + λabp − kbq, x ∈ Ω, t > 0,

a(x, t) = 1, b(x, t) = 0, x ∈ ∂Ω, t > 0,

a(x,0) = a0(x) � 0, b(x,0) = b0(x) � 0, x ∈ Ω,

(1.6)

where

D = D B

D A
, λ = k1ap

0

D A
, and k = k2aq−1

0

D A
. (1.7)

The steady state solution of (1.6) satisfies

⎧⎨
⎩

�a − λabp = 0, x ∈ Ω,

D�b + λabp − kbq = 0, x ∈ Ω,

a(x) = 1, b(x) = 0, x ∈ ∂Ω.

(1.8)

Because of the nonhomogeneous boundary condition of a(x, t), sometimes it is more convenient to
consider the equivalent problems with homogeneous boundary condition: let u(x, t) = 1 − a(x, t),
v(x, t) = b(x, t), then (u, v) satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
= �u + λ(1 − u)v p, x ∈ Ω, t > 0,

∂v

∂t
= D�v + λ(1 − u)v p − kvq, x ∈ Ω, t > 0,

u(x, t) = 0, v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0(x) ≡ 1 − a0(x), v(x,0) = v0(x) ≡ b0(x) � 0, x ∈ Ω,

(1.9)

and the corresponding steady state equation is

⎧⎨
⎩

�u + λ(1 − u)v p = 0, x ∈ Ω,

D�v + λ(1 − u)v p − kvq = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

(1.10)

In this paper we consider the basic dynamics of (1.9) and the steady state problem (1.10) with the
assumption p,q > 1. The behavior of the chemical reaction system can be classified by two cases:

q > p: strong decay case; and q < p: weak decay case.

In both cases we show that the positive solution of (1.9) exists globally, and all steady state solu-
tions are bounded (see results in Section 2). In the strong decay case, for fixed reaction order p and
decay order q, we prove that the asymptotical dynamical behavior of (1.9) depends on the quantity
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r = λq−1k1−p D p−q . When r is small, then all solutions converge to the trivial steady state (0,0), hence
no pattern formation is possible, and the chemical conversion from A to B is not successful (see The-
orem 2.4). This is different from the system (1.2) (or the case k = 0 or equivalently r = ∞). For (1.2),
it has been shown that a bistable dynamics always exists, and the chemical reaction can successfully
reach a positive steady state when the initial value of the catalyst B is large enough, see [14,32]. Here
we show that a strong decay order q and a large decay rate k can inhibit the generation of chem-
ical B , so that the autocatalytic chemical reaction cannot proceed. The same effect can be achieved
if λ is small or D is large. From the change of variables (1.7), small λ can be realized with a small
reaction rate k1, and large D is possible if the catalyst B diffuses much faster than A.

On the other hand, when r is large, then some nontrivial steady state solutions of (1.9) exist. We
prove the existence of positive steady state solutions with two different approaches: (i) assuming
strong decay q > p, we prove the existence of a positive steady state solution when D is small by
using upper–lower solution method for the quasimonotone system (see Theorem 3.4); (ii) for both
strong and weak decay cases, but with domain being a large ball, we prove the existence of two
positive steady state solutions for small k by using implicit function theorem, and we also show that
these two solutions indeed belong to the same connected component of the solution set in the space
of (k, u, v) by using a global bifurcation method (see Theorem 4.4).

Our results here are the first rigorous ones for the autocatalytic reaction system with decay. There
are many open questions about (1.5) remain to be study in the future:

1. Existence and uniqueness of steady state solution for the whole space Ω = Rn;
2. Existence and multiplicity of positive steady state solution in the weak decay case;
3. Existence and wave speed of traveling wave solution.

Note that all these questions have been answered positively when there is no decay (k = 0). However
the decay case appears to be much more difficult. Solving these questions will help us to have a
better understanding of the pattern formation mechanism of (1.5) shown in [20,21].

Throughout the paper, for a bounded domain Ω , we use ‖u‖p to denote the L p norm of a function
u ∈ L p(Ω) where 1 � p � ∞, and we use |Ω| to denote the Lebesgue measure of Ω; and we denote
(λ1, φ1) to be the principal eigen-pair of

−�φ = λφ, x ∈ Ω, φ(x) = 0, x ∈ ∂Ω, (1.11)

such that φ1(x) > 0 in Ω and ‖φ1‖∞ = 1.

2. A priori estimates and nonexistence

In this section, we first establish some a priori estimates for the steady state solutions of (1.6), and
we also prove some nonexistence results for certain parameter ranges.

Lemma 2.1. Suppose the parameters p,q,k, D > 0. If (a(x),b(x)) is a positive solution of (1.8), then a(x) +
Db(x) < 1 for any x ∈ Ω . In particular,

0 < a(x) < 1, 0 < b(x) <
1

D
, x ∈ Ω. (2.1)

If in addition q > p, then

0 < b(x) < min

{(
λ

k

) 1
q−p

,
1

D

}
, x ∈ Ω. (2.2)
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Proof. By adding the two equations in (1.8), we obtain{
�

(
a(x) + Db(x)

) = kbq(x), x ∈ Ω,

a(x) + Db(x) = 1, x ∈ ∂Ω.
(2.3)

From the strong maximum principle of elliptic equations, we have a(x) + Db(x) < 1 and (2.1), for any
x ∈ Ω . On the other hand, from the equation of b(x) in (1.8) and the fact a(x) < 1, we have

0 = D�b + λabp − kbq � D�b + λbp − kbq. (2.4)

If b(x0) = maxx∈Ω b(x) for some x0 ∈ Ω , then from (2.4) we get λbp(x0) − kbq(x0) > 0. Hence if q > p,
then b(x) < ( λ

k )1/(q−p) , x ∈ Ω . From the strong maximum principle, we actually obtain that b(x) <

min{( λ
k )1/(q−p), 1

D }, x ∈ Ω . �
From Lemma 2.1, we also have the estimates for solution (u, v) of (1.10):

D v(x) < u(x) < 1, 0 < v(x) < D−1, x ∈ Ω. (2.5)

Now from (1.10) and (2.5), we can obtain some energy estimates for the positive solutions of (1.8).

Lemma 2.2. For any positive solution (a(x),b(x)) of (1.8), there hold the estimates:

(i) ‖∇a‖2 � λD−pλ
−1/2
1 ‖a‖2 � λD−pλ

−1/2
1 |Ω|1/2 ,

(ii) 0 < ‖∇a‖2 − D‖∇b‖2 � kD−qλ
−1/2
1 |Ω|1/2 ,

where λ1 is defined as in (1.11).

Proof. Multiplying the first equation in (1.10) with u and integrating over Ω , we get∫
Ω

|∇u|2 =
∫
Ω

λ(1 − u)uv p � λD−p
∫
Ω

(1 − u)u

� λD−p
[∫

Ω

(1 − u)2
]1/2

·
(∫

Ω

u2
)1/2

� λD−p
[∫

Ω

(1 − u)2
]1/2

· λ−1/2
1

(∫
Ω

|∇u|2
)1/2

,

by the Cauchy–Schwartz inequality and the Poincaré inequality. That is to say

(∫
Ω

|∇u|2
)1/2

� λD−pλ
−1/2
1 ·

[∫
Ω

(1 − u)2
]1/2

.

Noted that u = 1 − a, and ∇u = −∇a, we also get

(∫
Ω

|∇a|2
)1/2

� λD−pλ
−1/2
1 ·

(∫
Ω

a2
)1/2

,

which finishes the proof of (i), together with Lemma 2.1.
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To prove (ii) we define w = u − D v , then from (1.10) we have

−�w = −�(u − D v) = kvq. (2.6)

Multiplying (2.6) with w and integrating over Ω , we get

∫
Ω

|∇w|2 = k

∫
Ω

vq w,

which yields

∫
Ω

|∇u|2 − D2
∫
Ω

|∇v|2 − 2Dk

∫
Ω

vq+1 = k

∫
Ω

vqu − Dk

∫
Ω

vq+1,

i.e. ∫
Ω

|∇u|2 − D2
∫
Ω

|∇v|2 = Dk

∫
Ω

vq v + k

∫
Ω

vqu. (2.7)

By the Hölder inequality, we also get

∫
Ω

vq v �
[∫

Ω

v2q
]1/2

·
[∫

Ω

v2
]1/2

� D−q|Ω|1/2 ·
(∫

Ω
|∇v|2
λ1

)1/2

,

∫
Ω

vqu �
[∫

Ω

v2q
]1/2

·
[∫

Ω

u2
]1/2

� D−q|Ω|1/2 ·
(∫

Ω
|∇u|2
λ1

)1/2

.

Hence (2.7) becomes

‖∇u‖2
2 − D2‖∇v‖2

2 � kD−q|Ω| 1
2 λ

− 1
2

1 · (‖∇u‖2 + D‖∇v‖2
)
,

i.e.

‖∇u‖2 − D‖∇v‖2 � kD−q|Ω|1/2λ
−1/2
1 . (2.8)

Then (ii) follows from (2.7) and (2.8). �
From the estimates given in Lemma 2.2, we easily obtain the following energy bounds of all posi-

tive steady state solutions (a(x),b(x)):

Corollary 2.3. Suppose the parameters p,q > 1 and k, λ, D > 0, and let λ1 be the principal eigenvalue of −�

defined in (1.11). Then for any positive solution (a(x),b(x)) of (1.8),

‖a‖H1(Ω) + D‖b‖H1(Ω) �
(
λD−pλ

−1/2
1 + 1

)|Ω|1/2. (2.9)

In particular, the bound is independent of q and k.
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Next we consider the parabolic system (1.9), and we have the following a priori estimates.

Theorem 2.4. Suppose the parameters p,q > 1 and k, λ, D > 0. Let (u(x, t), v(x, t)) be a positive solution of
the system (1.9).

1. The solution (u(x, t), v(x, t)) exists for all t � 0, and the solution is bounded in L∞(Ω). Moreover if q > p,
then the bound can be expressed explicitly:

lim sup
t→∞

u(x, t) � 1, lim sup
t→∞

v(x, t) �
(

λ

k

)1/(q−p)

. (2.10)

2. If q > p, and p, q, λ, D, k satisfy

(q − p)

(
λ

q − 1

) q−1
q−p

(
p − 1

k

) p−1
q−p

< Dλ1, (2.11)

then (0,0) is globally asymptotically stable for (1.9), i.e. for any nonnegative initial condition (u0(x),
v0(x)) 	≡ (0,0), we have

lim
t→∞

(
u(x, t), v(x, t)

) = (0,0), uniformly for x ∈ Ω. (2.12)

3. There exists m = m(Dλ, D) > 0 such that for initial value (u0, v0) satisfying ‖v0‖∞ < m, (2.12) holds.
Hence (0,0) is locally asymptotically stable for any parameters p,q > 1 and k, λ, D > 0.

Proof. 1. The global existence and boundedness follow from Hollis, Martin and Pierre [11, Theorems 1
and 2]. For the case of q > p, first we consider an auxiliary problem:

⎧⎪⎪⎨
⎪⎪⎩

∂v

∂t
= D�v + λv p − kvq, x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω,

v(x,0) = v0(x) � 0.

(2.13)

Define

M =
(

λ

k

)1/(q−p)

.

Then it is well known that the solution v1(x, t) of (2.13) satisfies lim supt→∞ v1(x, t) � M as the
function g(v) = λv p − kvq is negative for v > M . From the comparison principle of parabolic
equations, v(x, t) � v1(x, t) for all t � 0, hence the bound for v holds. Now u(x, t) satisfies ut �
�u + λ(M + ε)p(1 − u) for large enough t , then we also obtain the estimate for u(x, t), since any
solution of ⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
= �u + λ(M + ε)p(1 − u), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω,

u(x,0) = u0(x) � 0,

(2.14)

is bounded by 1 eventually.
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2. Assume that q > p. Multiplying the second equation of (1.9) with v and integrating over Ω , we
get

1

2

d

dt

∫
Ω

v2 = −D

∫
Ω

|∇v|2 + λ

∫
Ω

v p+1 − k

∫
Ω

vq+1

� −Dλ1

∫
Ω

v2 + λ

∫
Ω

v p+1 − k

∫
Ω

vq+1

= −Dλ1

∫
Ω

v2 +
∫
Ω

g(v)v, (2.15)

where λ1 is the principal eigenvalue of −� defined in (1.11), and g(v) = λv p − kvq . Then from a
simple calculation, we see that

g(v) � g′(A)v, v ∈ [0,∞), (2.16)

where A is the unique solution of g(v) − g′(v)v = 0. In fact, from

[
g(v)

v

]′
= g(v) − g′(v)v

v2
= λ(p − 1)v p−2 − k(q − 1)vq−2,

hence

g(v) − g′(v)v = λ(p − 1)v p − k(q − 1)vq.

Since q > p > 0, we can compute that

[
g(v)

v

]′
> 0 for 0 < v < A,

[
g(v)

v

]′
< 0 for v > A,

and A = [ λ(p−1)
k(q−1)

] 1
q−p . Hence (2.16) holds. One can easily compute that

g′(A) = (q − p)

(
λ

q − 1

) q−1
q−p

(
p − 1

k

) p−1
q−p

. (2.17)

Therefore, combining (2.16) and (2.17), the inequality (2.15) is reduced to

1

2

d

dt

∫
Ω

v2 �
[
(q − p)

(
λ

q − 1

) q−1
q−p

(
p − 1

k

) p−1
q−p

− Dλ1

]∫
Ω

v2. (2.18)

Hence if (2.11) holds, then

lim
t→∞

∫
Ω

v2 = 0,
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which implies v(x, t) → 0 almost everywhere for x ∈ Ω . Combining the equation of u in (1.9) and the
convergence of v , we obtain the convergence of u as well.

3. It is well known (see [23] or [28, Theorem 19.2]) that for the Fujita type equation

⎧⎪⎪⎨
⎪⎪⎩

∂v

∂t
= D�v + λv p, x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω,

v(x,0) = v0(x) � 0,

(2.19)

the solution v(x, t) → 0 uniformly for x ∈ Ω if ‖v0‖∞ is small enough. Then the result for (1.9) follows
easily from the comparison principle. �

When (2.11) is satisfied, (1.9) only has the trivial steady state, and no any spatial patterns can be
generated in that case. One can easily see that for fixed q > p > 0, the condition (2.11) holds, if D is
large, or λ is small, or k is large. For later application, we state the following nonexistence results for
the steady state solutions of (1.6) or (1.9).

Corollary 2.5. Suppose the parameters satisfy p,q > 1 and k, λ, D > 0, and let λ1 be the principal eigenvalue
of −� defined in (1.11).

1. If p � q, then Eq. (1.8) or (1.10) has no positive solution for k > λDq−p .
2. If p < q, then (1.8) or (1.10) has no positive solution for k > k1 , where

k1 ≡ k1(p,q, D,Ω) = (p − 1)

(
λ

q − 1

)(q−1)/(p−1)(q − p

Dλ1

)(q−p)/(p−1)

. (2.20)

Proof. We only need to prove part 1 as part 2 has been proved in Theorem 2.4 part 2. Integrating the
second equation of (1.10), we obtain

D

∫
Ω

|∇v|2 + k

∫
Ω

vq+1 = λ

∫
Ω

(1 − u)v p+1. (2.21)

Hence from (2.21) and (2.5),

k

∫
Ω

vq+1 � λ

∫
Ω

v p+1 = λ

∫
Ω

v p−q · vq+1

� λDq−p
∫
Ω

vq+1,

which implies that

k � λDq−p. �
3. Existence by upper–lower solution methods

In this section we use comparison method to establish the existence of positive steady state so-
lutions of (1.9). For that purpose, we recall the following setup (see [16,27]): consider a semilinear
elliptic system
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⎩

d1�u + f (u, v) = 0, x ∈ Ω,

d2�v + g(u, v) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(3.1)

where f , g : O → R are continuously differentiable, and O ⊆ R2+ is an open subset. The vector field
( f , g) : O → R2 is called mixed quasimonotone in O if

∂ f

∂v
(u, v) > 0,

∂ g

∂u
(u, v) < 0, (u, v) ∈ O . (3.2)

Suppose ( f , g) is mixed quasimonotone in O , then the two pairs of functions U (x) = (u(x), v(x)) and
U (x) = (u(x), v(x)) are called an ordered upper–lower solution pair of (3.1) if they satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d1�u + f (u, v) � 0, x ∈ Ω,

d2�v + g(u, v) � 0, x ∈ Ω,

d1�u + f (u, v) � 0, x ∈ Ω,

d2�v + g(u, v) � 0, x ∈ Ω,

u(x) � u(x), v(x) � v(x), x ∈ Ω,

u(x) � 0 = u(x), v(x) � 0 = v(x), x ∈ ∂Ω.

(3.3)

With the existence of an ordered upper–lower solution pair, the existence of a positive steady state of
(3.1) is the consequence of an iteration process (see [16,27]):

Theorem 3.1. Suppose that O is an open subset of R2+ , ( f , g) is mixed quasimonotone in O , and f , g are
Lipschitz continuous in O . If there exist an ordered upper–lower solution pair U (x) = (u(x), v(x)) and U (x) =
(u(x), v(x)), then there exists a positive solution (u(x), v(x)) of (3.1) satisfying

u(x) � u(x) � u(x), v(x) � v(x) � v(x), x ∈ Ω. (3.4)

It is easy to see that for O = [0,1) × [0,∞) ⊆ R2+ , the vector field ( f (u, v), g(u, v)) = (λ(1 −
u)v p, λ(1 − u)v p − kvq) is mixed quasimonotone in O . Hence to apply the upper–lower solution
method in Theorem 3.1, we next construct an ordered upper–lower solution pair for (1.10). To achieve
this goal, we first consider some auxiliary equations, and we prove the following two lemmas:

Lemma 3.2. Consider {
�u + λϕp(1 − u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(3.5)

where ϕ ∈ C1 = {ω ∈ C(Ω) | ω(x) � 0, x ∈ Ω}. Then (3.5) has a unique positive solution uϕ for any ϕ ∈ C1
and ϕ 	≡ 0. Moreover,

(i) 0 < uϕ(x) < 1, for x ∈ Ω;
(ii) uϕ is increasing with respect to ϕ ∈ C1 , in the sense that, if ϕ1,ϕ2 ∈ C1 , and ϕ1(x) � ϕ2(x) for x ∈ Ω ,

then uϕ1 (x) � uϕ2 (x).

Proof. We prove the existence of positive solution to (3.5) by using the upper–lower solution method.
It is easy to see that a constant u(x) ≡ 1 is an upper solution, and u(x) ≡ 0 is a lower solution for
(3.5). Hence, (3.5) has a positive solution uϕ which satisfies 0 � uϕ(x) < 1 for x ∈ Ω and any ϕ ∈ C1.
If ϕ 	≡ 0, then 0 < uϕ(x) < 1, for x ∈ Ω from the strong maximum principle. The uniqueness of uϕ

and the increasing property in (ii) follow from Theorem 2 in [31]. �
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Lemma 3.3. Consider {
D�v + λ(1 − ψ)v p − kvq = 0, x ∈ Ω,

v = 0, x ∈ ∂Ω,
(3.6)

where ψ ∈ C2 = {ω ∈ C(Ω) | 0 � ω(x) � 1, x ∈ Ω}. Suppose that 1 < p < q, and ψ ∈ C2 , ψ 	≡ 1. Then for
any λ > 0, k > 0, there exists some constant D0 > 0 such that for 0 < D < D0 , Eq. (3.6) has two positive
solutions. Moreover,

(i) for 0 < D < D0 , (3.6) has a maximal solution ṽψ,D , i.e. for any positive solution v D of (3.6),

ṽψ,D(x) � v D(x), x ∈ Ω;

(ii) ṽψ,D is strictly decreasing in D;

(iii) for x ∈ Ω , ṽψ,D(x) � ( λ
k )

1
q−p ;

(iv) ṽψ,D is decreasing with respect to ψ ∈ C2 .

Proof. We prove the existence of positive solutions by using variational methods. Setting

X = H1
0(Ω), ‖v‖ =

(∫
Ω

|∇v|2 dx

)1/2

,

and the energy functional I : X × C2 → R is defined by

I(v,ψ) = D

2

∫
Ω

|∇v|2 +
∫
Ω

h(v,ψ),

where

h(v,ψ) =
{

k
q+1 vq+1 − λ

p+1 (1 − ψ)v p+1, v � 0,

0, v < 0.

For a fixed v ∈ X and ψ ∈ C2, define

Ω+ = {
x ∈ Ω: h

(
v(x),ψ(x)

)
� 0

}
, Ω− = {

x ∈ Ω: h
(

v(x),ψ(x)
)
< 0

}
.

Then

I(v,ψ) = D

2
‖v‖2 +

∫
Ω−

h(v,ψ) +
∫

Ω+

h(v,ψ)

� D

2
‖v‖2 +

∫
Ω−

h(v,ψ). (3.7)

For any x ∈ Ω− , we observe that

h(v,0) = k

q + 1
vq+1 − λ

p + 1
v p+1 � k

q + 1
vq+1 − λ

p + 1
(1 − ψ)v p+1 < 0.
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Hence for any x ∈ Ω− ,

0 � v(x) <

[
λ(q + 1)

k(p + 1)

] 1
q−p

≡ v∗,

where v∗ is unique positive zero of h(v,0). We can choose constants M1 > 0 and 1 < s < min{p, n+2
n−2 }

so that for all v ∈ [0, v∗], ∣∣∣∣ k

q + 1
vq+1 − λ

p + 1
(1 − ψ)v p+1

∣∣∣∣ � M1 vs+1.

Therefore, (3.7) and the Sobolev embedding H1
0(Ω) ↪→ Ls+1(Ω) imply that

I(v,ψ) � D

2
‖v‖2 − M1

∫
Ω

vs+1

� D

2
‖v‖2 − M1C1‖v‖s+1,

where C1 > 0 is the embedding constant. Since s > 1, we can choose constants r > 0, ρ > 0 such that

I(v,ψ) > 0 for any v ∈ Br(0)\{0}, and

I(v,ψ) � ρ for any v ∈ ∂ Br(0), (3.8)

where Br(0) ≡ {u ∈ X: ‖u‖ < r}.
Next we fix an e ∈ X with e(x) > 0 for x ∈ Ω , then for t ∈ R+ ,

I(te,ψ) = D

2
t2‖e‖2 + k

q + 1
tq+1

∫
Ω

eq+1 − λ

p + 1
t p+1

∫
Ω

(1 − ψ)ep+1

= t2 H(t),

where

H(t) = D

2
‖e‖2 + k

q + 1
tq−1

∫
Ω

eq+1 − λ

p + 1
t p−1

∫
Ω

(1 − ψ)ep+1.

We can calculate that

H(0) = D

2
‖e‖2 > 0,

H ′(t) = k(q − 1)

q + 1
tq−2

∫
Ω

eq+1 − λ(p − 1)

p + 1
t p−2

∫
Ω

(1 − ψ)ep+1.

Define t∗ > 0 such that H ′(t∗) = 0, then

t∗ =
[

λ(p − 1)(q + 1)

k(p + 1)(q − 1)

∫
Ω

(1 − ψ)ep+1∫
Ω

eq+1

] 1
q−p

,

and we have H ′(t) < 0 for 0 < t < t∗ and H ′(t) > 0 for t > t∗ .
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From computation, the inequality H(t∗) < 0 is equivalent to

D <
2(q − p)k

(p − 1)(q + 1)
tq−1∗

∫
Ω

eq+1

= 2(q − p)

[
λ

∫
Ω

(1 − ψ)ep+1

(p + 1)(q − 1)

] q−1
q−p

[
(p − 1)(q + 1)

k
∫
Ω

eq+1

] p−1
q−p

≡ D1.

This means that there exists some constant D1 > 0 such that H(t∗) < 0 holds only for 0 < D < D1.
On the other hand, H(t∗) < 0 also means that there exists an element t∗e ∈ X such that

I(t∗e,ψ) < 0. (3.9)

So when 0 < D < D1, the functional I satisfies the Mountain Pass geometry.
2. Now we prove any (PS) sequence is bounded. Take a sequence {vn} satisfying

I(vn,ψ) → 0, I v(vn,ψ) → 0, as n → ∞,

where I v is the Fréchet derivative of I with respect to v . Then as n → ∞,

0 ← I(vn,ψ) � D

2
‖vn‖2 − λ

p + 1
‖vn‖p+1

p+1 + k

q + 1
‖vn‖q+1

q+1 = D

2
‖vn‖2 + K (vn),

and here for any v ∈ X , the function K is defined as

K (v) = k

q + 1
‖v‖q+1

q+1 − λ

p + 1
‖v‖p+1

p+1.

If {vn} is unbounded, then K (vn) → −∞. But the assumption of q > p leads to a contradiction. So,
{vn} must be bounded. Since X is reflexive, from a standard proof we can get that {vn} has a conver-
gent subsequence.

Next we prove I is bounded from bellow and infv∈X I(v,ψ) < 0. Noticed that there holds the
inequality (3.9) in step 1, we next only focus on the boundedness from bellow. In fact, by using (3.7)
and 0 � v(x) � v∗ , x ∈ Ω− , we obtain that for any v ∈ X ,

I(v,ψ) �
∫

Ω−

h(v,0)

�
∫
Ω

− λ

p + 1
v p+1∗

= −
(

λ

p + 1

) q+1
q−p

(
q + 1

k

) p+1
q−p

|Ω|
≡ −M2|Ω|.

So, I is bounded from bellow, and inf I(v,ψ) is a critical value. Combining parts 1 and 2, and by using
the well-known minimization theorem and the Mountain Pass Lemma [30], (3.6) has two distinct
positive solutions.
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3. At last, we turn to the proof of the existence of the maximal solutions. Let μ = D−1 and rewrite
(3.6) to be

{
�v + μv f (v) = 0, x ∈ Ω,

v = 0, x ∈ ∂Ω,
(3.10)

where f (v) = λ(1 − ψ)v p−1 − kvq−1. Then we can compute that

f ′(v) = λ(p − 1)(1 − ψ)v p−2 − k(q − 1)vq−2.

Setting v1 = q−p
√

λ(p−1)
k(q−1)

(1 − ψ), then f (v) is increasing on [0, v1], and decreasing on [v1,∞), i.e.

f behaves as a function of weak Allee effect type (see [31]). Then by using the same proof as in
Theorem 3 in [31], there exists μ∗ > 0 such that (3.6) has a maximal solution ṽψ,D when μ � μ∗ ,
and ṽψ,D is increasing in μ. Since μ = D−1, then parts (i) and (ii) follow by letting

D0 ≡ min
{

D1,μ
−1∗

}
.

The proof of part (iii) is from the maximum principle. Suppose that (iii) is false, and let x0 ∈ Ω be
the maximum point of v D satisfying

v D(x0) >

(
λ

k

) 1
q−p

.

Noted that v D acts as a solution, so we get the following

0 = D�v D(x0) + λ
(
1 − ψ(x0)

)
v p

D(x0) − kvq
D(x0)

� λv p
D(x0) − kvq

D(x0)

< 0,

which is a contradiction.
For the proof of (iv) we employ the arguments of upper–lower solutions. Let ψ1,ψ2 ∈ C2, ψ1 � ψ2,

then

D�ṽψ1,D + λ(1 − ψ2)̃v p
ψ1,D − kṽq

ψ1,D

� D�ṽψ1,D + λ(1 − ψ1)̃v p
ψ1,D − kṽq

ψ1,D

= 0.

This means that ṽψ1,D is a lower solution of (3.6) when ψ = ψ2. It is easy to see that ( λ
k )

1
q−p is an

upper solution, and (iii) shows that ṽψ1,D � ( λ
k )

1
q−p . So from the well-known existence of solution via

upper–lower solution method, there exists a solution v D when ψ = ψ2 satisfying

ṽψ1,D(x) � v D(x) �
(

λ

k

) 1
q−p

, x ∈ Ω,

which implies that

ṽψ1,D � ṽψ2,D . �
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Now we are ready to state and prove the main existence result in this section:

Theorem 3.4. Suppose the parameters 1 < p < q and k, λ > 0. Then there exists D∗ > 0 such that for 0 <

D < D∗ , (1.10) possesses at least one positive solution.

Proof. We define an ordered upper–lower solution pair as follows. From Lemma 3.2, we define u to
be the unique positive solution of

{
�u + λD−p(1 − u) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(3.11)

Also from Lemma 3.2, 0 < u(x) < 1 for x ∈ Ω then u ∈ C2. Hence for 0 < D < D0(u), the equation

{
D�v + λ(1 − u)v p − kvq = 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,
(3.12)

has a maximal solution ṽu,D from Lemma 3.3. We denote v ≡ ṽu,D .
Next from Lemma 3.2, we define u to be unique positive solution of

{
�u + λv p(1 − u) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(3.13)

Then similarly from Lemma 3.2, 0 < u(x) < 1 for x ∈ Ω then u ∈ C2. Hence for 0 < D < D0(u), the
equation

{
D�v + λ(1 − u)v p − kvq = 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,
(3.14)

has a maximal solution ṽu,D from Lemma 3.3. We denote v ≡ ṽu,D . Now we define D∗ =
min{D0(u), D0(u)}, then the pair (u, v) and (u, v) are well defined for 0 < D < D∗ .

To show that (u, v) and (u, v) defined above is an ordered upper–lower solution pair, we prove
that u(x) � u(x) and v(x) � v(x) for x ∈ Ω . First similar to the proof of Lemma 2.1, since a = 1−u � 0
in Ω , then a + D v satisfies

{
�(a + D v) = kvq(x), x ∈ Ω,

a(x) + D v(x) = 1, x ∈ ∂Ω.
(3.15)

Hence D v(x) < a(x) + D v(x) < 1 for x ∈ Ω . Now since v < D−1, then u(x) � u(x) from Lemma 3.2(ii).
This in turn also implies that v(x) � v(x) from Lemma 3.3(iii). Therefore from Theorem 3.1, (1.10) has
a positive solution (u, v) satisfying (3.4). �
4. A global bifurcation theorem

In this section, we consider the existence of positive solutions to (1.8) or (1.10) via the bifurcation
or continuation methods. We use the decay coefficient k as bifurcation parameter. When k = 0 (there
is no decay for the catalyst), the system (1.8) has been considered in [32,14], and the structure of the
steady state solutions is known in that case. Here we use the information known for k = 0 to consider
the case of k > 0.
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To achieve this goal, we first prove a global bifurcation theorem which is of independent interest.
Let E be a real-valued Banach space, and let O be an open subset of R × E . Suppose that T : O → E
is a compact map, and consider the abstract equation

φ(λ, u) ≡ u − T (λ, u) = 0. (4.1)

Define the set of solutions to (4.1) to be

S = {
(λ, u) ∈ O : u = T (λ, u)

}
.

We have the following abstract result:

Theorem 4.1. Suppose that (λ0, u0) ∈ S ∩ O , and I − Du T (λ0, u0) is invertible. Let Σ be the connected
component of S containing (λ0, u0), and let Σ± = Σ ∩ (R0± × E), where R0+ = {λ > λ0} and R0− = {λ < λ0}.
Then the following alternatives hold for each of Σ+ and Σ−: for ∗ = +,−, either

1. Σ∗ is unbounded; or
2. Σ∗ contains another (λ0, u∗) ∈ S ∩ O with u∗ 	= u0; or
3. Σ∗ ∩ ∂ O 	= ∅, where ∂ O is the boundary of O .

Before the proof of Theorem 4.1, we cite a useful topological lemma:

Lemma 4.2. (See [35].) Let K be a compact metric space, and let A and B be disjoint closed subsets of K . Then
either there exists a sub-continuum of K meeting both A and B or K = K A ∪ K B , where K A , K B are disjoint
compact subsets of K containing A and B, respectively.

Proof of Theorem 4.1. We only need to consider Σ+ , and the proof for Σ− is similar. In the proof we
will apply various well-known properties of Leray–Schauder degree, which can be found in standard
references of nonlinear analysis, see for example [3,7].

We prove by contradiction. Suppose that in the contrary,

Σ+ is bounded, Σ+ ∩ {
(λ0, u) ∈ O

} = {
(λ0, u0)

}
and

Σ+ ⊂ O̊ (the interior of O ).

Since Σ+ is bounded, and T is compact, then Σ+ is also compact. Also, Σ+ is closed and Σ+ ∩
∂ O = ∅, then dist(Σ+, ∂ O ) > 0. Define S+ = S ∩ (R0+ × E). Let 0 < ε < 1

2 dist(Σ+, ∂ O ), we define

Σε+ = {
(λ, u) ∈ O : dist

(
(λ, u),Σ+

)
< ε

}
,

and let K = Σε+ ∩ S+ , then K is a compact metric space. Setting

K1 = Σ+, and K2 = ∂Σε+ ∩ S+.

Then K1 and K2 are disjoint closed subsets of K . From the definition of Σ+ , there is no sub-
continuum of K meeting both K1 and K2. Hence according to Lemma 4.2 there exist disjoint compact
subsets K̂1 and K̂2 of K satisfying

K1 ⊆ K̂1, K2 ⊆ K̂2, and K = K̂1 ∪ K̂2.



Author's personal copy

Y. Zhao et al. / J. Differential Equations 253 (2012) 533–552 549

Choosing δ satisfying

0 < δ < min
{

dist(K̂1, K̂2),dist
(

K̂1, ∂Σε+
)}

,

and letting N be a δ
2 -neighborhood of K̂1, we have

Σ+ ⊂N , and ∂N ∩ S+ = ∅.

We define a mapping Φ : R × E × [0,1] → R × E by

Φ(λ, u, t) = (
λ − λ0 − t(λ∗ − λ0),φ(λ, u)

)
,

where λ∗ is an upper bound of the projection of N onto R0+ . Then, Φ(λ, u, t) = (0,0) if and only if
λ = λ0 + t(λ∗ − λ0) and φ(λ, u) = 0. Hence (0,0) /∈ Φ(∂N × [0,1]).

By using the homotopic invariance of Leray–Schauder degree, we have

deg
(
Φ(·,·,0),N , (0,0)

) = deg
(
Φ(·,·,1),N , (0,0)

)
. (4.2)

Since λ 	= λ∗ on N , by the Kronecker existence theorem of Leray–Schauder degree we further have

deg
(
Φ(·,·,1),N , (0,0)

) = 0. (4.3)

But the left-hand side of (4.2) does not equal zero. In fact, if λ = λ0, then for all t ∈ [0,1], u ∈ N ,
u − T (tλ + (1 − t)λ0, u) = 0 only if u = u0. Since I − Du T (λ0, u0) is invertible, then from the excision
property, and the Leray–Schauder index formula, we obtain that

deg
(
Φ(·,·,0),N , (0,0)

) = deg
(
φ(λ0, ·), B δ

2
(u0),0

) = (−1)β, (4.4)

where β is the sum of all m(μ), such that m(μ) is the algebraic multiplicity of μ ∈ σ(Du T (λ0, u0))

so that μ > 1. Thus a contradiction is reached from (4.2), (4.3) and (4.4). This contradiction implies
that one of alternatives in the theorem holds. �

The result in Theorem 4.1 appears to be new, but it is in the same spirit of global bifurcation
theorems proved by Rabinowitz [29]. We also point out that, since I − Du T (λ0, u0) is invertible, then
the implicit function theorem can be applied to conclude that Σ is locally a curve near (λ0, u0)

transversal to λ = λ0, and Theorem 4.1 gives the information of the global nature of Σ . Indeed the
result here gives more specific information on Σ+ or Σ− , hence it has the unilateral nature as in
[29, Theorem 1.27] and related work in [18,33]. But here the “onesideness” of the global branch is for
the parameter λ instead of variable u as in [18,29,33]. Compared with the unilateral global bifurcation
theorems in [18,33], the result here excludes the possibility of Σ+ meeting Σ− as this case is included
in the second alternatives in Theorem 4.1.

Now we are ready to consider the global bifurcation of positive solutions to system (1.8) or (1.10)
with bifurcation parameter k. Let E = Cα(Ω) × Cα(Ω). We rewrite the system (1.10) into the form

(
u
v

)
=

(
λ(−�)−1[(1 − u)v p]

λ
D (−�)−1[(1 − u)v p] − k

D (−�)−1[vq]
)

, (4.5)

where (−�)−1 : Cα(Ω) → Cα(Ω) is defined by (−�)−1(u) = v , if v is the unique solution of

−�v = u, x ∈ Ω, v(x) = 0, x ∈ ∂Ω.
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Define a mapping T : R × E → E by

T
(
k, (u, v)

) =
(

λ(−�)−1[(1 − u)v p]
,

λ

D
(−�)−1[(1 − u)v p] − k

D
(−�)−1[vq]),

then T is compact, and the system (1.10) is equivalent to the abstract equation

φ(k, u, v) ≡ (u, v) − T (k, u, v) = 0.

When k = 0, according to Theorem 2.1 in [14], we have the following existence result:

Theorem 4.3. Suppose that k = 0 and Ω = B R(0) is a ball with the radius R > 0. If p > 1, then there exists
an R0 > 0 such that the system (1.10) has the only nonnegative solution (0,0) when R < R0 , and has exactly
two positive solutions when R > R0 . Moreover, when R > R0 , the two positive solutions are both radially
symmetric, strictly decreasing along the radial direction, and non-degenerate; one of positive solution is locally
asymptotically stable, and the other one is unstable with Morse index 1.

Now we state the global bifurcation and multiplicity result for the positive solutions of system
(1.8) or (1.10) when the domain Ω is a large ball.

Theorem 4.4. Suppose the parameters p > 1, q > 1 and λ, D > 0, and assume that Ω = B R(0) is a ball with
the radius R > 0. Then there exists an R0 > 0, such that for R > R0 ,

1. There exists 0 < k∗ < k∗ such that (1.10) has no positive solution when k > k∗ , has at least one positive
solution when k∗ < k � k∗ , and has exactly two positive solutions when 0 � k � k∗ .

2. Let S = {(k, u, v): k � 0, (u, v) ∈ E is a positive solution of (1.10)}, and let Σ be the connected compo-
nent of S containing (0, u1

0, v1
0), where (u1

0, v1
0) is one of positive solution of (1.10) when k = 0. Then Σ

also contains (0, u2
0, v2

0), where (u2
0, v2

0) is the other positive solution of (1.10) when k = 0. That is, the
solution branch of (1.10) emanating from (0, u1

0, v1
0) connects to the one emanating from (0, u2

0, v2
0).

Proof. From Corollary 2.5, for both the cases of p � q and p < q, there exists k∗ > 0 such that (1.10)
has no positive solution when k > k∗ . On the other hand, recall R0 > 0 from Theorem 4.3, then (1.10)
has exactly two positive solutions (u1

0, v1
0) and (u2

0, v2
0) when R > R0. Since both (u1

0, v1
0) and (u2

0, v2
0)

are non-degenerate, then the implicit function theorem can be applied at (k, u, v) = (0, ui
0, vi

0) for
i = 1,2, and there exists a k∗ > 0 such that for k ∈ [0,k∗], (1.10) has exactly two positive solutions
(u1

k , v1
k ) and (u2

k , v2
k ) which are near (u1

0, v1
0) and (u2

0, v2
0) respectively.

Now let Σ be the connected component of S containing {(0, u1
k , v1

k ): k ∈ [0,k∗]}. Then Σ ⊆
[0,∞) × E+ , where E+ = {(u, v) ∈ E: u � 0, v � 0}. We apply Theorem 4.1 with λ = k and O =
[−ε,∞) × E+ for some ε > 0. Since (1.10) has exactly two positive solutions (u1

0, v1
0) and (u2

0, v2
0)

when k = 0, and both of them are non-degenerate, then the conditions of Theorem 4.1 are satisfied
at (k, u, v) = (0, u1

0, v1
0), and one of the three alternatives must hold.

Since Lemma 2.1 guarantees the boundedness of all positive solutions (u, v) with a bound uniform
for k � 0, and (1.10) has no positive solution when k > k∗ , then Σ must be bounded in [0,∞) ×
E+ , which implies the alternative 1 cannot happen. Suppose that alternative 3 occurs, then there is
(k̄, ū, v̄) ∈ Σ ∩ ([0,k∗) × ∂ E+). From the maximum principle, we must have ū(x) ≡ 0 and v̄(x) ≡ 0
for all x ∈ Ω . But from Theorem 2.4, the constant steady state (0,0) is locally asymptotically stable,
hence (1.9) does not have positive steady state solution with small amplitude. So Σ cannot connect
to (k̄,0,0). This excludes the possibility of alternative 3. Therefore only alternative 2 in Theorem 4.1 is
possible, i.e. there is another element (0, u∗, v∗) ∈ Σ . Since (1.10) has exactly two positive solutions,
then (0, u∗, v∗) = (0, u2

0, v2
0). Finally we can redefine k∗ to be the upper bound of the projection of Σ

onto k-axis. This completes the proof. �
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The result in Theorem 4.4 holds for a bounded domain Ω other than a ball as long as the in-
formation of the solution set of k = 0 is known as in Theorem 4.3. That is, when k = 0, there
are exactly two positive solutions of (1.10), and at least one of them is non-degenerate. For a gen-
eral bounded smooth domain Ω , it is known that there is maximal solution (u1

k , v1
k ) which is

stable if the domain is “large”. This can be achieved for an arbitrary domain Ω , with a rescaling
ΩR = {x0 + t(x − x0): 0 � t � R, x ∈ Ω} with a large R > 0. The existence of at least one unstable
solution can also be proved by using the Mountain Pass Lemma. But in general (1.10) may have more
than one unstable solutions. In this case, we can still conclude that each branch emanating from a
solution with k = 0 must be bounded, and it connects to another solution with k = 0.

Acknowledgments

The authors thank an anonymous referee for a careful reading and helpful suggestions, especially
pointing out a gap in the proof of Theorem 4.1, and they also thank Dr. Jun Zhou for reading the
manuscript and giving some helpful comments.

References

[1] D. Aronson, H. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1) (1978)
33–76.

[2] J. Bricmont, A. Kupiainen, J. Xin, Global large time self-similarity of a thermal-diffusive combustion system with critical
nonlinearity, J. Differential Equations 130 (1997) 9–35.

[3] K. Chang, Methods in Nonlinear Analysis, Springer-Verlag, Berlin–Heidelberg, 2005.
[4] X. Chen, Y. Qi, Sharp estimates on minimum travelling wave speed of reaction diffusion systems modelling autocatalysis,

SIAM J. Math. Anal. 39 (2) (2007) 437–448.
[5] X. Chen, Y. Qi, Propagation of local disturbances in reaction diffusion systems modeling quadratic autocatalysis, SIAM J.

Appl. Math. 69 (1) (2008) 273–282.
[6] X. Chen, Y. Qi, Travelling waves of auto-catalytic chemical reaction of general order—an elliptic approach, J. Differential

Equations 246 (8) (2009) 3038–3057.
[7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin–Heidelberg, 1985.
[8] I. Epstein, J. Pojman, An Introduction to Nonlinear Chemical Dynamics, Oscillations, Waves, Patterns, and Chaos, Oxford

University Press, New York, Oxford, 1998.
[9] P. Gray, S. Scott, Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics, Clarendon Press, Oxford, 1990.

[10] P. Gray, S. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Isolas and other forms of mul-
tistability, Chem. Eng. 9 (1996) 761–778.

[11] S. Hollis, R. Martin, M. Pierre, Global existence and boundness in reaction–diffusion systems, SIAM J. Math. Anal. 18 (3)
(1987) 744–761.

[12] E. Jakab, D. Horvath, J. Merkin, S. Scott, P. Simon, A. Toth, Isothermal flame balls, Phys. Rev. E 66 (2002) 016207.
[13] E. Jakab, D. Horvath, J. Merkin, S. Scott, P. Simon, A. Toth, Isothermal flame balls: Effect of autocatalyst decay, Phys. Rev.

E 68 (2003) 036210.
[14] J. Jiang, J. Shi, Dynamics of a reaction–diffusion system of autocatalytic chemical reaction, Discrete Contin. Dyn. Syst. Ser.

A 21 (1) (2008) 245–258.
[15] S. Kay, S. Scott, Multiple stationary states, sustained oscillations and transient behaviour in autocatalytic reaction–diffusion

equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 418 (1988) 345–364.
[16] A.W. Leung, Systems of Nonlinear Partial Differential Equations, Kluwer Academic Publishers, Dordrecht, 1989.
[17] Y. Li, Y. Qi, The global dynamics of isothermal chemical systems with critical nonlinearity, Nonlinearity 16 (3) (2003)

1057–1074.
[18] Julian López-Gómez, Spectral Theory and Nonlinear Functional Analysis, Chapman & Hall/CRC Res. Notes Math., vol. 426,

Chapman & Hall/CRC, Boca Raton, FL, 2001.
[19] A. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.
[20] M. Matsushita, J. Wakita, H. Itoh, I. Ràfols, T. Matsuyama, H. Sakaguchi, M. Mimura, Formation of colony patterns by a

bacterial cell population, Physica A 274 (1999) 190–199.
[21] M. Mimura, Pattern formation in consumer-finite resource reaction–diffusion systems, Publ. Res. Inst. Math. Sci. 40 (4)

(2004) 1413–1431.
[22] J. Murray, Mathematical Biology, I. An Introduction, third edition, Interdiscip. Appl. Math., vol. 17, Springer-Verlag, New

York, 2002;
J. Murray, Mathematical Biology, II. Spatial Models and Biomedical Applications, third edition, Interdiscip. Appl. Math.,
vol. 18, Springer-Verlag, New York, 2003.

[23] W. Ni, P. Sacks, J. Tavantzis, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differential
Equations 54 (1) (1984) 97–120.

[24] G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems, John Wiley and Sons, New York, 1977.



Author's personal copy

552 Y. Zhao et al. / J. Differential Equations 253 (2012) 533–552

[25] T. Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem, J. Differential Equations 146 (1)
(1998) 121–156.

[26] T. Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problem: II, J. Differential Equations 158 (1)
(1999) 94–151.

[27] C. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
[28] P. Quittner, P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced

Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2007.
[29] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971) 487–513.
[30] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf.

Ser. Math., vol. 65, American Mathematical Society, Providence, RI, 1986.
[31] J. Shi, R. Shivaji, Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol. 52 (2006) 807–829.
[32] J. Shi, X. Wang, Hair-triggered instability of radial steady states, spread and extinction in semilinear heat equations, J. Dif-

ferential Equations 231 (1) (2006) 235–251.
[33] J. Shi, X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations 246 (7)

(2009) 2788–2812.
[34] V. Volterra, Fluctuations in the abundance of species, considered mathematically, Nature 118 (1926) 558.
[35] G. Whyburn, Topological Analysis, Princeton Univ. Press, 1958.
[36] Y. Zhao, J. Shi, Y. Wang, Exact multiplicity and bifurcation of a chemical reaction model, J. Math. Anal. Appl. 331 (1) (2007)

263–278.


