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Abstract. Alternative stable states existin many important eca@syst and gradual change
of the environment can lead to dramatic regime shift in tlsyséems (Beisner et.al. (2003),
May (1977), Klausmeier (1999), Rietkerk et.al. (2004), &uotieffer et.al. (2001)). Exam-
ples have been observed in the desertification of Saharanegfiift in Caribbean coral
reefs, and the shallow lake eutrophication (Carpentetl. 1.999), Scheffer et.al. (2003),
and Scheffer et.al. (2001)). It is well-known that a so@ebnomical system is sustain-
able if the life-support ecosystem is resilient (Hollind{B) and Folke et.al. (2004)).
Here resilience is a measure of the magnitude of disturlsatieg can be absorbed before
a system centered at one locally stable equilibrium flipsrotlzer. Mathematical mod-
els have been established to explain the phenomena of ilitgtalnd hysteresis, which
provide qualitative and quantitative information for egetem managements and policy
making (Carpenter et.al. (1999) and Peters et.al. (206#never most of these models
of catastrophic shifts are non-spatial ones. A theory fatiafly extensive, heterogeneous
ecosystems is needed for sustainable management andmestagegies, which requires a
good understanding of the relation between system feedbatkpatial scales (Folke et.al.
(2004), Walker et.al. (2004) and Rietkerk et.al. (2004))tHis chapter, we survey some
recent results on structured evolutionary dynamics inolydeaction-diffusion equations
and systems, and discuss their applications to structu@dgical models which display
bistability and hysteresis. In Section 1, we review sevelesical non-spatial models with
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34  BISTABILITY DYNAMICS IN STRUCTURED ECOLOGICAL MODELS

bistability; we discuss their counterpart reaction-diftn models in Section 2, and espe-
cially diffusion-induced bistability and hysteresis. lacsion 3, we introduce some abstract
results and concrete examples of threshold manifolds kg&pd in the bistable dynamics.

3.1 Non-structured models

The logistic model was first proposed by Belgian mathenstiBierre Verhulst (Ver-
hulst (1838)):

(fl—jz—aP<1—§), a, N > 0. (3.2)
Herea is the maximum growth rate per capita, aidis the carrying capacity. A
more general logistic growth type can be characterized lgchrdng growth rate per
capita function. However it has been increasingly recagphiazy population ecolo-
gists that the growth rate per capita may achieve its pealpasitive density, which
is called anAllee effect(see Allee (1938), Dennis (1989) and Lewis and Kareiva
(1993)). An Allee effect can be caused by shortage of matepf(eihd Hopf (1985),
Veit and Lewis (1996)), lack of effective pollination (Gnmo(1998)), predator satu-
ration (de Roos et.al. (1998)), and cooperative behawlliils¢n and Nisbet (1997)).

If the growth rate per capita is negative when the populati@mall, we call such a
growth pattern &trong Allee effectsee Fig.3.1-c); iff (u) is smaller than the max-
imum but still positive for small u, we call it weak Allee effecfsee Fig.3.1-b). In
Clark (1991), a strong Allee effect is callectatical depensatiorand a weak Allee
effect is called anoncritical depensationA population with a strong Allee effect
is also calledasocialby Philip (1957). Most people regard the strong Allee effect
as the Allee effect, but population ecologists have statteckalize that an Allee
effect may be weak or strong (see Wang and Kot (2001), WangaKd Neubert
(2002)). Some possible growth rate per capita functiongwaéso discussed in Con-
way (1983,1984). A prototypical model with Allee effect is

dP P P-M
— =aP |1 ——= | ———+— N > 0. 3.2

dta(N> iR (3.2)
If 0 < M < N,thenthe equationis of strong Allee effecttype, and N < M < 0,
thenitis of weak Allee effect type. At least in the strongefleffect case\/ is called
the sparsity constant.

The dynamics of the logistic equation is monostable with glodally asymptoti-
cally stable equilibrium, and that of strong Allee effectistable with two stable
equilibria. A weak Allee effect is also monostable, althbudige growth is slower at
lower density. Another example of a weak Allee effect is theation of higher order
autocatalytic chemical reaction of Gray and Scott (1990):

da db
— = —kab?, — =kab®. k > 1. 3.3
5 ab?, — =kat®, k>0, p2 (3.3)

Herea(t) andb(t) are the concentrations of the reactanand the autocatalyds,
k is the reaction rate, ang > 1 is the order of the reaction with respect to the
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Figure 3.1 (a) logistic (top); (b) weak Allee effect (midyléc) strong Allee effect (bottom);
the graphs on the left are growth rai¢(u), and the ones on the right are growth rate per

capitaf(u).

autocatalytic species. Notice thgt) + b(t) = ag + bo is invariant, so that (3.3) can
be reduced to
db

E:k(QO'i'bO_b)bp, kyap+by >0, p>1, (34)
which is of weak Allee effect type ib > 1, and of logistic type ifp = 1. An auto-
catalytic chemical reaction has been suggested as a possdahanism of various
biological feedback controls (Murray (2003)), and the iy between chemical
reactions and ecological interactions has been obsermed siotka (1920) in his

pioneer work.

The cubic nonlinearity in (3.2) has also appeared in othelobical models. One
prominent example is the FitzHugh-Nagumo model of neuratioation (FitzZHugh
(1961) and Nagumo et.al. (1962)), which simplifies the atatdHodgkin-Huxley
model:
dv dw
eﬁzv(v—a)(l—v)—w, Ezcv—bw, €, a,b,c>0, (3.5)

whereu(t) is the excitability of the system (voltage), andt) is a recovery variable
representing the force that tends to return the resting.3féerc is zero andv = 0,
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(3.5) becomes (3.2). Another example is a model of the eemludf fecally-orally
transmitted diseases by Capasso and Maddalena (198182 19
dz dzo

I —a1121 + a1222, P —a222 + 9(21), @11,012,a22 > 0.  (3.6)

Here 21 (t) denotes the (average) concentration of infectious agetiterenviron-
ment; z3(¢t) denotes the infective human populatidriiz,; is the mean lifetime of
the agent in the environmenit/as- is the mean infectious period of the human in-
fectives;a;o is the multiplicative factor of the infectious agent due be thuman
population; andj(z;) is the force of infection on the human population due to a
concentratior; of the infectious agent. If(z1) is a monotone increasing concave
function, then it is known that the system is monostable withglobal asymptoti-
cal limit being either an extinction steady state or a neigliendemic steady state.
However ifg(z1) is @ monotone sigmoid functiong. a monotone convex-concave
function with S-shape and saturating to a finite limit, then the system (B6%esses
two nontrivial endemic steady states and the dynamics 6§ {8bistable, which can
be easily seen from the phase plane analysis.

0.8 .

0.6

0.4

0.29 /

Figure 3.2 Equilibrium bifurcation diagram of (3.8) with= 0.1, where the horizontal axis
is r and the vertical axis i¥.

Now we turn to some existing models which could lead to cedpsic shifts in
ecosystems. In 1960-70s, theoretical predator-preymsgstee proposed to demon-
strate various stability properties in systems of popatatiat two or more trophic
levels (Rosenzweig and MacArthur (1963) and Rosenzwei@ )9 A simplified
model with such a predator-prey feature is that of a graamstesn of herbivore-plant
interaction as in Noy-Meir (1975), see also May (1977). Hé(e) is the vegetation
biomass, and its quantity changes following the differ@rm@guation:

av

—- =G(V) = He(V), (3.7)

whereG (V) is the growth rate of vegetation in absence of grazhihgs the herbivore
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population density, andV') is the per capita consumption rate of vegetation by the
herbivore. IfG(V') is given by the familiar logistic equation, anf}”) is the Holling
type Il (p = 1) or lll (p > 1) functional response function (Holling (1959)), then
(3.7) has the form (after nondimensionalization):

av rVP

A Tre

This equation (withp = 2) also appears as the model of insect pests such as the
spruce budworm@horistoneura fumiferandan Canada and northern USA (Ludwig

et. al. (1978)), in whichV/(¢) is the budworm population. In either situation, the
harvesting effort is assumed to be constant as the change pfédator population
occurs at a much slower time scale compared to that of the pheyfunction:(V') =

%3 . . . o .
hi’7+ Ve with p > 1 is called the Hill function in some references. We noticed tha

a Hill function is one of sigmoid functions which is definedthre epidemic model
(3.6).

h,r >0, p>1. (3.8)

p
Figure 3.3 (top) Graph of the growth rate functighV) = V(1 — V) — h:ivp with
h = 0.1; (bottom) Graph of the growth rate per capitédl’)/V. (a) r = 0.17 (left); (b)

r = 0.2 (middle); (c)r = 0.3 (right).

To describe the catastrophic regime shifts between alieerstable states in ecosys-
tems, a minimal mathematical model

—:a—bx—i—L, a,b,r,h >0, (3.9)
T

is proposed in Carpenter et.al. (1999), see also Schefdr €001). (3.9) can be
used in ecosystems such as lakes, deserts, or woodlandakesyz(t) is the level
of nutrients suspended in phytoplankton causing turhidiig the nutrient loading,
b is the nutrient removal rate, amds the rate of internal nutrient recycling.

The equations (3.8) and (3.9) are examples of differentjahéon models which ex-
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Figure 3.4 Equilibrium bifurcation diagram of (3.9) with= 0.5, b = 1, where the horizontal
axis isr and the vertical axis is.

D
Figure 3.5 (top) Graph of the growth rate functigfx) = a — bz + h:i > with ¢ = 0.5,
xT

b = 1, (bottom) Graph of the growth rate per capjtér)/z. (a)r = 2.5 (left); (b) r = 4
(middle); (c)r = 5.5 (right).

hibit the existence of multiple stable states and the phemam of hysteresis. From
the bifurcation diagrams (Fig. 3.2 for (3.8), and Fig. 3.4 (®.9)), the system has
three positive equilibrium points whene (r1,r2) for somesco > ro > 1 > 0, and

the largest and smallest positive equilibrium points amblst For the grazing system
(3.8), the number of stable equilibrium points changes w#ithherbivore density.

For lowr, the vegetation biomass tends to a unique equilibrium #iggwer thanl

(the rescaled carrying capacity); afncreases over;, a second stable equilibrium
appears through a supercritical saddle-node bifurcatiad, it represents a much
lower vegetation biomass; asontinues to increases to another parameter threshold
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r9 > r1, the larger stable equilibrium suddenly vanishes througifberitical saddle-
node bifurcation, and the lower stable equilibrium becothesinique attracting one.
As h increases gradually, the vegetation biomass first settiebigher level for low

h, but it collapses to a lower lever agpasses.; after this catastrophic shift, even if

h is restored slightly, the biomass remains at the low levidssh decreases beyond
r1. This irreversibility of the hysteresis loop gives raiseaterious management
problem for the grazing systems, see Noy-Meir (1975) and {48y 7). Similar dis-
cussions hold for (3.9) as well asdecreases, see Scheffer et.al. (2001), where the
drop from high density stable equilibrium to the low one ifledh“forward shift”,

and the recovery from the low one to high one is a “backwarft’shi

Itis worth pointing out that th&-shaped bifurcation curve in Fig. 3.2 and Fig. 3.4 can
also be viewed as a result of bifurcation with respect to @@ such as nutrient
loading, exploitation or temperature rise (Scheffer e{2001)). That is a transition
from a monostable system to a bistable one, or mathematieatlusp bifurcation
from a monotone curve to 8-shaped one with two turning points (see Fig. 3.6).
Such fold bifurcations have been discussed in much morergksettings in Shi
(1999), and Liu, Shi and Wang (2007). In general it is harddornously prove the
exact transition from monostable to bistable dynamicsseisly for higher (includ-
ing infinite) dimensional problems. In (3.8) with = 2, one can show the cusp
bifurcation occurs wheh crosses,y = \/5/27 ~ 0.1925. A mathematical survey
on the fold and cusp type mappings (especially in infiniteatigional spaces) can
be found in Church and Timourian (1997).

Figure 3.6 Cusp bifurcation in (3.8) wigh= 2, where the horizontal axis isand the vertical
axis isV. (@) h = 0.15 (left); (b) h = v/3/27 ~ 0.1925 (middle); (c)h = 0.25 (right).

We note that in Fig. 3.3-a and Fig. 3.5-c, the system is maibdestvith only one sta-
ble equilibrium point, yet the graph of “growth rate per daj(isee the lower graphs
in Fig. 3.3-a and Fig. 3.5-c) has two fluctuations beforeihgrio negative. This
is similar to the weak Allee effect defined earlier where thengh rate per capita
changes the monotonicity once. These geometric propertitdse growth rate per
capita functions motivate us to classify all growth ratetgraits according to the
monotonicity of the functionf(u)/u if f(u) is the gross growth rate in a model

u' = f(u):

1. f(u) is of logistic type, if f(u)/u is strictly decreasing;

2. f(u) is of Allee effecttype, if f(u)/u changes from increasing to decreasing
whenu increases;
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3. f(u) is of hysteresigype, if f(u)/u changes from decreasing to increasing then
to decreasing again whenincreases.

In all cases, we assume thiftu) is negative whem is large, thusf(u) has at least
one zerou; > 0. In the Allee effect case, if (u) has another zero if0, u1), then it

is a strong Allee effect, otherwise it is a weak one; in theténesis case, if (u) has

two more zeros i{0, u4 ), then it is strong hysteresis, otherwise it is weak. Here we
exclude the degenerate cases wiiém)) = f'(uo) = 0 (double zeros). Considering
the ODE model/’ = f(u), the weak Allee effect or hysteresis dynamics appears
to be no different from the logistic case in terms of the asytip behavior, since
f(u) > 0foru € (0,u1) and f(u) < O for u > wuy. The definitions here are not
only for mathematical interest. In the next section, weldtaw that the addition of
diffusion to the equation can dramatically change the dyinafior the weak Allee
effect or hysteresis.

3.2 Diffusion induced bistability and hysteresis

Dispersal of the state variable in a continuous space candueled by a partial
differential equation with diffusion (see Okubo and Levi00Q1), Murray (2003),
Cantrell and Cosner (2003)):

— =dAu+ f(u), t>0, z€. (3.10)

Hereu(x, t) is the density function of the state variable at spatialtiocar and time
t, d > 0 is the diffusion coefficient, the habit& is a bounded region ilR™ for

n

0u .
n>1,Au= E 3 Z is the Laplace operator, anfdu) represents the non-spatial
€T
=1 g

growth pattern. We assume that the halfitas surrounded by a completely hostile
environment, thus it satisfies an absorbing boundary ciomdit

u(z) =0, x € IN. (3.11)

It is known (Henry (1981)) that for equation (3.10) with balany condition (3.11),
there is a unique solution(z, ¢) of the initial value problem with an initial condition
u(z,0) = ug(z) > 0, provided thatf (u), ug(x) are reasonably smooth. Moreover,
if the solutionu(x, t) is bounded, then it tends to a steady state solutignasx if
one of the following conditions is satisfied: (fY«) is analytic; (i) if all steady state
solutions of (3.10) and (3.11) are non-degenerate (seexomple, Polacik (2002)
and references therein). Hence the asymptotical behatithreoreaction-diffusion
equation can be reduced to a discussion of the structureeaddh of steady state
solutions and related dynamical behaviors. The steadg stdtitions of (3.10) and
(3.11) satisfy a semilinear elliptic type partial diffetihequation:

dAu(z) + f(u(zx)) =0, €, ulz)=0, =z (3.12)

Since we are interested in the impact of diffusion on thenexion/persistence of
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population, we use the diffusion coefficiahtis the bifurcation parameter. One can
also use the size of the domdias an equivalent parameter. To be more precise, we
use the change of variable= x/+/d to convert the equation (3.12) to:

Au(y) + f(u(y)) =0, y € Q, u(y) =0, ye i, (3.13)

whereQ, = {y : Vdy € Q}. This point of view fits the classic concept of criti-
cal patch size introduced by Skellam (1951). Wieg- (0,1), the one-dimensional
region, the size of the domain is simply the length of therirgk In higher dimen-
sion, (2, is a family of domains which have the same shape but “sizej@mional to
d~1/2. Here “size” can be defined as the one-dimensional scaleeaddmain. Size
can also be defined through the principal eigenvalue 4f on the domain2 with
zero boundary condition, which is the smallest positive ham (£2) such that

Ap(z) + Miplz) =0, z€Q, ¢lz) =0, z €, (3.14)

has a positive solutiop. ApparentlyA; (Q2;) = A1(Q2)/d. In application a habitat
slowly eroded by external influence can be approximated o sufamily of do-
mainsS2,; with similar shape but shrinking size. This is a special cds¢®bitat frag-
mentation. In the following we uséas bifurcation parameter, and whémcreases,
the size (or the principal eigenvalue) of the dom@jndecreases.

The multiplicity and global bifurcation of solutions of (2) have been consid-
ered by many mathematicians over the last half century.r8ksarvey papers and
monographs can be consulted, see for example (Amann (1€@éjrell and Cos-
ner (2003), Lions (1981), and Shi (2009)) and the referettem®in. In this section
we review some related results on that subject for the neaitity f (u) discussed in
Section 1 and their connection to ecosystem persistertoeztan.

For the Verhurst logistic model, the corresponding reactidfusion model was in-
troduced by Fisher (1937) and Kolmogoroff, Petrovsky, aistdunoff (1937) in
studying the propagation of an advantageous gene overialgegion, and the trav-
eling wave solution was considered. The boundary valuelpnob

dAu+u(1—%):O, reQ, u=0, zedQ, (3.15)

was studied by Skellam (1951) whéh = (0, L). Indeed in this case an explicit
solution and dependence bfon D can be obtained via an elliptic integral (Skellam
(1951)). Whem is a general bounded domain, it was shown (see Cohen ancthaets
(1970), Cantrell and Cosner (1989), Shi and Shivaji (20€) whend < d—! <
A1(©2) = A, the only nonnegative solution of (3.15)4s= 0, and it is globally
asymptotically stable; whed~! > ), (3.15) has a unique positive solutiary
which is globally asymptotically stable. Itis also knowath,(x) is is an decreasing
function ofd for d < !, andug(z) — 0 asd~' — A{". Hence the critical number
A1 represents the critical patch size. When the size of hapitetually decreases,
the biomass decreases too, and when it passes the critical giae, the biomass
becomes zero through a continuous change. Hence the hiturckagram of (3.15)
is a continuous monotone curve as shown in Fig.3.7 (a).

The bifurcation diagram in Fig.3.7 (a) changes when an Adiffect exists in the
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growth functionf(u). For the boundary value problem

=0, €Q, u=0, xe€d, (3.16)

dAu—i—u(l— u) u—M

N/ M|
one can usel/ as a parameter of the bifurcation in the bifurcation diagravite
always assum@/ < N.WhenM < —N, the growth rate per capita is decreasing
as in logistic case, thus the bifurcation diagram is monetsin Fig 3.7 (a). When
—N < M < 0, the growth rate per capita is of weak Allee effect type, andwa type
of bifurcation diagram appears (Fig 3.7 (b)). We notice thatnonlinearity in (3.16)
is normalized so that the growth rate per capita at 0 is alwaysl whenM < 0.
Rigorous mathematical results about exact multiplicitgteady state solutions and
global bifurcation diagram Fig 3.7 (b) are obtained in Komaad Shi (2001), and
Shi and Shivaji (2006) for a more general nonlinearity arddbmain being a ball in
R™. We also mention that if the dispersal does not satisfy afid@fusion law but a
nonlinear one, then a weak Allee effect can also occur, aadbiflurcation diagram
of steady state solutions is like Fig. 3.7-b, see Cantrall@asner (2002), and Lee
et.al. (2006).

Compared to the logistic case, a backward (subcriticalybétion occurs atd 1, u) =
(A1,0), and a new threshold parameter vallue \. < \; exists. Ford~* < \, (ex-
tinction regimeg, the population is destined to extinction no matter whatittitial
population is; ford~! > \; (unconditional persistence regifpehe population al-
ways survive with a positive steady state. However in therimediateconditional
persistence regime\, < d~! < )1, there are exactly two positive steady state so-
lutions uy ¢ andus 4. In fact, it can be shown that the three steady state sokition
(including0) can be ordered so that 4(z) > us2,q(x) > 0. Hereu; 4 and0 are both
locally stable. Hence the diffusion effect induces a bititstfor a monostable model

of weak Allee effect. A sudden collapse of the populationussdf d increases (or
the domain size decreases) whien crosses\., and the system shifts abruptly from
u1,4 to 0 and it is not recoverable. This may explain that in some estesys with
weak Allee effect, a catastrophic shift could still occuhaligh the corresponding
ODE model predicts unconditional persistence.

For0 < M < N in (3.16), a strong Allee effect means that bistability asceven
for the small diffusion casei(small). If N/2 < M < N, = 0 is the unique non-
negative solution of (3.16) thus extinction is the only poiity. If 0 < M < N/2,
there exist at least two positive steady state solution8.d%6| following a classical
result of variational methods due to Rabinowitz (1973/When the domainis a ball
in R™, it was shown by Ouyang and Shi (1998, 1999) that (3.16) ha®at two pos-
itive solutions and the bifurcation diagram is exactly Ikig.3.7-c. Earlier the exact
bifurcation diagram for the one-dimensional problem wataimied by Smoller and
Wasserman (1981). It is well-known that in this case that allksimitial population
always leads to extinction, thus a single threshold valuexists to separate the ex-
tinction and conditional persistence regimes. Earliedeomr the dynamics of (3.10)
and (3.11) with strong Allee effect was considered in Bradifand Philip (1970a,
1970b) and Yoshizawa (1970).
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Figure 3.7 Bifurcation diagrams for (3.16): (a) logistipper); (b) weak Allee effect (mid-
dle); (c) strong Allee effect (lower).

The exact multiplicity results proved in Ouyang and Shi @98999) (see also Shi
(2009)) hold for more general nonlinearitiéé:), and the criterion orf (u) for the
exact multiplicity are given by the shape of the functit{m)/« and the convexity of
f(w). Another example is the border line case for (3.16) betwkemieak (/ < 0)
and strong Allee effectN/ > 0), or more generally, the equation of autocatalytic
chemical reaction (3.4) (assuming thgt+ by = 1):

dAu+uP(1—u)=0, z€Q, u=0, z€0Q, p>1 (3.17)

The bifurcation diagram of (3.17) is similar to Figure 3,7%&nd a proof can be found
in Ouyang and Shi (1998, 1999) or Zhao, Shi and Wang (200€égig& global bi-
furcation diagrams can also been given for the reacticiugldn systems of autocat-
alytic chemical reaction (3.3) and epidemic model (3.6, ae will discuss them in
the next section along with the associated dynamics.

The threshold valug. is important biologically as\. could give early warning of
extinction for the species. Usually it is difficult to give eepise estimate of, and it
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seems that there is no existing result on that problem. Herenly give an estimate
of \, for the equation (3.16) wittv = 1 andM < (0,1/2). Hence we consider

dAu+u(l —u)(u—M)=0, z€Q, ux)=0, =€ N (3.18)

Here we havef(u) = u(l — u)(u — M). From an idea in Shi and Shivaji (2006),
Av > A1/ fi, wheref, = max,cp,1] f(u)/u, or the maximal growth rate per capita.
An upper bound of\, can be obtained if (3.18) has a nontrivial solution for that
We define an associated energy functional

I(u) = g/ﬂ |Vu|*dz — /Q F(u)dz, (3.19)

whereF(u) = [ f(t)dt = —iu“ + 1 M5 _ M2 itis well-known that a
solutionw of (3.18) is a critical point of the functiondl(w) in a certain function
space (see Rabinowitz (1986) or Struwe (2000) for more ldétan particular, if
inf I'(u) < 0, then (3.18) has a nontrivial positive solution. For sralt is apparent
thatinf I(u) < 0 if M € (0,1/2). Hence for largest = d so thatinf I(u) < 0, we
must have\, < d!. For the cas€ = (0, L), we can obtain that
272 \ 48

L1+ M) - S I2E - M)
Here the upper bound is obtained by using a test funation = /I for z € [0,1],
u(xz) = 1forx € [I, L/2] andu(z) = w(L — z) for x € [L/2, L], then optimizing
among all possible value 6f The estimate (3.20) is indeed quite sharp. For example,
for L = 1 andM = 0.2, the estimate (3.20) becomé6.45 < A\, < 17.14. A
numerical calculation usinyyapl e and the algorithm in Lee et.al. (2006) shows
that\, ~ 16.61. The threshold value for other problems can be estimateitbsiyy
and in general the determination of the threshold value irsremn interesting open
guestion.

(3.20)

Next we turn to bifurcation diagrams with hysteresis. Thetlgesis diagrams in
Section 1 (Fig. 3.2 and 3.4) are generated with parametehich is the herbivore
density in (3.8) or the rate of internal nutrient recycling3.9). In this subsection, we
consider the corresponding reaction-diffusion modelstREne steady state reaction-
diffusion grazing model

rVP

he + VP
was considered in Ludwig, Aronson and Weinberger (1979).tke casen = 1,
by using the quadrature method, they show that the rougindsifion diagram goes
from a monotone curve with a unique large steady state, t§-ahaped curve, to
a disconnected-shaped curve, and finally a monotone curve with a uniquelsmal
steady state, whenincreases from nedrto a large value (see Fig. 3.8 or the ones in
Ludwig et.al. (1979)). Note that the bifurcation diagram&udwig et.al. (1979) are
not exact, and it is only shown that the equation has at leasé tpositive solutions
but not exactly three. An exact multiplicity result like tb@ae in Ouyang and Shi

AAV +V(1—V) =0, z€Q, V=0, z€09,  (3.21)
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Figure 3.8 Bifurcation diagrams for (3.21): (a) weak hysses,» small but close to the first
break point in ODE hysteresis loop, corresponding o Fig 3.3-a (upper); (b) strong hys-
teresis, corresponding tp in Fig 3.3-b (middle); (c) “collapsed’ larger than the second
break point, corresponding in Fig 3.3-c (lower).

(1998, 1999) is not known even when= 1. But it is known that in Fig. 3.8-b, the
upper bound of the lower branch is the first zerg'6f), and the lower bound of the
upper branch is the smallest zerofofu) = [’ f(t)dt = 0 such thatf(u) > 0;in
Fig. 3.8-a, the lower turning point* — oo if the positive local minimum value of
f(u) tends to zero.

The transition of rough bifurcation diagrams suggests tabls structure exists for
intermediate range of (see Fig. 3.2) when the nonlinearity is of strong hysteresis
type, but a bistable structure could also exist whé&smaller when the nonlinearity

is of weak hysteresis type (see Fig. 3.8-a). Indeedstishaped bifurcation diagram
implies a hysteresis loop even though the weak hysteresinearity is positive
until the zero at the “carrying capacity”. Hence this is athyssis induced by the
diffusion. Back to the context of shrinking habitat sizésthuggests that for a seem-
ingly safe ecosystem with the grazing is not too big so that@IDE model predicts
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a large stable equilibrium, the addition of diffusion cardanger the ecosystem if
the habitat keeps shrinking, and a sudden drop to the srealligtstate is possible
if the habitat size passes a critical value. Note that we derdude the possibil-
ity of catastrophic shift due to the increase of the grazifigee r, but the results
in reaction-diffusion model offer another possible causestich a sudden collapse,
namely the decreasing natural vegetative habitat.

For the model (3.9) of lake turbidity, a reaction-diffusimodel can also be proposed:

ru?
u =dAu+a—bu+ ——, t>0, z€Q,
h? +up (3.22)
u(z,t) =0, x € 09, '
u(z,t) = up(x), t>0, zell

A similar argument can be made to offer another possibleecatithe turbidity in
shallow lakesi.e. the shrinking that has occurred for many freshwater lakeause
of the expanding of agriculture or industry. Here the biatien diagram of the steady
state equation is not readily available in the existingditere, but similar problems
with S-shaped bifurcation diagrams can be found in (Brown etl&8(), Du and
Lou (2001), Korman and Li (1999), and Wang (1994)), to nameva fndeed the
nonlinearity f (u) in (3.22) is qualitatively similar to the one in (3.21) (coafng
Fig. 3.3 and Fig. 3.5), hence their bifurcation diagramssarglar.

In our discussion to this point, we have used a homogeneaichlgit boundary con-
dition (v = 0 on the boundary). While diffusion plays an instrumentagriol induc-
ing bistability, the Dirichlet boundary condition also ptaan important role. In some
rough sense, a Dirichlet boundary condition is much moratigfly heterogeneous”
than a Neumann boundary condition (or no flux, reflection loau condition), and
is more rigid than Neumann boundary condition. Here we atsoroent briefly on
reaction-diffusion models with Neumann boundary conditio

%:dAu—i—f(u), t>0, zeQ,
—u:O, t>0, €09, (3-23)
on

u(0,2) =up(xz) >0, ze€.

A classical result of Matano (1979), Casten and Holland 893 that (3.23) has
no stable nonconstant equilibrium solution provided thatdomain is convex. A
direct consequence is that the reaction-diffusion equd8®23) has same number of
stable equilibrium solutions as the ORE= f(u), hence diffusion does not induce
“more”stability. However the geometry of the domdinis also an important factor
in the stability problem. Matano (1979) shows thajf {fu) is of bistable type, say
f(u) = u(1 — u?), then (3.23) has a stable nonconstant equilibrium solutiéhis
dumbbell-shaped, see also Alikakos, Fusco and KowalcZ8&)Lfor more intricate
results in that direction. Indeed it was recently shownthageometry of the domain
is even important for the magnitude of the first non-zero migkie of Laplacian
operator under Neumann boundary condition, see Ni and W20@y/). The work of
Matano (1979) has been extended to two species competitiolels (Matano and
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Mimura (1983)) for nonconvex domains and to cooperative elg(Kishimoto and
Weinberger (1985)) for convex domains. More results on Neumboundary value
problems can be found in Ni (1989, 1998).

To summarize, we have examined the reaction-diffusionoggcdl models of bista-
bility or hysteresis in this section. When the diffusion fficéent d is small, or equiv-
alently the habitat is large, we show the existence of mlelgpatial heterogeneous
steady states, so that the system possesses alternatileesgtatial equilibrium so-
lutions. Moreover, even when the non-spatial model is nstabie, the reaction-
diffusion model may be bistable as we show in the weak Alléecebr weak hys-
teresis case. Hence diffusion enhances the stability tdioestates in such systems.

The bifurcation diagrams can also be explained with habitz as the bifurcation
parameter. Indeed habitat fragmentation has been idehtifieone of the possible
causes of the regime shift in the ecosystems [122]. Thetseisate provide theoret-
ical evidence to support that claim via the reaction-diffagnodel approach. Other
mathematical approaches concerning the implicationsatfaheterogeneity in the
catastrophic regime shifts have been taken. van Nes andf&c{#05) investigated
lattice models with same nonlinearities in (3.21) and (3.BAt their numerical bi-
furcation diagrams haveor a as bifurcation parameters, just as in the ODE models
(see Fig. 3.2 and Fig. 3.4). Bascompte and Solé (1996, 2@08jder spatially ex-
plicit metapopulation models to show the existence of exitim thresholds when a
given fraction of habitat is destroyed.

Another question is as follows. When the existence of migispeady states indicates
bistability, what is the global dynamics of the system? Wespnt some mathematical
results in that direction in the following section.

3.3 Threshold manifold

For an ordinary differential equation such as (3.2) witlosty Allee effectu = M

is a threshold point so that the extinction and persistergeds on whether the
initial valueuy < M or > M. Bistable dynamics in higher dimensional systems
are characterized by a separatrix or threshold manifolchediones such dynamics
is also called saddle point behavior (Capasso and Madd§l&8&2), Capasso and
Wilson (1997)). This can be illustrated by considering tlassical Lotka-Volterra
competition model (in nondimensionalized form):

v =u(l—u— Av),v' = v(B — Cu —v), (3.24)

whereA, B,C > 0 satisfyC > B > A~! > 0. The system is bistable since it pos-
sesses two locally stable equilibrium poilits0) and(0, B), and a separatrix—the
stable manifold of the unstable coexistence equilibriumv,) = ((AB-1)/(AC—

1), (C — B)/(AC — 1)), which separates the basins of attraction of two stable-equi
libria, see Fig. 3.9. We also note that (3.24) possessefi@niivariant manifold
connecting(1,0), (0, B) and (u.,v.), called carrying simplex, see more remarks
about it in later part of this section.



48  BISTABILITY DYNAMICS IN STRUCTURED ECOLOGICAL MODELS

Figure 3.9 Phase portrait of the competition model (3.24)e $table manifold ofu., v.)
(connecting orbit from the origin) is the threshold mardfaethich separates the basins of
attraction of two stable equilibria; and the unstable madifof (u.,v.) (connecting orbits
from stable equilibria) is the carrying simplex.

An abstract mathematical result about the threshold mhttifas been recently given
by Jiang, Liang and Zhao (2004). They prove that in a strowgtler preserving
or strongly monotone semiflow in a Banach space, if there xaetly two locally
stable steady states, and any other possible steady statest@ble, then the set
which separates the basins of attraction of two stable gte@aties is a codimension-
one manifold (see more precise statement in Jiang et.@420A scalar reaction-
diffusion equation such as (3.10) and (3.11) generatesoagr monotone semi-
flow in some function space. Thus this result is immediatplyliaable to the scalar
reaction-diffusion equation. Hence the existence of aroedision-one manifold for
the Nagumo equation or all examples discussed in Sectiot?exactly two stable
steady state solutions follows from Jiang et.al. (2004 &kistence of the threshold
manifolds relies on earlier results of Takél991, 1992). We also mention that the
earliest example of threshold manifold was given by McKeaah lsloll (1986), and
Moll and Rosencrans (1990) where the Nagumo equation

Ut = dugy +u(a —u)(u—10), € (0,L), u(0)=wu(L)=0, (3.25)

with 0 < b < a, was considered. They also examined the case when the cubic
function is replaced by a piecewise linear function, sutggeby McKean (1970)
as an alternative to the FitzHugh-Nagumo model. We remaakttie existence of
exactly two stable steady state solutions for (3.10) an#i1{3heavily depends on
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the geometry of the domain. Most exact multiplicity results in Section 2 hold for
the ball domains but not general bounded donfajras shown by Dancer (1988)
in the example of dumbbell shaped domains. A similar remark loe applied to
Neumann boundary value problem (3.23). For the convex dus1ai the bistable
reaction-diffusion equation (3.23) witfi(u) = u(1 — u?) (Allen-Cahn equation
from material science) has exactly two stable steady stdtgiensu = +1 from
the results of Casten and Hollnad (1978) and Matano (197&)ckl the existence
of a threshold manifold follows from Jiang et.al. (2004).tBer dumbbell shaped
domain, it could have more stable steady state solutioms the result of Matano
(1979).

The two locally stable equilibrium points in Jiang-Liang&b’s theorem can also be
replaced by one locally stable steady state and “infinityfalhs locally stable. An
abstract formulation of this kind has been obtained in Laazd Schmidt (2005),
but concrete examples have been given much earlier. Forraxmapulation model,
Schreiber (2004) proved the existence of a threshold midrifiat separates the ini-
tial values leading to extinction or unbounded growth. A enamous example in
partial differential equations is the Fujita equation (u{1966)):

uy = dAu+uP, x € R", p>1. (3.26)

Fujita (1966) observed that for > (n + 2)/(n — 2) andn > 3, then the solution
to (3.26) with certain initial values blows up in finite timehile some other solu-
tions tend to zero as— oo. Since the solution of the ordinary differential equation
u' = uP with p > 1 always blows up, then the bistability in the Fujita equati®n
a combined effect of diffusion (stabilization) and growtiiofv up). Aronson and
Weinberger (1978) obtained some criteria on the extincio blow-up of similar
type equations, and they called the sensitivity of initiaine between the extinction
and blow-up the “hair-trigger effect”. Mizoguchi (2002)gwed the existence of the
unique threshold between extinction and complete blowengddially symmetric
compactly-supported initial values, although the exisgeaf a threshold manifold
cannot directly follow from Lazzo and Schmidt (2005) duetie tack of compact-
ness when the domain is the whole space. Similar resultsdiasdbeen proved for
bounded domain, see for example Ni, Sacks and Tavantzig]198

An intriguing question is whether such a precise bistabriecsiire is still valid for
systems of equations. When the system is still a monotonardigal system, ap-
parently this is true. For example, it holds for the reactiiffusion counterpart of
(3.24): the diffusive competition system with two compatitand no-flux boundary
condition:

ur = dyAu + u(l — u — Av), t>0, z e,

vy = dyAv + v(B — Cu — v), t>0, ze€q,
@:@:0, t>0, z €N, (3.27)
on On

u(0,z) = uo(x) >0, v(0,2) =vo(z) >0, z€f.

Hered, > 0 andd, > 0. The steady states of (3.24) are still (constant) equilib-
rium solutions of (3.27). Moreover it is known that any stabteady state of (3.27)
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is constant if2 is convex from Kishimoto and Weinberger (1985). Thus a thoés
manifold of codimension-one exists whenis convex following Jiang et.al. (2004)
although the dynamics on the threshold is not clear. In a @eneral setting, Smith
and Thieme (2001) studied abstract two speties) competition systems with the
origin being a repeller. Assuming that the unique nonttibi@undary steady state
on each axis is stable and there is a unique positive steatly, shey showed that
there is an invariant threshold manifold through the pesisiteady state separating
the attracting domains for both axis steady states. Seg diagh Liang (2006) and
Castillo-Chavez, Huang and Li (1999) for more about thré&shaanifold of bista-
bility in competition models. It should be noted that theutesof Jiang et.al. (2004)
are not valid for general competition systems with more timancompetitors.

By way of contrast, for non-monotone dynamical systemseimegal there is no such

structure even with only two stable steady states. Somermsganay however inherit

threshold structure from their limiting systems or subsyst. Consider the reaction
and diffusion of the two reactants and B in an isothermal autocatalytic chemical
reaction. We have the system

a; = DaAa — ab®P, by = DgAb+ ab®, t>0, x€q,
a(z,t) =ag >0, b(z,t) =0, t>0, xe€ o, (3.28)
al2,0) = Ag(x) > 0, b(x,0) = Bo(x) >0, z €.

wherea andb are the concentrations of the reactdrand the autocatalyg?, p > 1,

D 4 andD g are the diffusion coefficients of and B respectively, an€ is a bounded
reaction zone iR"™ (Gray and Scott (1990)). It is known that when readtois a
ball in R™, (3.28) has either only the trivial steady stdtg,0), or exactly three
non-negative steady state solutions with two of them stalheler the additional as-
sumption of equal diffusion coefficientd(, = Dpg), Jiang and Shi (2008) shown
that in the latter case, the global stable manifold for therimediate steady state
(az2,b2) is a codimension-one manifold which separates the basirtiafcion of
the two stable steady states, and moreover every solutioveoges to one of three
steady state solutions. Here we use the fact that the asyimfitat of (3.28) is an
autonomous scalar reaction-diffusion equation, whichnsoaotone dynamical sys-
tem, see Chen and Pdl& (1995), Mischaikow, Smith and Thieme (1995). Although
rather special, this is a rare example where the completardigs is known for a
non-monotone dynamical system in infinite dimensional epAddifferent bistabil-
ity result for (3.28) inR™ is also obtained in Shi and Wang (2006) which uses some
ideas from Aronson and Weinberger (1978).

Capasso and Wilson (1997) analyzed the spread of infealisaases with a reaction-
diffusion system:

ue = dAug — a11u1 + a2us, t>0, ze,
Uo = —A22U2 + g(ul), t>0, z€ Q, (329)
up(x,t) = uz(x,t) =0, t>0, ze o,

ui(z,0) =Ur(z) >0, ug(x,0) =Us(z) >0, ze€f.

This system models random dispersal of a pollutant whilerigry the small mobility
of the infective human population. Hetg (z, t) denotes the spatial density of the



THRESHOLD MANIFOLD 51

pollutant, anduz(x,t) denotes the density of the infective human population. With
¢(u) being the monotone sigmoid function discussed in Sectidhelsteady state
equation can be reduced to

dAui — ajur + %g(ul) =0, z€Q, u; =0, xe€d. (3.30)
a22
The nonlinearity herg (u1) = —ajjuy + %g(ul) is of strong Allee effect using

the term introduced in the last subsection. Hence under seasmnable conditions
and 2 being a ball, the bifurcation diagram of (3.30) is the one ig.%7-c. This

is shown in Capasso and Wilson (1997) for the case of 1, and the general
case whem > 2 can be deduced from the results in Ouyang and Shi (1998)eSinc
(3.29) is a monotone dynamical system, then again (3.29)tadncodimension-one
manifold which separates the basin of attraction of the table steady states (Jiang
et.al. (2004)), which confirms the conjecture in Capasso/itebn (1997). But it is
still not known that whether every solution on the threshalghifold converges to
the intermediate steady state solution.

Even less is known about the dynamical behavior of FitzHNglgumo system:

evy = dyAv 4+ v(v —a)(1 —v) — w, t>0, z e,
wy = dypAw + cv — bw, t>0, x €,
v(x,t) = w(x,t) =0, t>0, x €0, (3.31)

v(z,0) =V(z) >0, w(z,0)=W(x) >0, =€

Hered, > 0 andd,, > 0. Whenc = 0, it follows thatw — 0, and the dynamics of
(3.31) is reduced to that of Nagumo equation (3.25) (in higli@ensional domain).
Since (3.25) has the saddle point behavior, then (3.31pe8kesses this saddle point
behavior for0 < ¢ <« 1 by structural stability theory. For more general parameter
ranges, the existence of multiple positive steady statgtisok of (3.31) is known,
see for example Matsuzawa (2005) for a nice summary. Ndtiae(8.31) is not a
monotone dynamical system, so even the information of ststelady state solutions
cannot imply the saddle point behavior.

Threshold manifolds are a class of invariant manifolds jpligg dynamical systems,
and they are sensitively unstable in the dynamic sense ask genturbation will
shift it to the basin of attraction of a stable equilibriurhohe reverses the time

to —t to a system with threshold manifold, then the manifold beesian attracting
manifold, or vice versa. For example, in the logistic mo@&el], if time is reversed,
then it has the exactly same dynamical behavior as Fujitatexuor the abstract
formulation in Lazzo and Schmidt (2005): both the origin &imel infinity are stable
and the carrying capacityy becomes a threshold point. Similarly, if one reverses the
time in the classical Lotka-Volterra competition systen2d3 without diffusion, then
the origin and the infinity become stable, and there is a kimidsnanifold containing
the boundary steady statg, 0), (0, B) and coexistence steady state on which “hair-
trigger effect” occurs, which is deduced from Hirsch (1988an analysis for phase
pictures. Of course it is not realistic to reverse the timéogistic model or Lotka-
Volterra competition system. Nevertheless, in logisticleld3.1) or Lotka-Volterra
system (3.24), both the origin and the infinity are repellarsl there is a threshold
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manifold separating the repelling domains for the originl dne infinity. Such a
threshold manifold plays the role of carrying capacity ie thgistic model, so it
is often calledCarrying Simplex

The first example of a carrying simplex was given by Hirsch8@%3n his seminal
paper. For a dissipative and strongly competitive Kolmogaystem:

d/CUi

dt
Hirsch (1988) proved that if the origin is a repeller, thearthexists a carrying sim-
plex which attracts all nontrivial orbits for (3.32) andstlhhomeomorphic to proba-
bility simplex by radial projection. Note that dissipationplies that the infinity is
also a repeller.

:xiFi(xlaan"'axn)a (EiZO, i:172a"'1n7 (332)

Smith (1986) investigated? diffeomorphismsT” on the nonnegative orthardt
which possesses the properties (see the hypotheses in @88#)) of the Poincéar
map induced by’? strong competition system

dx i
dt

whereF; is 2r-periodic int, F;(¢;0) > 0, and (3.33) has a globally attracti2g-
periodic solution on each positive coordinate axis. Thiplies that the origin is a
repeller forT and it has a global attract@t. He proved that the boundaries of the
repulsion domain of the origin and the global attractortiedato the nonnegative
orthant are a compact unordered invariant set homeomaoipkiie probability sim-
plex by radical projection. He conjectured both boundac®iscide, serving as a
unigue carrying simplex. Introducing a mild additionaltretion on 7', which is
generically satisfied by the Poinéamap of the competitive Kolmogorov system
(3.33), Wang and Jiang (2002) proved this conjecture artdhleainstable manifold
of m—periodic point ofT" is contained in this carrying simplex. Diekmann, Wang
and Yan (2008) have showed the same result holds by droppimgfithe hypothe-
ses in Smith’s original conjecture so that the result isegasi use in the setting of
competitive mappings. Hirsch (2008) introduces a new daordi—strict sublinear-
ity in a neighborhood of the global attractor, to give a news@nce criterion for
the unique carrying simplex. The uniqueness of the carrgimgplex is important in
classifying the dynamics of lower dimensional competiiystems, for example the
3-dimensional Lokta-Volterra competition system (Zeemb®9Q3)). The classifica-
tion of many three dimensional competitive mappings (seg/Bava, Diekmann and
van Gils (2005a, 2005b), Hirsch (2008) and referencesithesee still open, and the
unigueness of the carrying simplex is one of the reasons.

:xiﬂ(t;xlal?v"'vxn)a 17120, 7;:1727"'5717 (333)

Note that if one reverses the timeo —t in the n-dimensional competition system
(3.32), then the system becomes a monotone system with betbrigin and the
infinity stable (under the assumption that the origin andittfi@ity are repellers).
However this new system is not strongly monotone as requirding et.al. (2004)
and Lazzo and Schmidt (2005). Thus the existence of the ingrsfmplex cannot
follow from Jiang et.al. (2004) and Lazzo and Schmidt (208&)ept in the case of
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n = 2. Indeed this is one of the main difficulties in Hirsch (1988/ng and Jiang
(2002), and Diekmann, Wang and Yan (2008).

We conclude our discussion of threshold manifolds with a ehad biochemical
feedback control circuits. More details on the modelingloafound in, for example,
Murray (2003) or Smith (1995). A segment of DNA is assumedddranslated to
MRNA which in turn is translated to produce an enzyme andfitiin is translated
to another enzyme and so on until an end product moleculeoiduged. This end
product acts on a nearby segment of DNA to produce a feedbapk¢ontrolling the
translation of DNA to mRNA. Letr; be the cellular concentration of mMRNA, lej
be the concentration of the first enzyme, and so on, finally,Jdie the concentration
of their substrate. Then this biochemical control circsiiéscribed by the system of
equations

x1' = g(an) —oqmwy, ' =11 — g, 2<i<mn, (3.34)
wherea; > 0 and the feedback functiof(«) is a bounded continuously differen-
tiable function satisfying

0<g(u) <M, ¢g(u) >0, u>0. (3.35)
Hence it models a positive feedback. For the Griffith modeif{ith (1968)) we have
Th
1+ ah
wherep is a positive integer (the Hill coefficient). For the Tysoth@®er model
(Tyson and Othmer (1978)) we have

g(zn) = (3.36)

14 2P
K +af
wherep is a positive integer ané& > 1. The solution flow for (3.34) is strongly

monotone (see Smith (1995) for detail). The steady state€3f84) are in one-to-
one correspondence with solutions of

g(u) = au (3.38)

wherea = []«;. Suppose that the line = «w intersects the curve = g(u)

(u > 0) transversally. Then every non-negative steady state3f8d{ is hyperbolic,
which implies that the number of steady states for (3.34)ifor either the Griffith
or Tyson-Othmer model. For most of biological parametethénGriffith or Tyson-
Othmer model, there are exactly three steady states (Sel¢t879, 1980, 1982) and
Jiang (1992, 1994)). In this case, the least steady statthanpleatest steady state are
asymptotically stable and intermediate one is a saddlet prmiaugh which there is
an invariant threshold manifold whose norm is positive hianultistable case, there

9(xn) = (3.37)

are

} invariant threshold manifolds which separate the attngatiomains for

stable steady states (see Jiang et.al. (2004)). From aajeesult of Mallet-Paret and
Smith (1990), we know that on each invariant threshold nwdahiévery orbit either
converges to the saddle point or is asymptotic to a nontriviatable periodic orbit.
Forn < 3, all orbits tend to the corresponding saddle point on trokesimanifolds,
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which was proved by using topological arguments in Selg(a8&9,1980), the Du-
lac criterion for3-dimensional cooperative system in Hirsch (1989) and a upap
function in Jiang (1992); fon. > 5, in the bistable case for the Griffith or Tyson-
Othmer model, there may exist Hopf bifurcation on the unifueshold manifold
(see Selgrade (1982)). But far= 4, whether there is a nontrivial periodic orbit or
not on threshold manifold is an open problem. In Jiang (1994)as proved that for
4-dimensional Griffith or Tyson-Othmer model all orbits amneergent to a steady
state via Lyapunov method for parameters with biologiaghgicance.

Hetzer and Shen (2005) added a third equation to the clatsitiea-\olterra equa-
tions for two competing species, which describes expjittie evolution of toxin,
called an inhibitor. The equations in rescaled form are

i =u(l —u—dyv — daw),
v =pv(l — fu—v), (3.39)
W =v— (g1u + g2)w,

whered, da, p, f, 91,92 > 0. Note thatO(0,0,0), E,(1,0,0), andE,(0,1,g5")
are non-negative steady states of (3.39). Observinghaia saddle, not a repeller,
Hetzer and Shen (2005) studied the long-time behavior f&93and the existence
of threshold manifold in the bistable case, where they dalléthin separatrix” fol-
lowing Hsu, Smith and Waltman (1996), Smith and Thieme (200iang and Tang
(2008) gave a complete classification for dynamical behdwio(3.39) and proved
that the bistability occurs if and only if

a*>0,b"<0, ¢ >0, A" = (b")? —4a*c" > 0,2a" +b* >0, a* +b" + ¢ >0,

(3.40)
wherea*, b*, ¢* are given by
d
@ =gl=dif), ¢ =g+ 2 -1), (3.41)
and
a*+ b +c" = (11— f)(digr + digz + d2). (3.42)

In this case the system (3.39) has exactly two hyperbolitipesteady states, one
of which is stable, denoted hy*, while the other is a saddle point, denoted By
(3.39) has exactly two stable steady statgsand E*. The stable manifold for the
saddle pointE,, which is a 2-dimensional smooth surface, separates thashab
attraction for, and E*. Hence this smooth surface is a threshold manifold.

The production of the various proteins in the biochemicatid circuit model (3.34)
is, of course, not instantaneous and it is reasonable tdntre time delays into these
terms. If one does so, (3.34) becomes a delay differentison:

' = g(zn(t — 1)) — 1@y, @' =xi1(t —rjo1) — iz, 2<i<n, (3.43)

with all delaysr; positive. Itis easy to see that all steady states for (343 same
as (3.34) and if a steady state for (3.34) is linearly stalestable) then it is also lin-
early stable (unstable) for (3.43) (Smith (1995) p.111)ug ' the bistable case for
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(3.43), there is a codimension-one threshold manifoldithhoa saddle point separat-
ing the attracting domains for the two steady states. Thgdifference is that such
a threshold manifold in the space of continuous functiomsfisite dimensional and
less information is known for the dynamics on the threshotthifold. The results
are similar for the multistable case (see Jiang et.al. (004 course another way to
have an infinite dimensional threshold manifold is to adéLdibn to bistable (mul-
tistable) monotone ODESs or FDESs with no-flux boundary caadibn a smooth and
convex domain, so that codimension-one threshold masifsiill exist (see Jiang
et.al. (2004)).

3.4 Concluding Remarks

Sharp regime shifts occur in some large-scale ecosystechsasuakes, coral reefs,
grazed grasslands and forests. Mathematical models havese¢ up to explain the
sudden changes and hysteresis cycles in these systemss krtible, we review
some of these models with a focus on the impact of spatiabdishand habitat frag-
mentation. The rich dynamics of these problems share somenom mathematical
features such as multiple steady states, threshold mdn{éeparatrix), and non-
monotone bifurcation diagrams. Mathematical tools frontighdifferential equa-
tions, bifurcation theory, and monotone dynamical systems been applied and
further developed in studying these important problemsegbérom various applied
areas.

Establishing the basic structure of multiple steady statesthreshold manifold is
the first step in a complete understanding of the bistablawfycs, regime shifts and
ecosystems resilience. The dynamics on the separatrixi dmulery complicated,
and there is also evidence that bistability in a reactidfusiion predator-prey system
could imply existence of more complex patterns (see MorpPetrovskii and Li
(2004,2006), Petrovskii, Morozov and Li (2005)). Anothmpiortant question is how
to make early warning of the regime shifts. The bifurcati@gdams suggest that the
regime shifts occur at saddle-node bifurcation points,tdtivthe largest eigenvalue
(principal eigenvalue) of the linearized system is zerocaMNgfurcation points, the
principal eigenvalue is small. It has been recognized thaptincipal eigenvalue at
a steady state is related to the return time, which is anatefnition of resilience
of the system (see Pimm (1991)). The return time is how fastrable that has
been displaced from equilibrium returns to it. For the dyiainmodels described
here, such return time to the equilibrium is characterizeddp(A:t), where); is
the principal eigenvalue at the equilibrium. Hence earlynivgy for regime shifts in
large scale could be triggered by a change in return timeyighed that information
on the return time is obtained from small scale experiments.
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