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Abstract

Imperfect bifurcation phenomena are formulated in framework of analytical bifurcation theory on Ba-
nach spaces. In particular the perturbations of transcritical and pitchfork bifurcations at a simple eigenvalue
are examined, and two-parameter unfoldings of singularities are rigorously established. Applications in-
clude semilinear elliptic equations, imperfect Euler buckling beam problem and perturbed diffusive logistic
equation.
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1. Introduction

Nonlinear problems can often be formulated to an abstract equation

F(λ,u) = 0, (1.1)
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where F : R × X → Y is a nonlinear differentiable mapping, and X, Y are Banach spaces. The
solutions of nonlinear equation (1.1) and their dependence on the parameter λ have been the
subject of extensive studies in the last forty years. Bifurcation could occur at a solution (λ0, u0)

if it is a degenerate solution of (1.1), i.e. the linearized operator Fu(λ0, u0) is not invertible.
Two celebrated theorems of Crandall and Rabinowitz [5,6] are now regarded as foundation of
analytical bifurcation theory in infinite-dimensional spaces, and both results are based on implicit
function theorem. In both theorems, it is assumed that

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and N(Fu(λ0, u0)) = span{w0},

where N(Fu) and R(Fu) are the null space and the range space of linear operator Fu.

Theorem 1.1. (Saddle-node bifurcation, [6, Theorem 3.2].) Let F : R × X → Y be continuously
differentiable. F(λ0, u0) = 0, F satisfies (F1) and

(F2) Fλ(λ0, u0) /∈ R(Fu(λ0, u0)).

Then the solutions of (1.1) near (λ0, u0) form a continuously differentiable curve (λ(s), u(s)),
λ(0) = λ0, u(0) = u0, λ′(0) = 0 and u′(0) = w0. Moreover, if F is k-times continuously differ-
entiable, so are λ(s), u(s).

Theorem 1.2. (Transcritical and pitchfork bifurcations, [5, Theorem 1.7].) Let F : R × X → Y

be continuously differentiable. Suppose that F(λ,u0) = 0 for λ ∈ R, the partial derivative Fλu

exists and is continuous. At (λ0, u0), F satisfies (F1) and

(F3) Fλu(λ0, u0)[w0] /∈ R(Fu(λ0, u0)).

Then the solutions of (1.1) near (λ0, u0) consists precisely of the curves u = u0 and (λ(s), u(s)),
s ∈ I = (−δ, δ), where (λ(s), u(s)) are continuously differentiable functions such that λ(0) = λ0,
u(0) = u0, u′(0) = w0.

Applications of Theorems 1.1 and 1.2 can be found in [3,11,17–21,24] and many other
books and papers. In [24], the second author studied the perturbations of the bifurcation dia-
grams appearing in Theorems 1.1 and 1.2 via an investigation of the system consisting (1.1) and
Fu(λ,u)[w] = 0. The goal of this paper is to further explore the set of solutions to (1.1) near a
bifurcation point (λ0, u0) satisfying (F1). Here our focus is the situations when the transversality
condition (F2) is violated, that is, the opposite of (F2):

(F2′) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)).

Our first result (see Theorem 2.1) describes the local solution set of F(λ,u) = 0 near (λ0, u0)

when (F1) and (F2′) are satisfied, which contrasts to Theorem 1.1 when (F1) and (F2) are sat-
isfied. We show that the solution set is no longer a curve near the degenerate solution (λ0, u0)

like the case in saddle-node bifurcation, but either an isolated single point, or a pair of transver-
sally intersecting curves, which is similar to the solution set in Theorem 1.2. (See the remark
after Theorem 2.1 for a discussion on the connection of Theorems 2.1 and 1.2.) Our proof uses
Morse lemma instead of implicit function theorem as in [5], and this idea goes back to Nirenberg
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[15,16]. Theorem 2.1 complements Theorem 1.1 better than Theorem 1.2 since (F2) and (F2′)
are directly opposite, and we also need a more general further transversality condition than (F3),
thus Theorems 2.1 and 1.1 can be regarded as the first two parts of classification of degenerate
solutions according to the order of degeneracy.

In the second part of the paper, we continue the work of the second author [24]. We consider
the solution set of

F(ε,λ,u) = 0, (1.2)

which can be considered as a perturbation of (1.1), and the new parameter ε indicates the per-
turbation. Following [24,25], we investigate the imperfect bifurcation of bifurcation diagram in
(λ,u) space under small perturbations. Imperfection of the bifurcation diagrams occur when the
small errors or noises destroy the original bifurcation structure, which occur frequently in en-
gineering or other application problems. We prove several new theorems about the symmetry
breaking of transcritical and pitchfork bifurcations, see Theorems 3.1–3.3 for the structure of the
degenerate solutions, and Theorems 4.1 and 4.3 for the variations of solution set of (1.2). The
statements of theorems can be found in respective sections, and here we only sketch the imperfect
bifurcation diagrams they represent.

In Figs. 1 and 2, typical symmetry breaking perturbations of transcritical and pitchfork bifur-
cations are shown. We use analytic bifurcation theory following [5,6] to obtain precise structure
of the perturbed local bifurcation diagrams. Another not-so-typical breaking up of the transcrit-
ical bifurcation is also shown as an application of the secondary bifurcation theorem which is
proved in Section 2, see Figs. 3 and 4. In Section 5, we apply our abstract results to the imperfect
bifurcation in classical Euler buckling beam problem and diffusive logistic equation in spatial
ecology.

Bifurcation problems concerning the solutions of nonlinear equation (1.1) have been studied
in abstract framework since 1970s. One important tool is Lyapunov–Schmidt reduction which

ε < ε0 ε = ε0 ε > ε0

Fig. 1. Typical symmetry breaking of transcritical bifurcation.

ε < ε0 ε = ε0 ε > ε0

Fig. 2. Typical symmetry breaking of pitchfork bifurcation.

ε < ε0 ε = ε0 ε > ε0

Fig. 3. Non-typical symmetry breaking of transcritical bifurcation (1).
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ε < ε0 ε = ε0 ε > ε0

Fig. 4. Non-typical symmetry breaking of transcritical bifurcation (2).

reduces the original problem to a finite-dimensional one, and the theory of singularities of
differentiable maps and catastrophe theory are useful in the qualitative studies of such finite-
dimensional problems. In particular, the imperfect bifurcation of (Lyapunov–Schmidt) reduced
maps are investigated by Golubitsky and Schaeffer [10]. This approach is efficient but may de-
pend on the reductions specific to the application problems. Another approach is to directly deal
with infinite-dimensional problems, and the results involve various partial derivatives of the non-
linear maps on Banach spaces but not derivatives of reduced finite-dimensional maps. This could
be demonstrated by the work of Crandall and Rabinowitz [5,6], which have been widely adopted
in applications. Such results are more convenient and more applicable in real world problems,
since in applications one only needs to check certain linearized operators but does not need to
perform Lyapunov–Schmidt reduction. On the other hand, some ideas of catastrophe theory have
also been generalized to infinite-dimensional setting. The fold and cusp type singularities in Ba-
nach spaces have been found in various situations, and a general theory has also been developed,
see the survey of Church and Timourian [4]. We also note that the two approaches are not in con-
flict: for example, when establishing infinite-dimensional bifurcation theorem (see Theorem 2.1),
the Lyapunov–Schmidt reduction is used in proof. But the abstract results in the latter approach
are free of specific reductions.

In the paper, we use ‖ · ‖ as the norm of Banach space X, 〈·,·〉 as the duality pair of a Banach
space X and its dual space X∗. For a nonlinear operator F , we use Fu as the partial derivative of
F with respect to argument u. For a linear operator L, we use N(L) as the null space of L and
R(L) as the range space of L.

2. Crossing curve bifurcation

If we assume F satisfies (F1) at (λ0, u0), then we have decompositions of X and Y : X =
N(Fu(λ0, u0)) ⊕ Z and Y = R(Fu(λ0, u0)) ⊕ Y1, where Z is a complement of N(Fu(λ0, u0))

in X, and Y1 is a complement of R(Fu(λ0, u0)). In particular, Fu(λ0, u0)|Z :Z → R(Fu(λ0, u0))

is an isomorphism. Since R(Fu(λ0, u0)) is codimension one, then there exists l ∈ Y ∗ such that
R(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}. Thus if F also satisfies (F2′), then the equation

Fλ(λ0, u0) + Fu(λ0, u0)[v] = 0 (2.1)

has a unique solution v1 ∈ Z. Our main result in this section is the following bifurcation theorem:

Theorem 2.1. Let F : R × X → Y be a C2 mapping. Suppose that F(λ0, u0) = 0, F satisfies
(F1) and (F2′). Let X = N(Fu(λ0, u0)) ⊕ Z be a fixed splitting of X, let v1 ∈ Z be the unique
solution of (2.1), and let l ∈ Y ∗ such that R(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}. We assume that
the matrix (all derivatives are evaluated at (λ0, u0))

H0 = H0(λ0, u0) ≡
( 〈l,Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉 〈l,Fλu[w0] + Fuu[w0, v1]〉

〈l,F [w ] + F [w ,v ]〉 〈l,F [w ,w ]〉
)

(2.2)

λu 0 uu 0 1 uu 0 0
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is non-degenerate, i.e., det(H0) �= 0.

(1) If H0 is definite, i.e. det(H0) > 0, then the solution set of F(λ,u) = 0 near (λ,u) = (λ0, u0)

is {(λ0, u0)}.
(2) If H0 is indefinite, i.e. det(H0) < 0, then the solution set of F(λ,u) = 0 near (λ,u) =

(λ0, u0) is the union of two intersecting C1 curves, and the two curves are in form of
(λi(s), ui(s)) = (λ0 + μis + sθi(s), u0 + ηisw0 + syi(s)), i = 1,2, where s ∈ (−δ, δ) for
some δ > 0, (μ1, η1) and (μ2, η2) are non-zero linear independent solutions of the equa-
tion

〈
l,Fλλ + 2Fλu[v1] + Fuu[v1, v1]

〉
μ2 + 2

〈
l,Fλu[w0] + Fuu[w0, v1]

〉
ημ

+ 〈
l,Fuu[w0,w0]

〉
η2 = 0, (2.3)

where θi(s), yi(s) are some functions defined on s ∈ (−δ, δ) which satisfy θi(0) = θ ′
i (0) = 0,

yi(s) ∈ Z, and yi(0) = y′
i (0) = 0, i = 1,2.

A particularly useful special case is when Fλ(λ0, u0) = 0, and immediately we have v1 = 0.

Corollary 2.2. Let F : R × X → Y be a C2 mapping. Suppose that F(λ0, u0) = 0, F satisfies
(F1) and Fλ(λ0, u0) = 0. We assume that the matrix

H1 ≡
( 〈l,Fλλ(λ0, u0)〉 〈l,Fλu(λ0, u0)[w0]〉

〈l,Fλu(λ0, u0)[w0]〉 〈l,Fuu(λ0, u0)[w0,w0]〉
)

(2.4)

is non-degenerate. Then the conclusions of Theorem 2.1 hold, and Eq. (2.3) simplifies to

〈
l,Fλλ(λ0, u0)

〉
μ2 + 2

〈
l,Fλu(λ0, u0)[w0]

〉
μη + 〈

l,Fuu(λ0, u0)[w0,w0]
〉
η2 = 0. (2.5)

Corollary 2.3. Let F : R × X → Y be a C2 mapping. Suppose that F(λ0, u0) = 0, F satisfies
(F1), (F3), Fλ(λ0, u0) = 0, Fλλ(λ0, u0) ∈ R(Fu(λ0, u0)). Then the solution set of F(λ,u) = 0
near (λ,u) = (λ0, u0) is the union of two intersecting C1 curves Γi , i = 1,2, Γ1 is tangent to
λ axis at (λ0, u0) and it is in form of {(λ,u(λ)), |λ| < ε}; and Γ2 is the form of {(λ0 + μ2s +
sθ2(s), u0 + sw0 + sy2(s))}, where

μ2 = −〈l,Fuu(λ0, u0)[w0,w0]〉
2〈l,Fλu(λ0, u0)[w0]〉 .

Remark 2.4. (1) Theorem 2.1 complements Crandall–Rabinowitz saddle-node bifurcation theo-
rem (Theorem 1.1), where (F2) is imposed. Our result is based on the opposite condition (F2′)
and a generic second order non-degeneracy condition det(H0) �= 0.

(2) Crandall–Rabinowitz theorem of bifurcation from simple eigenvalue (Theorem 1.2) is a
special case of Theorem 2.1, Corollaries 2.2 and 2.3. Indeed, in Theorem 1.2, for the curve of
constant solutions, any derivative of F in λ is zero, but (F3) is assumed in Theorem 1.2 so the
matrix H0 is indefinite. One curve in Theorem 2.1 part 2 satisfies η1 = 0 (and we can assume
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μ1 = 1) and only a higher order projection on w0, which corresponds to the constant solution
branch in Theorem 1.2; the other branch satisfies η2 = 1 and

μ2 = −〈l,Fuu(λ0, u0)[w0,w0]〉
2〈l,Fλu(λ0, u0)[w0]〉 (2.6)

from (2.5), which determines the bifurcation direction: if μ2 �= 0, then a transcritical bifurcation
occurs, and on either side of λ = λ0, (1.1) has locally exactly two solutions; and if μ2 = 0 but a
higher order non-degeneracy condition is satisfied (see [24]), then a pitchfork bifurcation occurs.

(3) Theorem 2.1 is also a more general result on secondary bifurcations. The well-known
version of secondary bifurcation is [5, p. 323, Theorem 1] (see also [7, p. 407, Theorem 29.3]),
where a solution curve Γ1 is given, and it is shown that another curve Γ2 exists and intersects
with Γ1 transversally. In our result, no any solution curve is given, and we obtain the two curves
simultaneously from conditions on F at the bifurcation point. Later we prove that Theorem 2.1
implies the Crandall–Rabinowitz secondary bifurcation theorem (see Theorem 2.7).

(4) Notice that v1 in (2.1) depends on the choice of the complement subspace Z, so with a
different subspace, v1 can be in form of v1 + kw0 for some k ∈ R. However it is easy to check
that det(H0) is independent of choice of v1 or Z, and the solutions of (2.3) are also independent
of choice of v1 or Z (up to a constant scale). Note that the solutions of (2.3) are apparently not
unique, but there exists two linear independent real-valued solutions since det(H0) < 0.

To prove Theorem 2.1, we first establish a result in finite-dimensional space, which is of its
own interest.

Lemma 2.5. Suppose that (x0, y0) ∈ R2 and U is a neighborhood of (x0, y0). Assume that
f :U → R is a Cp function for p � 2, f (x0, y0) = 0, ∇f (x0, y0) = 0, and the Hessian
H = H(x0, y0) is non-degenerate. Then

(1) If H is definite, then (x0, y0) is the unique zero point of f (x, y) = 0 near (x0, y0);
(2) If H is indefinite, then there exist two Cp−1 curves (xi(t), yi(t)), i = 1,2, t ∈ (−δ, δ),

such that the solution set of f (x, y) = 0 consists of exactly the two curves near (x0, y0),
(xi(0), yi(0)) = (x0, y0). Moreover t can be rescaled and indices can be rearranged so that
(x′

1(0), y′
1(0)) and (x′

2(0), y′
2(0)) are the two linear independent solutions of

fxx(x0, y0)η
2 + 2fxy(x0, y0)ητ + fyy(x0, y0)τ

2 = 0. (2.7)

Proof. When H is definite, then (x0, y0) is either a strict local minimum or a strict maximum
point of f (x, y) from calculus. Thus (x0, y0) is the unique zero of f (x, y) = 0 locally. When H

is indefinite, consider the differential equation:

x′ = ∂f (x, y)
, y′ = −∂f (x, y)

,
(
x(0), y(0)

) ∈ U. (2.8)

∂y ∂x
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Then (2.8) is a Hamiltonian system with potential function f (x, y), and (x0, y0) is the only
equilibrium point of (2.8) in U (if necessary we can choose smaller U ). The Jacobian of (2.8) at
(x0, y0) is

J =
(

fxy(x0, y0) fyy(x0, y0)

−fxx(x0, y0) −fxy(x0, y0)

)
. (2.9)

Since Trace(J ) = 0 and Det(J ) = Det(H) < 0, then (x0, y0) is a saddle type equilibrium of (2.8)
and J has eigenvalues ±k for some k > 0. From the invariant manifold theory of differential
equations, there exists a unique curve Γs ⊂ U (the stable manifold) such that Γs is invariant
for (2.8) and for (x(0), y(0)) ∈ Γs, (x(t), y(t)) → (x0, y0) as t → ∞; and similarly the unstable
manifold is another invariant curve Γu for (2.8) and for (x(0), y(0)) ∈ Γu, (x(t), y(t)) → (x0, y0)

as t → −∞. Both Γs and Γu are Cp−1 one-dimensional manifold by the stable and unstable
manifold theorem [22, p. 107]. f (x, y) = 0 for (x, y) ∈ Γs ∪Γu since f (x, y) is the Hamiltonian
function of the system and Γs ∪ Γu ∪ {(x0, y0)}. On the other hand, for any (x, y) /∈ Γs ∪ Γu ∪
{(x0, y0)}, f (x, y) �= 0. This simply follows from the Morse lemma, the Cp−1 curves must be
identical to Γs ∪ Γu.

Finally we consider the tangential direction of Γs and Γu. We denote the two curves by
(xi(t), yi(t)), with i = 1,2. Then

f
(
xi(t), yi(t)

) = 0. (2.10)

Differentiating (2.10) in t twice, we obtain (we omit the subscript i for xi(t) and yi(t) in the
equation)

fxx

(
x(t), y(t)

)(
x′(t)

)2 + 2fxy

(
x(t), y(t)

)
x′(t)y′(t) + fyy

(
x(t), y(t)

)(
y′(t)

)2

+ fx

(
x(t), y(t)

)
x′′(t) + fy

(
x(t), y(t)

)
y′′(t) = 0

evaluating at t = 0 and ∇f (x0, y0) = 0, we obtain (2.7). �
We remark that Lemma 2.5 can also be deduced from a more general Morse lemma, see

Kuiper [13] and Chang [2] (Lemma 4.1 and Theorem 5.1), and a weaker result is proved in
Nirenberg [16, Theorem 3.2.1] in which the crossing curves are shown to be Cp−2; we give an
alternate proof here using invariant manifold theory, and we also remark that Cp−1 is the optimal
regularity, see discussions in Shi and Xie [28].

Next we recall the well-known Lyapunov–Schmidt procedure under the condition (F1). The
following version can be found in [16, pp. 36–37 and 40]. We sketch a proof for the completeness
of presentation.

Lemma 2.6 (Lyapunov–Schmidt reduction). Suppose that F : R × X → Y is a Cp map such that
F(λ0, u0) = 0, and F satisfies (F1) at (λ0, u0). Then F(λ,u) = 0 for (λ,u) near (λ0, u0) can be
reduced to 〈l,F (λ,u0 + tw0 + g(λ, t))〉 = 0, where t ∈ (−δ, δ), λ ∈ (λ0 − δ,λ0 + δ), where δ is
a small positive constant, l ∈ Y ∗ such that 〈l, v〉 = 0 if and only if v ∈ R(Fu(λ0, u0)), and g is a
Cp function into Z such that g(λ0,0) = 0 and Z is a complement of N(Fu(λ0, u0)) in X.
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Proof. We denote the projection from Y into R(Fu(λ0, u0)) by Q. Then F(λ,u) = 0 is equiva-
lent to

Q ◦ F(λ,u) = 0, and (I − Q) ◦ F(λ,u) = 0. (2.11)

We rewrite the first equation in form

Q ◦ F(λ,u0 + tw0 + g) = 0 (2.12)

where t ∈ R and g ∈ Z. Since F satisfies (F1) at (λ0, u0), then g = g(λ, t) in (2.12) is uniquely
solvable from the implicit function theorem for (λ, t) near (λ0,0), and g is Cp . Hence u = u0 +
tw0 + g(λ, t) is a solution to F(λ,u) = 0 if and only if (I − Q) ◦ F(λ,u0 + tw0 + g(λ, t)) = 0.
Since R(Fu(λ0, u0)) is co-dimensional one, hence it becomes the scalar equation 〈l,F (λ,u0 +
tw0 + g(λ, t))〉 = 0. �
Proof of Theorem 2.1. From the proof of Lemma 2.6, we have

f1(λ, t) ≡ Q ◦ F
(
λ,u0 + tw0 + g(λ, t)

) = 0, (2.13)

for (λ, t) near (λ0,0). Differentiating f1 and evaluating at (λ, t) = (λ0,0), we obtain

0 = ∇f1 = (
Q ◦ (

Fλ + Fu[gλ]
)
,Q ◦ Fu[w0 + gt ]

)
. (2.14)

Since Fu[w0] = 0 and gt ∈ Z, and Fu(λ0, u0)|Z is an isomorphism, then gt (λ0,0) = 0. Similarly
gλ ∈ Z and Fλ ∈ R(Fu(λ0, u0)) from (F2′), hence

Fλ(λ0, u0) + Fu(λ0, u0)
[
gλ(λ0,0)

] = 0. (2.15)

Hence gλ(λ0,0) = v1, where v1 is defined as in (2.1).
To prove the statement in Theorem 2.1, we apply Lemma 2.5 to

f (λ, t) = 〈
l,F

(
λ,u0 + tw0 + g(λ, t)

)〉
. (2.16)

From Lemma 2.6, F(λ,u) = 0 for (λ,u) near (λ0, u0) is equivalent to f (λ, t) = 0 for (λ, t) near
(λ0,0). To apply Lemma 2.5, we claim that

∇f (λ0,0) = (fλ, ft ) = 0, and Hess(f ) is non-degenerate. (2.17)

It is easy to see that

∇f (λ0,0) = (〈
l,Fλ(λ0, u0) + Fu(λ0, u0)

[
gλ(λ0,0)

]〉
,
〈
l,Fu(λ0, u0)

[
w0 + gt (λ0,0)

]〉)
. (2.18)

Thus ∇f (λ0,0) = 0 from (2.1) and gt (λ0,0) = 0. For the Hessian matrix, we have

Hess(f ) =
(

fλλ fλt

ftλ ftt

)
. (2.19)

Here
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fλt (λ0,0) = ftλ(λ0,0) = 〈
l,Fλu[w0 + gt ] + Fuu[w0 + gt , gλ] + Fu[gλt ]

〉
= 〈

l,Fλu[w0] + Fuu[w0, v1]
〉
, (2.20)

since gt = 0. Next we have

fλλ(λ0,0) = 〈
l,Fλλ + 2Fλu[gλ] + Fuu[gλ, gλ] + Fu[gλλ]

〉
= 〈

l,Fλλ + 2Fλu[v1] + Fuu[v1, v1]
〉
. (2.21)

Finally,

ftt (λ0,0) = 〈
l,Fuu[w0 + gt ,w0 + gt ] + Fu[gtt ]

〉 = 〈
l,Fuu[w0,w0]

〉
. (2.22)

In summary, from our calculation,

Hess(f ) =
( 〈l,Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉 〈l,Fλu[w0] + Fuu[w0, v1]〉

〈l,Fλu[w0] + Fuu[w0, v1]〉 〈l,Fuu[w0,w0]〉
)

. (2.23)

Therefore from Lemma 2.5, we conclude that the solution set of F(λ,u) = 0 near (λ,u) =
(λ0, u0) is a pair of intersecting curves if the matrix in (2.23) is indefinite, or is a single point if
it is definite.

Now we consider only the former case of two curves. We denote the two curves by
(λi(s), ui(s)) = (λi(s), u0 + ti (s)w0 + g(λi(s), ti (s))), with i = 1,2. Then

F
(
λi(s), u0 + ti (s)w0 + g

(
λi(s), ti (s)

)) = 0. (2.24)

From Lemma 2.5 the vectors vi = (λ′
i (0), t ′i (0)) are the solutions of vT Hv = 0, which are the

solutions (μ,η) of (2.3). �
Next we give an secondary bifurcation theorem generalizing a well-known one [5, Theorem 1]

based on Theorem 2.1. This is not surprising considering that Theorem 2.1 is more general than
Theorem 1.2, which implies the secondary bifurcation theorem (see [5]). But here we do not
assume the existence of a given solution branch as that in [5].

Theorem 2.7. Let W and Y be Banach spaces, Ω an open subset of W and G :Ω → Y be twice
differentiable. Suppose

(1) G(w0) = 0,
(2) dimN(G′(w0)) = 2, codimR(G′(w0)) = 1.

Then

(1) If for any φ(�= 0) ∈ N(G′(w0)), G′′(w0)[φ,φ] /∈ R(G′(w0)), then the set of solutions to
G(w) = 0 near w = w0 is the singleton {w0}.

(2) If there exists φ1(�= 0) ∈ N(G′(w0)) such that G′′(w0)[φ1, φ1] ∈ R(G′(w0)), and there exists
φ2 ∈ N(G′(w0)) such that G′′(w0)[φ1, φ2] /∈ R(G′(w0)), then w0 is a bifurcation point of
G(w) = 0 and in some neighborhood of w0, the totality of solutions of G(w) = 0 form
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two continuous curves intersecting only at w0. Moreover the solution curves are in form of
w0 + sψi + sθi(s), s ∈ (−δ, δ), θi(0) = θ ′

i (0) = 0, where ψi (i = 1,2) are the two linear
independent solutions of the equation 〈l,G′′(w0)[ψ,ψ]〉 = 0.

Proof. Let l ∈ Y ∗ such that 〈l, y〉 = 0 if and only if y ∈ R(G′(w0)). Then if for any φ(�= 0) ∈
N(G′(w0)), G′′(w0)[φ,φ] /∈ R(G′(w0)), we must have 〈l,G′′(w0)[φ,φ]〉 > 0 (or < 0) for any
φ(�= 0) ∈ N(G′(w0)). Without loss of generality, we assume > holds. We assume that W =
span{φ1} ⊕ X is a splitting of W , and we choose φ2 ∈ X ∩ N(G′(w0)) so that {φ1, φ2} is a basis
of N(G′(w0)). Clearly X ∩ N(G′(w0)) = span{φ2}. Define F : I × X → Y (I ⊂ R is an open
interval containing 0)

F(λ,u) = G(w0 + λφ1 + u). (2.25)

Then F ∈ C2 and F(0,0) = 0. We check F satisfies (F1) and (F2′). It is easy to calculate

Fλ(0,0) = G′(w0)[φ1], Fλλ(0,0) = G′′(w0)[φ1, φ1],
Fu(0,0)[ψ] = G′(w0)[ψ], Fλu(0,0)[ψ] = G′′(w0)[φ1,ψ],

Fuu(0,0)[ψ,θ ] = G′′(w0)[ψ,θ ]. (2.26)

Then N(Fu(0,0)) = span{φ2} and R(Fu(0,0)) = R(G′(w0)), hence (F1) is satisfied. (F2′) is
obvious since Fλ(0,0) = G′(w0)[φ1] = 0. From above calculation and Corollary 2.2, we have

H1 =
( 〈l,G′′(w0)[φ1, φ1]〉 〈l,G′′(w0)[φ1, φ2]〉

〈l,G′′(w0)[φ1, φ2]〉 〈l,G′′(w0)[φ2, φ2]〉
)

. (2.27)

Since 〈l,G′′(w0)[φ,φ]〉 > 0 for any φ(�= 0) ∈ N(G′(w0)), then det(H1) > 0 since〈
l,G′′(w0)[k1φ1 + k2φ2, k1φ1 + k2φ2]

〉 = kH1kT > 0,

which implies that H1 is positively definite, and here k = (k1, k2) ∈ R2 and kT is the trans-
pose of k. We apply Theorem 2.1, part 1, then the result follows. For the second part,
the calculation above remains true with φ1, φ2 satisfying the conditions in theorem if we
choose a complement subspace X to span{φ1} so that φ2 ∈ X, and {φ1, φ2} makes a basis
for N(G′(w0)). But det(H1) < 0 from the assumptions, hence we can apply part 2 of The-
orem 2.1 or Corollary 2.2. For the solutions (μi, ηi) of (2.5), (μ1, η1) = (1,0) is one so-
lution since 〈l,G′′(w0)[φ1, φ1]〉 = 0, and the other solution is given by η2 = 1 and μ2 =
−〈l,G′′(w0)[φ2, φ2]〉/(2〈l,G′′(w0)[φ1, φ2]〉). Hence the two solution branches are in form of
w0 + sφ1 + sθ1(s) and w0 + s(μ2φ1 + φ2) + sθ2(s), and one can verify that ψ1 = φ1 and
ψ2 = μ2φ1 + φ2 are the two linear independent solutions of 〈l,G′′(w0)[ψ,ψ]〉 = 0. �

The simplest example of Theorem 2.7 is the quadratic map: f : R2 → R defined by f (x, y) =
x2 ± y2. In the + sign case, (x, y) = (0,0) is the only solution of f (x, y) = 0, and in the −
sign case, the solutions of f (x, y) = 0 are all points on the crossing lines x = ±y. To conclude
this section, we illustrate Theorem 2.1 with an example in X = Y = R2. Another example in
infinite-dimensional spaces is shown in Section 5.1.
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Example. Define

F(λ,x1, x2) =
(

5x1 + x3
1 + 2x1x

2
2

x2 + x3
2 + 2x2x

2
1

)
− λ

(
x1
x2

)
, (2.28)

where (x1, x2) ∈ R2 and λ ∈ R. The equation F(λ,x1, x2) = 0 has a branch of zero solutions
Σ0 = {(λ,0,0): λ ∈ R}, and it also has two branch of semi-trivial solutions (with one component
zero):

Σ1 = {
(λ, x1,0): x1 = ±√

λ − 5, λ > 5
}
,

Σ2 = {
(λ,0, x2): x2 = ±√

λ − 1, λ > 1
}
. (2.29)

We notice that both Σ1 and Σ2 are generated through pitchfork bifurcations from Σ0 at λ = 5
and λ = 1, respectively. To further analyze the secondary bifurcations, we need the following
calculations:

Fλ = −
(

x1
x2

)
, Fλλ = 0,

Fx =
(

5 + 3x2
1 + 2x2

2 4x1x2

4x1x2 1 + 3x2
2 + 2x2

1

)
− λ

(
1 0
0 1

)
, Fλx = −

(
1 0
0 1

)
,

Fxx =
((

6x1 4x2
4x2 4x1

)
,

(
4x2 4x1
4x1 6x2

))
. (2.30)

Along Σ1, Fx = diag(2λ − 10, λ − 9). Thus besides λ = 5 (primary bifurcation point), λ = 9
is another degenerate point. We analyze the bifurcation at (λ, x1, x2) = (9,2,0). N(Fx) =
{(0, a)T : a ∈ R}, R(Fx) = {(a,0)T : a ∈ R}, Fλ = (−2,0)T ∈ R(Fx). Hence (F1) and (F2′)
are satisfied. We choose Z = R(Fx), then the equation Fλ + Fx[v1] = 0 has a unique solution
v1 = (1/4,0)T ∈ Z. From above calculation, we find that the matrix H0 in (2.2) to be

H0 =
(

0 1
1 0

)
, (2.31)

which is indefinite. Thus we can apply Theorem 2.1 to this equation, and near (λ, x1, x2) =
(9,2,0), the solution set is the union of two intersecting curves. Moreover we can choose
(μ1, η1) = (1,0) (corresponding to Σ1) and (μ2, η2) = (0,1) (corresponding to new branch)
for the directions of two curves. μ2 = 0 indicates that the bifurcation is not a linear transcritical
one. Indeed it is a pitchfork bifurcation, and the new branch is

Σ3 = {
(λ, x1, x2): λ > 9, x1 = ±√

(λ + 3)/3, x2 = ±√
(λ − 9)/3

}
. (2.32)

3. Perturbed problems

We consider an equation

F(ε,λ,u) = 0, (3.1)
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where F ∈ C1(M,Y ), M ≡ R × R × X, and X, Y are Banach spaces. We define

H(ε,λ,u,w) =
(

F(ε,λ,u)

Fu(ε,λ,u)[w]
)

. (3.2)

We consider the solution (ε0, λ0, u0,w0) of H(ε,λ,u,w) = 0. For (ε0, λ0, u0) ∈ M and w0 ∈
X1 ≡ {x ∈ X: ‖x‖ = 1}, By Hahn–Banach theorem (see [24, Lemma 7.1]), there exists a closed
subspace X3 of X with codimension 1 such that X = L(w0) ⊕ X3, where L(w0) = span{w0},
and d(w0,X3) = inf{‖w − x‖: x ∈ X3} > 0. Let X2 = w0 + X3 = {w0 + x: x ∈ X3}. Then X2
is a closed hyperplane of X with codimension 1. Since X3 is a closed subspace of X, and X3 is
also a Banach space in the subspace topology. Hence we can regard M1 = M × X2 as a Banach
space with product topology. Moreover, the tangent space of M1 is homeomorphic to M × X3
(see [24] for more on the setting).

In the following we will still use the conditions (Fi) on F defined in previous sections and
in [24], but we will use (ε0, λ0, u0) instead of (λ0, u0) in all these conditions. In addition to
(F1)–(F3) defined above, we also define (following [24])

(F4) Fuu(ε0, λ0, u0)[w0,w0] /∈ R(Fu(ε0, λ0, u0));
(F5) Fε(ε0, λ0, u0) /∈ R(Fu(ε0, λ0, u0)).

We also use the convention that (Fi′) means that the condition defined in (Fi) does not hold.
We first prove a refinement of Theorem 2.6 and a generalization of Theorem 2.4 in [24]:

Theorem 3.1. Let F ∈ C2(M,Y ), T0 = (ε0, λ0, u0,w0) ∈ M1 such that H(T0) = (0,0). Suppose
that the operator F satisfies (F1), (F2′), (F3), (F4) and (F5) at T0. Then there exists δ > 0 such
that all the solutions of H(ε,λ,u,w) = (0,0) near T0 form a C2-curve.{

Ts = (
ε(s), λ(s), u(s),w(s)

)
, s ∈ I = (−δ, δ)

}
, (3.3)

where ε(s) = ε0 + τ(s), s ∈ I , τ(·) ∈ C2(I,R), τ(0) = τ ′(0) = 0, and

λ(s) = λ0 + s + z1(s),

u(s) = u0 + s(kw0 + v1) + z2(s),

w(s) = w0 + sψ1 + z3(s),

where s ∈ I , zi(·) ∈ C2, zi(0) = z′
i (0) = 0 (i = 1,2,3), and v1 ∈ X3 is the unique solution of

Fu(ε0, λ0, u0)[v1] + Fλ(ε0, λ0, u0) = 0, (3.4)

k is the unique number such that〈
l,Fλu(ε0, λ0, u0)[w0]

〉 + 〈
l,Fuu(ε0, λ0, u0)[v1,w0]

〉 + k
〈
l,Fuu(ε0, λ0, u0)[w0,w0]

〉 = 0, (3.5)

ψ1 ∈ X3 is the unique solution of
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Fλu(ε0, λ0, u0)[w0] + kFuu(ε0, λ0, u0)[w0,w0]
+ Fuu(ε0, λ0, u0)[v1,w0] + Fu(ε0, λ0, u0)[ψ] = 0. (3.6)

Proof. We apply Theorem 1.1 to operator H so we need to verify all the conditions. We define
a differential operator K : R × X × X3 → Y × Y ,

K[τ, v,ψ] = H(λ,u,w)(ε0, λ0, u0,w0)[τ, v,ψ]

=
(

τFλ(ε0, λ0, u0) + Fu(ε0, λ0, u0)[v]
τFλu(ε0, λ0, u0)[w0] + Fuu(ε0, λ0, u0)[v,w0] + Fu(ε0, λ0, u0)[ψ]

)
. (3.7)

(1) dimN(K) = 1. Suppose that (τ, v,ψ) ∈ N(K) and (τ, v,ψ) �= 0. If τ = 0, from
Fu(ε0, λ0, u0)[v] = 0 and (F1), we have v = kw0, and

kFuu(ε0, λ0, u0)[w0,w0] + Fu(ε0, λ0, u0)[ψ] = 0. (3.8)

But (F4) is satisfied, thus k = 0, and ψ = v = 0. This is a contradiction. Next we consider τ �= 0.
Without loss of generality, we assume that τ = 1. Notice that Fλ(ε0, λ0, u0) ∈ R(Fu(ε0, λ0, u0))

from (F2′), then v must be in form of kw0 + v1, where v1 is defined in (3.4). Substituting v =
kw0 + v1 and applying l to it, we obtain (3.5). From (F4), k can be uniquely determined by (3.5)
and ψ1 is also uniquely determined. Thus N(K) = {(1, kw0 + v1,ψ1)}.

(2) codimR(K) = 1. Let (h, g) ∈ R(K), and let (τ, v,ψ) ∈ R × X × X3 satisfy

τFλ(ε0, λ0, u0) + Fu(ε0, λ0, u0)[v] = h, (3.9)

τFλu(ε0, λ0, u0)[w0] + Fuu(ε0, λ0, u0)[v,w0] + Fu(ε0, λ0, u0)[ψ] = g. (3.10)

Applying l to (3.9), we get 〈l, h〉 = 0, hence h ∈ R(Fu(ε0, λ0, u0)), and R(K) ⊂ R(Fu)×Y . Con-
versely, for any (h, g) ∈ R(Fu)×Y , there exists a unique v2 ∈ X3 such that Fu(ε0, λ0, u0)[v2] = h.

For any τ, k ∈ R, let vτ,k = v2 + τv1 + kw0, where v1 satisfies (3.4). Then vτ,k solves (3.9). Sub-
stituting v = vτ,k into (3.10), and applying l, we obtain

τ
〈
l,Fλu[w0]

〉 + 〈
l,Fuu[w0, v2]

〉 + τ
〈
l,Fuu[w0, v1]

〉 + k
〈
l,Fuu[w0,w0]

〉 = 〈l, g〉. (3.11)

Then for fixed τ ∈ R, from (F4) there exists a unique k(τ ) so that (3.11) holds. With such choice
of k, (3.11) holds, then ψ in (3.10) is uniquely solvable in X3. Therefore (τ, vτ,k(τ),ψ) is a
pre-image of (h, g). This implies that R(K) = R(Fu(ε0, λ0, u0)) × Y , and codimR(K) = 1.

(3) H(ε0,λ0,u0,w0) = 0.

(4) Hε(ε0,λ0,u0,w0) /∈ R(K). Since R(K) = R(Fu(ε0, λ0, u0)) × Y , we only need to show
that Fε(ε0, λ0, u0,w0) /∈ R(Fu(ε0, λ0, u0)), but that is exactly assumed in (F5). So the statement
of the theorem follows from Theorem 1.1. �

In Theorem 3.1, we have ε(0) = ε0, ε′(0) = 0, λ(0) = λ0 and λ′(0) = 1. To completely de-
termine the turning direction of curve of degenerate solutions, we calculate ε′′(0). Let {Ts =
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(ε(s), λ(s), u(s),w(s)): s ∈ (−δ, δ)} be a curve of degenerate solutions which we obtain in The-
orem 3.1. Differentiating H(ε(s), λ(s), u(s),w(s)) = 0 with respect to s, we obtain

Fεε
′(s) + Fλλ

′(s) + Fu
[
u′(s)

] = 0, (3.12)

Fεu

[
w(s)

]
ε′(s) + Fλu

[
w(s)

]
λ′(s) + Fuu

[
w(s),u′(s)

] + Fu
[
w′(s)

] = 0. (3.13)

Setting s = 0 in (3.12) and (3.13), we get exactly (3.4) and (3.6). We differentiate (3.12) and
(3.13) again, and we have

Fεε

[
ε′(s)

]2 + Fεε
′′(s) + Fλλ

[
λ′(s)

]2 + Fλλ
′′(s) + Fuu

[
u′(s), u′(s)

]
+ Fu

[
u′′(s)

] + 2Fελε
′(s)λ′(s) + 2Fεu

[
u′(s)

]
ε′(s) + 2Fλu

[
u′(s)

]
λ′(s) = 0, (3.14)

Fεεu

[
w(s)

][
ε′(s)

]2 + Fεu

[
w(s)

]
ε′′(s) + Fλu

[
w(s)

]
λ′′(s)

+ Fλλu

[
w(s)

][
λ′(s)

]2 + Fuuu

[
u′(s), u′(s),w(s)

] + Fuu

[
w(s),u′′(s)

]
+ Fu

[
w′′(s)

] + 2Fελu

[
w(s)

]
ε′(s)λ′(s) + 2Fεuu

[
u′(s),w(s)

]
ε′(s)

+ 2Fλuu

[
u′(s),w(s)

]
λ′(s) + 2Fεu

[
w′(s)

]
ε′(s) + 2Fλu

[
w′(s)

]
λ′(s)

+ 2Fuu

[
w′(s), u′(s)

] = 0. (3.15)

Setting s = 0 in (3.14) and applying l to it, we obtain

〈l,Fε〉ε′′(0) + 〈l,Fλλ〉 + 〈
l,Fuu[kw0 + v1, kw0 + v1]

〉 + 2
〈
l,Fλu[kw0 + v1]

〉 = 0, (3.16)

where k satisfies (3.5). By (3.5), we have

ε′′(0) = −〈l,Fλλ〉 + 〈l,Fuu[v1, v1]〉 + 2〈l,Fλu[v1]〉 − k2〈l,Fuu[w0,w0]〉
〈l,Fε〉 . (3.17)

Our next result is under the assumption (F4′) instead of (F4). In this case an additional
transversality condition (3.18) is needed to establish the saddle-node bifurcation of the degener-
ate solutions.

Theorem 3.2. Let F ∈ C2(M,Y ), T0 = (ε0, λ0, u0,w0) ∈ M1 such that H(T0) = (0,0). Suppose
that the operator F satisfies (F1), (F2′), (F3), (F4′) and (F5) at T0. We also assume that

Fλu(ε0, λ0, u0)[w0] + Fuu(ε0, λ0, u0)[v1,w0] /∈ R
(
Fu(ε0, λ0, u0)

)
, (3.18)

where v1 ∈ X3 is defined in (3.4). Then there exists δ > 0 such that all the solutions of
H(ε,λ,u,w) = (0,0) near T0 form a C2-curve:{

Ts = (
ε(s), λ(s), u(s),w(s)

)
, s ∈ I = (−δ, δ)

}
, (3.19)

where ε(s) = ε0 + τ(s), s ∈ I , τ(·) ∈ C2(I,R), τ(0) = τ ′(0) = 0, and
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λ(s) = λ0 + z1(s),

u(s) = u0 + sw0 + z2(s),

w(s) = w0 + sψ2 + z3(s),

where s ∈ I , zi(·) ∈ C2, zi(0) = z′
i (0) = 0 (i = 1,2,3), ψ2 ∈ X3 is the unique solution of

Fu(ε0, λ0, u0)[ψ2] + Fuu(ε0, λ0, u0)[w0,w0] = 0. (3.20)

Proof. Recall K defined in (3.7).

(1) dimN(K) = 1. Let (τ, v,ψ) ∈ N(K) and (τ, v,ψ) �= 0. If τ = 0, from Fu(ε0, λ0, u0)[v] = 0
and (F1), we have v = kw0, and we also get (3.8). From (F4′), we may define ψ2 as in (3.20).
Thus (0,w0,ψ2) ∈ N(K). If τ �= 0, we may assume that τ = 1. From (F2′), The solution v1 of
(3.4) exists. More generally, the solution of (3.4) is in form of v1 + kw0. Substitute v1 + kw0
into (3.10) with g = 0, the solvability of ψ is equivalent to

Fλu(ε0, λ0, u0)[w0] + Fuu(ε0, λ0, u0)[v1,w0] ∈ R
(
Fu(ε0, λ0, u0)

)
, (3.21)

from (F4′). But we assume (3.18), hence ψ is not solvable, and there is no (τ, v,ψ) ∈ N(K)

such that τ �= 0. Hence N(K) = span{(0,w0,ψ2)}.

(2) codimR(K) = 1. Similar to the proof of Theorem 3.1, we can show that R(K) =
R(Fu(ε0, λ0, u0)) × Y. The only difference is that now in (3.11), 〈l,Fuu[w0,w0]〉 = 0. But with
(3.18), τ is uniquely determined since 〈l,Fλu[w0]〉 + 〈l,Fuu[w0, v1]〉 �= 0. With (3.11) satis-
fied, then ψ in (3.10) is also uniquely determined. Thus R(K) = R(Fu(ε0, λ0, u0)) × Y , and
codimR(K) = 1.

(3) Hε(ε0,λ0,u0,w0) /∈ R(H(λ,u,w)(ε0,λ0,u0,w0)). From (F5), Fε(ε0, λ0, u0) /∈
R(Fu(ε0, λ0, u0)), hence

Hε(ε0, λ0, u0,w0) =
(

Fε(ε0, λ0, u0)

Fεu(ε0, λ0, u0)[w0]
)

/∈ R
(
Fu(ε0, λ0, u0)

) × Y.

(4) H(ε0,λ0,u0,w0) = 0. So the statement of the theorem follows from Theorem 1.1. �
In Theorem 3.2, we have ε′(0) = λ′(0) = 0, and we can determine ε′′(0) and λ′′(0) from

(3.14) and (3.15) by setting s = 0:

Fεε
′′(0) + Fλλ

′′(0) + Fuu[w0,w0] + Fu
[
u′′(0)

] = 0, (3.22)

Fεu[w0]ε′′(0) + Fλu[w0]λ′′(0) + Fuuu[w0,w0,w0] + Fuu

[
w0, u

′′(0)
]

+ Fu
[
w′′(0)

] + 2Fuu[ψ2,w0] = 0. (3.23)

Hence we have

ε′′(0) = −〈l,Fuu[w0,w0]〉 = 0, (3.24)
〈l,Fε〉
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and

λ′′(0) = −〈l,Fuuu[w0,w0,w0]〉 + 〈l,Fuu[w0, u
′′(0)]〉 + 2〈l,Fuu[ψ2,w0]〉

〈l,Fλu[w0]〉 . (3.25)

Since ε′′(0) = 0, (3.22) implies that u′′(0) = λ′′(0)v1 +ψ2 + k1w0 for some k1 ∈ R. Substituting
this expression of u′′(0) into (3.23) and (3.25), we obtain

λ′′(0) = −〈l,Fuuu[w0,w0,w0]〉 + 3〈l,Fuu[ψ2,w0]〉
〈l,Fλu[w0]〉 + 〈l,Fuu[w0, v1]〉 . (3.26)

We differentiate (3.14) again,

Fεεε

[
ε′(s)

]3 + Fεε
′′′(s) + Fλλλ

[
λ′(s)

]3 + Fλλ
′′′(s) + Fuuu

[
u′(s), u′(s), u′(s)

]
+ Fu

[
u′′′(s)

] + 3Fεεε
′(s)ε′′(s) + 3Fλλλ

′(s)λ′′(s) + 3Fuu

[
u′′(s), u′(s)

]
+ 3Fελε

′′(s)λ′(s) + 3Fελε
′(s)λ′′(s) + 3Fεu

[
u′(s)

]
ε′′(s) + 3Fεu

[
u′′(s)

]
ε′(s)

+ 3Fλu

[
u′′(s)

]
λ′(s) + 3Fλu

[
u′(s)

]
λ′′(s) + 3Fελλε

′(s)
(
λ′(s)

)2

+ 3Fεελ

(
ε′(s)

)2
λ′(s) + 3Fεεu

[
u′(s)

](
ε′(s)

)2 + Fεuu

[
u′(s), u′(s)

]
ε′(s)

+ 3Fλλu

[
u′(s)

](
λ′(s)

)2 + 3Fλuu

[
u′(s), u′(s)

]
λ′(s) + 6Fελu

[
u′(s)

]
ε′(s)λ′(s) = 0. (3.27)

Setting s = 0 in (3.27) and applying l to it, we obtain

〈l,Fε〉ε′′′(0) + 〈
l,Fuuu[w0,w0,w0]

〉 + 3
〈
l,Fuu

[
u′′(0),w0

]〉 + 3
〈
l,Fλu[w0]

〉
λ′′(0) = 0, (3.28)

by (3.25), we have

ε′′′(0) = 2 · 〈l,Fuuu[w0,w0,w0]〉 + 3〈l,Fuu[ψ2,w0]〉
〈l,Fε〉 . (3.29)

We recall from [24] that the bifurcation at (ε0, λ0, u0) is a pitchfork bifurcation if

(F6) Fuuu(ε0, λ0, u0)[w0,w0,w0] + 3Fuu(ε0, λ0, u0)[ψ2,w0] /∈ R(Fu(ε0, λ0, u0)), where ψ2 ∈
X3 is the unique solution of (3.20).

Thus we can conclude that if (F6) is satisfied, then λ′′(0) �= 0 and ε′′′(0) �= 0 in Theorem 3.2.
With (F2′) and (F5′) both satisfied, a crossing curve structure for the degenerate solutions near

a transcritical bifurcation point is possible, as we show in the next theorem.

Theorem 3.3. Let F ∈ C2(M,Y ), T0 = (ε0, λ0, u0,w0) ∈ M1 such that H(T0) = (0,0). Suppose
that the operator F satisfies (F1), (F2′), (F3), (F4) and (F5′) at T0. We also assume that (3.18)
holds, k and v1 are defined as in (3.5) and (3.4) respectively, v2 ∈ X3 is the unique solution of

Fε(ε0, λ0, u0) + Fu(ε0, λ0, u0)[v2] = 0, (3.30)
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and the matrix

H1 ≡
( 〈l,D11〉 〈l,D12〉

〈l,D21〉 〈l,D22〉
)

(3.31)

satisfies det(H1) < 0, where Dij is given by

D11 = Fεε + 2τ1Fελ + 2τ1Fεu[v1] + 2Fεu[v2] + τ 2
1 Fλλ + 2τ 2

1 Fλu[v1]
+ 2τ1Fλu[v2] + τ 2

1 Fuu[v1, v1] + 2τ1Fuu[v1, v2] + Fuu[v2, v2],
D12 = D21 = Fελ + kFεu[w0] + Fεu[v1] + τ1Fλλ + τ1kFλu[w0] + 2τ1Fλu[v1]

+ Fλu[v2] + τ1kFuu[w0, v1] + τ1Fuu[v1, v1] + kFuu[w0, v2] + Fuu[v1, v2],
D22 = Fλλ + 2kFλu[w0] + 2Fλu[v1] + k2Fuu[w0,w0] + 2kFuu[w0, v1] + Fuu[v1, v1],

here τ1 is determined by〈
l,Fεu[w0]

〉 + τ
〈
l,Fλu[w0]

〉 + τ
〈
l,Fuu[v1,w0]

〉 + 〈
l,Fuu[v2,w0]

〉 = 0. (3.32)

Then the solutions set of H(ε,λ,u,w) = (0,0) near T0 is the union of two intersecting curves,
and the two curves are in form:{

Ti,s = (
εi(s), λi(s), ui(s),wi(s)

)
: s ∈ (−δ, δ)

}
,

where εi(s) = ε0 + μis + szi0(s), λi(s) = λ0 + ηis + szi1(s), ui(s) = u0 + ηis(kw0 + v1) +
szi2(s), wi(s) = w0 + sηiψ1 + szi3(s), (μ1, η1) and (μ2, η2) are non-zero linear independent
solutions of the equation

〈l,D11〉μ2 + 2〈l,D12〉ημ + 〈l,D22〉η2 = 0, (3.33)

zij (0) = z′
ij (0) = 0, zij (s) ∈ Z, i = 1,2; j = 0,1,2,3. If det(H1) > 0, then the solution set of

H(ε,λ,u,w) = (0,0) near T0 is the singleton {T0}.

Proof. We apply Theorem 2.1. Recall K defined in (3.7). Then the proof of Theorem 3.1
shows that dimN(K) = 1 and codimR(K) = 1 since the same assumptions except (F5′) hold
here but (F5′) is not used in this part of proof. In particular we have N(K) = span{W0 ≡
(1, kw0 + v1,ψ1)}, where ψ1 is defined by (3.6). (F5′) implies that Hε(ε0, λ0, u0,w0) ∈
R(H(λ,u,w)(ε0, λ0, u0,w0)), thus (F2′) is satisfied for H . Equation (2.1) now becomes Hε +
H(λ,u,w)[τ, v,ψ] = 0, which is

Fε + τFλ + Fu[v] = 0, (3.34)

Fεu[w0] + τFλu[w0] + Fuu[v,w0] + Fu[ψ] = 0. (3.35)

We look for a solution (τ, v,ψ) ∈ Z1 ≡ R × X3 × X3. Let v1 be defined as in (3.4), and let v2
be defined as in (3.30). Then the solution of (3.34) is given by v = τv1 + v2 ∈ X3, and with this
form of v, we apply l to (3.35) and we obtain (3.32). Thus τ = τ1 can be uniquely determined
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from (3.18), and subsequently v, ψ can be uniquely determined. We denote this solution to be
V1 = (τ1, τ1v1 + v2,ψ3).

Next we calculate the Hessian matrix in (2.2). Since R(H(λ,u,w)(ε0, λ0, u0,w0)) =
R(Fu(ε0, λ0, u0)) × Y , we define l1 ∈ (Y × Y)∗ by〈

l1, (y1, y2)
〉 = 〈l, y1〉, (3.36)

where l ∈ Y ∗ so that 〈l, y〉 = 0 if and only if y ∈ R(Fu(ε0, λ0, u0)). For the simplicity of nota-
tions, we also denote U = (λ,u,w). Then the matrix H0 in Theorem 2.1 is in form of

H1 ≡
( 〈l1,Hεε + 2HεU [V1] + HUU [V1,V1]〉 〈l1,HεU [W0] + HUU [V1,W0]〉

〈l1,HεU [W0] + HUU [V1,W0]〉 〈l1,HUU [W0,W0]〉
)

=
(

〈l,Fεε + 2FεŨ [Ṽ1] + FŨŨ [Ṽ1, Ṽ1]〉 〈l,FεŨ [W̃0] + FŨŨ [Ṽ1, W̃0]〉
〈l,FεŨ [W̃0] + FŨŨ [Ṽ1, W̃0]〉 〈l,FŨŨ [W̃0, W̃0]〉

)
, (3.37)

where Ṽ1 = (τ1, τ1v1 + v2) and W̃0 = (1, kw0 + v1) are the projection of V1 and W0 from R ×
X × X3 to R × X, and Ũ = (λ,u). From direct calculation, we can show that H1 takes the form
in (3.31). Now we can apply Theorem 2.1 to obtain the conclusions of the theorem. �

An important special case of Theorem 3.3 is when we have a constant solution for all λ

near λ0, i.e. we assume that F(ε0, λ,u0) ≡ 0 for λ near λ0.

Corollary 3.4. Let F ∈ C2(M,Y ), T0 = (ε0, λ0, u0,w0) ∈ M1 such that H(T0) = (0,0). We
assume that there exists a neighborhood U of (ε0, λ0) in R2 such that F(ε0, λ,u0) ≡ 0 for
(ε0, λ) ∈ U and Fε(ε0, λ0, u0) = 0. Suppose that at T0 the operator F satisfies (F1), (F3), (F4)
and

(F7) (vH2vT )/〈l,Fuu[w0,w0]〉 > 0, where v = (〈l,Fλu[w0]〉, 〈l,Fελ〉), and

H2 ≡
( 〈l,Fεε〉 −〈l,Fεu[w0]〉

−〈l,Fεu[w0]〉 〈l,Fuu[w0,w0]〉
)

, (3.38)

then the conclusions of Theorem 3.3 hold and (μ1, η1) and (μ2, η2) are non-zero linear indepen-
dent solutions of the equation(〈l,Fεε〉

〈
l,Fλu[w0]

〉 − 2〈l,Fελ〉
〈
l,Fεu[w0]

〉)〈
l,Fuu[w0,w0]

〉
μ2

+ 2〈l,Fελ〉
〈
l,Fλu[w0]

〉〈
l,Fuu[w0,w0]

〉
ημ − (〈

l,Fλu[w0]
〉)3

η2 = 0. (3.39)

Proof. We apply Theorem 3.3. (F2′) and (F5′) are satisfied and v1 = v2 = 0 since
Fε(ε0, λ0, u0) = 0, and F(ε0, λ,u0) ≡ 0 for (ε0, λ) ∈ U . (3.18) is also satisfied since v1 = 0
and (F3). Equations (3.5) and (3.32) now become〈

l,Fλu[w0]
〉 + k

〈
l,Fuu[w0,w0]

〉 = 0, and
〈
l,Fεu[w0]

〉 + τ1
〈
l,Fλu[w0]

〉 = 0, (3.40)

respectively. For the entries of matrix H1, we have 〈l,D11〉 = 〈l,Fεε + 2τ1Fελ〉, 〈l,D12〉 =
〈l,Fελ〉, and 〈l,D22〉 = k〈l,Fλu[w0]〉 from (3.32) and Theorem 3.3. With τ1 and k determined
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by (3.40), then det(H1) = −vH2vT /〈l,Fuu[w0,w0]〉, where v and H2 are defined in (F7). Hence
(F7) implies the indefiniteness of H1. So the statement of the theorem follows from Theorem 3.3
and (3.39) is from calculations. �
Remark 3.5.

(1) We notice that (F7) is satisfied if the matrix H2 is negatively definite and 〈l,Fuu[w0,w0]〉<0,
which only depends on the value of F(ε,λ,u) for λ = λ0, not λ near λ0 since no derivatives
respect to λ is involves in (F7).

(2) If (vH2vT )/〈l,Fuu[w0,w0]〉 < 0 in (F7), then the set of degenerate solutions near T0 is the
singleton {T0}, from Theorem 2.1. This would happen if 〈l,Fuu[w0,w0]〉 < 0 and H2 is
positively definite (see Fig. 4).

A more special case is when we also assume Fεu[w0] = 0:

Corollary 3.6. Assume the conditions in Corollary 3.4 are satisfied, and in addition we assume
that Fεu[w0] = 0, and

〈l,Fεε〉 · 〈l,Fuu[w0,w0]
〉
> 0. (3.41)

Then the solution set of H(ε,λ,u,w) = 0 near T0 is the union of two curves of form:{
Ti,ε = (

εi(s), λi(s), ui(s),wi(s)
)
: s ∈ (−δ, δ)

}
, (3.42)

where εi(s) = ε0 + μis + szi0(s), λi(s) = λ0 + ηis + szi1(s), ui(s) = u0 + ηiskw0 + szi2(s),
wi(s) = w0 + sηiψ1 + szi3(s), (μ1, η1) and (μ2, η2) are non-zero linear independent solutions
of the equation

〈l,Fεε〉 · 〈l,Fuu[w0,w0]
〉
μ2 + 2〈l,Fελ〉 · 〈l,Fuu[w0,w0]

〉
μη − (〈

l,Fλu[w0]
〉)2

η2 = 0. (3.43)

Proof. We apply Corollary 3.4. (F7) is satisfied since τ1 = 0 and the expression in (F7) is now
simplified as

−〈l,Fεε〉 · (〈l,Fλu[w0]〉)2

〈l,Fuu[w0,w0]〉 − (〈l,Fελ〉
)2

< 0,

because of (3.41). Therefore we can apply Corollary 3.4 to obtain the results here. Notice that
since Fε = 0 and Fεu[w0] = 0, then Hε = 0 thus we can also apply Corollary 2.2. �
4. Perturbation of bifurcation diagrams

In this section we shall apply the results in Section 3 to the original equation F(ε,λ,u) = 0,
and observe the variations of bifurcation diagrams in (λ,u) space when the parameter ε is per-
turbed from ε = ε0. First Theorem 3.1 is only a generalization of [24, Theorem 2.4], and the
variations of the bifurcation diagrams have been studied in [24, Theorem 2.5]. Hence we will not
discuss that situation here. The following result illustrates the application of Theorem 3.2.
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Theorem 4.1. Assume the conditions in Theorem 3.2 are satisfied, and {Ts} is defined as in
Theorem 3.2. In addition we assume that F ∈ C3(M,Y ), F(ε0, λ,u0) = 0 for |λ − λ0| < γ

for some γ > 0, and F satisfies (F6). Then ε′′′(0) �= 0 and λ′′(0) �= 0. If 〈l,Fε〉 < 0,
〈l,Fuuu[w0,w0,w0]〉 + 3〈l,Fuu[w0,ψ2]〉 < 0, where ψ2 satisfies (3.20), and 〈l,Fλu[w0]〉 > 0,
then ε′′′(0) > 0 and λ′′(0) > 0, there exist ρ1, δ1, δ2 > 0 such that for N = {(λ,u) ∈ R × X:
|λ − λ0| � δ1, ‖u‖ � δ2}, we have

(A) for ε = ε0,

F−1(0) ∩ N = {
(λ,0): |λ − λ0| � δ1

} ∪ Σ0, Σ0 = {(
λ(t), u(t)

)
, |t | � η

}
, (4.1)

where λ(0) = λ0, λ′(0) = 0, λ′′(0) > 0, and λ(±η) = λ0 + δ1;
(B) for fixed ε ∈ (ε0 − ρ1, ε0) ∪ (ε0, ε0 + ρ1),

F−1(0) ∩ N = Σ+
ε ∪ Σ−

ε , (4.2)

where Σ+
ε = {(λ+(t), u+(t)), t ∈ [−η,+η]}, where λ+(±η) = λ0 + δ1, λ′+(0) = 0,

λ′′+(0) > 0, and (λ+(0), u+(0)) is the unique degenerate solution on Σ+
ε ; and Σ−

ε =
{(λ−, u(λ−)): λ− ∈ [λ0 − δ1, λ0 + δ1]} is a monotone curve without degenerate solutions
(see Fig. 2).

Proof. From Theorem 3.2 and (3.29), we have ε′(0) = 0, λ′(0) = 0, ε′′(0) = 0, ε′′′(0) �= 0. From
the assumptions, (3.26) (with v1 = 0) and (3.29), λ′′(0) > 0 and ε′′′(0) > 0. When ε = ε0, there
is a branch of trivial solutions, and a branch of non-trivial ones (which we denote by Σ0 =
(λ(t), u(t))) from Theorem 1.2. The conditions (F3) and (F4′) imply that λ′(0) = 0 and from
[24, (4.6)]

λ′′(0) = −〈l,Fuuu[w0,w0,w0]〉 + 3〈l,Fuu[w0,ψ2]〉
3〈l,Fλu[w0]〉 > 0. (4.3)

Thus when ε = ε0, the bifurcation near (λ0, u0) is a supercritical pitchfork one, and there is
only one degenerate solution on Σ0 near (λ0, u0). Define N = {(λ,u) ∈ R × X: |λ − λ0| � δ1,
‖u‖ � δ2}, such that (4.1) holds and λ(±η) = λ0 + δ1, for t ∈ [−η,+η], ‖u(t)‖ � δ2/2.

We denote by Σε the solution set of (3.1) in N for fixed ε. Since λ′′(0) > 0 and ε′′′(0) > 0,
then there exists ρ2 > 0 such that for ε ∈ (ε0, ε0 + ρ2), (3.1) has a unique degenerate so-
lution (λ+, u+), where λ+ = λ(s+) > λ0, s+ > 0 for s+ small. Moreover, u+ is a degener-
ate solution which satisfy the condition of Theorem 1.1. In fact, we only need to check that
Fλ(ε,λ+, u+) /∈ R(Fu(ε, λ+, u+)). Define A(s) = 〈l(s),Fλ(ε(s), λ(s), u(s))〉, where l(s) ∈ Y ∗
satisfying N(l(s)) = R(Fu(ε(s), λ(s), u(s)). Then A′(0) = 〈l,Fλu(ε0, λ0, u0)[w0]〉 > 0 and
A(0) = 0, so A(s+) > 0. Define B(s) = 〈l(s),Fuu(ε(s), λ(s), u(s))[w(s),w(s)]〉, we have

B ′(0) = 〈
l′(0),Fuu[w0,w0]

〉 + 〈
l,Fuuu[w0,w0,w0] + 2Fuu[ψ2,w0]

〉
= 〈

l,Fuuu[w0,w0,w0] + 3Fuu[ψ2,w0]
〉
< 0, (4.4)

since ε′(0) = λ′(0) = 0, u′(0) = w0, w′(0) = ψ2, ε′′(0) = 0. In (4.4), we obtain 〈l′(0),

Fuu[w0,w0]〉 = 〈l,Fuu[ψ2,w0]〉 by differentiating 〈l(s),Fu(ε(s), λ(s), u(s)) [w0]〉 = 0 twice
and using (3.25). In particular B(s+) < 0. From Theorem 1.1, near (λ+, u+), the solutions form
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a curve Σ+
ε = {(λ+(t), u+(t)), t ∈ [−η,+η]} with λ+(0) = λ+, u+(0) = u+, λ′′+(0) > 0 and

λ+(±η) = λ0 + δ1. Here we obtain λ′′+(0) > 0 by using [24, (4.1)]

λ′′+(0) = −〈l+,Fuu(λ+, u+)[w+,w+]〉
〈l+,Fλ(λ+, u+)〉 = −B(s+)

A(s+)
. (4.5)

From the definition of N , there exists ρ3 > 0 such that for ε ∈ [ε0, ε0 + ρ3], (3.1) has no
solution (λ,u) with ‖u‖ = δ2 with |λ − λ0| � δ1. And there exists ρ4 > 0 such that for ε ∈
(ε0, ε0 + ρ4], there is no degenerate solution (λ,u) of (3.1) with ‖u‖ � δ2 and |λ − λ0| � δ1/2.
For ε = ε0, (3.1) have two nontrivial solutions (λ0 + δ1, u

∗±) ∈ ∂N such that ‖u∗±‖ � δ2/2. Since
u∗± is non-degenerate, for fixed λ = λ∗, by implicit function theorem, there exists ρ5 > 0 such
that for ε ∈ (ε0 −ρ5, ε0 +ρ5), (3.1) has a unique solution u∗±(ε) near u∗±, a unique solution u∗

0(ε)

near the trivial solution u0 with λ = λ0 +δ1, and a unique solution u∗0(ε) near the trivial solution
u0 with λ = λ0 − δ1. Therefore from the implicit function theorem and the fact that (λ+, u+) is
the only degenerate solution in N , the solution set of (3.1) in N consists of Σ+

ε defined above,
and another monotone curve which we denote by Σ−

ε .
We claim that Σε consists of only Σ±

ε for ε ∈ (ε0, ε0 + ρ1) with ρ1 = min{ρ2, ρ3, ρ4, ρ5}.
Suppose that for some ε ∈ (ε0, ε0 + ρ1), there is another solution (λ,u) which is not on Σ±

ε .
Then (λ,u) is a non-degenerate solution since the only degenerate solution is (λ+, u+). So by the
implicit function theorem, (λ,u) is on a solution curve Σ1 = (λ̃(s), ũ(s)) which can be extended
to ∂N . But there is no solution on ‖u‖ = δ2, so there is a solution (λ0 + δ1, u

∗) on Σ1. On
the other hand, Σε has another three solutions with λ = λ0 + δ1, thus there are at least four
solutions with λ = λ0 + δ1, which contradicts with the definition of ρ1 and the arguments in the
last paragraph. The proof for ε ∈ (ε0 − ρ1, ε0) is similar. �
Remark 4.2.

(1) The assumptions on the signs of 〈l,Fuuu[w0,w0,w0]〉 + 3〈l,Fuu[w0,ψ2]〉, 〈l,Fε〉 and
〈l,Fλu[w0]〉 are only for the purpose of fixing an orientation, similar results for other cases
can also be established.

(2) From the proof, the solutions λ+(±η) are two of the three solutions u∗± and u∗
0, but it is not

immediately clear which two. However usually with more information, we can show that
u∗

0 must be one of λ+(±η), i.e. the perturbation u∗
0 of the trivial solution u0 must be on the

curve with turning point, which is consistent with observations in experiments.

Theorem 4.3. Assume the conditions in Corollary 3.6 are satisfied, and in addition we assume
Fελ(ε0, λ0, u0) = 0. For the purpose of fixing an orientation, we assume that〈

l,Fλu(ε0, λ0, u0)[w0]
〉
> 0, and

〈
l,Fuu(ε0, λ0, u0)[w0,w0]

〉
< 0. (4.6)

Then there exist ρ, δ1, δ2 > 0 such that for N = {(λ,u) ∈ R × X: |λ − λ0| � δ1, ‖u‖ � δ2},
(A) for ε = ε0,

F−1(0) ∩ N = {
(λ,u0): |λ − λ0| � δ1

} ∪ Σ0,

Σ0 = {(
λ(t), u(t)

)
: t ∈ [−η,η]}, and λ′(t) > 0 for t ∈ [−η,η]; (4.7)
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(B) for ε ∈ (ε0 − ρ, ε0) ∪ (ε0, ε + ρ),

F−1(0) ∩ N = Σ+
ε ∪ Σ−

ε , Σ±
ε = {(

λ±(t), u±(t)
)
: t ∈ [−η,η]}

where λ′±(0) = 0, λ′′+(0) > 0, λ′′−(0) < 0 and there is exactly one turning point on each
component Σ±

ε ; moreover λ+(0) > λ0 > λ−(0).

Proof. From (4.6) and (3.41), we also have 〈l,Fεε(ε0, λ0, u0)〉 < 0. When ε = ε0, by Theo-
rem 1.2, the solution set of F(ε0, λ,u) = 0 near (λ0, u0) consists precisely the two curves of
form in (4.7), where

λ′(0) = −〈l,Fuu(ε0, λ0, u0)[w0,w0]〉
2〈l,Fλu(ε0, λ0, u0)[w0]〉 > 0.

From the conditions in Corollary 3.6, μi �= 0 and ηi �= 0 for i = 1,2, thus there are exactly
two degenerate solutions for ε ∈ (ε0, ε0 + ρ) as well as for ε ∈ (ε0 − ρ, ε0). To be more precise,
we assume μi = 1 for i = 1,2. When ε ∈ (ε0, ε0 + ρ), we denote the two degenerate solutions
by (λ+, u+) and (λ−, u−), where λ+ = λ(s+) = λ0 + η1s+ + o(|s+|) and λ− = λ(s−) = λ0 +
η2s− + o(|s−|), s+ > 0 and s− > 0 since ε = ε0 + s+ + o(|s+|) and ε = ε0 + s− + o(|s−|),
u± = u0 + ηiks±w0 + o(|s|) for |s| small. From (3.43), we have

ηi = ±
√〈l,Fεε〉 · 〈l,Fuu[w0,w0]〉

〈l,Fλu[w0]〉 . (4.8)

To be definite we assume η1 > 0 and η2 < 0, then λ+ > λ0 and λ− < λ0.
Recall the definitions of A(s) and l(s) from the proof of Theorem 4.1, and here first we

consider the branch corresponding to (μ1, η1). Then A is differentiable, A(0) = 〈l,Fλ(ε0,

λ0, u0)〉 = 0, and since Fελ(ε0, λ0, u0) = 0, we have

A′(0) = 〈
l′(0),Fλ

〉 + μ1〈l,Fελ〉 + η1〈l,Fλλ〉 + kη1
〈
l,Fλu[w0]

〉
= kη1

〈
l,Fλu[w0]

〉 = − 〈l,Fλu[w0]〉
〈l,Fuu[w0,w0]〉

√
〈l,Fεε〉 · 〈l,Fuu[w0,w0]

〉
> 0.

Thus A(s+) > 0. On the other hand, since〈
l,Fuu(ε0, λ0, u0)[w0,w0]

〉
< 0,

we have 〈
l(s),Fuu

(
ε(s), λ(s), u(s)

)[
w(s),w(s)

]〉
< 0,

for |s| small. From Theorem 1.1, near (λ+, u+) the solution forms a curve Σ+
ε = {(λ+(t), u+(t)):

t ∈ [−η,η]} with λ+(0) = λ+, u+(0) = u+, λ′+(0) = 0 and

λ′′+(0) = −〈l(s+),Fuu(ε+, λ+, u+)[w(s+),w(s+)]〉
> 0.
〈l(s+),Fλ(ε+, λ+, u+)〉
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Similarly the solutions near (λ−, u−) the solution forms a curve Σ−
ε = {(λ−(t), u−(t)): t ∈

[−η,η]} with λ−(0) = λ−, u−(0) = u−, λ′−(0) = 0 and λ′′−(0) < 0. The proof for the case ε < ε0
is similar. �

It is clear that when ε ∈ (ε0, ε0 + ρ) ∪ (ε0 − ρ, ε0), there exists an interval I = (λ0 − δε, λ0 +
δε) such that (3.1) has no solutions near (λ0, u0) when λ ∈ I (see Fig. 3).

5. Examples

5.1. Euler bucking beam: symmetry break of pitchfork bifurcation

The Euler buckling beam problem was one of the first bifurcation problems to be studied,
as early as by Euler, see for example [1,9,10,23] for more historical remarks and details on
modeling. Here we follow an example of Reiss [23]:⎧⎨⎩

φ′′ + λ sinφ = 0, 0 < x < 1, φ′(0) = φ′(1) = 0,

u′ = cosφ − 1, 0 < x < 1, u(0) = 0,

w′ = sinφ, 0 < x < 1, w(0) = w(1) = 0.

(5.1)

Here the length of the elastic column is normalized so that 0 � x � 1, the horizontal and vertical
displacements of the buckled axis are denoted by u(x) and w(x) respectively, φ(x) is the angle
between the tangent to the column’s axis and the x-axis, and λ is a parameter proportional to the
thrust. The boundary conditions imply that the ends of the column are pinned (simply supported).
For this classical problem, solutions can be obtained explicitly in terms of elliptic functions, and
supercritical pitchfork bifurcations occur along the trivial solutions φ = u = w = 0 from λ =
(nπ)2 with n = 1,2, . . . . The minimal buckling load λ1 is the Euler buckling load. To account
for imperfections in the column, we assume that the initial unstressed axis is a curve instead of
a line, and the angle between the tangent of the curve and the horizontal is φI (x). Then the φ

equation in (5.1) is modified to

φ′′ + λ sinφ = λεg(x), 0 < x < 1, φ′(0) = φ′(1) = 0, (5.2)

where g(x) = φ′′
I (x) and φ′

I (0) = φ′
I (1) = 0 (thus

∫ 1
0 g(x)dx = 0). In [14,23], singular per-

turbation methods matching the inner and outer expansions were used to derive the imperfect
bifurcation near (λ,u) = (π2,0). Here we will apply Theorems 3.2 and 4.1 to analytically obtain
the precise bifurcation diagrams. But first we illustrate how the secondary bifurcation theorem
(Theorem 2.7) can be applied to the bifurcation at λ = 0:

Proposition 5.1. Suppose that g(x) ∈ C1([0,1],R),
∫ 1

0 g(x)dx = 0, then for any ε ∈ R, the
solution set of (5.2) near (λ,u) = (0,0) is in form of

Σε = {
(0, k): k ∈ R

} ∪ {(
λ,λφ0(x) + o(|λ|)): λ ∈ (−δ, δ)

}
, (5.3)

where φ0(x) is the solution of

φ′′ = εg(x), 0 < x < 1, φ′(0) = φ′(1) = 0. (5.4)
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Proof. For fixed ε ∈ R, define G(λ,φ) = φ′′ + λ sinφ − λεg, where λ ∈ R and φ ∈ X = {v ∈
C2([0,1]): v′(0) = v′(1) = 0}. We denote W = R × X and Y = C0([0,1]). Then G(0,0) = 0,
and

G′(λ,φ)
[
(τ, θ)

] = (sinφ − εg)τ + θ ′′ + λ cosφθ,

G′′(λ,φ)
[
(τ1, θ1)(τ2, θ2)

] = 0 · τ1τ2 + cosφ(τ1θ2 + τ2θ1) − λ sinφθ1θ2. (5.5)

Thus G′(0,0)[(τ, θ)]= θ ′′ − εgτ , which has a two-dimensional kernel N(G′(0,0))= span{(0,1),

(1, φ0)}. If h ∈ R(G′(0,0)), then there exists (τ, θ) such that θ ′′ − εgτ = h. Since∫ 1
0 g(x)dx = 0, then the solvability of (τ, θ) is reduced to

∫ 1
0 h(x)dx = 0. Hence R(G′(0,0)) =

{h ∈ Y :
∫ 1

0 h(x)dx = 0}, which is co-dimensional one. Also G′′(0,0)[(0,1)(1, φ0)] = 1 /∈
R(G′(0,0)), and G′′(0,0)[(0,1)(0,1)] = 0 ∈ R(G′(0,0)). Hence Theorem 2.7 can be applied to
obtain results stated since (0, k) is always a solution for any k, and we can reparameterize the
nontrivial branch so that λ is the new parameter. �

Next we apply Theorem 4.1 near the first bifurcation point λ1 = π2:

Proposition 5.2. Suppose that g(x) ∈ C1([0,1],R),
∫ 1

0 g(x)dx = 0, and
∫ 1

0 g(x) cosπx dx > 0.
Then there exists ρ, δ1, δ2 > 0 such that for ε ∈ (−ρ,ρ), N = {(λ,u) ∈ R × X: |λ − π2| � δ1,

‖u‖ � δ2} such that the solution set of (5.2) in N is in form of Σ+
ε ∪ Σ−

ε , where Σ+
ε =

{(λ+(t), u+(t)), |t | � η} is a ⊂-shaped curve with λ′′+(0) > 0, and (λ+(0), u+(0)) is the unique
degenerate solution on Σ+

ε ; and Σ−
ε = {(λ−, u(λ−)): |λ− − π2| � δ1} is a monotone curve

without degenerate solutions. Moreover the bifurcation point satisfies

λ+(0) = π2 + 3

2
π2

( 1∫
0

g(x) cos(πx)dx

)2/3

ε2/3 + o
(
ε2/3). (5.6)

Proof. We define

F(ε,λ,φ) = φ′′ + λ sinφ − λεg(x), (5.7)

where ε,λ ∈ R and φ ∈ X = {v ∈ C2([0,1]): v′(0) = v′(1) = 0}. With

Fφ(ε,λ,φ)[w] = w′′ + λ cosφ · w (5.8)

we can easily check that for λ1 = π2 and w0 = cosπx, (F1) and (F2′) are satisfied, and
R(Fφ(0, λ1,0)) = {v ∈ X:

∫ 1
0 v(x) cos(πx)dx = 0}. Since Fλφ(0, λ1,0)[w0] = cos(0)w0 = w0

and
∫ 1

0 w0(x) cos(πx)dx �= 0, then (F3) is satisfied; so is (F4′) since Fφφ(0, λ1,0)[w0,w0] =
−λ1 sin(0) · w2

0 = 0. Finally (F5) is satisfied since Fε(0, λ1,0) = −λ1g(x) and we assume

that
∫ 1

0 g(x) cosπx dx �= 0. Hence Theorem 3.2 can be applied, with v1 = 0 and ψ2 = 0,
and the degenerate solutions are on a curve {Ts = (ε(s), λ(s), u(s),w(s)): |s| < δ} such that
ε′(0) = ε′′(0) = λ′(0) = w′(0) = 0, and u′(0) = w0. Moreover we can verify that 〈l,Fε〉 < 0,
〈l,Fφφφ[w0,w0,w0]〉 + 3〈l,Fφφ[w0,ψ2]〉 < 0, and 〈l,Fλφ[w0]〉 > 0. Therefore Theorem 4.1
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also holds. Equations (3.26) and (3.29) imply that

λ′′(0) = λ1
∫ 1

0 w4
0(x) dx∫ 1

0 w2
0(x) dx

= 3π2

4
, (5.9)

and

ε′′′(0) = 2
∫ 1

0 w4
0(x) dx∫ 1

0 w0(x)g(x) dx
> 0. (5.10)

Hence Ts = ((p/6)s3 + o(|s|3),π2 + (3/8)π2s2 + o(s2), s cos(πx) + o(|s|), cos(πx) + o(|s|)),
where p = ε′′′(0) > 0. We rescale the parameter s so ε(s) = (p/6)s3 then λ(s) = π2 +
(3/8)62/3π2p−2/3ε2/3 + o(ε2/3) = π2 + (3/2)π2(

∫ 1
0 g(x) cos(πx)dx)2/3ε2/3 + o(ε2/3), which

is the λ-coordinate of the unique degenerate solution for fixed small ε. Thus the turning point in
Theorem 4.1 satisfies (5.6). �

Now by using the perturbation analysis of degenerate solutions in Propositions 5.1 and 5.2
and implicit function theorem, we can obtain the following global imperfect bifurcation picture
for 0 < λ < 4π2 − δ with small ε (the proof is standard, which we omit):

Theorem 5.3. Suppose that g(x) ∈ C1([0,1],R),
∫ 1

0 g(x)dx = 0, and
∫ 1

0 g(x) cosπx dx > 0.
For any δ1 > 0, there exists

(1) If ε = 0, then (5.2) has the trivial solution u = 0 for all λ > 0, and has exactly two other
solutions u+(x) and u−(x) for λ ∈ (π2,4π2) and u−(x) = −u+(x) = u+(1 − x);

(2) If ε ∈ (−δ2, δ2)\{0}, then there exists λ∗ such that (5.2) has exactly one solution when
λ ∈ (0, λ∗), has exactly two solutions when λ = λ∗ and has exact three solutions when
λ ∈ (λ∗,4π2 − δ1). Moreover λ∗ = λ∗(ε) is given by (5.6), λ∗ > π2 if δ2 > ε > 0 and
λ∗ < π2 if 0 > ε > −δ2.

Note that we can show that when
∫ 1

0 g(x) cosπx dx < 0, same results hold but λ∗ < π2 if
δ2 > ε > 0 and λ∗ > π2 if 0 > ε > −δ2. We remark that the expansion in (5.6) was also obtained
previously in [23], but results we have here are rigorous not just formal perturbation expansion.

5.2. Perturbed diffusive logistic equation: symmetry break of a transcritical bifurcation

Diffusive logistic equation (Fisher equation) is one of most important reaction–diffusion equa-
tions with connections to biological invasion of foreign species, propagation of genetic traits
[8,12]. The steady state diffusive logistic equation on a bounded domain is in form of{

�u + λ
(
u − u2

) = 0 in Ω ,

u = 0 on ∂Ω ,
(5.11)

where λ is a positive parameter, and Ω is a smooth bounded region in Rn for n � 1. The nonlin-
earity f (u) can be more general as the one defined in [26,27], but here for the transparency of
presentation, we use f (u) = u−u2 as in the classical equation. The perturbed problem of (5.12)
arises when the population is harvested:
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{
�u + λ

(
u − u2 − εg(x,u)

) = 0 in Ω ,

u = 0 on ∂Ω .
(5.12)

Perturbation and bifurcation analysis have been performed in [24,26]. Here we demonstrate our
new abstract theory with some new results and also rediscovery of old results.

In the following (λ1, φ1) is the principal eigen-pair of{
�φ + λφ = 0 in Ω ,

φ = 0 on ∂Ω ,
(5.13)

and we assume φ1 is normalized and φ1(x) > 0 in Ω . The bifurcation diagram for unperturbed
problem is well known (see [26,27]):

Theorem 5.4. When ε = 0, (5.12) has no positive solution if λ � λ1, and has exactly one posi-
tive solution vλ if λ > λ1. Moreover, all vλ’s lie on a smooth curve, limλ→λ−

1
vλ = 0 and vλ is

increasing with respect to λ.

Indeed (λ,u) = (λ1,0) is a bifurcation point where a transcritical bifurcation (see Theo-
rem 1.2) occurs. To show that, we define

F 0(λ,u) = �u + λ
(
u − u2), (5.14)

where λ ∈ R and u ∈ X = {u ∈ C2,α(Ω): u = 0 on ∂Ω}. Then u = 0 is a trivial solu-
tion for any λ, N(F 0

u (λ1,0)) = span{φ1}, R(F 0
u (λ1,0)) = {v ∈ Cα(Ω):

∫
Ω

vφ1 dx = 0}, and
F 0

λu(λ1,0)[φ1] = φ1 /∈ R(F 0
u (λ1,0)). Hence (F1), (F2′) and (F3) are satisfied, and Theorem 1.2

is applicable. Moreover, F 0
uu(λ1,0)[φ1, φ1] = −2λ1φ

2
1 /∈ R(F 0

u (λ1,0)) since
∫
Ω

φ3
1 dx �= 0, thus

(F4) is satisfied, and a transcritical bifurcation occurs at (λ1,0). Note that all these remain true
for a perturbed operator F(ε,λ,u) if F(0, λ,u) ≡ F 0(λ,u).

First we consider {
�u + λ

(
u − u2

) − λεg(x) = 0, in Ω ,

u(x) = 0, on ∂Ω ,
(5.15)

where g(x) ∈ C1(Ω) and ∫
Ω

g(x)φ1(x) dx �= 0. (5.16)

We define

F(ε,λ,u) = �u + λ
(
u − u2) − λεg(x). (5.17)

Then (F1), (F2′), (F3) and (F4) are satisfied at (ε, λ,u) = (0, λ1,0) since F(0, λ,u) ≡ F 0(λ,u)

defined above. (F5) is also satisfied, as we have Fε(0, λ1,0) = −λ1g(x) /∈ R(Fu(0, λ1,0)) from
(5.16). From Theorem 3.1, there exists δ > 0 such that all the degenerate solutions of (5.15) near
T0 = (0, λ1,0, φ1) form a C2-curve{

Ts = (
ε(s), λ1 + s + o

(|s|), ksφ1 + o
(|s|), φ1 + o(1)

)
, s ∈ I = (−δ, δ)

}
, (5.18)
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where

k =
∫
Ω

φ2
1(x) dx

2λ1
∫
Ω

φ3
1(x) dx

> 0, (5.19)

ε(0) = ε′(0) = 0, and from (3.17),

ε′′(0) = k2〈l,Fuu[w0,w0]〉
〈l,Fε〉 = 2k2

∫
Ω

φ3
1(x) dx∫

Ω
g(x)φ1(x) dx

. (5.20)

We assume
∫
Ω

g(x)φ1(x) dx > 0 then ε′′(0) > 0, and the variation of the bifurcation diagrams
near ε = 0 is shown in Fig. 1 (for more detailed proof, see [24, Theorem 2.5 and Section 6.1]).

Next we consider {
�u + λ

(
u − u2

) − λε2g(x) = 0, in Ω ,

u(x) = 0, on ∂Ω ,
(5.21)

where g(x) ∈ C1(Ω), and g satisfies ∫
Ω

g(x)φ1(x) dx > 0. (5.22)

We define

F(ε,λ,u) = �u + λ
(
u − u2) − λε2g(x). (5.23)

Again (F1), (F2′), (F3) and (F4) are satisfied at (ε, λ,u) = (0, λ1,0). But Fε(0, λ1,0) = 0 hence
(F5′) is satisfied. Moreover we also have Fεu(0, λ1,0)[φ1] = 0, Fεε(0, λ1,0) = −2λ1g(x), thus

m ≡ 〈l,Fεε〉 · 〈l,Fuu[φ1, φ1]
〉 = 4λ2

1

∫
Ω

g(x)φ1(x) dx ·
∫
Ω

φ3
1(x) dx > 0, (5.24)

from (5.22). Hence the conclusions of Corollary 3.6 hold and (μ1, η1) and (μ2, η2) are non-zero
linear independent solutions of the equation

mμ2 − q2η2 = 0, (5.25)

where q = 〈l,Fλu(0, λ1,0)[φ1]〉 = ∫
Ω

φ2
1 dx > 0. We can choose (μ1, η1) = (q,

√
m) and

(μ2, η2) = (q,−√
m). Hence for ε �= 0, the transition in Fig. 3 occurs. However, if (5.22) is

changed to
∫
Ω

g(x)φ1(x) dx < 0, for ε �= 0, there is no degenerate solutions nearby (see Fig. 4).
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