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‘The dynamical behavior of two coupled cells or reactors is described. The cells are coupled
by diffusion, e.g., through a semipermeable membrane, and the chemical reactions and

initial or feed concentrations of all species are the same in the two cells. Each cell has only a
single stable steady state in the absence of coupling, and the coupled system may

exhibit multiple steady states, periodic oscillation, or chaos. The attractors of the coupled
system may be either homogeneous (the two cells have equal concentrations) or
inhomogeneous. Three two-variable kinetic models are examined: the Brusselator, a model of
the chlorine dioxide-iodine-malonic acid reaction, and the Degn-Harrison model. The
dynamical behavior of the coupled system is determined by the nonlinearities in the uncoupled
subsystems and by two ratios, that of the diffusion constants of the two species and that

of the area of the membrane to the product of the membrane thickness and the volume of a cell.

I. INTRODUCTION

Many dynamical problems of physical and biological
interest involve systems that consist of two or more cou-
pled chemically reacting subsystems. The coupling of two
reactors or cells may be accomplished in a variety of ways.
For example, mass exchange,! electrical coupling,? and
chemical reactions® have all been employed in studies of
coupled chemical oscillators. The mass exchange may be
diffusive, in which the diffusion coefficients of the reacting
species can differ, or it may be convective, so that all “dif-
fusion coefficients” are the same, Diffusion may be Fickian
or concentration dependent. One may envision many com-
binations of uncoupled states in the individual reactors. In
the limit of zero coupling, each subsystemn may show
steady state or oscillatory behavior, and, depending upon
the parameters (input concentrations, rate constants), the
two reactors may possess the same or different attractors.
In this paper we treat the case of two reactors that have the
same unique stable steady state and that are coupled by
Fickian diffusion.

One normally thinks of diffusion as acting to equalize
concentration differences in space. However, as Turing
showed* nearly 4 decades ago in a remarkable paper enti-
tled “The Chemical Basis of Morphogenesis,” diffusion can
have the opposite effect. When diffusion is coupled to suit-
able chemical reactions, it can destabilize a stable homo-
geneous steady state, generating stable, time-independent
concentration gradients, Turing’s work has become the ba-
sis for an important approach to modeling spatial structure
in biological systems, from patterns on animal coats to
cluster formation in bacterial cultures. The literature on
the subject is extensive; we mention here the books by
Meinhardt® and Murray.® Most work has been done for the
case of distributed spatial one-dimensional systems, but as
Turing showed, diffusion-induced instability can also occur

when two homogeneous cells are coupled. Prigogine and
Lefever’ demonstrated the existence of diffusion-induced
instability in a two-cell configuration using the Brusselator
model for the kinetics. Later, Tyson and Kauffman® rein-
vestigated the problem, performing thorough analytical
studies of that model, primarily for the case of two coupled
oscillatory Brusselators. Schreiber et ¢l carried out nu-
merical studies of the same system and found stabilization
of homogeneous oscillations, various types of homoge-
neous and inhomogeneous oscillations, phase locking, and
chaos. Ortoleva and Ross'® described a mechanism for
asymmetric cell differentiation based on diffusion-induced
instability with a Brusselator-like cubic autocatalytic
scheme for the kinetics,

_ Here we treat a system of two reactors in which the
same chemical reactions occur with the same parameters.
The reactors are coupled through a permeable wall
through which all species can diffuse. The parameters (rate
constants, input concentrations) are such that in the ab-
sence of the coupling, each reaction has the same unique
attractor, a stable steady state. We first examine a general
two-variable kinetic model and obtain analytically the nec-

essary and sufficient conditions for this stable homoge-

neous steady state to lose stability as a result of the cou-
pling. We then analyze numerically several models and
show that diffusion-induced instability can lead to muitiple
stable steady states, oscillatory states, and, in the most
complicated example, chaos.

Il. DESCRIPTION OF THE PROBLEM

Consider the experimental configuration shown in Fig.
1, in which two well-stirred reactors are connected by a
common wall composed of a membrane through which
chemicals can diffuse by Fickian diffusion. The width of
the wall is negligible compared to the size of the system, so
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FIG. 1. Schematic diagram of a coupled reactor system.

that no species accumulate in the membrane, and the time
spent crossing the membrane may be neglected.'! If this
approximation does not hold, the membrane must be con-
sidered as an open spatial reactor in which diffusion can
occur not only perpendicular to the surface but parallel as
well. In the latter case, which we do not treat here, the
system is much more complicated, and can give rise to
wave behavior and pattern formation in the membrane.'
The coupling between the reactors depends on the volumes
{V;) of the individual reactors, the surface area (4), and
the thickness (/) of the membrane. We define the param-
eter ¢, { = 1,2, which measures the strength of this cou-
pling,

c;=A/Vi. (1)

llt. STABILITY ANALYSIS

Consider a two-variable homogeneous reaction de-
scribed by the differential equation system

55=f(x,,V),

F=g{xp).

For the parameter set of interest the system has a single
stable steady state (x V). If we couple the system (2)
with an identical system in a configuration like that shown
in Fig. 1, the resulting four-variable coupled system is de-
scribed by

(2)

xl=f(xl,y1) + Dxc] (xz _xl)’

Py == . D - »
n=g(x1.y1) + Dy (y2 — 1) 3)

Xy=f(x2.32) — Dyea(xy — X1},

I=g(xpp2) — Doy (32 — 1),

where D, and D, are the diffusion coefficients of the respec-
tive species.

Clearly, one solution of the system (3) is the homoge-
neous steady state (HS8) in which x) == x = x, yy = 1
= J It is cbvious that the homogeneous steady state is
stable against homogeneous perturbations for which the
perturbation is the same in both reactors. However, the
HSS is not necessarily stable to inhomogeneocus perturba-
tions in which the magnitude and/or sign of the perturba-
tion differs in the two reactors. We seek, using simple lin-
ear stability analysis, conditions for the coupling strengths

“¢; and diffusion coefficients D; such that an infinitesimal

inhomogeneous perturbation of the HSS grows in time. To
facilitate the analysis, we introduce sum and difference
variables:

s=X1+ X Z=p 40

1 2 Y1 Tr 4)
d=x—x; A=y —p.

The transformed differential equation system is then:

oo (s+d Z4A s—d Z—A
S‘(z’z) (2’2)

— D(e; ~ )4,
. s+d Z+A s—d Z—A
= (50 ) e (5T

—Dy(c; — )4, (5)
. s+d Z+A s—d Z—A
d=f(2’2)‘(2’2)

— D.(¢; 4+ ¢1)d,
A s+d Z4+A s—d ZT—A
() ()

—Dy(e; + )A.

One solution of the system (5) is the HSS, which is given
in terms of the new variables by

dy=0,
Ay =0.

On linearizing the system around this steady state, we find
that the Jacobian has a special form:

S5 =2X g,

(6)
2o =ser

an anp Dy(ey—ey) 0

ay an 0 Dy(e; —ey)

0 0 ay—Dye+c w 7
0 0 3 ayp — D¢+ ¢)

where a;; is the Jacobian element of the uncoupled sub-
system (2) at the HSS solution. The Jacobian (7) has four
eigenvalues, but because of its special structure, we need
investigate only the two that belong to the bottom right
2X 2 matrix, because the upper left 2 X2 matrix gives the
uncoupled HSS eigenvalues. These do not change with ei-
ther the diffusion coefficients or with ¢, and they have neg-
ative real parts, since we have assumed that the uncoupled
HSS is stable.
Let 4 be the bottom right 2 X2 matrix:

e (0 1n—Dye az
ay ay — Dy

When the real part of one of the eigenvalues of A changes

sign, the HSS becomes unstable and diffusion-induced in-

stability appears. The stability of the uncoupled (¢ =0)
HSS implies that

ay + ax <0, (9a)

) , ‘where ¢=¢; + ¢;. (8)
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andy — a1 > 0. (9b)
When ¢3£0, a steady state of the coupled system is stable if
ay — Dy + ay — D <0, (10a)
(a3 — Dy} (az — Dye) — apay > 0. (10b)

If either inequality (10a) or (10b} is violated, the homo-
geneous steady state in the coupled system will be unstable.
Because Dy, D¢ > 0, (10a) always holds so long as {%a)
is true. Diffusion-induced instability thus appears if condi-
tion {(10b) is violated, i.e., if

H(¢)=D,Dy* — (D,ay; + Dyan)e

+ (@@ — ayz0,) <0.

(11)

The graph of H(c) is a parabola that opens upward. A
necessary and sufficient condition for diffusion-induced in-
stability is that H{¢m) <0, where the minimum of H{c)
occurs at

o 1 fou, e
mm_2 Dy Dx 4
When H(cy,)} <0, H(c) has two zeros, and diffusion-in-
duced instability exists between these values of ¢. Outside

this range the homogeneous steady state is stable. Substi-
tuting (12) into (11} we obtain

{12)

(ann + az) > 2 ynlayay — apay)
>0, where n=0/D,, (13)

Comparing the first term of Eq. {13) with Eq. (9a), we see
that a;; and 2,, must be of opposite sign. For specificity,
suppose that a,, is positive. Then diffusion-induced insta-
bility can occur only if #» 1. In the standard terminology
used in the investigation of Turing instabilities, the species
(here x) that gives a positive diagonal element in the Jaco-
bian is called the activator, while the one with a negative
diagonal element ( p) is the inhibitor. The activator can be
an autocatalytic species or a reactant that inhibits its own
consumption. The inhibitor consumes the autocatalyst or
increases the concentration of inhibitory species, For the
homogeneous steady state to be unstable it is necessary that
the diffusion coefficient of the inhibitor be greater than that
of the activator. An increase in the ratio n shifts H (¢}
downward and broadens the range of ¢ in which the HSS is
unstable. There is a minimum value of #, at which
H(cpin) = 0. At lower #, H(¢) has no real roots and the
homogeneous steady state is stable for all values of ¢.

The analysis and the results obtained here are very
similar to the treatment of the continuous reaction-diffu-
sion problem in one spatial dimension that describes Tur-
ing instabilities.®!>'* Here, however, the relevant stability
parameter 18 ¢, which is related to the geometry of the
reactor, while in the continuous case the relevant parame-
ter is the wavelength of the perturbation. The critical ratio
of diffusion coefficients is the same in the two cases, which
is not surprising, because the phenomenon considered here
is a form of Turing instability.

The above analysis allows us to find where the homo-
geneous steady state becomes unstable. We next ask what

TABLE 1. Symbols and labels in the bifurcation diagrams.

Symbol/

Label Description

— stable steady state in one-parameter bifurcation diagrams
or pitchfork bifurcation line in two-parameter bifurcation
diagrams

-- unstable steady state in one-parameter bifurcation
diagrams or inhomogeneous Hopf bifurcation line in
two-parameter bifurcation diagrams

- homogeneous Hopf bifurcation line in two-parameter
bifurcation diagrams

Y region of diffusion-induced instability in two-parameter
bifurcation diagrams

XXXX region of diffusion-induced oscillation in two-parameter
bifurcation diagrams

0O pitchfork bifurcation point

n Hopf bifurcation point

00 amplitude of stable limit cycle

Q00 amplitude of unstable limit cycle

P pitchfork bifurcation point

IHB Hopf bifurcation point of the inhomogeneous steady state

BHB Hopf bifurcation point of the homogeneous steady state

LP limit point

PD pericd doubling bifurcation

BP bifurcation point, other than period doubling or limit

point, where stability of the limit cycle changes

new states arise and what their stability is. These questions
cannot be answered generally, since the answers depend on
the particular kinetic equations. For finding the new steady
states and investigating their stability, continuation algo-
rithms'™!® provide convenient and powerful tools. We used
the AUTO86 package'” to calculate one- and two-param-
eter bifurcation diagrams. In some models stability condi-
tions for the new steady states can be given in closed form
as a function of the parameters, but in most cases results
can only be obtained numerically. The AUTO86 package
allows one to find steady-state points, determine their sta-
bility, detect codimension one bifurcation points, and fol-
low limit and Hopf bifurcation points of an orbit in two
parameters. However, because of their degeneracy, pitch-
fork bifurcation points cannot be followed in two parame-
ters. In the following two-parameter bifurcation diagrams,
tines of pitchfork bifurcations, where the HSS loses its sta-
bility in the coupled system, were calculated from linear
stability analysis of Eq. (11).

We have chosen three models to illustrate the variety
of behavior that can occur in the coupled system. The
Brusselator’ has been selected because of its simplicity and
widespread application in nonlinear dynamics. The second
model'® describes the chlorine dioxide-iodine-malonic
acid reaction and has been employed previously to model
experimental Turing structures in continuous media.'’ Fi-
nally, the biologically motivated Degn—Harrison model?*?!
exhibits the most complex behavior found in these
systems—chaos. In all cases we study reactors with equal
volume, ¢=c;=¢;. In the analysis that follows, ¢ is a di-
mensionless variable, rescaled according to each model.
Table I shows the labels and symbols used in the bifurca-
tion diagrams presented in the next three sections.
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IV. THE BRUSSELATOR

The Brasselator kinetic scheme is one of the most pop-

ular models for the study of dissipative structures in non-

linear chemical systems.”? The chemical reactions from
which it is constructed are

A-X,
2X + Y-34X,
B+X-Y+ D,

(14)

X—E.

The resulting kinetic equations may be written in dimen-
sionless form as

x=2a — (b+ 1)x + X%,
p=bx — x%y.

The steady state is x,, = a, y¢ = b/a. This homogeneous
steady state is stable if b<1 + &%, the only case that we
investigate here. The case in which the uncoupled system is
oscillatory has been thoroughly investigated by Schreiber
et al® Using Egs. (11) and (13} we can calculate, for a
given set (c,D,D,), the region in the (4,b) parameter
space in which diffusion-induced instability occurs. Figure
2(a) is a one-parameter bifurcation diagram of the system,
showing the steady-state value of x vs the bifurcation pa-
rameter ¢c. Where a pair of steady-state values is shown, the
steady state is inhomogeneous: x; takes one of the indi-
cated values, while x, takes the other. Because of the sym-
metry of the system, such states occur in complementary
pairs with the values of x; and x, {and y, and y,) reversed.

Both pitchfork bifurcations are supercritical, and the
inhomogeneous state is stable when it appears at the bifur-
cation. At another kinetic parameter set (¢,b) shown in
Fig. 2(b) the inhomogeneous steady states lose stability
through supercritical Hopf bifurcation. At this point, os-
cillation appears as a result of the diffusion-induced insta-
bility. Examination of the time series shows that the two
reactors are 180° out of phase.

The two-parameter bifurcation diagram in Fig. 3
shows that for a given ¢ and diffusion coefficient ratio n
ggnillztnry behavior is found nnI}rin a small closed range of

(15)

parameters @ and b. That oscillation should occur is not
obvious a priori, since in the absence of coupling we are
outside the oscillatory parameter range. Boukalouch er
al® have observed similar diffusion-induced oscillation
both in a model and in experiments on the chlorite—iodide
reaction in coupled flow reactors, but with relatively large
differences in the parameters (inflow concentrations) of
the two reactors. In the case considered here, where the
two reactors are under the same external constraints, no
diffusion-induced oscillatory behavior can occur at the
lower diffusion constant ratios » characteristic of most re-
actions involving smail ions in aqueous solution.

V. A MODEL OF THE CHLORINE DIOXIDE-IODINE-
MALONIC ACID REACTION

This reaction was recently shown'® to be responsible
for the closed system oscillation in the more complex
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F1G. 2. Bifurcation diagram for the coupled Brusselator model. Fixed
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=(1,19,10-21).

chlorite—iodide~malonic acid reaction system, in which the
first experimental evidence for Turing structures was ob-
tained.”® The simple model'® shown in Eqs. (17) gives
quantitative agreement with the experimental range of re-
actant concentrations where oscillations appear and was

25 Pt 3 ;
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FIG. 3. Bifurcation sets in the (& — @) plane for the Brusselator model
(bifurcation structures generated by coupling of two oscillatory cells are
not shown inside the range of homogeneous oscillation). Fixed parame-
ters: (D,De) = (1072 1,1).
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FIG. 4. Bifurcation diagram for the model, Eq. (17), of the chlorine
dioxide—iodide~malonic acid reaction. Fixed parameters: {a,b,D,D,)
={50,31,10 "% 1.5 10~ %).

used successfully to simulate the Turing instability ob-
served in a one-dimensional distributed system. The reac-
tions are

A-X,
X-v,
AX + Y= P,

which lead to the following kinetic equations in dimension-
less form:

(16)

x=a—x—4[xp/(1+x%)], (4

p=blx —xp/(1 +x%)].

The steady-state solution (x = a/5, ys = 1 + @*/25) is
stable if b~ (3/5)a — 25/a.

The dynamical behavior of the coupled system is some-
what more complicated than in the case of the Brusselator.
The one-parameter bifurcation diagram in Fig. 4 shows
that soon after the first pitchfork bifurcation P1 the new
inhomogenecus steady states lose stability through super-
critical Hopf bifurcation at IHB1, but later regain stability
through another supercritical Hopf bifurcation IHB2. Be-
tween the two Hopf bifurcations we have out-of-phase os-
cillations in the two reactors. The same bifurcation se-
quence is found as ¢ is decreased through the upper
pitchfork bifurcation P2. We thus have four Hopf bifurca-
tion points on the same branch of states,

The result of following the Hopf bifurcation in two
parameters with b as the secondary bifurcation parameter
is shown in Fig. 5. The range of diffusion-induced instabil-
ity is inside the solid lines above the horizontal dashed
homogeneous Hopf bifurcation line. Three regions can be
distinguished. In the regions above the upper Hopf curve
and below the lower Hopf curve the inhomogeneous steady
states are stable, while in the region between these bifur-
cation curves we have inhomogeneous out-of-phase oscil-
lation.

The a — b two-parameter bifurcation diagram, Fig. 6,
differs qualitatively from the corresponding diagram for

50+
45
40 -
o . - - .
E Diffusien induced
Ystqbility
354 \
| N
304 L L AN SO SSINNANNNR
Homogenecus oscillations
25 T T T T T T T T T
5.2 5.4 5. 6.0 6.2

& 5.8
log(c)

FIG. 5. Bifurcation sets in the [log(¢)-b] plane for the model of the
chlorine dioxide-iodide-malonic acid reaction. Fixed parameters
(a,D,.D,) = (50,10 41.5x 10~ %).

the Brusselator, Fig. 3, in that here the region of diffusion-
induced oscillation is open upward, while in the Brussela-
tor oscillatory behavior can occur only in a closed range of
parameters. The range of diffusion-induced instability lies
between the homogeneous Hopf bifurcation curve and the
solid pitchfork bifurcation curve. A second curve of inho-
mogeneous Hopf bifurcations cannot be seen here, because.
it is so close to the pitchfork bifurcation curve as to make
the two curves indistinguishable on this scale.

VI. THE DEGN-HARRISON MODEL

The respiratory behavior of a Klebsiella Aerogenes bac-
terial culture can be described with a simple model sug-
gested by Degn and Harrison.’® The model consists of-
three steps:

A=Y,

B=X,

X+ Y2

—
——
[+02]

et

404

20+

FIG. 6. Bifurcation sets in the (@ — ) plane for the model of the chlorine
dioxide—fodide-malonic acid reaction. Fixed parameters: [D,D,,
log(c)] = (1075 1.5% 10 ~3,5.375).
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FIG. 7. Bifurcation diagram for the Degn-Harrison model. Fixed param-
eters: [0,4:0,,D,, log(c)] = (8.915,0.5,107%,107%,3.6).

which vield the following dimensionless equations for the
temporal evolution of the system:
g=b—x—xp/(1 + ¢x%),
4 (19)
y=a—xy/(1 + gx?).

The model (19) has been thoroughly analyzed by Velarde
et al.,*""* who found oscillations in a homogeneous system,
and dissipative (Turing) structures and traveling waves in
a continuous, inhomogeneous system. The steady-state so-
lution of Eqgs. (19) is

xs=0—a,

ye=all —g(b—a)]/(b—a).

In contrast to the models considered above, where the
steady state of the uncoupled model undergoes a single
Hopf bifurcation as the parameters are changed, the un-
coupled Degn-Harrison model possesses two Hopf bifur-

(20)

cation points, labeled HHBI1 and HHB2 in the one-param-
eter bifurcation diagram in Fig. 7. As the parameter & is
increased, the homogeneous steady state loses stability at
the pitchfork bifurcation (P1) and two new inhomoge-
neous steady states emerge. These soon lose their stability
at the inhomogeneous Hopf bifurcation (IHB1), and os-
cillation appears. This oscillation persists through part of
the range of the homogeneous oscillation between HHBI
and HHB2, until it loses stability via the second inhomo-
geneous Hopf bifurcation ITHB2. This scenario resembles
somewhat that seen by Crowley and Epstein®’ in experi-
ments on diffusively coupled Belousov—Zhabotinskii sys-
tems. At the right side of the diagram, the situation is
slightly different, in that as b is lowered, the second inho-
mogeneous Hopf bifurcation occurs before we reach
HHB2.

The two-parameter bifurcation diagram shown in Fig.
8§ with & as the secondary bifurcation parameter is perhaps
more revealing. The solid curve of pitchfork bifurcation
points encloses the homogeneous Hopf bifurcation curve.
There are two ranges of diffusion-induced oscillation on
the upper and lower sides of the homogeneous Hopf curve.

. Lengyel and |. R. Epstein: instability in chemically reacting systems

FIG. 8. Bifurcation sets in the {a — b) parameter plane for the Degn-—
Harrison model. Fixed parameters: [g.D,,D,log(c)] = {0.5,107°10~7,
3.6).

One branch of each inhomogeneous Hopf curve in Fig. 8 is
situated outside the homogeneous Hopf curve while the
other lies inside, suggesting the possibility of strong inter-
action between the various bifurcation points and raising
the question of the stability of the several coexisting oscil-
latory modes. In Fig. 9(a) and (b) we show the amplitude

ta) 6
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FIG. 9. Bifurcation diagrams for the Degn-Harrison model for expanded
regions of Fig. 7 showing the amplitude of the oscillations.
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FIG. 10. Bifurcation diagram for the
Degn-Harrison model. Fixed parameters:
) {a,b,4,D,D,) = (8.951,11.0,0.5,10 %10~ %),
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of the oscillations in the regions around the nitchfork bi- analvticallv. The numerical mhacrmhrm and continuation

i vax

furcation points of Fig. 7. As we increase b in Fig. 9(a),
before reaching HHB1 we encounter a period doubling
{PD1}) sequence followed by chaotic behavior. Further on,
the character of the homogeneous Hopf bifurcation
(HHB2) has changed from supercritical in the uncoupled
system to subcritical, as a result of the interaction of the
pitchfork bifurcation with the homogeneous and inhomo-
geneous Hopf bifurcations. The diffusion-induced homoge-
neous oscillation also exhibits a period doubling sequence
in a narrow range of & just beyond the pitchfork bifurca-
tion point [PD in Fig. 9(b)].

We can gain further insight into the dynamics of the
coupled system by varying the coupling parameter ¢. We
choose a value of & outside the oscillatory range of the
uncoupled system and vary ¢. The result is shown in Fig.
10. If ¢ lies outside a critical range, the homogeneous
steady state is stable. Within the range of diffusion-induced
instability, we see first the emergence of a pair of stable
inhomogeneous steady states. For clarity, we show only
one branch of the steady-state solution. As ¢ is increased
further, the inhomogeneous steady state becomes unstable
and oscillations appear. Between points A and B in Fig. 10
we show the maximum and the minimum of the oscilla-
tions. After period doubling and inverse period doubling
sequences, chaos appears in a rather wide range of ¢, with
windows of complex periodic behavior separating several
chaotic subregions. In Fig. 11 we give an indication of the
effect of the diffusion coefficients. On varying D,, we ob-
serve both simple and complex oscillatory behavior as well
as hysteresis among different oscillatory modes. The com-
plexity of the behavior of this simple model is remarkable.
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Vii. DISCUSSION

We have dealt here with two-variable models because
they offer the prospect of obtaining at least some results

GiyrabGaiy. L0 LURINRAILAL LIILpAdatil il AL

methods that we have employed can easily be applied to
more complex, many-variable models. Real experimental
systems can rarely be described with such simple models,
so one may expect the bifurcation diagram of the uncou-
pled system to be significantly more complicated than the
ones treated here. Our last example shows that the inter-
action of two or more bifurcation points can generate very
complex temporal behavior in the individual reactors, and
that various combinations of homogeneous and inhomoge-
neous oscillations, chaos and steady states can coexist in a
range of parameters where the uncoupled system has just a
single stable steady state. In open systems, multiple stable
steady states can exist outside the range of oscillation, and
their destabilization by diffusion can lead to dynamical
complexity at least as dramatic as that seen in the Degn—
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FIG. 11. Bifurcation diagram for the Degn~Harrison model. Maximum
of oscillation on one solution branch is shown. Fixed parameters:
{a.b, g, log(c),D,] = (8.951,11.0, 0.5,3.6,10 %)
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Harrison model. Consequently, it should not be surprising
if real biological and chemical systems can produce exceed-
ingly complex temporal behavior, inciuding chaos, origi-
nating from “simple subsystems.” ‘

Diffusion-induced instability has not been investigated
experimentally under the conditions treated here. Oscilla-
tory chemical reactions may provide a useful starting point
for the design of such experiments, since all models we
have studied that give rise to homogeneous oscillatory be-
havior also show diffusion-induced instability under
steady-state conditions close to the oscillatory state: It
might appear that all that is needed is to choose a reaction
and run it in a pair of flow reactors with identical feeds and
separated by a semipermeable membrane. However, there
are several important additional conditions that must be
met. A key issue is the volume of the reactors. Simple
calculations show that diffusion-induced instability will re-
quire a high value of ¢ because of the small diffusion coef-
ficients. Thus we need a reactor with a small volume and a
very thin membrane with a large surface area. While it is
possible to design and build reactors with a volume of, for
example, 1 cm® and a thin plate geometry, the problem of
mixing within the reactors becomes a serious one.

Another major obstacle in designing experiments is
that for diffusion-induced instability the diffusion coeffi-
cient of the activator (e.g., the autocatalyst) must be
smaller than that of the inhibitor by about an order of
magnitude. However, for typical small inorganic molecules
the diffusion coefficients are all in the same range, about
1.5 10~ cm* s ~ ' in water at room temperature. Lengyel
and Epstein'® showed that in the chlorite—iodide-malonic
acid and chlorine dioxide-iodide(iodine)—malonic acid re-
actions, it is possible to create the required difference be-
tween the diffusivities of todide and chlorite ions. In the
presence of starch or an appropriate organic polymer, io-
dine and triiodide ions are bound to the large organic mol-
ecules and lose their mobility. As iodide ions become tied
up in immobile triiodide complexes, the free diffusible io-
dide concentration is effectively reduced by a factor of 10
or more. The experimental observation of Turing struc-
tures in the chlorite-iodide—malonic acid reaction in a gel
reactor®® was explained by this mechanism. One could sim-
ilarly build a pair of coupled reactors in which the semi-
permeable membrane was loaded with starch to slow the
diffusion of iodide.

It is not easy to find other oscillatory reactions for
which a similar artifice might be employed. The bromate-
based oscillators®® offer little prospect for slowing the dif-
fusion of the activator species HBrO, or Br(,. It is even
harder to imagine specific effects in the multitude of pH-
driven oscillators® to make the activator hydrogen ion dif-
fuse less rapidly than the various larger inhibitor species.
Sulfur-based reactions or fransition metal oscillators may
offer better prospects for finding systems in which the au-
tocatalytic species can form stable complexes with an im-
mobile matrix that makes its diffusion slower.

In biological systems, the high surface/volume ratio
and thin membrane walls of cells and the large differences
between diffusion coefficients resulting from the wide range

of molecular sizes and strengths of interactions with mem-
branes make it far easier to realize the necessary conditions
for diffusion-induced instability. Substrate inhibition and
autocatalysis are common features of enzyme-regulated
processes. It seems likely that nature has already discov-
ered and made use of the dynamical possibilities of diffu-
sion-induced instability to generate some of the wide vari-
ety of temporal behavior found in living systems.
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