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Reaction-Diffusion Equations

Many biological processes can be simulated by mathematiodels
iInvolving temporal and spatial variables.

Example:
| |
a video of simulation of a reaction-diffusion system

are mathematical models that describe how the
concentration of one or more substances distributed inespla@nges under
the influence of two processes: local chemieactionan which the
substances are converted into each othergahgsion which causes the
substances to spread out in space.
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http://www.youtube.com/watch?v=rgLJrvoX_qo&feature=related
http://swiss.csail.mit.edu/projects/amorphous/GrayScott/greydots-hex-2.mpg
http://en.wikipedia.org/wiki/Reaction-diffusion_equation

Mathematical M odels

augvt’ ) _ D1 Au(z,t) + f(ulz,t), v(z,t)),
avgz’ 2 = DyAv(z, t) + g(u(z,t),v(z,t)).

t: time variablex = (x1, z2): spatial variable
u(x,t), v(x,t): density of substances at timm@and locationz
O%u(x,t) N O%u(x,t)

p 2
Oxy oxs

Au(x,t) = div(Vu(z,t)) =

Au, Av areDiffusion: transport of molecules from a region of higher
concentration to one of lower concentration by random maéanotion.

f(u,v), g(u,v) areReaction death/birth, chemical reaction/generation
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Alan Turing (1912-1954)

® One of greatest scientists in 20th century
® Designer of Turing machine (a theoretical computer) in 5930

® Designing electromechanical machine which breaks Germbaoai
Enigma, helping the battle of the Atlantic

® Initiate nonlinear theory of biological growth
[Turing, 1952] The Chemical Basis of Morphogenesis.
Philosophical transaction Royal Society of London Serig233
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Turing'sidea
ODE (1): v = f(u,v), v = g(u,v)
Reaction-diffusion system (2); = d1Au + f(u,v), vy = doAv + g(u, v)

Hereu(x,t) anduv(z,t) are the density functions of two chemicals
(morphogen) or species which interact or react

® A constant solution(t, z) = ug, v(t, x) = vy can be a stable solution

of (1), but an unstable solution of (2). Thus the instabiltynduced by
diffusion.

® On the other hand, there must be stable non-constant equntb
solutions, or stable non-equilibrium behavior, which henare
complicated spatial-temporal structure.

http://en.w ki pedi a. org/ w ki / Mor phogen
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Oscillatory Chemical Reactions

An example of oscillatory chemical reaction (don’t do thndiome though .].
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Chemical reactions were believed to always reach equilibstates even
when the reactions are reversible. But the discoveriegdif60s confirm the
existence of chemical oscillations. It is now believed #adry living system
contains hundreds of chemical oscillators.
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http://www.youtube.com/watch?v=Ch93AKJm9os&NR=1

Equilibrium solutions and Periodic solutions

For a dynamical system (ODE, reaction-diffusion model) etc
Equilibrium solutionsare the ones independent of time

Periodic solutionsre the ones which repeats itself in time.

They usually dominate the long time behavior of the dynahsgatem
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Hopf Bifurcation Theorem

Consider ODE' = f(\,z), A € R,z € R", andf is smooth.

(i) Suppose that fok near), the system has a family of equilibrig ().

(i) Assume that its Jacobian matu \) = f, (), z°()\)) has one pair of
complex eigenvalueg(\) + iw(A), u(Ag) = 0, w(Ag) > 0, and all other
eigenvalues ofA(\) have non-zero real parts for allnear).

If ' (No) # 0, then the system has a family of periodic solutionss), z(s))
for s € (0,9) with periodT'(s), such that\(s) — Ao, T(s) — 27 /w(Ag), and
|z(s) — 2%(N\g)|| — 0 ass — 0.
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L otka-Volterra model

i

i

Alfred Lotka (1880-1949) Vito Volterra (1860-1940)

d

d_QtL = u(a — bu) — cuwv,
d

d—: = —dv + fuv

1845 1855 1865 1875 1885 1895 1905 1915 1925” 1935
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Functional response

y

2[:: = u(a — bu) — co(u)v,
< v
o= —dv + fo(u)v.

\

¢(u): predator functional response
#(u) = u (Lotka-\Volterra)

d(u) = “ (Holling type I, m: the handling time of prey)

L Amu . . .
[Holling, 1959](Michaelis-Menton biochemical kinetics)

Biological work:
[Rosenzweig-MacArthurAmerican Naturalist963]
[Rosenzweig Science1971] (Paradox of enrichment)

[May, Science1972] (Existence and uniqueness of limit cycle)
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Basic analysis of the model

du a1 ) muv dv p muv
— =u(l—u)— — = —qav
dt a+u dt a4 u
.. : 1 —
Nullcline(isocline):u = 0, v = -+ v =0,d= iy
m a—+ u
. d
Solvingd = my , one hava, = \ = iy
a—+u m—d
. . 1—A A
Equilibrium points:(0, 0), (1,0), (A, vx) wherevy = ( JatA)
m

We take\ as a bifurcation parameter

Case 1\ > 1: (1,0) is globally asymptotically stable

Case 2(1 —a)/2 < XA < 1: (1,0) is a saddle, an@\, v, ) is a locally stable
equilibrium

Case30 < A< (1—a)/2: (1,0) is asaddle, and\, v, ) is a locally unstable
equilibrium

(A = (1 — a)/2 is a Hopf bifurcation point)
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Phase portrait

Left: (1 —a)/2 < A < 1:(1,0)is a saddle, an@\, vy ) is a locally stable
equilibrium

Right: 0 < A < (1 —a)/2: (1,0) is a saddle, an@\, vy ) is a locally unstable
equilibrium; there exists a limit cycle
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Summary

du (1 — ) muv dv p muv
e i — —_ —_ _— = — ’U
dt a+u dt a—+u
.. : 1 —
Nullcline(isocline):u = 0, v = -+ v=0,d= i
m a—+ u

. d

Solvingd = my , one hava, = \ = iy
a+u m—d

. . 1—A A

Equilibrium points:(0, 0), (1,0), (A, vx) Wherevy = ( Je+ )
m

We take\ as a bifurcation parameter

Case 1)\ > 1: (1,0) is globally asymptotically stable

Case2(1—a)/2 < X< 1: (A vy) is agloballyasymptotically stable
Case 30 < A < (1 — a)/2: the unique limit cycle is globallpsymptotically
stable

(A = (1 — a)/2 is a Hopf bifurcation point)
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New result of thisODE

[Hsu-Shi, 2009] Hsu, Sze-Bi; Shi, Junping, Relaxation ltetarr profile of
limit cycle in predator-prey system. Disc. Cont. Dyna. Syt
(Motivated by numerical observation)
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Graph of limit cycle

Parametersa = 0.5, m =1,d =0.1, A = 1/18 =~ 0.056, periodT =~ 37.




Moreon limit cycles

limit cycle in physiologyneurgn
FitzHugh-Nagumo model
FitzRugh-Nagumo simulatigoalcium signaling

limit cycle for PDE: CIMA reaction (next lecture),
Twinkling eyes pattern (spatial limit cyclge) simulation
More[simulationby Lingfa Yang (Brandeis University)

pattern formation|: interaction of Turing instability anapf instability
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http://www.resnet.wm.edu/~jxshix/math345/lect22.pdf
http://www.scholarpedia.org/article/FitzHugh-Nagumo
http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/FN/
http://web.wm.edu/mathematics/CSUMS/workshop09/presentation-hariprasad.pdf
http://hopf.chem.brandeis.edu/yanglingfa/pattern/oscTu/twinkling.html
http://hopf.chem.brandeis.edu/yanglingfa/pattern/movieFrm.html
http://cnls.lanl.gov/~aric/Simulations/Simulations.html
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