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Reaction-Diffusion Equations

Many biological processes can be simulated by mathematicalmodels

involving temporal and spatial variables.

Example:

a video of cell division

a video of simulation of a reaction-diffusion system

Reaction-diffusion systemsare mathematical models that describe how the

concentration of one or more substances distributed in space changes under

the influence of two processes: local chemicalreactionsin which the

substances are converted into each other, anddiffusion which causes the

substances to spread out in space.
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http://www.youtube.com/watch?v=rgLJrvoX_qo&feature=related
http://swiss.csail.mit.edu/projects/amorphous/GrayScott/greydots-hex-2.mpg
http://en.wikipedia.org/wiki/Reaction-diffusion_equation


Mathematical Models

∂u(x, t)

∂t
= D1∆u(x, t) + f(u(x, t), v(x, t)),

∂v(x, t)

∂t
= D2∆v(x, t) + g(u(x, t), v(x, t)).

t: time variable,x = (x1, x2): spatial variable

u(x, t), v(x, t): density of substances at timet and locationx

∆u(x, t) = div(∇u(x, t)) =
∂2u(x, t)

∂x2
1

+
∂2u(x, t)

∂x2
2

∆u, ∆v areDiffusion: transport of molecules from a region of higher

concentration to one of lower concentration by random molecular motion.

f(u, v), g(u, v) areReaction: death/birth, chemical reaction/generation
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Alan Turing (1912-1954)

• One of greatest scientists in 20th century

• Designer of Turing machine (a theoretical computer) in 1930s

• Designing electromechanical machine which breaks German U-boat

Enigma, helping the battle of the Atlantic

• Initiate nonlinear theory of biological growth

[Turing, 1952] The Chemical Basis of Morphogenesis.

Philosophical transaction Royal Society of London Series B, 237

http://www.turing.org.uk/
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Turing’s idea

ODE (1):u′ = f(u, v), v′ = g(u, v)

Reaction-diffusion system (2):ut = d1∆u + f(u, v), vt = d2∆v + g(u, v)

Hereu(x, t) andv(x, t) are the density functions of two chemicals

(morphogen) or species which interact or react

• A constant solutionu(t, x) = u0, v(t, x) = v0 can be a stable solution

of (1), but an unstable solution of (2). Thus the instabilityis induced by

diffusion.

• On the other hand, there must be stable non-constant equilibrium

solutions, or stable non-equilibrium behavior, which havemore

complicated spatial-temporal structure.

http://en.wikipedia.org/wiki/Morphogen
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Oscillatory Chemical Reactions

An example of oscillatory chemical reaction (don’t do this in home though ...)

Chemical reactions were believed to always reach equilibrium states even

when the reactions are reversible. But the discoveries since 1960s confirm the

existence of chemical oscillations. It is now believed thatevery living system

contains hundreds of chemical oscillators.
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http://www.youtube.com/watch?v=Ch93AKJm9os&NR=1


Equilibrium solutions and Periodic solutions

For a dynamical system (ODE, reaction-diffusion model, etc)

Equilibrium solutionsare the ones independent of time

Periodic solutionsare the ones which repeats itself in time.

They usually dominate the long time behavior of the dynamical system
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Hopf Bifurcation Theorem

Consider ODEx′ = f(λ, x), λ ∈ R, x ∈ R
n, andf is smooth.

(i) Suppose that forλ nearλ0 the system has a family of equilibriax0(λ).

(ii) Assume that its Jacobian matrixA(λ) = fx(λ, x0(λ)) has one pair of

complex eigenvaluesµ(λ) ± iω(λ), µ(λ0) = 0, ω(λ0) > 0, and all other

eigenvalues ofA(λ) have non-zero real parts for allλ nearλ0.

If µ′(λ0) 6= 0, then the system has a family of periodic solutions(λ(s), x(s))

for s ∈ (0, δ) with periodT (s), such thatλ(s) → λ0, T (s) → 2π/ω(λ0), and

||x(s) − x0(λ0)|| → 0 ass → 0+.
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Lotka-Volterra model

Alfred Lotka (1880-1949) Vito Volterra (1860-1940)

du

dt
= u(a − bu) − cuv,

dv

dt
= −dv + fuv.

a, b, c, d > 0
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Functional response










du

dt
= u(a − bu) − cφ(u)v,

dv

dt
= −dv + fφ(u)v.

φ(u): predator functional response

φ(u) = u (Lotka-Volterra)

φ(u) =
u

1 + mu
(Holling type II, m: the handling time of prey)

[Holling, 1959](Michaelis-Menton biochemical kinetics)

Biological work:

[Rosenzweig-MacArthur,American Naturalist1963]

[Rosenzweig,Science, 1971] (Paradox of enrichment)

[May, Science, 1972] (Existence and uniqueness of limit cycle)
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Basic analysis of the model

du

dt
= u (1 − u) −

muv

a + u
,

dv

dt
= −dv +

muv

a + u

Nullcline(isocline):u = 0, v =
(1 − u)(a + u)

m
; v = 0, d =

mu

a + u
.

Solvingd =
mu

a + u
, one haveu = λ ≡

ad

m − d
.

Equilibrium points:(0, 0), (1, 0), (λ, vλ) wherevλ =
(1 − λ)(a + λ)

m
We takeλ as a bifurcation parameter

Case 1:λ ≥ 1: (1, 0) is globally asymptotically stable

Case 2:(1 − a)/2 < λ < 1: (1, 0) is a saddle, and(λ, vλ) is a locally stable

equilibrium

Case 3:0 < λ < (1− a)/2: (1, 0) is a saddle, and(λ, vλ) is a locally unstable

equilibrium

(λ = (1 − a)/2 is a Hopf bifurcation point)
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Phase portrait

Left: (1 − a)/2 < λ < 1: (1, 0) is a saddle, and(λ, vλ) is a locally stable

equilibrium

Right: 0 < λ < (1 − a)/2: (1, 0) is a saddle, and(λ, vλ) is a locally unstable

equilibrium; there exists a limit cycle
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Summary

du

dt
= u (1 − u) −

muv

a + u
,

dv

dt
= −dv +

muv

a + u

Nullcline(isocline):u = 0, v =
(1 − u)(a + u)

m
; v = 0, d =

mu

a + u
.

Solvingd =
mu

a + u
, one haveu = λ ≡

ad

m − d
.

Equilibrium points:(0, 0), (1, 0), (λ, vλ) wherevλ =
(1 − λ)(a + λ)

m
We takeλ as a bifurcation parameter

Case 1: λ ≥ 1: (1, 0) is globally asymptotically stable

Case 2: (1 − a)/2 < λ < 1: (λ, vλ) is a globallyasymptotically stable

Case 3: 0 < λ < (1 − a)/2: the unique limit cycle is globallyasymptotically

stable

(λ = (1 − a)/2 is a Hopf bifurcation point)
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New result of this ODE

[Hsu-Shi, 2009] Hsu, Sze-Bi; Shi, Junping, Relaxation oscillator profile of

limit cycle in predator-prey system. Disc. Cont. Dyna. Syst.-B

(Motivated by numerical observation)
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Graph of limit cycle

Parameters:a = 0.5, m = 1, d = 0.1, λ = 1/18 ≈ 0.056, periodT ≈ 37.
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More on limit cycles

limit cycle in physiology: neuron,

FitzHugh-Nagumo model

FitzHugh-Nagumo simulationcalcium signaling

limit cycle for PDE: CIMA reaction (next lecture),

Twinkling eyes pattern (spatial limit cycle) simulation

More simulationby Lingfa Yang (Brandeis University)

pattern formation: interaction of Turing instability and Hopf instability
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http://www.resnet.wm.edu/~jxshix/math345/lect22.pdf
http://www.scholarpedia.org/article/FitzHugh-Nagumo
http://brain.cc.kogakuin.ac.jp/~kanamaru/Chaos/e/FN/
http://web.wm.edu/mathematics/CSUMS/workshop09/presentation-hariprasad.pdf
http://hopf.chem.brandeis.edu/yanglingfa/pattern/oscTu/twinkling.html
http://hopf.chem.brandeis.edu/yanglingfa/pattern/movieFrm.html
http://cnls.lanl.gov/~aric/Simulations/Simulations.html
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