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Stable Turing patterns are presented in the simplest reactionÈdi†usion system containing a single autocatalytic step in a contin-
uously fed unstirred reactor. In the one-variable homogeneous system exhibiting only bistability, the spatial instability arises from
the decoupling of the species by unequal di†usion. The results suggest the possibility of experimentally Ðnding Turing instability
among the relatively common bistable chemical systems.

In 1952 Turing introduced a novel idea that di†usion may
destabilize a state of homogeneously distributed chemical
reactants giving rise to spontaneous patterns with large ampli-
tude spatial oscillations in the concentrations of some
species.1 Several theoretical investigations, following TuringÏs
original work, have shown that in a simple two-variable
model the system must exhibit bistability or oscillations and
the di†usion coefficients of the components must di†er as
necessary conditions for spontaneous pattern formation.2 The
Ðrst experimental presentations of Turing structures3 have
furthermore required the application of a continuously fed
unstirred reactor (CFUR),4 which has allowed the study of
spatially distributed open chemical systems far from equi-
librium.

The simplest models showing Turing instability have con-
sisted of a cubic-autocatalytic step and a Ðrst-order decay of
the autocatalyst (the GrayÈScott model5) in a CFUR.6 This
two-step mechanism may exhibit rich dynamic behavior with
homogeneous oscillations,5 stable and oscillatory patterns,7
and even spatiotemporal chaos.8

Although the existence of temporal oscillations is not a pre-
requisite for Turing instability, studies of spatial pattern for-
mation in chemical systems have generally tied Turing
patterns to the existence of homogeneous oscillations9h11 and
overlooked simple autocatalytic reactions showing only
bistability as possible candidates for Turing patterns.

In this paper we show that a single autocatalytic step in a
CFUR may exhibit Turing instability and sustain stable pat-
terns. The reactant and the autocatalyst are only spatially
decoupled by unequal di†usion, therefore no temporal oscil-
lation of the homogeneous system is possible.

The simplest single autocatalytic step showing bistability in
an open system is the cubic autocatalysis
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for which the reactionÈdi†usion system in a CFUR is govern-
ed by
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where a and b are the concentration of species A and B in the
reactor and and are those in the reservoir with rep-a0 b0 k0resenting the coupling between the reactor and the reservoir.
By introducing dimensionless variables and b \a \ a/a0we can transform eqn. (2) intob/a0 ,
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where is the ratio of the di†usion coef-b0\ b0/a0 , d \ DA/DBÐcients, and is the exchange coefficient. The dimen-i \ k0/ka02sionless space and time coordinates are scaled as m \
andx(ka02/DB)1@2 q\ ka02 t.

The stability analysis of the homogeneous system shows
that bistability exists for in the region deÐned asb0 \ 0.125
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Outside this regime the system has only one stable steady-
state solution. In the case of Turing instability the stable
steady states of the homogeneous system lose stability to
spatial perturbations requiring a positive real part for one of
the eigenvalues of the Jacobian matrix (J) constructed from
eqn. (3)
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where and are the appropriate steady-state solutions ofas bsthe homogeneous system and k is the wavenumber associated
with the spatial perturbation. Since Tr(J) \ 0 for all stable
steady-state solutions of the homogeneous system, Turing
instability can only occur if o J o becomes negative for some k
yielding
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as a necessary requirement, which further implies that reac-
tant A should di†use faster than the autocatalyst, i.e., d [

As shown in Fig. 1 for d \ 10, Turing bifurcationdcr[ 1.
appears at the saddle-node bifurcation at the end of the Ñow
branch at i \ 0.32338 then slightly widens the range of insta-
bility (see inset in Fig. 1) with increasing i. After turning back
in the monostable regime, it nearly parallels the saddle-node
bifurcation at the end of the thermal branch. In the bistable
region the Turing space is wider on the thermal branch indi-
cating that steady states preceding the saddle-node bifurcation
on this branch lose stability to spatial perturbation at lower

and in fact, the minimum is found as anddcr ; dcr \ 2 b0 ] 0
i ] 0.25.

The existence of Turing instability overall extends the
bistable regime with the introduction of stable patterns.
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Fig. 1 Bifurcation diagram for d \ 10 with dashed lines representing
saddle-node bifurcations and the solid lines Turing bifurcations. The
di†erent regions are indicated as : one homogeneous stable steady
state (1S) ; two homogeneous stable steady states (2S) ; one homoge-
neous stable steady state unstable to spatial perturbations (1T) ; two
homogeneous stable steady states with one unstable to spatial pertur-
bations (ST) ; two homogeneous stable steady states unstable to
spatial perturbations (2T).

Without loss of generality this may readily be demonstrated
with the construction of a hysteresis diagram in a Ðnite one-
dimensional system with Z2\ L2/Lm2 and imposing no-Ñux
boundary conditions at the ends

La
Lm

\
Lb
Lm

\ 0 at m \ 0 and m \ L

At constant i is increased from the homogeneousb0 \ 0.121,
solution on the thermal branch until the stable homogeneous
solution on the Ñow branch is reached then decreased back to
obtain the initial homogeneous state as shown in Fig. 2.
During the calculations a stable pattern is perturbed with nor-
mally distributed random noise and a numerical integration
using the CVODE package12 is carried out to obtain the new
stable solution. Parameter i is then incremented or decre-
mented with 4] 10~4 and the procedure is repeated.

On increasing i from 0.3824 to 0.3828 the homogeneous
steady state loses stability through a supercritical Turing
bifurcation giving rise to a stable pattern. Among all spatial
modes satisfying the boundary conditions only the one with
n \ 9 has a positive eigenvalue, where n represents the
number of half-wavelengths. This mode then grows out of the
random noise around the homogeneous steady state with
the Ðnal pattern retaining the wavelength and amplitude of
the active mode in the vicinity of the bifurcation

Aa
b
B

\
Aas
bs

B
^
Ai [ ic

/

B1@2A1

C
B
cos
Anc n

L
m
B

(7)

where /\ 1.510 711 18,ic \ 0.382 469 183 5,
C\ [2.555 955 806, and At i \ 0.4356 a shift in thenc \ 9.
wavelength occurs and a pattern with n \ 8 evolves which
remains stable up to i \ 0.4424, where a new mode with
n \ 4 is formed. Finally, at i \ 0.4480 the homogeneous
steady state on the Ñow branch is attained.

On decreasing i from 0.4128 to 0.4124 the homogeneous
steady state loses stability through a subcritical Turing bifur-
cation with active mode
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where /\ [1.844 059 33,ic \ 0.412 516 432 7,
C\ [1.331 822 821, and This mode develops initiallync \ 4.
from the random noise imposed on the homogeneous state ;

Fig. 2 Hysteresis diagram showing the calculated stable patterns as
the exchange coefficient i is increased (a) and decreased (b). The
dimensionless concentration b is represented by a gray scale with
black corresponding to the maximum value of b and white to the
minimum. The parameters used in the calculations are b0\ 0.121,
d \ 10. The numerical integration is carried out on a 1001-point grid
with spacing h \ 0.1.

however, as it leaves the neighborhood of the steady state it
evolves into the mode with n \ 8 corresponding to that
observed for 0.4356 O i O 0.4420 with increasing i. This
pattern is stable with monotonously decreasing amplitude
down to i \ 0.3852, where a wavelength shift results in the
formation of the mode with n \ 9. At this point the hysteresis
loop is closed, as by further decreasing i the system exhibits
the same behavior as previously with increasing i. The Ðnal
homogeneous steady state regains stability at i \ 0.3824.

The regions of stability for the various patterns in the hys-
teresis cycle are summarized in Fig. 3. The new spatial mode
with n \ 6 can be obtained from the n \ 4 mode by decreas-
ing i. When this pattern loses stability, it evolves into the
mode with n \ 8 by decreasing i or yields the homogeneous
state on the Ñow branch by increasing i.

In experimental studies the e†ective di†usion coefficient of
the autocatalyst has generally been lowered by binding it to
an immobile species.3,10 Lengyel and Epstein have shown that
this complex formation shifts the Hopf bifurcation point
beyond the Turing bifurcation point so that Turing instability
arises between them.11 This general method, however, fails in
our system, where instability to spatial perturbations occurs
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Fig. 3 Amplitude of the stable spatial patterns at Theb0\ 0.121.
parameters are the same as in Fig. 2.

near a saddle-node bifurcation. The saddle-node bifurcation is
una†ected by the complex formation as the latter does not
change the sign of the determinant of the Jacobian for homo-
geneous unstable saddle points ; thus, the inequality of the
actual di†usion coefficients remains a necessary requirement
in our system for observing spontaneous Turing patterns.

In this work we have shown that a single autocatalytic step
in a CFUR may give rise to Turing patterns. We have numeri-
cally investigated the stability of the obtained patterns in the
simplest, cubic-autocatalytic system. The spatial decoupling of
the two components by unequal di†usion leads to a bifur-
cation diagram where the location of the spatial oscillations of
Turing structures are similar to that of temporal oscillations
in the cross-shaped diagrams of chemical systems in a contin-
uously stirred tank reactor.13 A recent study on the
FitzHughÈNagumo model has also shown a similar cross-
shaped diagram in the absence of Hopf bifurcation.14 Based
on these bifurcation diagrams one may experimentally search
for stable Turing structure in the pool of simple autocatalytic
reactions exhibiting only bistability.
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