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Logistic growth process with nonlocal interactions is considered in one dimension. Spontaneous breakdown
of translational invariance is shown to take place at some parameter region, and the bifurcation regime is
identified for short and long-range interactions. Domain walls between regions of different order parameter are
expressed as soliton solutions of the reduced dynamics for nearest-neighbor interactions. The analytic results
are confirmed by numerical simulations.
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I. INTRODUCTION

Logistic growth is one of the basic models in population
dynamics. First introduced by Verhulst for saturated prolif-
eration at a single site, it has been extended to include spatial
dynamics by Fisher[1] and by Kolmogoroffet al. [2]. In its
one-dimensional continuum version, one consider the con-
centration of a reactant,csx,td, with time evolution that is
given by the rate equation

] csx,td
] t

= D¹2csx,td + acsx,td − bc2sx,td, s1d

whereD is the diffusion constant,a is the growth rate, andb
is the saturation coefficient set by the carrying capacity of the
medium.

The Fisher process is a generic description of the invasion
of a stable phase into an unstable region. It is applicable to
wide range of phenomena, ranging from genetics(the origi-
nal context of Fisher work, proliferation of a favored muta-
tion or gene) to population dynamics, chemical reactions in
unstirred reactors, hydrodynamic instabilities, invasion of
normal states by superconducting front, spinodal decomposi-
tion, and many other branches of natural sciences. A compre-
hensive survey may be found in recent review article by van
Saarloos[3].

The Fisher process ends up with a uniform saturated
phase, in contrast with other nonlinear and reactive systems,
which yields spatial structures with no underlying inhomo-
geneity. These patterns are usually related to an instability of
the homogenous solution, most commonly of Turing or Hopf
types[4]. Spontaneous symmetry breaking of that type mani-
fests itself in vegetation patterns, where competition of flora
for common resource(water) induces an indirect interaction
and may lead to a(Turing-like) spatial segregation[5].

The basic motivation of this work comes from recent
study of non-Turing mechanism for pattern formation in the
vegetation-water system, which yields ordered or glassy
structures[6]. Basically, it is easy to realize thatcompetition
for common resource induced some indirect “repulsion”
among agents, which may lead to spatial segregation. As an
example, consider the vegetation case: there is a constant
flow of water into the system(rain), and the water dynamics
(evaporation, percolation, diffusion) is much faster than the
dynamics of the flora. Now let us assume the existence of a

large amount of flora(say, a tree) at certain spatial point. One
may expect the water density to adjust(almost instantly) to
the tree and to equilibrate in some water profile that is lower
around its location. The immediate neighborhood of the tree,
though, is less favorable for a second tree to flourish; instead
one may expect the next to grow up some typical distance
away, reducing the water level between them even more.
This seems to be a plausible and generic mechanism for seg-
regation induced by resource competition. These arguments
may be relevant to the dynamics of almost any unstirred
reactive system; interesting example is the process of evolu-
tionaryspeciation, where new species may survive only “far
enough”(in the genome space, where the spatial structure is
given, say, by Hamming distance) from its ancestor, in order
to find a nonoverlapping biological niche.

Surprisingly it turns out that the partial differential equa-
tions that describe this process(here presented in a nondi-
mensionalized form, wherew stands for water density,b for
flora, andR is the “rain”)

ḃsx,td = ¹2b − mb − wb,

ẇsx,td = D¹2w + R− w − wb s2d

yield only a linearlystablehomogenous solution. In order to
get patterns one should add a cross-diffusion effect(slowing
down of the water diffusion in the presence of flora) that
leads to Turing-like instability as in Ref.[5], but this is a
different mechanism, and one may wonder about the validity
of the basic intuitive argument presented above.

Recent work[6] suggests a hint for the answer. It seems
that a continuum and local description of a reactive system
fails to capture the competition induced segregation dis-
cussed above. The continuum process is trying to “smear”
the reactant profile, and instead of getting spatially segre-
gated structure of large biomass units(trees) it favors ho-
mogenous profile of “grass” covering all the area. In Ref.[6]
a biomass unit was allowed for long time survival only if it
exceeds some predetermined threshold, and simulation of the
system reveals an immediate appearance of spontaneous seg-
regation and stable patterns.

Similar situation appears, presumably, in the process of
bacterial colony growth where the food supply is limited. As
noted by Ben-Jacobet al. [7], spatial segregation and branch-
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ing are induced by the competition of bacteria for diffusive
food. A communicating walkers model is used by these au-
thors to simulate the branching on a petridish, where con-
tinuum equation dictates the food dynamics while the indi-
vidual bacteria are discrete objects. The discreteness of
bacteria adds some weak threshold to the system and induces
segregation. Note, however, that the model admits weak de-
pendence of the diffusion on the local bacterial density at the
boundaries of the colony.

In this work I consider the one-species analogy of the
competition problem, namely, a logistic growth withnonlo-
cal interactions, where the carrying capacity at a site is re-
duced due to the presence of “life” in another site. Nonlocal
competition has been recently considered by Sayamaet al.
[8] and by Fuenteset al. [9]. Both groups uncover the pos-
sibility of spontaneous symmetry breaking and patterns, de-
pending on the strength and the smoothness of the “weight
function” that controls the nonlocality. It seems that nonlocal
interactions are not simply an effective model obtained by
integrating out the fast degrees of freedom; rather, it incor-
porates some nonlinear effects(like the threshold) and allow
for linear instability that manifests the intuitive “competition
induced segregation” argument.

Sayamaet al. [8] deal with a two-dimensional model of
population dynamics, with no diffusion term. Both the local
growth term and the carrying capacity at a site depend(not in
the same way) on the population of neighboring sites; in a
crowded neighborhood the growth term becomes larger(due
to offspring migration) while the carrying capacity decreases
as a result of long-range competition. The conditions for an
instability of the homogenous solution have been found ana-
lytically and demonstrated numerically for a “stepwise”
weight function (taking as the effective neighborhood the
average density inside a prescribed radius around the site). It
was also pointed out that a Gaussian weight function yields
no instability.

In the numerical work of Ref.[9], a one-dimensional re-
alization of diffusing reactants has been considered, equiva-
lent to Fisher equation with nonlocal interactions. Again it
was shown that a stepwise weight function may lead to in-
stability while Gaussian weights lead to stable homogenous
solution; the authors proceed to consider intermediate weight
functions that interpolate between Gaussian and a step func-
tion.

As in any case of spontaneous symmetry breaking, the
system falls locally into one of the “minima” of the order
parameter, and typically domains are formed. These domain
walls determine the low lying excitation spectrum of the sys-
tem, as their movement is “smooth”: if the broken symmetry
is continuous the resulting Goldstone modes may destroy the
long-range order at finite temperature, and the same is true
for the domain walls if discrete symmetry is broken. Al-
though we are dealing with an out of equilibrium system, one
may guess that the response to small noise is determined by
these domain walls.

The goals of this work are twofold: in the following Sec.
I will try to give more comprehensive discussion of the in-
stability condition, with and without diffusion, and its depen-
dence on the weight functions: it turns out that it depends on
the minimal value of its Fourier transform. The third section

is devoted to the appearance of topological defects in the
segregated phase. Finally in Sec. IV some discussion and
possible implications are presented.

II. INSTABILITY CONDITIONS

The model is a one-dimensional realization of long-range
competition system on a lattice(with lattice spacingl0) and
the continuum limit is trivially attained atl0→0.

In the generic case of diffusion and nonlocality the time

evolution of the reactant density at the nth site,cñ, is given
by

] c̃nstd
] t

=
D̃

l0
2 f− 2c̃nstd + c̃n+1std + c̃n−1stdg + ac̃nstd − bc̃n

2std

− c̃nstdo
r=1

`

g̃rfc̃n+rstd + c̃n−rstdg, s3d

whereD̃ is the diffusion constant anda,b,g̃ are the corre-
sponding reaction rates. The definition of dimensionless
quantities,

t = at, c = bc̃/a, gr = g̃r/b, D =
D̃

al0
2 , s4d

(the new “diffusion constant” isD=W2/ l0
2, where W

;ÎD /a is the width of the Fisher front) provides the dimen-
sionless equation

] cn

] t
= Df− 2cn + cn+1 + cn−1g + cnS1 − cn − o

r=1

`

grfcn+r

+ cn−rgD s5d

that may be expressed in Fourier space(with Ak
;on cne

iknl0) as

Ȧk = akAk − o
q

bk−qAqAk−q, s6d

where

ak ; 1 − 2Df1 − cosskl0dg, s7d

bk ; 1 + 2o
r=1

`

grcossrkl0d. s8d

As cn is positive semidefinite,A0 is always “macroscopic.”
Any mode is suppressed byA0, and for smallgr one expects
only the zero mode to survive[10]. If, on the other hand,gr
increased above some threshold, bifurcation may occur with
the activization of some otherk mode(s), and the homog-
enous solution becomes unstable. This is the situation where
patterns appear and translational symmetry breaks.

To get a basic insight into the problem, let us consider the
case with no diffusion(D=0, ak=1). Eq. (5) becomes
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ċn = cnF1 − cn − o
r

grscn+r − cn−rdG s9d

and division bycn yields, for the steady state, the linear
equationQ ·cI =yI , whereQ is a circular matrix,cI is the vector
of cn’s andyI =s. . . ,1 ,1 ,1,1, . . .d. The sum of the elements of
any row ofQ is the same, so the homogenous state(scalar
multiplication of yI) should be an eigenvector. On the other
hand, ifQ is nonsingular it must admit a full set of mutually
orthogonal eigenvectors. Only the constant eigenvector ofQ
has nonvanishing projection ony, so the onlypositive defi-
nite, nondiverging steady state(ċn=0, cn.0∀n) solution is
the homogenousone,cn=1/b0.

As implied by Eq.(6), the homogenous steady state is
unstable iff, for somek, bk,0. In that case bifurcation oc-
curs, and the new steady state is a combination of the zero
mode and thek mode with equal weightsA0=Ak=1/sb0

+bkd.
The functionbk,kP f0,p / l0g, is discrete for finite sys-

tems and becomes continuous at the thermodynamic limit. If
bk never crosses zero there is no bifurcation and the homog-
enous solutioncn=1/b0 is stable. The results for few types
of interaction ranges, with the critical valueg1

c (where the
instability occurs), andkc (the first excited mode), are sum-
marized in Table I.

It is interesting to note that these expressions may be gen-
eralized to yield a full, period doubling type, instability cas-
cade. Themth instability involves 2m modes, and the steady
state is 1/ok bk, where the sum runs over all the “active”
modes. The condition for them+1 bifurcation[activation of
another 2m+1 modes] is the existence of a wave numberq
such thatok bq−k,0, with the sum runs, again, over all 2m

activek’s. There are, however, some obstacles for the impli-
cation of these solutions above the first bifurcation. Degen-
eracies in bk (e.g., for gr =dr,4, both kl0=p /4 and kl0
=3p /4 are minima) and solitons between different stable
phases(described below) may blur the native state. In this

paper, though,bk is used only for the first pattern-forming
instability criteria, and the details of the emerged structure
are presented just for nearest-neighbor interaction.

Once diffusion is added to the system, its features
changes, but not so much. The homogenous state is still char-
acterized bycn=1/b0 and the first pattern formation instabil-
ity appears when somek mode satisfies.

bk , − 2b0Df1 − cosskl0dg. s10d

Above this instability, the amplitudes of the modes are not
equal,

A0 =
ak

b0 + bk
, Ak =Îaksb0 + bkd − b0

bksb0 + bkd2 , s11d

and there are no zeroes ofcn. This result fits perfectly with
the numerical data presented in Fig. 1. Again themth insta-
bility involves the activation of 2m modes, although the sta-
bility analysis is more complicated.

The question of pattern instability is thus translated to the
determination of the minimal value of the Fourier coefficient
of the weight function(or the “weight series”gr). If the
minimal value is smaller than some prescribed number(zero
if there is no diffusion) instability takes place and patterns
emerge. Unfortunately I am not familiar with a general theo-
rem that sets bounds on the minimal value of the Fourier
coefficient of a function based on its “smoothness,” or other
analytic properties, so any case should be considered sepa-
rately, with the generic examples given in Table I.

III. DOMAIN WALL STRUCTURE

Above the pattern formation threshold generic initial con-
ditions fail to yield perfect “lattice,” as different domains
reach saturation with different “phases.” These domains are
connected by solitonlike solutions of the time independent
equation in the following sense: any stable solutionfċsx,td
=0g should satisfy(in the continuum limit)

TABLE I. The functionbk and the instability conditions for various types of nonlocal interactions. The results for the Gaussian case are
in the continuum approximation.

Type gr bk Instability condition

Exponential sg1dr/j
sinhsulnsg1du /jd

coshsulnsg1du /jd−cosskl0d
No instability

Quadratic
g1

r2 1+2g1fp2

6
− pkl0/2 +

skl0d2

4 g g1
c=

6

p2, kc=p / l0

Step gr =h1 r øp

0 r .p

sinska

2
s2p+1dd

sinska

2 d
At large p, kc=

4pa

3

Gaussian sg1dsr2/s2d If Îs@ l0, ,
s

2Î
p

ulnsg1du
exps sskl0d2

4Îulnsg1du d No instability
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D
d2csxd

dx2 = csxd − csxd E fsx − ydcsyddy, s12d

thus it looks like a trajectory of mechanical particle(with
massD) in a nonlocal potential, withx as the “time.” A
domain wall is a finite size structure, so it must connect fixed
points of this fictitious dynamics, i.e., a domain wall corre-
sponds toheteroclinic orbit. In this section we consider these
solitons and look for their shape and size at different condi-
tions. In order to simplify the discussion, only the nearest-
neighbor case is considered, both with and without diffusion.

With no diffusion andnn competition, Eq.(9) takes the
form

] cn

] t
= cnf1 − cn − gscn+1 + cn−1dg. s13d

The uniform solution, in this case, isc=1/s1+2gd, and the
nonuniform solution is eithercn=1 for odd n andcn=0 for
even, or vice versa. Stability analysis shows that the uniform
solution becomes unstable atgc=1/2, and thezero-one
phase is stable above this value. One may expect, though, to
see a jump from homogenous to patterned(zero-one) phase
at gc. However, if the initial conditions are taken from ran-
dom distribution, there is a chance for a domain wall be-
tween two regions, as indicated by the numerical results pre-
sented in Fig. 2.

Clearly, such a soliton should be a solution of the “map”

cn+1 =
1 − cn

g
− cn−1, s14d

of course, 01010101. . .(odd 0’s) and 101010101. . .(even
0’s) are already solutions of this equation. We are looking for
the solution that connect these two fixed points. Such a tra-
jectory begins in, say, 010101010 state, but then after the
zero it gives not 1 butx1. The dynamics now continue in a

different trajectory, butx1 should be selected such that after
L steps of the map(for domain wall of sizeL) the 101010
solution is rendered. In a matrix form, the condition that
determinedx1

L (x1 for a givenL) is

1 0

x1
L

1
2 = 3−

1

g
− 1

1

g

1 0 0

0 0 1
4

L

1x1
L

0

1
2 = ML1x1

L

0

1
2 , s15d

where we assume symmetry of the soliton, soL must be
even. In other words, the condition that determinex1

L is

13−
1

g
− 1

1

g

1 0 0

0 0 1
4

L

− 30 1 0

1 0 0

0 0 1
421x1

L

0

1
2 = 0. s16d

Diagonalization ofM is given by the matrixS
S−1MS = D, s17d

where

D = 31 0 0

0 − e−iu 0

0 0 − e−iu 4 s18d

andu=arctansÎ4g2−1d=arccoss1/2gd.
The eigenvalue problem(16) may be written in terms of

the diagonal matrix,

x1
L = S11 − S12

r13

r23

cosSLu

2
+ wD

cosSLu

2
+ hD s19d

and usingS12=S13
* =r12e

iw andS22=S23
* =r23e

ih it implies that

FIG. 1. Maximal amplitude of cn differences fmaxscnd
−minscndg (circles) for a sample of 1024 sites(periodic boundary
conditions) and the predicted difference according to Eq.(11) for
nearest-neighbor interaction withg=0.8 (dashed line). The agree-
ment is up to the numerical error.

FIG. 2. A typical “soliton” of lengthL=20, an outcome of for-
ward Euler integration of Eq.(13) on 1024 lattice points with peri-
odic boundary conditions and random initial conditions atg
=0.505 (just above the bifurcation). There is a perfect agreement
with the theoretical prediction, Eq.(21), up to the accuracy of the
numerics(here, four to five significant digits).
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x1
L =

1

2g + 1
F1 +Î1 − TL−1s1/2gd

1 − TL+1s1/2gd
G , s20d

where Tnsxd is the nth Chebyshev polynomial of the first
kind. After determiningx1

L the same method may be used to
derive a general expression for all the elements of the sizeL
soliton (xm

L , where 1ømøL)

xm
L =

1

2g + 1
F1 + s− 1dmÎ2gf1 − T2m−1s1/2gdg

2g − 1

− s− 1dm 2gx1
L

8g2 − 2
Î1 + T2ms1/2gdG s21d

and it fits perfectly the numerical experiment presented in
Fig. 2 (see captions).

The above analysis gives the shape of a soliton for any
prescribed lengthL, but simulation indicates that onlyone
soliton sizeL is selected for any set of parameters, and its
length diverges asg approaches its critical value. Looking
carefully at the solutions(21) one realizes that all other pos-
sible solitons admit values for some of thexm’s that are either
negative or larger than 1, so these options are unphysical
(negative) or unstable to small perturbations.

The actualLsgd may be forecasted by a rough argument
based on a continuum approach. Defining the local deviation
from the one-zero solution,cn=1 andcn±1=0,

cn±1 = dn±1, cn = 1 −dn, s22d

and plugging it into Eq.(14) gives

dn+1 + dn−1 =
dn

g
. s23d

Subtracting of 2dn from both sides and taking the continuum
limit (i.e., assuming that the changes ind from site to site are
small compared tol0, here taken to be unity) one gets

¹2dsxd = −
4e

1 + 2e
dsxd s24d

with e;g−gc goes to zero at the transition, so 1+2e<1.
The solution of Eq.(24) that satisfies the boundary condi-
tions ds0d=0 together withdsLd=1 is

dsxd =
sins2Îexd
sins2ÎedL

. s25d

This expression fails to converge smoothly to the “back-
ground” ordered 010101 phase(at x=0 it has a finite slope),
and is also asymmetric. Put it another way, there are no non-
trivial heteroclinic orbits for a parabolic potential. On the
other hand, close to the transition, where the size of the do-
main wall is large, it seems that it should fit a solution of the
continuum approximation. The only way out is to pick a
soliton sizeL such that the continuum equation admitno
solution at all, i.e.,

L =
p

2Îe
. s26d

Such a choice forces us back to the discrete equation(14)
and its solution(21). This argument turns out to give the
right length of the stable soliton in the largeLse→0d limit,
as shown in Fig. 4.

Let us consider now the domain walls for the finite diffu-
sion case. As seen in Fig. 3, there are also solitons for the
finite diffusion case, but now they admit tails that asymptoti-
cally looks like d,exps−x/jd, andj diverges at the transi-
tion [e.g., atDc=s2g−1d /4s2g+1d for nearest-neighbor in-
teraction]. Defining a vectorial “order parameter” according

FIG. 3. Solitons for nn interaction with g=0.505 and D
=0.001 (circles), D=0.0012 (heavy line), and D=0.00124(line).
Dc=0.00124378.

FIG. 4. Soliton size(L) as a function of 1/Îe, se=g−gcd, for a
nearest-neighbor interaction without diffusion. The circles are the
results of a numerical simulation and the line isp / s2Îed. In the
inset, the characteristic length of the soliton tail,j, is plotted against
1/Îh for g=0.505 for the solitons shown in Fig. 3. The circles
come from the numerics and the line is the best linear fit that give a
slope of 0.198, to be compared with 1/Î32=0.177.
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to the largerc values, soliton solution interpolates between
(1,0) (largerc on the odd sites) to (0,1) (even sites), and its
shape is given by the saddle point solution of the appropriate
dynamics. Although the determination of its full shape is
difficult, it is possible to determinej by linearizing around
one fixed point. For small deviations,cn=A0+Ap/l0

−dn and
cn±1=A0−Ap/l0

+dn±1 and Eq.(14) yield the two coupled lin-
ear equations for odd and even n’s

s2s+ 2dg − 1 + 2Ddd n
even+ sD − gsdsd n+1

odd + d n−1
oddd = 0,

s2d + 2sg − 1 + 2Ddd n
odd+ sD − gddsd n+1

even+ d n−1
evend = 0,

s27d

wheres;A0+Ap/l0
and d;A0−Ap/l0

. These coupled equa-
tion may be solved with the ansatzd even,a1
3exps−x/jd ,d odd,a2exps−x/jd to give

j = FarccoshS1

2
Îs4 + 64D2 − 32Ddg2 + s20D − 8D2 − 4dg + 1 − 20D2

Dsg − D − 2gDd
DG−1

. s28d

As the diffusion constant approaches its critical value,D
=Dc−h, j diverges like 1/Î32h. This prediction is tested in
the caption of Fig. 4 against the numerics and there is rea-
sonable quantitative agreement, given the difficulties in get-
ting reliable numerical accuracy for the slope of the logarith-
mic tail of the soliton.

IV. CONCLUDING REMARKS

The model of logistic growth with long-range interaction
term may serve as a generic, minimal model for competition
for common resource and pattern formation in excited media.
In this paper this model has been analytically discussed, with
two main outcomes. First, a general scheme for the identifi-
cation of the pattern-forming instability has been presented,
along with explicit results for few common cases. Second,
the defected solutions for random initial conditions has been
presented and analyzed, and their characteristic length that
diverges at the transition is calculated.

The patterned solutions(like the 010101 fornn interac-
tions) are stable against small perturbation(like a low ampli-
tude white noise). If instead of . . .01010101. . . one have
. . .01010s0.9d01. . . the 0.9 site relaxes to 1. The domain

walls, on the other hand, are much less stable, and their
density and dynamics have to be strongly effected by an
external noise. This is very much like the situation in mag-
netic system, where the response functions of the material
are basically determined by the domain walls and not by the
“bulk.” In magnetic systems, however, one may define the
state of the system at finite temperature and a minimum of
the free energy function and consider the effect of noise sim-
ply as temperature increase. The situation seems to be differ-
ent for the long-range competition model: no simple Li-
apunov function exists for this system, and the steady state is
not derived from some variational principle. In spite of that it
is plausible to assume that the defected solutions determine
the response function of the segregated phase, and maybe an
effective dynamical equation for the solitons may be set up
to give an approximate Liapunov function for this system.
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