
A review of stability and dynamical behaviors of differential

equations:

scalar ODE: ut = f(u), system of ODEs:

ut = f(u, v),

vt = g(u, v),

reaction-diffusion equation:

ut = D∆u+ f(u), x ∈ Ω, with boundary condition

reaction-diffusion system:ut = Du∆u+ f(u, v),

vt = Dv∆v+ g(u, v),
, x ∈ Ω, with boundary condition

All equation is in form of Ut = F (U), where u can be a scalar or

vector, spatial independent or dependent
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Abstract Equation Ut = F (U)

Equilibrium solution: U0 such that F (U0) = 0,

linearized operator: F ′(U0)

U0 is stable if the eigenvalues of equation F ′(U0)w = λw are all

with negative real parts.

(Linear behavior) Since the equation Ut = F (U) is approximately

the linearized equation Ut = F ′(U)(U − U0) near the equilibrium

solution U = U0, then U(t) ≈
∑
Ci exp(λit)φi near U = U0, where

(λi, φi) are the eigenvalue-eigenvector pairs of F ′(U0)w = λw.

If λ1 = maxλi, then U(t) ≈ C1 exp(λ1t)φ1 if U(0) ≈ U0.
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Example 1: Scalar equation

ut = f(u), f(u0) = 0, linearized operator: f ′(u0)

f ′(u0) < 0 stable, otherwise unstable

Example 2: Linear systemut = 2u+ 3v,

vt = 4u+ 3v,
, linearized system: J =

(
2 3
4 3

)

Eigenvalue problem:

(
2 3
4 3

)
w = λw,

eigen-pairs: λ1 = −1, φ1 = (1,−1); λ2 = 6, φ2 = (3,4)

Solution:

(
u(t)
v(t)

)
= c1e

−t
(

1
−1

)
+ c2e

6t
(

3
4

)
≈ c2e

6t
(

3
4

)
if

perturbed from equilibrium.
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Example 3: Nonlinear ODE system:xt = 2x− x2 − xy,

yt = 3y − y2 − 2xy,
, linearized operator: J =

(
2− 2x− y −x

−2y 3− 2y − 2x

)
Equilibrium points: (0,0), (2,0), (3,0) and (1,1)

For (1,1), eigenvalues λ1 = −1 +
√

2, φ1 = (0.58,−0.82); λ2 =

−1−
√

2, φ2 = (0.58,0.82)

So near the saddle point (1,1),

(
x(t)
y(t)

)
=

(
1
1

)
+c1e

(−1+
√

2)t
(

0.58
−0.82

)
+

c2e
(−1−

√
2)t

(
0.58
0.82

)
≈
(

1
1

)
+ c1e

(−1+
√

2)t
(

0.58
−0.82

)
when per-

turbed from equilibrium.
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Example 4: scalar diffusion equation

ut = Duxx, x ∈ (0, π), t > 0, u(t,0) = u(t, π) = 0.

Equilibrium solution: u(x) = 0.

Linearized operator: F ′(u)[w] = Dwxx for w satisfying w(0) =

w(π) = 0,

Eigenvalue problem: Dwxx = λw, x ∈ (0, π), w(0) = w(π) = 0.

Eigenvalue-eigenfunction pairs:

λm = −Dm2, φm(x) = sin(mx), m = 1,2, · · · .

Solution: u(x, t) =
∑
cm exp(−Dm2t) sin(mx) ≈ c1 exp(−Dt) sin(x)

near u = 0, and u(x) = 0 is a stable equilibrium solution
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Example 5: scalar diffusive Malthusian equation
ut = Duxx + au, x ∈ (0, π), t > 0, u(t,0) = u(t, π) = 0.

Equilibrium solution: u(x) = 0.
Linearized operator: F ′(u)[w] = Dwxx + aw for w satisfying
w(0) = w(π) = 0,
Eigenvalue problem: Dwxx+aw = λw, x ∈ (0, π), w(0) = w(π) =
0.

Eigenvalue-eigenfunction pairs:
λm = a−Dm2, φm(x) = sin(mx), m = 1,2, · · · .

Solution: u(x, t) =
∑
cm exp((a − Dm2)t) sin(mx) ≈ c1 exp((a −

D)t) sin(x) near u = 0. u(x) = 0 is a stable equilibrium solution
if a < D, and it is unstable if a > D.
(Thus a = D is a potential bifurcation point.)
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Example 6: Fisher equation
ut = Duxx + au(1− u), x ∈ (0, π), t > 0, u(t,0) = u(t, π) = 0.

Equilibrium solution: u(x) = 0.
Linearized operator: F ′(u)[w] = Dwxx + aw for w satisfying
w(0) = w(π) = 0,
Eigenvalue problem: Dwxx+aw = λw, x ∈ (0, π), w(0) = w(π) =
0.

Eigenvalue-eigenfunction pairs:
λm = a−Dm2, φm(x) = sin(mx), m = 1,2, · · · .

Solution: u(x, t) =
∑
cm exp((a − Dm2)t) sin(mx) ≈ c1 exp((a −

D)t) sin(x) near u = 0. u(x) = 0 is a stable equilibrium solution
if a < D, and it is unstable if a > D.
(Thus a = D is a bifurcation point.)
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Fisher equation: (cont.)

For a > D, Fisher equation has a positive equilibrium solution

ua(x) (from local bifurcation theory, and global bifurcation of

time-mapping).

ua(x) is a stable equilibrium solution.

(see lecture notes for a proof)
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Diffusion is a stabilizing process?
In Fisher equation: ut = Duxx + au(1 − u), x ∈ (0, π), t > 0,
u(t,0) = u(t, π) = 0.

Equilibrium solution u = 0 is also an equilibrium solution of ut =
au(1 − u), but an unstable one (since f ′(0) > 0). (eigenvalue
λ = af ′(0) > 0)

Equilibrium solution u(x) = 0 is stable for Fisher equation when
a < D, and it is still unstable when a > D. (eigenvalues: λm =
af ′(0)−Dm2)

Thus diffusion makes the eigenvalue “more negative” and dif-
fusion in scalar equation has a stabilizing effect. (If stable for
ODE, also stable for PDE; even unstable for ODE, still can be
stable for PDE.)
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Next model (most useful one): reaction-diffusion system

ut = Duuxx + f(u, v), vt = Dvvxx + g(u, v),
ux(t,0) = ux(t,1) = 0, vx(t,0) = vx(t,1) = 0

If (u0, v0) is an equilibrium solution that f(u0, v0) = g(u0, v0) =
0, then (u0, v0) is also an equilibrium solution of ut = f(u, v),
vt = g(u, v).

Linearized operator: ODE: Jacobian J =

(
fu fv
gu gv

)

PDE: diag(du∆, dv∆) + J =

(
du∆ 0
0 dv∆v

)
+

(
fu fv
gu gv

)

Eigenvalue problem:


Du∆φ+ fu(u0, v0)φ+ fv(u0, v0)ψ = λφ,

Dv∆ψ+ gu(u0, v0)φ+ gv(u0, v0)ψ = λψ,

φx(0) = φx(1) = 0, ψx(0) = ψ(1) = 0.
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If all eigenvalues of J are with negative real parts (so (u0, v0) is

a stable equilibrium solution for ODE), is (u0, v0) also a stable

equilibrium solution for PDE?

It seems so since the additional part is consist of diffusion oper-

ators only, and diffusion is supposed to stabilizing......

But, as Alan Turing pointed out, (u0, v0) could be an unstable

equilibrium solution for PDE even if it is stable for ODE! So

diffusion has an unstable effect for such system.

How is that possible? Let’s calculate now......
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