
Review of Multi-variable calculus:

The functions in all models depend on two variables: time t and

spatial variable x, (x, y) or (x, y, z).

The spatial variable represents the environment where the species

is living (bacteria:tank in lab, rabbits and foxes:woods, birds: the

space).

The time variable is one dimension, we call it time interval.

Usually it is (−∞,∞), [0,∞) or [0, T ].

In mathematics we call the environment spatial domain

(or simply domain) , or region.
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Domains

The choice of domain in a model depends on the nature of the
problem.

Most of time, domain is bounded. (lab tank, woods, island,
earth, universe?). And it has a boundary.

Mathematically we assume that a bounded domain is an interval
(a, b) in 1-d, the region enclosed by a circular curve in 2-d, or
the region enclosed by a spherical surface in 3-d.

Sometime for simplicity, or to observe certain phenomenon clearer,
we also consider the whole space R = (−∞,∞), R2 or R3.

We will call a domain Ω.
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Functions

Functions in the models are defined for (time interval × domain).

Let X be x, (x, y) or (x, y, z). Then the function is in a form of
f(t, X).

Example: Let D be a 2-d domain. (a woods)
R(t, x, y) =the density of rabbit population at location (x, y) and
time t
F (t, x, y) =the density of fox population at location (x, y) and
time t

Population density =
total population in an area

area

Example: population density is 50,000 per square kilometer in
NYC, and it is 5,000 in Williamsburg
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Graph of the function: (hard to draw in 2-d or 3-d)

graph: (x, y, f(x, y)) (Maple), (x, y, z, f(x, y, z)).

level curve (contour): the graph of f(x, y) = c. (Maple)

level surface: the graph of f(x, y, z) = c. (Maple)

Derivatives: partial derivatives
∂f(t, x, y)

∂t
= ft,

∂f(t, x, y)

∂x
= fx

Gradient: ∇f(x, y) = (∂f/∂x, ∂f/∂y)

Gradient at one point is a vector; gradient function is a vector

field; gradient vector is perpendicular to the level curve
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Vector field: (a vector) F (x, y) = (f(x, y), g(x, y))

Jacobian: (a matrix) J =

(
fx(x, y) fy(x, y)
gx(x, y) gy(x, y)

)

Divergent of a vector field: (a scalar)
for F (x, y) = (f(x, y), g(x, y)), div(F ) = fx + gy

Laplacian of a function: (a scalar)
for a function f(x, y), ∆f = div(∇f) = div(fx, fy) = fxx + fyy

Hessian of a function: (a matrix)

for a function f(x,y), Jacobian of ∇f , H =

(
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)

Example: f(x, y) = x2 + 2y2 − 2xy.
(1) Find ∇f ; (2) Find Hessian of f ; (3) Find ∆f .
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Different kinds of functions:

P (t): function (one variable, one function)

P (x, y): multi-variable function (two variables, one function)

(P (t), Q(t)): vector valued function (one variable, two functions)

(P (x, y), Q(x, y)): vector field (two variables, two functions)
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Integral of functions: Ω: two-dimensional domain, boundary

∂Ω a closed curve, X = (x, y)

∫
Ω

f(x, y)dX =
∫∫

Ω
f(x, y)dxdy

∫
Ω

1dX = area of Ω

Divergence Theorem:

Let ~F (x, y) be a vector field, and let ~n(x, y) be the unit outer nor-

mal vector at (x, y), a boundary point on ∂Ω. Then
∫
∂Ω

~F (x, y) ·

~n(x, y)ds is the total flux of ~F over the curve ∂Ω.

∫
∂Ω

~F (x, y) · ~n(x, y)ds =
∫
Ω

div(~F (x, y))dX.

1-d: F (b)− F (a) =
∫ b
a F ′(x)dx
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Green’s Identities:

∫
Ω

u∆vdX =
∫
∂Ω

u∇v · ~nds−
∫
Ω
∇u · ∇vdX

∫
Ω

u∆vdX −
∫
Ω

v∆udX =
∫
∂Ω

u∇v · ~nds−
∫
∂Ω

v∇u · ~nds

Example: Let F (x, y) = (x + y, ex−y), and let Ω be a square

(0,1)× (0,1).

(1) Calculate
∫
Ω

div(~F (x, y))dX

(2) calculate
∫
∂Ω

~F (x, y) · ~n(x, y)ds

8



Differential Equations: (continuous model)

Malthus equation:
dN

dt
= rN , Solution: N(t) = N0ert

Assumption: the reproduction rate is proportional to the size of

the population

Logistic equation:
dN

dt
= rN

(
1−

N

K

)
,

Solution: N(t) =
KN0

(K −N0)e−rt + N0
Assumptions: the reproduction rate is proportional to the size of

the population when the population size is small, and the growth

is negative when the size is large

[B] Section 1.3
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General ODE growth model:
dN

dt
= Ng(N),

g(N) is growth rate per capita

Malthus: g(N) is a constant

Logistic: g(N) is decreasing (compensatory, crowding effect)

Weak Allee effect: g(N) is first increasing, then decreasing, and

g(0) > 0 (depensatory)

Strong Allee effect: g(N) is first increasing, then decreasing, and

g(0) < 0 (critical depensatory)

Harvesting:
dN

dt
= Ng(N)− h(N)

h(N) is the harvesting rate
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Qualitative behavior of solutions:

the most common case is that the solution tends to an equilib-

rium N(t) = C.

Stability of an equilibrium point:

Suppose that y = y0 is an equilibrium point of y′ = f(y).

y0 is a sink if any solution with initial condition close to y0 tends

toward y0 as t increase.

y0 is a source if any solution with initial condition close to y0

tends toward y0 as t decrease.

y0 is a node if it is neither a sink nor a source.
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Linearization Theorem:

Suppose that y = y0 is an equilibrium point of y′ = f(y).

If f ′(y0) < 0, then y0 is a sink;

If f ′(y0) > 0, then y0 is a source;

If f ′(y0) = 0, then y0 can be any type, but in addition if f ′′(y0) >

0 or f ′′(y0) < 0, then y0 is a node.

Bifurcation: Suppose that the differential equation depends on

a parameter. Then we say that a bifurcation occurs if there is a

qualitative change in the behavior of solutions as the parameter

changes.
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Types of bifurcations

Example 1:
dy

dt
= ky(1− y) (no bifurcation)

Example 2:
dy

dt
= y2 − µ (saddle-node bifurcation, supercritical)

Example 3:
dy

dt
= y3 + µy (pitchfork bifurcation, subcritical)

Example 4:
dy

dt
= y2 − µy (transcritical bifurcation)
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A Harvesting Model: Holling’s type II model, Michaelis-Menton
kinetics in biochemistry

dP

dt
= kP

(
1−

P

N

)
−

AP

1 + BP

Assumptions: The number of predator is assumed to be con-
stant, and they cannot consume more preys when P is large. It
takes the predator a certain amount of time to kill and eat each
prey. So suppose that in one hour, the predator (a wolf) can
catch AP number of prey (rabbits) (it is proportional to P since
when P is larger, the wolf has better chance to meet rabbits,)
but it needs T hour to handle and eat each rabbit caught. So for
all AP rabbits, it takes ATP hours, and in fact the wolf spends
1 + ATP hours on these AP rabbits. So in 1 hour, the wolf

actually only eats
AP

1 + ATP
rabbits. We use B = AT as a new

parameter in the equation.
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Example of analysis of the model:
dQ

ds
= Q (1−Q)−

hQ

1 + aQ

Q (1−Q)−
hQ

1 + aQ
= 0, Q = 0 or aQ2+(1−a)Q+(h−1) = 0,

Q± =
a− 1±

√
(a + 1)2 − 4ah

2a
, Basic border line: h =

(a + 1)2

4a

when 0 < h <
(a + 1)2

4a
, three equilibrium points

when h =
(a + 1)2

4a
, two equilibrium points (except a = 1)

when h >
(a + 1)2

4a
, one equilibrium points
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But we also count the negative equilibrium points

Trace-determinant analysis:

0 = aQ2 + (1− a)Q + (h− 1) = a(Q−Q1)(Q−Q2)

Q1 > 0, Q2 > 0 if 1− a < 0 and h− 1 > 0

Q1 > 0, Q2 < 0 if h− 1 < 0

Q1 < 0, Q2 < 0 if 1− a > 0 and h− 1 > 0

Now we have a complete classification
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