Once Upon a Time...

Constant diffusion:

$$J = -D \, \nabla \cdot u$$

$$\frac{\partial u}{\partial t} = -\nabla \cdot J = D \,\Delta \,u$$

But is this truly realistic???

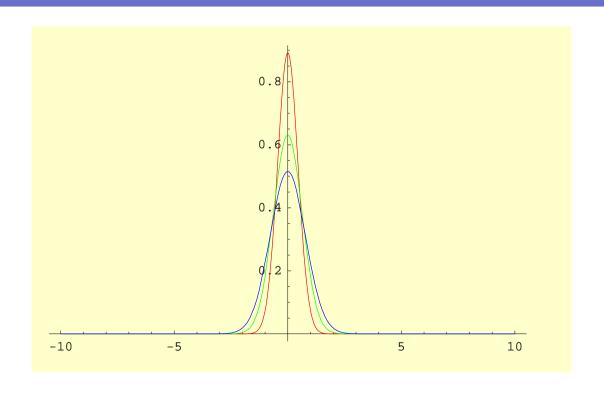
Problems With Constant Diffusion

Any initial condition, even a point distribution, instantly "spreads out" to cover an infinite domain. Consider the one-dimensional case:

$$\begin{cases} \frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} \\ u(x, 0) = \delta(x) \end{cases}$$

$$\Rightarrow u(x, t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$

Problems With Constant Diffusion



How Can We Improve This?

Use a non-constant diffusion term:

$$J = -D(u) \nabla \cdot u(x, t)$$

$$\frac{\partial u}{\partial t} = -\nabla \cdot J = \nabla \cdot (D(u) \nabla \cdot u)$$

This makes intuitive sense - in an insect population, for example, we would expect very densely populated areas to diffuse outwards more quickly than sparsely populated areas.

Crap!

Of course, now we need to figure out how to deal with non-constant diffusion in our solution.

Rewrite our equation as

$$\frac{\partial u}{\partial t} - \nabla \cdot (D(u) \nabla \cdot u) = 0$$

We can consider this to be an example of a general class of functions of the form

$$G(x, t, u, u_x, u_t, u_{xx}, u_{xt}, u_{tt}) = 0$$

The one-parameter family of stretching functions:

$$\overline{x} = \epsilon^a x$$

$$\bar{t} = \epsilon^b t$$

$$\overline{u} = \epsilon^c u$$

The *one-parameter family of stretching functions*:

$$\overline{x} = \epsilon^a x$$

$$\overline{t} = \epsilon^b t$$

$$\overline{u} = \epsilon^c u$$

a, b, and c are constants; ϵ is a real parameter on some open interval that contains 1.

Define G to be *invariant* if there exists a smooth function $f(\epsilon)$ such that

$$G(\overline{x}, \overline{t}, \overline{u}, \overline{u}_{\overline{x}}, \overline{u}_{\overline{t}}, \overline{u}_{\overline{x}\overline{x}}, \overline{u}_{\overline{t}}, \overline{u}_{\overline{t}}) = f(\epsilon) G(x, t, u, u_x, u_t, u_{xx}, u_{xt}, u_{tt})$$

Assume G is invariant. This gives us

$$G(\overline{x}, \overline{t}, \overline{u}) = f(\epsilon) G(x, t, u)$$

$$G(\epsilon^a x, \epsilon^b t, \epsilon^c u) = f(\epsilon) G(x, t, u)$$

$$G(\epsilon^a x, \epsilon^b t, \epsilon^c u) = f(\epsilon)(0)$$

$$G(\epsilon^a x, \epsilon^b t, \epsilon^c u) = 0$$

(Because *G* is homogenous.)

Differentiate with respect to ϵ :

$$ax\epsilon^a \frac{\partial G}{\partial x} + bt\epsilon^b \frac{\partial G}{\partial t} + cu\epsilon^c \frac{\partial G}{\partial u} = 0$$

Set $\epsilon = 1$ (which we can do because we restrict ϵ to a domain that contains 1):

$$ax\frac{\partial G}{\partial x} + bt\frac{\partial G}{\partial t} + cu\frac{\partial G}{\partial u} = 0$$

Clever people look at this and see that the transformation we want to use is

$$u = t^{c/b} r(z)$$

$$z = \frac{x}{t^{a/b}}$$

Verification of the transformation:

$$ax \frac{\partial G}{\partial x} + bt \frac{\partial G}{\partial t} + cu \frac{\partial G}{\partial u} = 0$$

$$ax \frac{\partial G}{\partial z} \frac{\partial z}{\partial x} + bt \frac{\partial G}{\partial z} \frac{\partial z}{\partial t} + cu \frac{\partial G}{\partial z} \frac{\partial z}{\partial u} = 0$$

$$\frac{\partial z}{\partial x} = \frac{1}{t^{a/b}}, \frac{\partial z}{\partial t} = \cdots$$

What have we accomplished with all our fancy math?

$$G(x, t, u, u_x, u_t, u_{xx}, u_{xt}, u_{tt}) = 0$$

$$\iff$$

$$g(z, r, r', r'') = 0$$

Recall the problem we're actually working on:

$$\frac{\partial u}{\partial t} = \nabla \cdot (D(u) \, \nabla \cdot u)$$

$$D(u) = D_0 \left(\frac{u}{u_0}\right)^m$$

Letting m = 1 gives us

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\frac{D_0}{u_0} u \frac{\partial u}{\partial x} \right)$$

And because we're lazy, we'll assume $\frac{D_0}{u_0} = 1$, so

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(u \, \frac{\partial u}{\partial x} \right)$$

The problem is now

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(u \frac{\partial u}{\partial x} \right) \\ u(x, 0) = \delta(x) \end{cases}$$

Other assumptions:

Since no organisms are being born or dying, we require for all t > 0

$$\int_{-\infty}^{\infty} u(x, t) \, dx = 1$$

and

$$\lim_{x \to +\infty} u(x, t) = 0$$

Check for invariance:

$$G(\overline{x}, \overline{t}, \overline{u}, \overline{u}_{\overline{x}}, \overline{u}_{\overline{t}}, \overline{u}_{\overline{x}\overline{x}}, \overline{u}_{\overline{t}\overline{t}}, \overline{u}_{\overline{t}t}) = f(\epsilon) G(x, t, u, u_x, u_t, u_{xx}, u_{xt}, u_{tt})$$

$$\overline{x} = \epsilon^a x$$

$$\bar{t} = \epsilon^b t$$

$$\overline{u} = \epsilon^c u$$

$$\frac{\partial \overline{u}}{\partial \overline{t}} - \frac{\partial}{\partial \overline{x}} \left(\overline{u} \frac{\partial \overline{u}}{\partial \overline{x}} \right) = \epsilon^{c-b} \frac{\partial u}{\partial t} - \epsilon^{2c-2a} \frac{\partial}{\partial x} \left(u \frac{\partial u}{\partial x} \right)$$

We have invariance if

$$c - b = 2 c - 2 a \Rightarrow c = 2 a - b$$

$$u = t^{c/b} r(z)$$

$$z = \frac{x}{t^{a/b}}$$

With our invariance condition,

$$u = t^{(2a-b)/b} r(z)$$

$$z = \frac{x}{t^{a/b}}$$

Let's be clever:

$$\int_{-\infty}^{\infty} u(x, t) dx = 1$$

$$t^{(2a-b)/b} \int_{-\infty}^{\infty} r\left(\frac{x}{t^{a/b}}\right) dx = 1$$

$$t^{(3a-b)/b} \int_{-\infty}^{\infty} r(z) dz = 1$$

Time-independence requires

$$b = 3 a$$

Which simplifies the transformation to

$$u = t^{-1/3} r(z)$$
$$z = x t^{-1/3}$$

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(u \frac{\partial u}{\partial x} \right) \\ u = t^{-1/3} r(z) \Longrightarrow 3 (r r')' + r + z r' = 0 \\ z = x t^{-1/3} \end{cases}$$

This equation can be integrated to give

$$3rr' + zr = constant$$

Take the constant to be zero; the solution is

$$r(z) = \frac{A^2 - z^2}{6}$$

Use our conditions to clean it up:

$$\lim_{x \to \pm \infty} u(x, t) = 0$$

means that

$$r(z) = \begin{cases} \frac{A^2 - z^2}{6}, & |x| < A \\ 0 & |x| > A \end{cases}$$

And

$$\int_{-\infty}^{\infty} u(x, t) \, dx = 1$$

means that

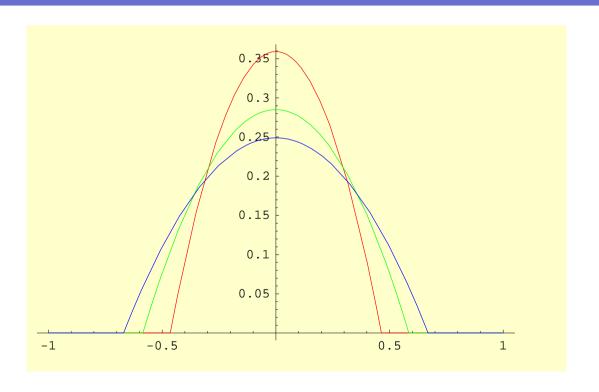
$$A = \left(\frac{9}{2}\right)^{1/3}$$

Now switch everything back to original coordinates.

$$u(x, t) = \begin{cases} \frac{1}{6t} (A^2 t^{2/3} - x^2), & |x| < A t^{1/3} \\ 0 & |x| > A t^{1/3} \end{cases}$$

About time. Let's take a look!

A Specific Example - Pretty Pictures



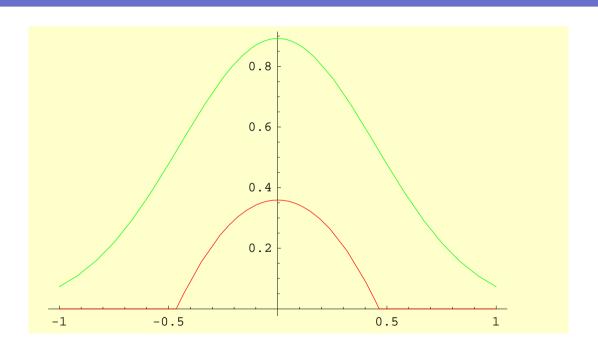
The key feature of this solution is the sharp wave front at

$$x_f = A t^{1/3}$$

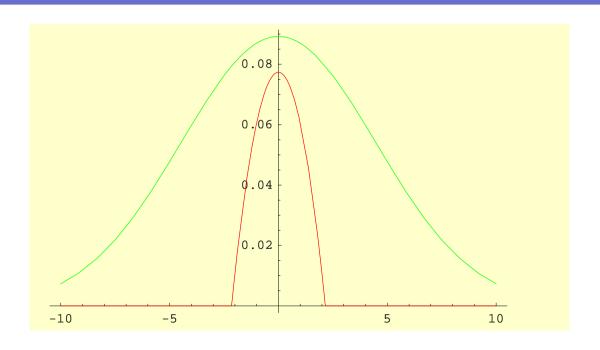
This wave is moving with speed

$$\frac{dx_f}{dt} = \frac{1}{3} A t^{-2/3}$$

Comparing Constant and Density-Dependent Diffusion at t = .1



Comparing Constant and Density-Dependent Diffusion at t = 10



What About the Not-Simple Case, You Ask?

Recall that the general form is

$$\frac{\partial u}{\partial t} = \nabla \cdot (D(u) \, \nabla \cdot u)$$

$$D(u) = D_0 \left(\frac{u}{u_0}\right)^m$$

and we assumed m = 1 for all the work we just did. Is there a general solution?

What About the Not-Simple Case, You Ask?

Yes, and here it is:

$$u(x, t) = \begin{cases} \frac{u_0}{\lambda(t)} \left(1 - \left(\frac{x}{r_0 \lambda(t)} \right)^2 \right)^{1/m}, & |x| \le r_0 \lambda(t) \\ 0 & |x| > r_0 \lambda(t) \end{cases}$$

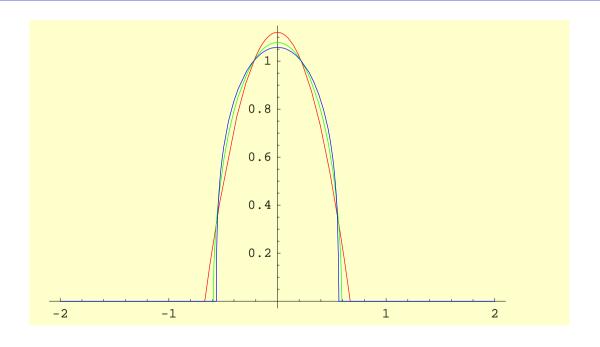
Where

$$\lambda(t) = \left(\frac{t}{t_0}\right)^{1/(2+m)}$$

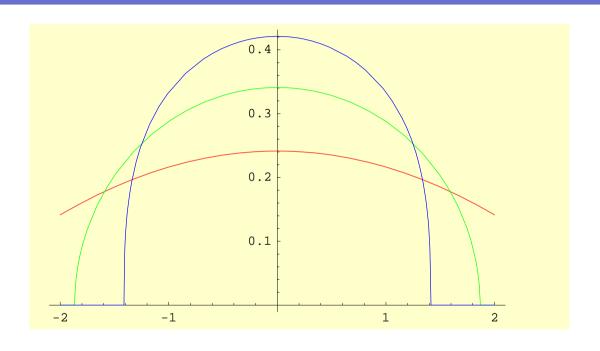
$$r_0 = \frac{Q\Gamma(\frac{1}{m} + \frac{3}{2})}{\pi^{1/2} u_0 \Gamma(\frac{1}{m} + 1)}, \quad t_0 = \frac{r_0^2 m}{2 D_0(m+2)}$$

 D_0 and n_0 are positive constants; Q is the initial density at the origin, and r_0 comes from requiring that the integral over the domain at all times be equal to Q.

Not-Simple Case, t = .1 and m = 1, 2, 3



Not-Simple Case, t = 10 and m = 1, 2, 3



Pay No Attention to the Man Behind the Curtain

```
ln[30]:= u[x,t]:=
         Which [Abs[x] < t^{1/3}, \frac{1}{6t} (t^{2/3} - x^2), True, 0]
ln[31]:= uConstantD[x_, t_] := \frac{1}{\sqrt{4\pi +}} Exp\left[\frac{-x^2}{4t}\right]
       Plot[\{u[x, .1], u[x, .2], u[x, .3]\},
In[39]:=
           \{x, -1, 1\}, PlotStyle \rightarrow {RGBColor[1, 0, 0],
             RGBColor[0, 1, 0], RGBColor[0, 0, 1]}];
       Plot[\{u[x, .1], uConstantD[x, .1]\},
ln[40]:=
           \{x, -1, 1\}, PlotStyle \rightarrow {RGBColor[1, 0, 0],
             RGBColor[0, 1, 0], RGBColor[0, 0, 1]}];
```

```
\{x, -10, 10\}, PlotRange \rightarrow All,
                PlotStyle → {RGBColor[1, 0, 0],
                   RGBColor[0, 1, 0], RGBColor[0, 0, 1]}];
\ln[47] := \lambda \left[ t_{,m} \right] := \left( \frac{t}{t_{,m}} \right)^{\frac{1}{2+m}}
ln[48]:= r0[m_] := \frac{Gamma\left[\frac{1}{m} + 3/2\right]}{\sqrt{\pi} Gamma[1/m+1]}
ln[49] := t0[m] := \frac{r0[m]^2 * m}{2(m+1)}
           uGeneral[x_, t_, m_] :=
In[50]:=
              Which Abs [x] \le r0[m] \lambda[t, m],
                \frac{1}{\lambda \left[1 - \left(\frac{\mathbf{x}}{r_0[m] \lambda [t m]}\right)^2\right]^{1/m}}, \text{ True, } 0
```

 $Plot[\{u[x, 10], uConstantD[x, 10]\},$

In[46]:=

```
\{x, -2, 2\}, PlotRange \rightarrow All,
          PlotStyle → {RGBColor[1, 0, 0],
            RGBColor[0, 1, 0], RGBColor[0, 0, 1]}];
In[55]:=
       Plot[{uGeneral[x, 10, 1],
           uGeneral[x, 10, 2], uGeneral[x, 10, 3]},
          \{x, -2, 2\}, PlotRange \rightarrow All,
          PlotStyle \rightarrow {RGBColor[1, 0, 0],
            RGBColor[0, 1, 0], RGBColor[0, 0, 1]}];
```

uGeneral[x, .1, 2], uGeneral[x, .1, 3]},

Plot[{uGeneral[x, .1, 1],

In[54]:=