
Chapter 3

Diffusion of point source and

biological dispersal

3.1 Diffusion of a point source

Suppose that a new species is introduced to an existing environment, then naturally the individuals
of the species will disperse from the release point. That would similar to the diffusion when a drop
of ink enter a jar of pure water. Reaction-diffusion equation can be used to describe an ideal
growth and spatial-diffusion phenomena. The simplest way is to consider the dispersion in an
infinite domain–we first consider the simplest one dimensional problem. Suppose that P (t, x) is
the population density function of this species, t ≥ 0 and x ∈ (−∞,∞). Suppose that at t = 0, we
import a group of M individuals to a point (say, x = 0). Let u0(x) be the initial distribution of
the population. Then ∫ ∞

−∞
u0(x)dx = M. (3.1)

However u0(x) = 0 for any x 6= 0 since before the dispersion, the species does not exist in the
environment yet. On the other hand the population density at x = 0 is given by the following limit

u0(0) = lim
x→0+

∫ x
−x u0(x)dx

2x
= ∞. (3.2)

Thus u0(x) is an unusual function can be characterized by

u0(x) =

{
∞ if x = 0,

0 otherwise,
and

∫ ∞

−∞
u0(x)dx = M. (3.3)

This function is called a δ-function (delta function) in physics, and we denote it by δ0(x) (a function
which is infinity at a would be δa(x).) Although this function is not a function in the normal sense,
we can check that the function

Φ(t, x) =
M√
4πDt

e−
x2

4Dt (3.4)
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is a solution of

ut = Duxx, t > 0, x ∈ R, u(0, x) = Mδ0(x), (3.5)

in the sense that Φ satisfies the equation when t > 0 and x ∈ R, and

lim
t→0+

Φ(t, x) = 0, x 6= 0, lim
t→0+

Φ(t, 0) = ∞. (3.6)

The function Φ is called the fundamental solution of one-dimensional diffusion equation. For each
fixed t > 0, Φ(t, ·) is a normal distribution function, thus the graph of φ(t, ·) is a bell-shaped curve.
Moreover since the individuals in the population only move around in the environment, there is no
new reproduction, the total population keeps constant:

∫ ∞

−∞
Φ(t, x)dx = M. (3.7)

Biologically, dispersion in a two-dimensional space is more practical. Similar to one-dimensional
case, the equation

ut = D(uxx + uyy), t > 0, (x, y) ∈ R2, u(0, x, y) = δ(0,0)(x, y), (3.8)

has solution

Φ(t, x, y) =
M

4πDt
e−

x2+y2

4Dt . (3.9)

Here δ(0,0)(x, y) is a function defined as

δ(0,0)(x, y) =

{
∞ if (x, y) = (0, 0),

0 otherwise,
and

∫

R2

δ(0,0)(x, y)dxdy = M. (3.10)

We also notice that Φ(t, x, y) is radially symmetric, thus the diffusion from a point source in two-
dimensional space is radial, which can be regarded as a consequence of the rotational symmetry of
the Laplacian operator.

3.2 Mathematical derivation of the fundamental solutions

In this section, we will solve the equation

ut = Duxx, t > 0, x ∈ R, u(0, x) = δ0(x), (3.11)

and derive the formula of the fundamental solution (3.4). One can see that the fundamental solution
is not a function in form of U(t)V (x), thus the method of separation of variables won’t work here.
But it also shows that there are other types of solutions of diffusion equation which cannot be
obtained by separation of variables.

When deriving the diffusion equation in Chapter 1 via random walk, an important assumption
we make is that (∆x)2/(2∆t) → D when the step sizes ∆x and ∆x approach zero. So we can guess
that that the scaling x2/t can be a factor in the solution of diffusion equation. Indeed, if u(t, x) is a
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solution to the diffusion equation, so is u(a2t, ax), a dilation of u(t, x). Thus we try a test function
u(t, x) = v(x2/t), and hope it may solve the diffusion equation. Then

ut = v′
(
x2

t

)
·
(
−x

2

t2

)
, and uxx = v′′

(
x2

t

)
·
(

4x2

t2

)
+ v′

(
x2

t

)
·
(

2

t

)
. (3.12)

Substituting (3.12) into (3.11), and after some algebra, we have

v′′(y) +
2D + y

4Dy
v′(y) = 0. (3.13)

By integrating, we find that
v′(y) = c1y

−1/2e−y/(4D), (3.14)

thus the general solution of (3.13) is

v(y) = c1

∫ y

0
z−1/2e−z/(4D)dz + c2, (3.15)

for constant c1, c2 ∈ R. So we now have another family of solutions of diffusion equation:

u(t, x) = v(x2/t) = c1

∫ x2/t

0
z−1/2e−z/(4D)dz + c2. (3.16)

However this solution is still not the fundamental solution. We notice that if u(t, x) is a solution
of the diffusion, so is its partial derivatives as the equation is linear. We differentiate (3.16) with
respect to x, and we obtain

v(t, x) =
2c1√
t
e−

x2

4Dt . (3.17)

Finally we choose c1 = M/(4
√
πD) so that

∫
R
v(t, x)dx = M , and we obtain the formula of the

fundamental solution.

There are at least another three ways of deriving the fundamental solutions. One is to use a
test function u(t, x) = t−αv(t−βx) with unspecified α and β; the second is to use Fourier transform,
an integral transform; and the third is to use random walk approach in Chapter 1 and the central
limit theorem in probability theory.

The solutions given in (3.16) are also very useful in some cases. By making a change of variables
z = 4Dw2, and assuming that u(t, x) → 0 as x→ ±∞, we can rewrite the solutions in (3.16) as

u(t, x) = c3

(
1 − 2

π

∫ x/
√

4Dt

0
e−w2

dw

)
= c3[1 − erf(x/

√
4Dt)], (3.18)

where erf(y) =
2

π

∫ y

0
e−w2

dw is called the error function, which is widely used in statistics and

applied mathematics. The solution in (3.18) satisfies




∂u

∂t
= D

∂2u

∂x2
, t > 0, x ∈ (0,∞),

u(t, 0) = c3, lim
x→∞

u(t, x) = 0,

u(0, x) = 0, x ∈ (0,∞).

(3.19)

The equation (3.19) is a diffusion on a half line with continuous source instead of a point source.
Here x = 0 is the source, where the concentration or density of u is kept as a constant c3.
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3.3 Chemical Pollution: revisit

In Section 2.5, we consider a chemical mixing-diffusion problem in a tube with finite length L, and
a continuous source flux at one end. Here we apply some results in two previous sections to consider
some more chemical questions.

Example 3.1. Prof. Shi’s house is on a long boat canal. One day a neighbor 200 meters away
from his house has a small fuel spill (1 kg). Suppose that the current in the canal is negligible, and
the fuel is only transported through diffusion. Assume that fuel mixes rapidly across the width and
stays on the surface of the canal, and assume the canal is 10 meter wide and the diffusion constant
D = 0.04m2/s.

1. How long does it take for the spilled fuel to reach Prof. Shi’s house?

2. What is the concentration of the fuel at Prof. Shi’s house at that time?

3. When does the fuel achieve the maximum concentration at Prof. Shi’s house? What is the
maximum concentration?

Let f(t, x) be the concentration of the fuel. Then f satisfies the diffusion equation, and the fuel
spill can be thought as a point source release. The long canal can be assumed to be infinitely long.
Thus f satisfies

ft = Dfxx, t > 0, x ∈ R, u(0, x) = δ0(x). (3.20)

The solution is readily given by the fundamental solution:

Φ(t, x) =
1√

4πDt
e−

x2

4Dt . (3.21)

However to give a meaningful answer to the question, we have to define what means the fuel
“reaches” the house. In fact, for any t > 0, Φ(t, x) > 0 for all x ∈ R, so the fuel technically reaches
the house immediately, though only very tiny portion at a point far away from the source. One
way to define a minimum traceable level k, and to calculate the time when the concentration at
the given point reaches that level. But a conventional way is to define the edge of the diffusing
patch of the fuel. We notice that Φ(t, x) is a normal distribution function with variance σ =

√
2Dt.

The patch is usually defined as the spatial domain within ±2σ of the center. Thus the edge is at
x = 2

√
2Dt, and the time that the edge reaches the house can be calculated by

2
√

2Dt = 200, (3.22)

and t = 106/8 = 125000s ≈ 32 hours. The concentration at that time is

Φ(125000, 2
√

2Dt) =
1

10
√

4π · 0.04 · 125000
e−2 = 5.4 × 10−5(kg/m2) = 0.054(g/m2). (3.23)

The time 32 hours is when the edge of the patch reaches the house, but not the time the maximum
concentration is at the house. To calculate the maximum concentration, we can use Maple to
differentiate the solution with respect to t, and solve the time of maximum concentration: t =
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500000s ≈ 128 hours. The maximum concentration is about 0.121(g/m2). We also notice that
although when t → ∞, the solution tends to zero, but the rate of approaching zero is extremely
slow. For instant, the time of f(t, 200) back to 0.054(g/m2) is 6302115s ≈ 1750 hours! Thus even
the peak has passed after 5 days of the spill, there is still a noticeable trace of the fuel in the period
of 73 days. Now you can imagine how bad it would be if a whole fuel tank spills on a highway, or
a oil vessel spills in the ocean.
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Figure 3.1: The graph of f(t, 200)

3.4 Diffusive Malthus equation and biological dispersion

The simplest population growth model is due to Thomas Malthus:

dP

dt
= aP, (3.24)

where a is the constant growth rate per capita. Thus if we take the spatial distribution into the
consideration, it is natural to consider the following diffusive Malthus equation (in two-dimensional
space):

∂P

∂t
= D(

∂2P

∂x2
+
∂2P

∂y2
) + aP, (3.25)

where a is the constant growth rate per capita per unit area. In this section, we consider the
equation in the whole space with a point source:





∂P

∂t
= D(

∂2P

∂x2
+
∂2P

∂y2
) + aP, t > 0, (x, y) ∈ R2,

u(0, x, y) = δ(0,0)(x, y).
(3.26)

The solution of (3.26) can easily deduced from the solution of (3.8) (the 2-D fundamental solution).
In fact, let Φ(t, x, y) be the solution of (3.8), then it is easy to verify that eatΦ(t, x, y) is the solution
of (3.26). Thus the solution of (3.26) can be expressed as

P (t, x, y) =
M

4πDt
eat−x2+y2

4Dt , (3.27)
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and consequently ∫

R2

P (t, x, y)dxdy = Meat. (3.28)

This equation can be used to model the population explosion of modern metropolitan area in
twentieth century. Suppose that A is an isolated metropolitan area which is far away from any
other metropolitan areas, then we can assume that A and the surrounding areas is an unlimited
area—-R2. Here we also assume that the migration of the population can be in any direction—
there is no water bodies in the area, no unlivable mountain, desert, etc. At the time t = 0 (the
beginning of the city), a group of M immigrants came to this place, and began the formation of
the city by diffusion and growth. After some time, when a town has been formed near the center
of the first settlement (0, 0), we can define the metro area and the rural area in the following way:
Let BR be the ball with radius R in R2; we define R(t) as the number such that outside of BR(t),
the total population is always M , i.e.

∫

R2−BR(t)

P (t, x, y)dxdy = M ; (3.29)

we define BR(t) as the metro area and R2 − BR(t) as the rural area. We make such a definition
in assuming that the population in all rural area keeps a constant despite the growth, but the
population in metro area has an exponential growth, and the area of the metro also grows over
years. With the calculation which leads to (3.28), we have

∫

R2−BR(t)

P (t, x, y)dxdy = Meate
R2(t)
4Dt ,

thus R(t) and the area of BR(t) the form

R(t) =
√

4aDt, A(t) = 4πaDt2. (3.30)

The boundary of BR(t) can be regarded as the front of population wave, and that is where new
neighborhoods and new shopping centers are being built. The speed of the expanding of the metro
area is

R′(t) =
√

4aD. (3.31)

The analysis of the formation of the modern metropolitan has been carried out by Skellam [?]
in early 1950’s for the spreading of muskrats (Ondatra zibethica) in central Europe. Today the
muskrat is quite common in Europe and Asia. Its range extends from Sweden and France in the
west to the major river systems of Siberia in the east. But muskrats are a recent addition from
the New World. According to a study published in 1930 by Ulbrich, referenced by Skellam [?], in
1905 several muskrats found their way to freedom in a wilderness near the Moldau River about 50
kilometers southwest of Prague. Radial dispersion and exponential growth followed. Although the
muskrat has many natural predators, moat notably the mink, in this instance there was evidently no
natural-imposed carrying capacity during the ensuing years. the muskrat population grew rapidly
and dispersed widely.

Over the years, Ulbrich kept records of the spread of the muskrat. His map of the locations of
the dispersion front is shown ?. Cumulative areas defined by the level curves (contours) of the map
are listed in the following table.



3.4. DIFFUSIVE MALTHUS EQUATION AND BIOLOGICAL DISPERSION 47

Year 1905 1909 1911 1915 1920 1927

Area (km2) 0 5400 14000 37700 79300 201600

We use a Maple program to fit the above data into a function A(t) = kt2:

>restart;with(stats):with(plots):Times:=[0,4,6,10,15,22];

>Area:=[0,5400,14000,37700,79300,201600];

>Data:=[[0,0],[4,5400],[6,14000],[10,37700],[15,79300],[22,201600]];

>eq_fit:=fit[leastsquare[[x,y],y=k*x^2,{k}]]([Times,Area]);

eqf it := y =
119777300

296433
x2

Thus aD =
119777300

296433
· 1

4π
= 32.15422940, and the speed of the expansion is R′(t) =

√
4aD =

11.34093989(km/year). The equation (3.25) is the simplest model for biological invasion, and it
gives good estimate of the speed of invasion wave in the initial stage of the dispersion. However it
is also unrealistic in long term because of exponential growth. In the next Chapter we will discuss
more realistic invasion models.

Chapter 3 Exercises

1. Consider the diffusion equation ut = Duxx. Assume that u(t, x) = v(x/
√
t), derive an

ordinary differential equation satisfied by v, and show that the solution u(t, x) is given by
(3.17).

2. Consider the convective-diffusion equation:

∂u

∂t
= D

∂2u

∂x2
− V

∂u

∂x
, t > 0, x ∈ R, u(0, x) = Mδ0(x). (3.32)

Use a change of variable z = x− V t, s = t to show that v(s, z) = u(t, x) satisfies vs = Dvzz,
and derive the solution formula of (3.32):

u(t, x) =
M√
4πDt

exp

(
−(x− V t)2

4Dt

)
. (3.33)

3. In the fuel spill example in Section 3.3, if we assume now the canal current is V = 0.01(m/s)
from the spill point toward Prof. Shi’s house, then f(t, x) satisfies (3.32). Use the results in
problem 2 to recalculate the questions in Example 3.1. In this case, the center of the fuel
patch is moving with a velocity V .

4. In the fuel spill example in Section 3.3, we assume that the current is from Prof. Shi’s house
toward the spill point. Then it is possible that the fuel never reaches Prof. Shi’s house if the
current is fast enough. (Here “reach”means the house is inside the ±2σ of the center of the
patch.) Determine for which V that will happen.
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5. (Spread of gypsy moths, [?]) Gypsy moths (Lymantria dispar) were brought to Massachusetts
from Europe around 1870 in connection with silkworm development research. Needless to say,
some of the moths escaped from breeding cages but somehow large growths and widespread
dispersal were kept under control for a number of years. However, around 1900 there was
a drastic increase of gypsy moth population in the Boston area which quickly spread to
adjacent regions. By 1925 or so, when dispersal was finally halted, gypsy moths covered all
of New England and parts of New York state and Canada. There was severe damage to
forests throughout the region. The following are the cumulative areas corresponding to the
dispersion fronts. According to the studies by Elton, there was no significant expansion of
the front after 1925.

Year 1900 1905 1910 1915 1920 1925

Area (km2) 1290 9080 26960 58840 79770 113320

Use the data above to estimate the value of aD and the year when the area was zero in this
example. (Hint: modify the Maple program above, use function a(x− b)2 instead of ax2, and
notice that Boston is a coastal city, so the spread areas are semicircular instead of circular.)


