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The partial differential equation

(1)

{
∆u+ λf(u) = 0, in Ω,

u = 0, on ∂Ω,

can be formulated to a functional equation:

(2) F (λ, u) = 0,

where F : R×X → Y , X and Y are Banach spaces, and λ is a real value parameter. When F
is sufficiently smooth, we can often use the bifurcation theory based on differential calculus
in Banach spaces. In this notes, we prove several local bifurcation theorems based on implicit
function theorem in Banach spaces. In particular we obtain infinite dimension version of
basic bifurcation phenomena like saddle-node, transcritical and pitchfork described before
. In this notes, we always assume X and Y are Banach spaces.

1 Banach spaces and implicit function theorem

A metric space is a pair (M,d) where M is a set and d : M ×M → R is a metric which
satisfies for any x, y, z ∈ M : (i) d(x, y) ≥ 0; (ii) d(x, y) = 0 if and only if x = y; (iii)
d(x, y) = d(y, x); and (iv) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z). A metric space
(M,d) is said to be complete if any Cauchy sequence {xn} ⊂M has a limit in M .

A normed vector space (over real numbers) is a pair (V, || · ||) where V is a linear vector
space over real numbers and the norm || · || : V → R is a function which satisfies for any
a ∈ R and x, y ∈ V : (i) ||ax|| = |a| · ||x||; (ii) ||x|| ≥ 0, and ||x|| = 0 if and only if x = 0 (the
zero vector); and (iii) (triangle inequality) ||x+ y|| ≤ ||x||+ ||y||. A normed vector space is
a metric space with the metric d(x, y) = ||x− y||. A complete normed vector space is called
a Banach space named after Stefan Banach (1892–1945).

An important tool of nonlinear analysis is the contraction mapping principle (or Banach
fixed point theorem):

Theorem 1.1. (Contraction mapping principle) Let (M,d) be a non-empty completed
metric space. Assume that T : M → M is a contraction mapping, that is, there exists
k ∈ (0, 1) such that for any x, y ∈M ,

(3) d(Tx, Ty) ≤ k · d(x, y).

Then the mapping T has a unique fixed point x∗ in M such that Tx∗ = x∗.

Proof. Choose any x0 ∈ M , and define xn = Txn−1 for n ≥ 1. From (3) and the principle
of mathematical induction, one obtain that d(xn+1, xn) ≤ knd(x1, x0). This in turn implies
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that {xn} is a Cauchy sequence in M since k < 1, and thus {xn} has a limit x∗ ∈M from
the completeness of (M,d). Note that 0 ≤ d(xn+1, Tx∗) = d(Txn, Tx∗) ≤ kd(xn, x∗). Then
d(xn+1, Tx∗) → 0 as n → ∞ since d(xn, x∗) → 0 as n → ∞. Since the limit of {xn} is
unique, hence Tx∗ = x∗ and x∗ is a fixed point of T in M . If there is another fixed point
y∗ ∈ M of T , then 0 ≤ d(x∗, y∗) = d(Tx∗, T y∗) ≤ k · d(x∗, y∗). But k < 1 so d(x∗, y∗) = 0,
which implies x∗ = y∗ from the definition of metric. Therefore T has a unique fixed point
x∗, which is the limit of any iterated sequence {xn} defined as xn = Txn−1 and any initial
point x0 ∈M .

The foundation of analytical bifurcation theory is the following implicit function theo-
rem, which is a consequence of contraction mapping principle.

Theorem 1.2. (Implicit function theorem) Let X,Y and Z be Banach spaces, and let
U ⊂ X × Y be a neighborhood of (λ0, u0). Let F : U → Z be a continuously differentiable
mapping. Suppose that F (λ0, u0) = 0 and Fu(λ0, u0) is an isomorphism, i.e. Fu(λ0, u0) is
one-to-one and onto, and F−1

u (λ0, u0) : Z → Y is a linear bounded operator. Then there
exists a neighborhood A of λ0 in X, and a neighborhood B of u0 in Y , such that for any
λ ∈ A, there exists a unique u(λ) ∈ B satisfying F (λ, u(λ)) = 0. Moreover u(·) : A→ B is
continuously differentiable, and u′(λ0) : X → Y is defined as u′(λ0)[ψ] = −[Fu(λ0, u0)]−1 ◦
Fλ(λ0, u0)[ψ].

Proof. To solve u in the equation F (λ, u) = 0, we look for the solution (µ, v) of F (λ0 +
µ, u0 + v) = 0. We notice that

F (λ0 + µ, u0 + v) = F (λ0, u0) + Fu(λ0, u0)v +R(µ, v),

where R(µ, v) = F (λ0 + µ, u0 + v)− Fu(λ0, u0)v is the remainder term. Since Fu(λ0, u0) is
invertible, then F (λ, u) = 0 is equivalent to

v + [Fu(λ0, u0)]−1R(µ, v) = 0.

Define G(µ, v) = −[Fu(λ0, u0)]−1R(µ, v) = [Fu(λ0, u0)]−1(Fu(λ0, u0)v − F (λ0 + µ, u0 + v)).
Then solving F (λ, u) = 0 is equivalent to finding the fixed points of G(µ, v). We show
that for µ close to 0, G(µ, ·) is a contraction mapping in a neighborhood of v = 0. In the
following we denote [Fu(λ0, u0)]−1 by H. Notice that G(µ, v) = v − HF (λ0 + µ, u0 + v),
then

||G(µ, v1)−G(µ, v2)||
= ||v1 − v2 −H(F (λ0 + µ, u0 + v1)− F (λ0 + µ, u0 + v2))||

=

∣∣∣∣∣∣∣∣(v1 − v2)−H
∫ 1

0
Fu(λ0 + µ, u0 + tv1 + (1− t)v2)dt(v1 − v2)

∣∣∣∣∣∣∣∣.
(4)

Since Fu(λ, u) is continuous near (λ0, u0), then there exists a ball BX ⊂ X centered at
µ = 0 and a ball BY ⊂ Y centered at v = 0 such that when (µ, v) ∈ BX ×BY ,

(5) ||I −HFu(λ0 + µ, u0 + v)|| ≤ 1

2
.

2



In (5), the norm || · || is the operator norm in the Banach space L(Y, Y ), which consists
all the linear bounded operators from Y to Y . From (4) and (5), we find that ||G(µ, v1)−
G(µ, v2)|| ≤ ||v1 − v2||/2 for µ ∈ BX and v1, v2 ∈ BY .

Next we show that for µ in a neighborhood of 0 and v ∈ BY , then G(µ, v) ∈ BY . In
fact, for µ ∈ BX , and v ∈ BY with BX , BY defined above, we assume that BY = {y ∈ Y :
||y|| ≤ δ}, then

||G(µ, v)|| ≤ ||G(µ, 0)||+ ||G(µ, 0)−G(µ, v)||

≤ ||HF (λ0 + µ, u0)||+ 1

2
||v||.

(6)

From the continuity of HF and that HF (λ0, u0) = 0, we can find a ball B′X ⊂ BX with
0 ∈ B′X so that when µ ∈ B′X , ||HF (λ0 +µ, u0)−HF (λ0, u0)|| ≤ (1/4)δ. Hence ||G(µ, v)|| ≤
(3/4)δ and G(µ, v) ∈ BY . Therefore when µ ∈ B′X , G(µ, ·) : BY → BY is a contraction
mapping, then from the contraction mapping principle (Theorem 1.1), there exists a unique
v(µ) ∈ BY such that G(µ, v(µ)) = v(µ). Hence the existence and uniqueness of the solution
to F (λ, u) = 0 for λ ∈ A and u ∈ B in the theorem follows by letting A = {λ0 +µ : µ ∈ B′X}
and B = {u0 + v : v ∈ BY }.

To show that u(λ) = u0 + v(µ) is continuous, we see that for µ1, µ2 ∈ B′X ,

||v(µ1)− v(µ2)|| = ||G(µ1, v(µ1))−G(µ2, v(µ2))||
≤ ||G(µ1, v(µ1))−G(µ1, v(µ2))||+ ||G(µ1, v(µ2))−G(µ2, v(µ2))||

≤ 1

2
||v(µ1)− v(µ2)||

+ ||HF (λ0 + µ1, u0 + v(µ2))−HF (λ0 + µ2, u0 + v(µ2))||,

hence

||v(µ1)− v(µ2)||

≤ 2

∣∣∣∣∣∣∣∣H ∫ 1

0
Fµ(λ0 + tµ1 + (1− t)µ2, u0 + v(µ2))dt(µ1 − µ2)

∣∣∣∣∣∣∣∣,(7)

and the continuity of u(λ) follows from the continuity of Fµ. To show the differentiability
of v(µ), we notice that G is continuously differentiable near (0, 0) since F is assumed to be
C1, Gµ(µ, v) = −H ◦Fλ(λ0 +µ, u0 +v) and Gv(µ, v) = H ◦ (Fu(λ0, u0)−Fu(λ0 +µ, u0 +v)).
Hence for µ ∈ B′X and ψ ∈ X small, from the differentiability of G and continuity of Fu,
we have ∣∣∣∣v(µ+ ψ)− v(µ) + [Fu(λ0, u0)]−1 ◦ Fλ(λ0, u0)[ψ]

∣∣∣∣
=
∣∣∣∣G(µ+ ψ, v(µ+ ψ))−G(µ, v(µ)) +H ◦ Fλ(λ0, u0)[ψ]

∣∣∣∣
=

∣∣∣∣∣∣∣∣Gµ(µ, v(µ))[ψ] +Gv(µ, v(µ))[v(µ+ ψ)− v(µ)]

+ o(||ψ||) + o(||v(µ+ ψ)− v(µ)||) +H ◦ Fλ(λ0 + µ, u0 + v(µ))[ψ]

∣∣∣∣∣∣∣∣
= o(||ψ||) + o(||v(µ+ ψ)− v(µ)||) = o(||ψ||).
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Therefore v : B′X → BY is differentiable with the Fréchet derivative v′(µ) = −[Fu(λ0, u0)]−1◦
Fλ(λ0 +µ, u0 +v(µ)), which is continuous in µ from the continuity of Fλ and v. This proves
that u(λ) is C1.

Note that if we assume that F is continuously differentiable in u, and only continuous
in λ, then the result still holds, but u(λ) is only continuous. Similarly, if F is of class Ck,
so is u(λ); if F is analytic, so is u(λ).

An important special case is when X = R, then the implicit function theorem Theorem
1.2 implies that when the linearized operator Fu(λ0, u0) is non-degenerate, then the set of
solutions to F (λ, u) = 0 near (λ0, u0) is a C1 curve {(λ, u(λ)) : λ ∈ (λ0 − ε, λ0 + ε)}. We
apply it to (1):

Theorem 1.3. (Implicit function theorem) Suppose that f ∈ C1(R), and (λ0, u0) ∈
R× C2,α

0 (Ω) is a solution of (1), such that the equation

(8)

{
∆w + λf ′(u)w = 0, in Ω,

w = 0, on ∂Ω,

has only the trivial solution w = 0, then there exists ε > 0 such that for λ ∈ (λ0− ε, λ0 + ε),
(1) has a unique solution (λ, u(λ)) near (λ0, u0), and {(λ, u(λ)) : λ ∈ (λ0 − ε, λ0 + ε)} is a
smooth curve.

Proof. Define F (λ, u) = ∆u + λf(u) for λ ∈ R and u ∈ X. Fu(λ0, u0) is a Fredholm
operator of index zero. Since (8) has only the trivial solution, then N(Fu(λ0, u0)) = ∅ and
R(Fu(λ0, u0)) = Y . From the open mapping theorem, Fu(λ0, u0) is an isomorphism. Then
the result follows from Theorem 1.2.

2 Bifurcations on R1

The implicit function theorem provides a tool to describe the solution set of a nonlinear
problem in an infinite dimensional space when the linearized operator is invertible. When
the linearized operator is not invertible, but with only a kernel of finite dimension and a
range space of finite codimension, the analytic bifurcation picture still resembles the ones in
finite dimensional case described in Section 1.2. For that purpose, we first establish a result
for finite dimensional bifurcation problem, and this result also gives a unified approach to
the usual bifurcations of type saddle-node, transcritical and pitchfork, thus it is also of
independent interest.

Theorem 2.1. Suppose that (λ0, y0) ∈ R2 and U is a neighborhood of (λ0, y0). Assume that
f : U → R is a Cp function for p ≥ 1, f(λ0, y0) = 0, and there is at most one critical point
(λ0, y0) of f in U . Define S to be the connected component of {(λ, y) ∈ U : f(λ, y) = 0}
which contains (λ0, y0).

1. If ∇f(λ0, y0) 6= 0, then S is a Cp curve passing through (λ0, y0).
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2. If ∇f(λ0, y0) = 0, we assume in addition that p ≥ 2, and the Hessian H = ∇2f(λ0, y0)
is non-degenerate with eigenvalues λ1, λ2 6= 0, then

(a) when λ1λ2 > 0, (λ0, y0) is the unique zero point of f(x, y) = 0 near (λ0, y0);

(b) when λ1λ2 < 0, there exist two Cp−1 curves {(λi(t), yi(t)) : |t| ≤ δ}, i = 1, 2, such
that S consists of exactly the two curves near (λ0, y0), (λi(0), yi(0)) = (λ0, y0).
Moreover t can be rescaled so that (η, τ) = (λ′i(0), y′i(0)), i = 1, 2, are the two
linear independent solutions of

(9) fλλ(λ0, y0)η2 + 2fλy(λ0, y0)ητ + fyy(λ0, y0)τ2 = 0.

Proof. Part (1) follows from the implicit function theorem (Theorem 1.2). Indeed, if
fy(λ0, y0) 6= 0, then S is in form {(λ, y(λ)) : |λ − λ0| < ε}, and if fλ(λ0, y0) 6= 0, then
S is in form {(λ(y), y) : |y − y0| < ε}. Part (2a) follows from standard multi-variable cal-
culus since in this case, (λ0, y0) is a strict local maximum or minimum point of f(x, y). So
we only need to prove (2b).

Consider the system of differential equations:

(10) λ′ =
∂f(λ, y)

∂y
, y′ = −∂f(λ, y)

∂λ
, (λ(0), y(0)) ∈ U.

Then (10) is a Hamiltonian system with potential function f(λ, y), and (λ0, y0) is the only
equilibrium point of (10) in U . The Jacobian of (10) at (λ0, y0) is

(11) J =

(
fλy(λ0, y0) fyy(λ0, y0)
−fλλ(λ0, y0) −fλy(λ0, y0)

)
.

Since Trace(J) = 0 and Det(J) = Det(H) < 0, then (λ0, y0) is a saddle type equilibrium
of (10) and J has eigenvalues ±k for some k > 0. From the invariant manifold theory of
differential equations, there exists a unique curve Γs ⊂ U (the stable manifold) such that Γs
is invariant for (10) and for (λ(0), y(0)) ∈ Γs, (λ(t), y(t))→ (λ0, y0) as t→∞; and similarly
the unstable manifold is another invariant curve Γu for (10) and for (λ(0), y(0)) ∈ Γu,
(λ(t), y(t)) → (λ0, y0) as t → −∞. Both Γs and Γu are Cp−1 one-dimensional manifold by
the stable and unstable manifold theorem ([Pe] page 107). f(λ, y) = 0 for (λ, y) ∈ Γs ∪ Γu
since f(λ, y) is the Hamiltonian function of the system and Γs ∪ Γu ∪ {(λ0, y0)} . On the
other hand, for any (λ, y) 6∈ Γs ∪ Γu ∪ {(λ0, y0)}, f(λ, y) 6= 0 from the Morse lemma.

Finally we consider the tangential direction of Γs and Γu. We denote the two curves
by (λi(t), yi(t)), with i = 1, 2. Then

(12) f(λi(t), yi(t)) = 0.

Differentiating (12) in t twice, we obtain (we omit the subscript i for λi(t) and yi(t) in the
equation)

fλλ(λ(t), y(t))(λ′(t))2 + 2fλy(λ(t), y(t))λ′(t)y′(t) + fyy(λ(t), y(t))(y′(t))2

+fλ(λ(t), y(t))λ′′(t) + fy(λ(t), y(t))y′′(t) = 0.

evaluating at t = 0 and ∇f(λ0, y0) = 0, we obtain (9).
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Theorem 2.1 is proved in Liu, Wang and Shi [LSW], and a weaker result is proved in
Nirenberg [Nir] Theorem 3.2.1, in which the crossing curves are shown to be Cp−2. Here
we give an alternate proof using the invariant manifold theory.

In Theorem 2.1, if fy(λ0, y0) 6= 0, then the Cp curve can be parameterized by λ; if
fλ(λ0, y0) 6= 0, then the Cp curve can be parameterized by y and indeed we have the saddle-
node bifurcation; and if we assume that f(λ, y0) ≡ 0, fy(λ0, y0) = 0, and fλy(λ0, y0) 6= 0,
then we obtain transcritical or pitchfork bifurcations. In this sense, Theorem 2.1 gives
a unified unfolding of singularity in R2 with codimension 2. Using the implicit function
theorem in Banach spaces, we will establish similar bifurcation results in Banach spaces in
the following sections.

3 Saddle-node bifurcation

From the implicit function theorem (Theorem 1.2), a necessary condition for bifurcation is
that

(13) Fu(λ0, u0) is not invertible.

When (13) is satisfied, we call (λ0, u0) a degenerate solution of F (λ, u) = 0. Here we discuss
the case when the kernel of Fu(λ0, u0) is nonempty, and in particular, we discuss the case
that µ = 0 is a simple eigenvalue of Fu(λ0, u0), i.e.

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and N(Fu(λ0, u0)) = span{w0}.

(F1) is equivalent to: Fu(λ0, u0) has a one-dimension kernel, and it is a Fredholm operator
with index zero. The range space R(Fu(λ0, u0)) is a subspace of Y of co-dimension one,
then there exists l ∈ Y ∗ (the space of linear functionals on Y ), such that

(14) u ∈ R(Fu(λ0, u0))⇔ 〈l, u〉 = 0,

where 〈l, u〉 is the duality relation between Y ∗ and Y . In the following whenever (F1) is
assumed, l is the associated linear functional in Y ∗.

Theorem 3.1. (Saddle-node bifurcation theorem) Let U be a neighborhood of (λ0, u0)
in R × X, and let F : U → Y be a continuously differentiable mapping. Assume that
F (λ0, u0) = 0, F satisfies (F1) at (λ0, u0) and

(F2) Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)).

1. If Z is a complement of span{w0} in X, then the solutions of F (λ, u) = 0 near
(λ0, u0) form a curve {(λ(s), u(s)) = (λ(s), u0 + sw0 + z(s)) : |s| < δ}, where s 7→
(λ(s), z(s)) ∈ R × Z is a continuously differentiable function, λ(0) = λ′(0) = 0, and
z(0) = z′(0) = 0.

2. If F is k−times continuously differentiable, so are λ(s) and z(s).
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3. If F is C2 in u, then

(15) λ′′(0) = −〈l, Fuu(λ0, u0)[w0, w0]〉
〈l, Fλ(λ0, u0)〉

,

where l ∈ Y ∗ satisfying N(l) = R(Fu(λ0, u0)).

Proof. Define G : U1 × (U2 × Z1)→ Y by

(16) G(s, λ, z) = F (λ, u0 + sw0 + z),

where U1, U2 are neighborhoods of 0 in R and Z1 is neighborhood of 0 in Z so that the right
hand side of (16) is well-defined ((λ, u0 + sw0 + z) ∈ U). Then G has the same smoothness
as F and G(0, λ0, 0) = 0. We claim that the partial derivative G(λ,z)(0, λ0, 0) : R× Z → Y
is an isomorphism. We first show that G(λ,z)(0, λ0, 0) is injective. Suppose that there exists
(τ, ψ) ∈ R× Z such that G(λ,z)(0, λ0, 0)[(τ, ψ)] = 0, then

(17) τFλ(λ0, u0) + Fu(λ0, u0)[ψ] = 0.

Applying l to (17), we obtain

(18) τ〈l, Fλ(λ0, u0)〉 = 0.

Since Fλ(λ0, u0) 6∈ R(Fu(λ0, u0)), then τ = 0, and ψ = 0 since ψ ∈ Z and N(Fu(λ0, u0)) =
span{w0}. Next we show that G(λ,z)(0, λ0, 0) is surjective. Let θ ∈ Y . Applying l to

(19) τFλ(λ0, u0) + Fu(λ0, u0)[ψ] = θ,

we obtain

(20) τ =
〈l, θ〉

〈l, Fλ(λ0, u0)〉
,

and ψ = K[θ− τFλ(λ0, u0)], where K is the inverse of Fu(λ0, u0)|Z . Thus (τ, ψ) is uniquely
determined by θ. Since G is continuous, G(λ,z)(0, λ0, 0) is a bijection, then [G(λ,z)(0, λ0, 0)]−1

is also continuous by the open mapping theorem of Banach. Hence G(λ,z)(0, λ0, 0) is an iso-
morphism. By Theorem 1.2, the first two statements of theorem are true. And (λ′(0), z′(0))
is determined by

(21) G(λ,z)(0, λ0, 0)[(λ′(0), z′(0))] = −Gs(0, λ0, 0) = −Fu(λ0, u0)[w0] = 0,

so λ′(0) = 0 and z′(0) = 0 from the injectivity of G(λ,z)(0, λ0, 0).

Differentiating F (λ(s), u(s)) = 0 with respect to s twice, we obtain

λ′′(s)Fλ + [λ′(s)]2Fλλ + 2λ′(s)Fλu[u′(s)]

+Fuu[u′(s), u′(s)] + Fu[u′′(s)] = 0.
(22)

Let s = 0 in (22) and apply l to (22), then we obtain (15).
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Theorem 3.1 first appeared in Crandall and Rabinowitz [CR2]. When

(F4) Fuu(λ0, u0)[w0, w0] 6∈ R(Fu(λ0, u0)),

is satisfied, λ′′(0) 6= 0, and the solution set {(λ(s), u(s)) : |s| < δ} is a parabola-like curve
which reaches an extreme point at (λ0, u0). The degenerate solution (λ0, u0) in this case is
called a turning point on the solution curve. When λ′′(0) > 0, the bifurcation is supercritical ;
and when λ′′(0) < 0, the bifurcation is subcritical. Similar to previous applications to (1),
we have

Theorem 3.2. Suppose that f ∈ C1(R+) and (λ∗, u∗) is a positive solution of (1) which
satisfies

(23)
∂u∗
∂ν

(x) < 0 for all x ∈ ∂Ω.

and suppose that the linearized equation (8) has a unique (up to scale) nontrivial solution
w, which satisfies

(24)

∫
Ω
f(u∗)wdx 6= 0.

Then all the positive solutions of (1) near (λ∗, u∗) have the form (λ(s), u∗ + sw+ z(s)) for
s ∈ (−δ, δ) and some δ > 0, where λ(0) = λ∗, λ

′(0) = 0, z(0) = z′(0) = 0. Moreover, if
f ∈ C2(R+), then

(25) λ′′(0) = −
λ∗
∫

Ω f
′′(u∗)w

3(x)dx∫
Ω f(u∗)w(x)dx

.

Proof. The setting is similar to that of Theorem 1.3. Recall from the proof of Theorem 1.3,
Fu(λ∗, u∗) = ∆ + λ∗f

′(u∗), which is a Fredholm operator with index 0. (F1) is satisfied
from the assumption that the solution space of (1) is one-dimensional. R(Fu(λ∗, u∗)) =
{φ ∈ Cα(Ω) :

∫
Ω φ(x)w(x)dx = 0}. Thus (24) is equivalent to (F2), and stated results

follow from Theorem 3.1 except the positivity of u(s) = u∗ + sw+ z(s), which follows from
(23).

We also comment that at a bifurcation point described in Theorem 3.1, if F ∈ C3 and
λ′′(0) = 0, then

(26) λ′′′(0) = −〈l, Fuuu(λ0, u0)[w0, w0, w0]〉+ 3〈l, Fuu(λ0, u0)[w0, θ]〉
〈l, Fλ(λ0, u0)〉

,

where θ ∈ Z is the solution of

(27) Fuu(λ0, u0)[w0, w0] + Fu(λ0, u0)[θ] = 0.

The solvability of (27) is equivalent to

(F4′) Fuu(λ0, u0)[w0, w0] ∈ R(Fu(λ0, u0)),

or λ′′(0) = 0. In the case λ′′′(0) 6= 0, a cusp type bifurcation occurs near the degenerate
solution (λ0, u0). More discussion can be found in Shi [S].
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4 Transcritical and pitchfork bifurcations

If there is a branch of trivial solutions u = u0 for all λ, then nontrivial solutions can bifurcate
from the trivial branch at a degenerate solution. Here is the theorem of Bifurcation from a
simple eigenvalue by Crandall and Rabinowitz [CR1]:

Theorem 4.1. (Transcritical and pitchfork bifurcation theorem) Let U be a neigh-
borhood of (λ0, u0) in R × X, and let F : U → Y be a twice continuously differentiable
mapping. Assume that F (λ, u0) = 0 for (λ, u0) ∈ U . At (λ0, u0), F satisfies (F1) and

(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)).

Let Z be any complement of span{w0} in X. Then the solution set of (2) near (λ0, u0)
consists precisely of the curves u = u0 and {(λ(s), u(s)) : s ∈ I = (−ε, ε)}, where λ : I →R,
z : I → Z are C1 functions such that u(s) = u0 + sw0 + sz(s), λ(0) = λ0, z(0) = 0, and

(28) λ′(0) = −〈l, Fuu(λ0, u0)[w0, w0]〉
2〈l, Fλu(λ0, u0)[w0]〉

,

where l ∈ Y ∗ satisfying N(l) = R(Fu(λ0, u0)). If λ′(0) = 0, and in addition F ∈ C3 near
(λ0, u0), then

(29) λ′′(0) = −〈l, Fuuu(λ0, u0)[w0, w0, w0]〉+ 3〈l, Fuu(λ0, u0)[w0, θ]〉
3〈l, Fλu(λ0, u0)[w0]〉

,

where θ is the solution of (27).

When λ′(0) 6= 0 (thus (F4) is satisfied), then a transcritical bifurcation occurs; if instead
(F4′) is satisfied, then λ′(0) = 0, and a pitchfork bifurcation occurs at (λ0, u0) if λ′(0) =
0 and λ′′(0) 6= 0. We remark that in the original theorem of [CR1], under the weaker
assumption that Fλu exists and continuous near (λ0, u0) instead of F being C2, it was
shown that same result holds but the curve of nontrivial solutions is only continuous not
C1.

Here we prove this important theorem as a consequence of a more general result based
on Theorem 2.1. We assume F satisfies (F1) at (λ0, u0), then we have decompositions of X
and Y : X = N(Fu(λ0, u0)) ⊕ Z and Y = R(Fu(λ0, u0)) ⊕ Y1, where Z is a complement of
N(Fu(λ0, u0)) in X, and Y1 is a complement of R(Fu(λ0, u0)). In particular, Fu(λ0, u0)|Z :
Z → R(Fu(λ0, u0)) is an isomorphism. Since R(Fu(λ0, u0)) is codimension one, then there
exists l ∈ Y ∗ such that R(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}. Recall the condition (F2) in
saddle-node bifurcation theorem, here we assume the opposite:

(F2′) Fλ(λ0, u0) ∈ R(Fu(λ0, u0)).

Then the equation

(30) Fλ(λ0, u0) + Fu(λ0, u0)[v] = 0

has a unique solution v1 ∈ Z. The following “crossing curve bifurcation theorem” is proved
in Liu, Shi and Wang [LSW]:
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Theorem 4.2. Let U be a neighborhood of (λ0, u0) in R×X, and let F : U → Y be a twice
continuously differentiable mapping. Assume that F (λ0, u0) = 0, F satisfies (F1) and (F2′)
at (λ0, u0). Let X = N(Fu(λ0, u0)) ⊕ Z be a fixed splitting of X, let v1 ∈ Z be the unique
solution of (30), and let l ∈ Y ∗ such that R(Fu(λ0, u0)) = {v ∈ Y : 〈l, v〉 = 0}. We assume
that the matrix (all derivatives are evaluated at (λ0, u0))

(31) H0 ≡
(
〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉 〈l, Fλu[w0] + Fuu[w0, v1]〉
〈l, Fλu[w0] + Fuu[w0, v1]〉 〈l, Fuu[w0, w0]〉

)
is non-degenerate, i.e. Det(H0) 6= 0.

1. If H0 is definite, i.e. Det(H0) > 0, then the solution set of F (λ, u) = 0 near (λ, u) =
(λ0, u0) is the single point set {(λ0, u0)}.

2. If H0 is indefinite, i.e. Det(H0) < 0, then the solution set of F (λ, u) = 0 near
(λ, u) = (λ0, u0) is the union of two intersecting C1 curves, and the two curves are
in form of (λi(s), ui(s)) = (λ0 + µis + sθi(s), u0 + ηisw0 + svi(s)), i = 1, 2, where
s ∈ (−δ, δ) for some δ > 0, θi(0) = 0, vi(s) ∈ Z, vi(0) = 0 (i = 1, 2), and (µi, ηi)
(i = 1, 2) are non-zero linear independent solutions of the equation

〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉µ2

+ 2〈l, Fλu[w0] + Fuu[w0, v1]〉ηµ+ 〈l, Fuu[w0, w0]〉η2 = 0.
(32)

Proof. We start by reducing the equation in infinite-dimensional space to a finite dimen-
sional one by a Lyapunov-Schmidt process. We denote the projection from Y intoR(Fu(λ0, u0))
by Q. Then F (λ, u) = 0 is equivalent to

(33) Q ◦ F (λ, u) = 0, and (I −Q) ◦ F (λ, u) = 0.

We rewrite the first equation in form

(34) G(λ, t, g) ≡ Q ◦ F (λ, u0 + tw0 + g) = 0

where t ∈ R and g ∈ Z. Calculation shows that Gg(λ0, 0, 0) = Q ◦ Fu(λ0, u0) is an
isomorphism from Z to R(Fu(λ0, u0)). Then g = g(λ, t) in (34) is uniquely solvable from
the implicit function theorem Theorem 1.2 for (λ, t) near (λ0, 0), and g is C2. Hence
u = u0 + tw0 + g(λ, t) is a solution to F (λ, u) = 0 if and only if (I −Q) ◦ F (λ, u0 + tw0 +
g(λ, t)) = 0. Since R(Fu(λ0, u0)) is co-dimensional one, hence it becomes the scalar equation
〈l, F (λ, u0 + tw0 + g(λ, t))〉 = 0.

From arguments above we have

(35) f1(λ, t) ≡ Q ◦ F (λ, u0 + tw0 + g(λ, t)) = 0,

for (λ, t) near (λ0, 0). Differentiating f1 and evaluating at (λ, t) = (λ0, 0), we obtain

(36) 0 = ∇f1 = (Q ◦ (Fλ + Fu[gλ]), Q ◦ Fu[w0 + gt]).
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Since Fu[w0] = 0 and gt ∈ Z, and Fu(λ0, u0)|Z is an isomorphism, then gt(λ0, 0) = 0.
Similarly gλ ∈ Z and Fλ ∈ R(Fu(λ0, u0)) from (F2′), hence

(37) Fλ(λ0, u0) + Fu(λ0, u0)[gλ(λ0, 0)] = 0.

Hence gλ(λ0, 0) = v1 where v1 is defined as in (30).

To prove the statement in Theorem 4.2, we apply Theorem 2.1 to

(38) f(λ, t) = 〈l, F (λ, u0 + tw0 + g(λ, t))〉.

From the proofs above, F (λ, u) = 0 for (λ, u) near (λ0, u0) is equivalent to f(λ, t) = 0 for
(λ, t) near (λ0, 0). To apply Theorem 2.1, we claim that

(39) ∇f(λ0, 0) = (fλ, ft) = 0, and Hess(f) is non-degenerate.

It is easy to see that

∇f(λ0, 0)

=(〈l, Fλ(λ0, u0) + Fu(λ0, u0)[gλ(λ0, 0)]〉, 〈l, Fu(λ0, u0)[w0 + gt(λ0, 0)]〉).
(40)

Thus ∇f(λ0, 0) = 0 from (30) and gt(λ0, 0) = 0. For the Hessian matrix, we have

(41) Hess(f) =

(
fλλ fλt
ftλ ftt

)
.

Here

fλt(λ0, 0) =ftλ(λ0, 0)

=〈l, Fλu[w0 + gt] + Fuu[w0 + gt, gλ] + Fu[gλt]〉
=〈l, Fλu[w0] + Fuu[w0, v1]〉,

(42)

since gt = 0. Next we have

fλλ(λ0, 0) =〈l, Fλλ + 2Fλu[gλ] + Fuu[gλ, gλ] + Fu[gλλ]〉
=〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉.

(43)

Finally,

(44) ftt(λ0, 0) = 〈l, Fuu[w0 + gt, w0 + gt] + Fu[gtt]〉 = 〈l, Fuu[w0, w0]〉.

In summary, from our calculation,

Hess(f) =

(
〈l, Fλλ + 2Fλu[v1] + Fuu[v1, v1]〉 〈l, Fλu[w0] + Fuu[w0, v1]〉
〈l, Fλu[w0] + Fuu[w0, v1]〉 〈l, Fuu[w0, w0]〉

)
.

Therefore from Theorem 2.1, we conclude that the solution set of F (λ, u) = 0 near (λ, u) =
(λ0, u0) is a pair of intersecting curves if the matrix in (4) is indefinite, or is a single point
if it is definite.

Now we consider only the former case of two curves. We denote the two curves by
(λi(s), ui(s)) = (λi(s), u0 + ti(s)w0 + g(λi(s), ti(s))), with i = 1, 2. Then

(45) F (λi(s), u0 + ti(s)w0 + g(λi(s), ti(s))) = 0.

From Theorem 2.1 the vectors vi = (λ′i(0), t′i(0)) are the solutions of vTH0v = 0, which are
the solutions (µ, η) of (32).
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Now we show that Theorem 4.1 is a special case of Theorem 4.2. In fact, the assumption
of F (λ, u0) ≡ 0 implies that (F2′) is satisfied and Fλ(λ0, u0) = Fλλ(λ0, u0) = 0, thus v1 = 0
and det(H0) = −〈l, Fλu(λ0, w0)〉2. Hence the assumption (F3) implies that det(H0) 6= 0
and H0 is indefinite. The formula in (28) can be obtained from (32) as it becomes

(46) 2〈l, Fλu[w0]〉ηµ+ 〈l, Fuu[w0, w0]〉η2 = 0.

We can choose one solution of (46) to be (µ, η) = (1, 0) which corresponds to the line
of trivial solutions, and the other solution to be (µ, η) = (λ′(0), 1) with λ′(0) being the
expression in (28). Finally (29) can be obtained with further calculations. Indeed let
(λ(s), u(s)) be the nontrivial solution curve. Then by differentiating F (λ(s), u(s)) = 0
three times, evaluating at s = 0 and applying l, one can obtain (29).

The implicit function theorem (transversal curve), saddle-node bifurcation (turning
curve), and transcritical/pitchfork bifurcation (two crossing curves) illustrate the impact of
different levels of degeneracy of the nonlinear mapping on the structure of local solution
sets. In transcritical/pitchfork bifurcation, one solution curve is presumed. Indeed this
is not necessary and a bifurcation structure with two crossing curves can be completely
described via the partial derivatives of the nonlinear mapping. We remark that in the
original result in [CR1], a slightly weaker smoothness condition is imposed on F : F is not
necessarily C2, but only the partial derivative Fλu exists. However to obtain (28) which
indicates the direction of the bifurcation, more smoothness as ours is needed.

We illustrate the application of the transcritical and pitchfork bifurcation theorem by
considering the diffusive logistic equation.

Example 4.3. We consider the following diffusive logistic equation:

(47)

{
∆u+ λ(u− up) = 0, in Ω,

u = 0, on ∂Ω,

where p ≥ 2. For any λ > 0, u = 0 is always a solution to (47). We use Theorem 4.1 to
analyze the bifurcation occurring at λ = λ1. It is easy to verify that Fu(λ, 0)w = ∆w+ λw,
which is invertible if λ 6= λi. At λ = λ1, N(Fu(λ1, 0)) = span{φ1}, where φ1 > 0 is the
principle eigenfunction. R(Fu(λ1, 0)) is codimension one, and indeed R(Fu(λ1, 0)) = {v ∈
Y :

∫
Ω φ1vdx = 0}. Finally Fλu(λ1, 0)[φ1] 6∈ R(Fu(λ1, 0)) since

∫
Ω φ1 · φ1dx > 0. Thus

Theorem 4.1 can be applied to (47).

The calculation of λ′(0) can be done by directly applying (28). But to illustrate the
involved calculation, we calculate it directly. Differentiate (1) with respect to s once and
twice, we obtain

(48) ∆us + λf ′(u)us + λsf(u) = 0,

(49) ∆uss + λf ′(u)uss + 2λsf
′(u)us + λf ′′(u)(us)

2 + λssf(u) = 0.

Set s = 0 we obtain

(50) ∆us(0) + λ1f
′(0)us(0) = 0,
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(51) ∆uss(0) + λ1f
′(0)uss(0) + 2λs(0)f ′(0)us(0) + λ1f

′′(0)[us(0)]2 = 0.

By using integral by parts, and us(0) = φ1, we obtain

(52) 2λs(0)f ′(0)

∫
Ω
φ2

1(x)dx+ λ1f
′′(0)

∫
Ω
φ3

1(x)dx = 0,

and

(53) λ′(0) = −
λ1f

′′(0)
∫

Ω φ
3
1(x)dx

2f ′(0)
∫

Ω φ
2
1(x)dx

.

In particular, for f(u) = u − u2 when p = 2, λ′(0) > 0 and a transcritical bifurcation
occurs. Thus for λ ∈ (λ1, λ1 + ε) (which corresponds to s ∈ (0, ε1) since λ′(0) > 0), (47)
has a positive solution with form sφ1 + o(|s|).

For p > 2, (53) shows that λ′(0) = 0, and the smoothness of λ(s) depends on p. When
p ≥ 3, f ∈ C3 near u = 0, thus we have

(54) λ′′(0) = −
λ1f

′′′(0)
∫

Ω φ
4
1(x)dx

3f ′(0)
∫

Ω φ
2
1(x)dx

,

by applying (29), where θ = 0 since Fuu(λ1, 0)[φ1, φ1] = λ1f
′′(0)φ2

1 = 0. Hence when p = 3,
a pitchfork bifurcation occurs and λ′′(0) > 0. Indeed one can show that for any p ≥ 2,
(47) has no positive solutions when λ < λ1, and all positive solutions near (λ, u) = (λ1, 0)
are on the right hand side of λ = λ1, hence the bifurcation of positive solutions is always
supercritical in that sense.

In general, we have the following result regarding (1):

Theorem 4.4. Let f ∈ C2(R+), f(0) = 0 and f ′(0) > 0. Then λ0 = λ1/f
′(0) is a

bifurcation point. All positive solutions of (1) near (λ0, 0) have the form (λ(s), sφ1 + sz(s))
with z(s) being a C1 function satisfying z(0) = 0 for s ∈ (0, δ) and some δ > 0, λ(0) = λ0

and

(55) λ′(0) = −
λ0f

′′(0)
∫

Ω φ
3
1(x)dx

2f ′(0)
∫

Ω φ
2
1(x)dx

.

Example 4.5. An alternate of the logistic growth is the Allee effect (see Section 1.4). For
instance, consider the diffusive population model with weak Allee effect (see [SS]):

(56)

{
∆u+ λu(1− u)(u+ a) = 0, in Ω,

u = 0, on ∂Ω,

where a > 0. Again for any λ > 0, u = 0 is always a solution to (56). For f(u) =
u(1 − u)(u + a), f ′(0) = a > 0, hence λ0 = λ1/a is a bifurcation point from Theorem 4.4.
From (55), we obtain that

(57) λ′(0) = −
λ0(1− a)

∫
Ω φ

3
1(x)dx

a
∫

Ω φ
2
1(x)dx

.
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Thus λ′(0) > 0 and the bifurcation of positive solutions is supercritical if a > 1, and
λ′(0) < 0 and the bifurcation of positive solutions is subcritical (backward) if 0 < a < 1.
Later we shall show that the backward bifurcation indicates the nonuniqueness of positive
solutions and it implies the bistability in the corresponding reaction-diffusion dynamics.

5 Global bifurcation

Bifurcation theorems in the last two sections are of local nature, as they only describe the
structure of the solution set near the bifurcation point. Global bifurcation theorem gives
information of the connected components of the solution set in the function spaces, and
they are usually proved via topological tools such as Leray-Schauder degree theory. As
preparation, we first review the concept of Leray-Schauder degree and a key topological
lemma. No proof is given here, and the readers can consult standard references such as
[Ch2, De].

Let X be a Banach space, and let U be an open bounded subset of X. Denote by K(U)
the set of compact operators from U to X, and define

M = {(I −G,U, y) : U ⊂ X open bounded , G ∈ K(U),

and y 6∈ (I −G)(∂U)}.
(58)

Then the Leray-Schauder degree d : M → Z is a well-defined function, which satisfies the
following properties:

1. d(I, U, y) = 1 if y ∈ U , and d(I, U, y) = 0 if y 6∈ U ;

2. (Additivity) d(I −G,U, y) = d(I −G,U1, y) + d(I −G,U2, y) if U1 and U2 are disjoint
open subsets of U so that y 6∈ (I −G)(U\(U1

⋃
U2));

3. (Homotopy invariance) Suppose that h : [0, 1]×U → X is compact and y : [0, 1]→ X
is continuous, and y(t) 6∈ (I −G)(∂U), then D(t) = d(I − h(t, ·), U, y(t)) is a constant
independent of t ∈ [0, 1].

4. (Existence) If d(I −G,U, y) 6= 0, then there exists u ∈ U such that u−G(u) = y;

5. If for G1, G2 ∈ K(U), G1(u) = G2(u) for any u ∈ ∂U , then d(I − G1, U, y) = d(I −
G2, U, y).

Let L be a linear compact operator on X. From Riesz-Schauder theory, the set of
eigenvalues of L is at most countably many, and the only possible limit point is λ = 0. For
any eigenvalue λ of L, the subspace

(59) Xλ =
∞⋃
n=1

{u ∈ X : (L− λI)nu = 0}

is finite dimensional, and dim(Xλ) is the algebraic multiplicity of the eigenvalue λ. The
geometric multiplicity of λ is defined as dim{u ∈ X : (L− λI)u = 0}. The Leray-Schauder
degree of a nonlinear mapping can be calculated from the following facts:

14



1. If L is a linear compact operator on X, then d(I − λL,BR(0), 0) = (−1)β, where
BR(v) is a ball centered at v with radius R, and β is the sum of algebraic multiplicity
of eigenvalues µ of L satisfying λµ > 1.

2. Suppose that G ∈ K(U), u0 ∈ U and R > 0 such that u0 is the unique solution
satisfies u − G(u) = 0 in BR(u0), then the derivative G′(u0) : X → X is a linear
compact operator; if λ = 1 is not an eigenvalue of G′(u0), then d(I −G,BR(u0), 0) =
d(I − G′(u0), BR(0), 0) for some sufficiently small R > 0 (this number is also called
fixed point index of u0 with respect to G).

We also recall the following topological lemma (proof can be found in [Ch2, De]):

Lemma 5.1. Let (M,d) be a compact metric space, and let A and B be close subsets of
M such that A

⋂
B = ∅. Then there exist compact subsets MA and MB of M such that

MA
⋃
MB = M , MA

⋂
MB = ∅, MA ⊃ A, and MB ⊃ B.

Consider

(60) F (λ, u) = u− λLu−H(λ, u),

where L : X → X is a linear compact operator, and H(λ, u) is compact on U ⊂ R×X such
that ||H(λ, u)|| = o(||u||) near u = 0 uniformly on bounded λ intervals. Note the conditions
imply that Fu(λ, 0) = I − λL, and if 0 is an eigenvalue of Fu(λ0, 0), then λ−1

0 must be an
eigenvalue of the linear operator L. We will say that λ is a characteristic value of L, if λ−1

is an eigenvalue of L. Define S = {(λ, u) ∈ U : F (λ, u) = 0, u 6= 0}. We say (λ0, 0) is a
bifurcation point for the equation (60) if (λ0, 0) ∈ S (S is the closure of S).

Theorem 5.2. (Krasnoselski-Rabinowitz Global Bifurcation Theorem) Let X be
a Banach space, and let U be an open subset of R × X containing (λ0, 0). Suppose that
L is a linear compact operator on X, and H(λ, u) : U → X is a compact operator such
that ||H(λ, u)|| = o(||u||) as u → 0 uniformly for λ in any bounded interval. If 1/λ0 is an
eigenvalue of L with odd algebraic multiplicity, then (λ0, 0) is a bifurcation point. Moreover
if C is the connected component of S which contains (λ0, 0), then one of the following holds:

(i) C is unbounded in U ;

(ii) C
⋂
∂U 6= ∅; or

(iii) C contains (λi, 0) 6= (λ0, 0), such that λ−1
i is also an eigenvalue of L.

Proof. First we prove that (λ0, 0) is a bifurcation point. Suppose not, then there exists a
R > 0 such that in the region O = {(λ, u) : |λ − λ0| ≤ R, |u| ≤ R}, the only solutions of
F (λ, u) = 0 are {(λ, 0) : |λ − λ0| ≤ R}. We choose λ−, λ+ so that λ0 − R < λ− < λ0 <
λ+ < λ0 +R. From the homotopy invariance of the Leray-Schauder degree,

d(F (λ−, ·), Bρ(0), 0) = d(F (λ+, ·), Bρ(0), 0),
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for any ρ ∈ (0, R). For ρ small enough, d(F (λ±, ·), Bρ(0), 0) = d(I −λ±L,Bρ(0), 0). But on
the other hand,

(61) |d(I − λ+L,Bρ(0), 0)− d(I − λ−L,Bρ(0), 0)| = 1,

since λ−1
0 is the only eigenvalue of L in between λ−1

− and λ−1
+ , and the algebraic multiplicity

of λ−1
0 is odd. That is a contradiction. Thus (λ0, 0) is a bifurcation point.

Next we assume the stated alternatives do not hold, then C is bounded in U , C
⋂
∂U =

∅, and C
⋂
{(λ, 0) ∈ U} = {(λ0, 0)}. From the compactness of L and H, C is compact since

it is bounded. Let Cε = {(λ, u) ∈ U : dist((λ, u), C) < ε}. Let A = C and B = S
⋂
∂Cε.

From Lemma 5.1, there exists compact MA and MB such that MA
⋂
MB = ∅, MA

⋃
MB =

S
⋂
Cε, MA ⊃ C and MB ⊃ S

⋂
∂Cε. Hence there exists an open bounded U0 = MA such

that

(62) C ⊂ U0 ⊂ U0 ⊂ U, and S
⋂
∂U0 = ∅.

Define U0(λ) = {u ∈ X : (λ, u) ∈ U0} for λ ∈ I where I = {λ ∈ R : ({λ} ×X)
⋂
U0 6= ∅}.

Then D(λ) = d(F (λ, ·), U0(λ), 0) is constant for λ ∈ I since S
⋂
∂U0 = ∅ and the homotopy

invariance of d(F,Ω, 0), where d(F (λ, ·),Ω, 0) is the Leray-Schauder degree.

Since (λ0, 0) is the only intersection of C with the line {(λ, 0)}, U0 can be chosen so that
U0
⋂
{(λ, 0) ∈ U} = [λ0 − δ, λ0 + δ]× {0}, and no any point λ in [λ0 − 2δ, λ0 + 2δ] satisfies

that λ−1 is an eigenvalue of L. We choose λ± which satisfy λ0−δ < λ− < λ0 < λ+ < λ0 +δ.
We choose ρ > 0 small enough so that F (λ, u) 6= 0 for λ ∈ [λ+, λ0 + 2δ] and u ∈ Bρ(0)\{0},
and we also choose λ∗ > λ0 + 2δ such that U0(λ∗) = ∅. From the homotopy invariance of
the Leray-Schauder degree on U0\([λ+, λ

∗]×Bρ(0)), we have

(63) d(F (λ+, ·), U0(λ+)\Bρ(0), 0) = d(F (λ∗, ·), U0(λ∗), 0) = 0.

For the same argument,

(64) d(F (λ−, ·), U0(λ−)\Bρ(0), 0) = 0.

On the other hand, from the additivity of the Leray-Schauder degree,

(65) D(λ±) = d(F (λ±, ·), U0(λ±)\Bρ(0), 0) + d(F (λ±, ·), Bρ(0), 0).

Hence we obtain

(66) d(F (λ+, ·), Bρ(0), 0) = d(F (λ−, ·), Bρ(0), 0).

For ρ > 0 small enough,

(67) d(F (λ±, ·), Bρ(0), 0) = d(I − λ±L,Bρ(0), 0).

From the formula of Leray-Schauder degree of I − λL, we have (61) again. But (61) is a
contradiction with (67). Hence the alternatives in the theorem hold.
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We apply Theorem 5.2 to (1). Recall that K = (−∆)−1 : Cα(Ω) → C2,α
0 (Ω) is well

defined as K(f) = u that u ∈ C2,α
0 (Ω) such that −∆u = f for any f ∈ Cα(Ω). We apply

K to equation (1), and it becomes

(68) G(λ, u) ≡ u− λKf(u) = 0.

We set the domain of G(λ, u) to be R×Cα(Ω). Apparently if u ∈ E ≡ Cα(Ω) satisfies (68),
then u is a classical solution of (1). Combining with the maximum principle, we prove the
global bifurcation theorem for the positive solutions of (1).

Theorem 5.3. Let f ∈ C1(R+), f(0) = 0 and f ′(0) > 0. Then λ0 = λ1/f
′(0) is a

bifurcation point. Let E = Cα(Ω), and let S = {(λ, u) ∈ R+ × E : G(λ, u) = 0, u 6= 0},
where G is defined in (68). Then there exists a a connected component C of S such that
(λ0, 0) ∈ C. Moreover, let E+ = {u ∈ E : u(x) ≥ 0 in Ω}. Then C+ = C

⋂
(R+ × E+) is

unbounded.

Proof. First we extend f to R by an odd extension f(u) = −f(−u) for u < 0. Then
f ∈ C1(R), and the operator G : R+ × E → E can be written as

(69) G(λ, u) = u− λf ′(0)Ku− λK(f(u)− f ′(0)u).

Then H(λ, u) = λK(f(u)− f ′(0)u) is a nonlinear compact operator from the compactness
of K, and apparently for λ in a bounded interval, ||H(λ, u)|| → 0 as ||u|| → 0 uniformly
since f ∈ C1(R). When λ = λ0 ≡ λ1/f

′(0), N(I − λf ′(0)K) 6= ∅ where λ1 = λ1(0) is the
principal eigenvalue. Since K is symmetric, then the algebraic multiplicity is same as the
geometric multiplicity, and it is dimN(I − λf ′(0)K). It is known that the multiplicity of
the principal eigenvalue is 1. Hence all conditions in Theorem 5.2 are satisfied, and there
is a a connected component C of S such that (λ0, 0) ∈ C.

From the alternatives in Theorem 5.2, C is unbounded, or C
⋂
∂(R+ × E) 6= ∅, or

there is another λ∗ such that (λ∗, 0) ∈ C and λ∗f
′(0) is another eigenvalue of −∆. If

(λa, ua) ∈ C
⋂
∂(R+ × E), then λa = 0, hence ua = 0 from the uniqueness of Laplace

equation. But near (λ, u) = (0, 0), the only solutions of (1) are (λ, 0) for λ > 0 from the
implicit function theorem (Theorem 1.3), while S only contains (λ∗, 0) such that λ∗f

′(0)
is an eigenvalue of −∆. That is a contradiction since −∆ has no eigenvalues approaching
0. For the remaining cases, we note that from Hölder estimates, S ⊂ R × C2,α

0 (Ω). Hence

C ⊂ R× C2,α
0 (Ω).

Define E+
2 = {u ∈ C2,α

0 (Ω) : u(x) ≥ 0 in Ω}. Then the interior int(E+
2 ) of E+

2 is
non empty, and indeed int(E+

2 ) = {u ∈ E+
2 : u(x) > 0 in Ω, ∂u(x)/∂ν < 0 on ∂Ω}. Let

C+ = C
⋂

(R+×E+
2 ) and C− = C

⋂
(R+× (−E+

2 )). From Theorem 4.4, C+ 6= ∅ and C− 6= ∅.
We claim C+

⋂
(R+ × ∂E+

2 ) = {(λ0, 0)}. In fact, if (λ, u) ∈ C+, then λ > 0 from the
argument in last paragraph, and u is a non-negative classical solution. From the maximum
principle, either u > 0 or u ≡ 0. But if u > 0, (λ, u) is in the interior of R+ × ∂E+, that
is contradiction. Hence u ≡ 0, and λf ′(0) is an eigenvalue of −∆. Near the bifurcation
point, all solutions have the form (λ, sφk) where φk is the corresponding eigenfunction.
But φ1 is the only eigenfunction of one sign, thus λf ′(0) = λ1 and λ = λ0. Similarly
C−
⋂

(R+ × ∂(−E+)) = {(λ0, 0)}.
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Define C1 = C+
⋃
{(λ0, 0)}

⋃
C−. Then C1 ⊂ O, where O = (R+ × E+

2 )
⋃

(R+ ×
(−E+

2 ))
⋃
O1 and O1 = {(λ, u) : |λ − λ0| + ||u|| ≤ ε} for some small ε > 0. Moreover,

C1
⋂
∂O = ∅ where ∂O is the boundary of O. Since C is the connected component of S,

then C = C1 from the definition of connected component since C1 ⊂ C and C1 ⊂ int(O).
As a consequence, C cannot contain another (λ∗, 0) so that λ∗f

′(0) is another eigenvalue
of −∆. Hence C is unbounded. From our definition, f(u) is an odd function, then C−
and C+ are symmetric in the sense that if (λ, u) ∈ C+ then (λ,−u) ∈ C−. Therefore C+ is
unbounded.

It is useful to remark that Theorem 5.3 implies that the global continuum C+ is also
unbounded in R+ × C0(Ω). In fact, if C+ is bounded in R+ × C0(Ω), C+ have uniform Lp

norm for any p > 1, f is C1 and f can be assumed as bounded, then C+ also satisfy uniform
Lp estimates thus uniformly bounded in W 2,p norm. From Sobolev embedding theorem,
C+ is also bounded in Cα norm where α < 2 − (n/p), that contradicts Theorem 5.3. On
the other hand, if one can establish uniform a priori estimates for the positive solutions of
(1), i.e. given Λ > 0, for λ ∈ [0,Λ], ||u||∞ ≤ KΛ for any positive solution (λ, u), then C+

can be extended to λ = ∞. That is, let p+ be the projection of C+ onto the λ-axis, then
p+ ⊃ (λ0,∞). In that case, the a priori estimates and global bifurcation theorem give the
existence for not only large λ but a continuum of solutions.

Example 5.4. First we continue the discussion started in Example 4.3. Consider

(70)

{
∆u+ λ(u− up) = 0, in Ω,

u = 0, on ∂Ω,

where p ≥ 2. We have shown in Example 4.3 that λ = λ1 is a bifurcation point, and the solu-
tion set near (λ1, 0) is a curve. Now applying Theorem 5.3, then the branch bifurcating from
(λ1, 0) is indeed unbounded. Moreover the maximum principle implies that maxx∈Ω u(x) < 1
for any positive solution (λ, u). From remark above, this implies the existence of a positive
solution (λ, u) of (70) for any λ ∈ (λ1,∞), and (λ, u) ∈ C+, the continuum emanating from
(λ1, 0). In fact p+ = (λ0,∞) in this case since (70) has no positive solution when λ ≤ λ1.
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