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A w e l l  known theo rem of  S t u n n - L i o u v f l l e  in  t h e  t h e o r y  of  o r d i n a r y  d i f f e r e n t i a l  

e q u a t i o n s  c o n c e r n s  t h e  e i g e n v a l u e  p rob lem:  

(I) £u-- -(p(x)u')' +q(x)u = Ra(x)u , 0< x<~r 

together wlth the separated boundary conditions (henceforth denoted by B. C. ) 

(2) aoU(O) + boU'(O) =0 , alu(~r ) + blU'(W) = 0 

2 2 0 2 2  where (a 0 + b ) (a I + b ) ~ 0 and p, q, a are respectively continuously differen- 

tlable and positive, continuous, and continuous and positive on the interval [0, ~]. 

Under the above assumptions, the elgenvaluestt n of (I) - (2) are simple and form an 

increasing sequence with ~t n -~ ~ as n -- ~o. In addition, any elgenvector v n 

corresponding to ttn has exactly (n - 1 ) simple zeroes in (0,~). We are interested 

in obtaining a nonlinear version of this result together with some appllcations. 

First the result will be stated in a somewhat different fashion. As a techni- 

cal convenience for what follows suppose that 0 is not an eigenvalue for £ under 

the B.C. (2). Then (I) - (2) can be converted to an equivalent integral equation: 

S (3) u(x)  = )~ g(x,  y) alY) u(y)  dy  
0 

where  g i s  t he  G r e e n s  func t ion  for  £ t o g e t h e r  wi th  t he  B. C~ Let  

E = C 1 [0, vr] n B. C. under  the  u s u a l  maximum norm: 

IlUlIl :max lu(x){+ max lu.(x)I . 
x~ [0, ~] x~ [0, ~] 

+ 
Bya solution of (3) we meanapair (~,u) ERX E. Let S k denote the set of ~EE 

such that ~ has exactly k - 1 simple zeroes in (0,~r), all zeroes of q in [0fir] 

are simple, and ~ is positive in a deleted neighborhood of x = 0. Set 

St:- = -S k+ and S k = S k+U S k. Then S +k* Sk' and S k are open subsets of E and any 

eigenfunctlon v k corresponding to P'k belongs to S k. We make v k unique by 
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requiring that llv k III = * and v k , 

Using  the  t e rmino logy  Just  in t roduced ,  the  8 turm-Liouvi l le  theorem can  be 

reformulated  as  fo l lows:  (3) p o s s e s s e s  a l ine  of  t r iv ia l  so lu t ions  {0,, O)l~ • JR} and 

in addi t ion  for  e a c h  in teger  k > O, a l ine  of  nont r iv ia l  so lu t ions  g iven  by  

{(~k,O~k)lCz • IR}. We wi l l  ob ta in  a non l inea r  a n a l o g u e  of  th is  r e su l t .  Cons ide r  

(4) £u=~F(x,u,u') , 0< x< 

together with the B.C. (Z). It is assumed that F is a continuous function of its 

arguments in [0,Tr]× R2 and F(x,~,~]) = a(x) ~ + 0((~ z + ~32)I/Z) near (~,~) = (0, 0). 

As above, (4), (Z) can be converted to the equivalent integral equation: 

(51 u(x) = ~ g(x,  y) F(y,  u(y),  u ' lYlldY . 
0 

Because  o f  the  form of  F, (5) a l s o  p o s s e s s e s  the  l ine  of  t r iv ia l  so lu t ions  

{ (~, 0)1 ~ e ~ } .  Let 8 deno te  the  c losu re  in ]RX E of  the  se t  of  nontr iv ia l  s o l u -  

t ions  of  (5). By a theorem of  Krasnose l sk t  ([4]), the  on ly  p o s s i b l e  t r iv ia l  so lu t ions  

be long ing  to  8 are  the  poin ts  (~k'  0), k tiN, i . e .  the  p o s s i b l e  b i furca t ion  po in ts .  

Concern ing  the  s t ruc ture  of 8,  we have:  

Theorem 6: For each integer k > 0, 8 contains a component, Ck, which meets 

(~'k' 0) and is unbounded in RX S k. 

(By a component of 8 we mean a maximal closed connected subset). Thus the 

statement of Theorem 6 contains in particular the linear case (3) where C k is a 

line. To prove Theorem 6, a general theorem from nonlinear functional analysis 

which will be stated below and two lemmas are employed. 
/% /% /k 

Let E beareaIBanachspaceand G : R× E-~ E be compact, i.e. be 

continuous and map bounded sets into relatively compact sets. Suppose further that 

G(A,u) = ALu + H(A,u) where L is a compact linear map and H(A,u) = 0(IIull) near 

u = 0 uniformly on bounded A Intervals. Consider the equation 

(7) u = G(~,u) . 

J% 

A solution of (7) is a pair (A,u)e R× E. Then (7) possesses the llne of trivial sol- 
/% 

utions. Let 8 denote the closure of the set of nontrivlal solutions of (7) and let 

~. be a real characteristic value of L. Then we have: 

/k 

Theorem 8: If ~I is a real characteristic value of L of odd multiplicity, 8 contains 

a component, C, containing (~I, 0) and which is either unbounded or meets (~, 0) 
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/k 

where ~ # ~ is a real characteristic value of L. 

For e proof of Theorem 8, see Rablnowitz [7] or [8]. 

Note that (5) has the form (7) and ILk being a simple eigenvalue of £ is a 

simple characteristic value of the corresponding linear integral operator. Hence the 

hypotheses of Theorem 8 are satisfied here and Ck, the component of 8 containing 

(ILk' 0) is either unbounded in ]Rx E or meets (~j, 0), j ~ k. Actually C k is un- 

bounded in ]R × S k as we shall see via the following two lemmas. 

Lamina 9: There exists a neighborhood ~j of (~lj, 0) such that 0,, u) , ~j n 8 

implies u eSj or u = 0. 

Proof: If not, there exists a sequence (An, Un) E g 

n ~ oo and u n ~ Sj. From (5) or equivalently (7), 

u n u n H(A n, u n) 

(10) ilUnll I -AnL llUnll I + llUnll I 

such that (An, Un) -- ~j, 0) as 

0(llulll) condition on H implies llUnlll*H(An, Un)--- 0 as n---•. The 

over the compactness of L and boundedness of 

More - 

(Un/llun II,} imp l i e s  tha t  

{LUn /Uun Ill}" From (10)  
P P 

= 1 and satisfying 

and s i n c e  Sj i s  open ,  

u e Sj, a contradiction. Thus np 

{ LUn/IiUn I1~ } possesses a convergent subsequence 

this subsequence converges In E to v with Ilvlll 

(II) v = ~ljLv . 

Hence v =vj or v = -vj. In either event v,Sj 

Un/IlUnjlll, S~ for all J large. But this implies 

the lemma is established. 

Lemma It: Suppose (A,u) is a solution of (4)and u has a double zero, i.e. 

there exists 7E [0,7r] such that u(T) =0= U'(T). Then u = 0. 

Proof: If F(x,~, TI) is locally Lipschitz continuous with respect to (~, ~), the result 

follows immediately from the uniqueness theorem for the initial value problem for 

(4). The more general case amounts to reproving the uniqueness result for the 

special initial chta (0, 0) using the "0-conditlon" on F - a~ See [8] for a proof. 

Proof of Theorem 6: Ftx k > O. Suppose C kC (Rx Sk) U {(~k'0)}" Then by 

Theorem 8, C k must be unbounded in this set and we are through. Thus suppose 
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C k~t(IRX Sk) U {(~tk, 0)}. ByLemma 9, C k n~kc (IRX Sk) U {(~tk, 0)}. Since C k is 

connected, there exists (A, u) E C k fl (R x 8Sk), (A, u) # (~tk, 0), and 

(A,u) = llm (An, Un) with (An, Un) E C k n (R× Sk). This implies u has a double 
n-~ 

zero and by Lemma IZ, u ~- O. Hence (A,u) = (ttj, 0) for some J # k. (Recall that 

the only trivial solutions belonging to 8 correspond to bifurcation polnts). But this 

implles (An, Un)~ ~ and therefore u n E Sj for n large. Since this is impossible, 

the theorem is proved. 

Remarks: If 0 is an eigenvalue of £, Theorem 6 still obtains with thelald of an 

approximation argument. See Rabinowltz [6] or [8]. A sharper version of Theorem 8 

for ~t a simple characteristic value {see [7]) shows that C k = C~ U C~ where 

~f~ Ck= {(~t k, 0)} and C~, Ck are unbounded in R x S~, R× S k respectively. 

Thus we get an even nicer correspondence with the linear case (3). If F is smooth 

near (4 ~) = (0, 0), then a general theorem on bifurcation from simple eigenvalues 

(see e.g. [2] or [3]) implies that C k near (~tk, 0) is a smooth curve of the form 

(A,u)= (it k+O(1), c~v k + 0(lul)) for cz near 0. Lastly we note that Theorem 6 

can readily be generalized to permit £ to be nonlinear and a more general depen- 

dence of £ and F on A (see [6]). 

following example: 

(13) 

where  f 

To give some idea of what the sets C k may look like, consider the 

~ -u" = )~(I + f(u 2 + (u')2))u 0 < x < ~r 

u(0) = 0 = u(~) 

is continuous and f(0) = 0. The linearization of (I 3) about u = 0 Is: 

(14) -v"=~v , 0< x<~r , v(0)=O=v(~r) 

which possesses eigenvalues ttn = n 2 and eigenfunctions v n = a n sin nx. We 

will study C 1 for (I 4) and in particular try for solutions of the form 

(A0 u) = (A, c sin x). This leads to the equation: 

(I 5) 1 = A(l + f(cZ)) 

r e l a t ing  A and c .  The f reedom we h a v e  in c h o o s i n g  f l e a d s  to  a w i d e  range  of 

p o s s i b l e  b e h a v i o r  for  C 1 . 

Next  some q u a l i t a t i v e  c o n s e q u e n c e s  of  Theorem 6 w i l l  be  s t u d i e d .  
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Corol lary  16: Suppose  in (4) F(x, ~, ~]) = a(x)~ + f(x, ~, ~])% where  f is con t inuous  

in its arguments  and f ( x , O , O ) -  O. If ~k > 0 and f_> O, then  C k l ies  in 

[O,~k]× S k while  if ~k > 0 and f_< O, C k l ies  in [ ~ k , ~ ) x  S k.  

Proof: The result is an immediate consequence of Theorem 6 together with a com- 

parison argument which shows if e.g. f_> 0 and (k,u) c (~× Sk) D g, then 

A , [0,~k ]. See [6] for details. 

The effect of a priori bounds on the sets C k will be studied next. 

Corollary 17: Suppose there exists a continuous real valued function M(A) for 

]R + Re suchthat (A,u) a solutlonof (5)wlth k_> 0 implies llUlll _< M(~). 

If Wk > 0, then for all A ~ (iLk, ~) there exists u ~ 8 k such that (A,u) c C k. 

Proof: By Theorem 6, C k is unbounded in ~× S k. Note that (0, u) cannot be 

a solution of (5). Hence % lles in JR+× S k. The existence of M(A) implies the 

IR + projection of C k on cannot be bounded. Hence the result follows from the 

connectedness of C k- 

Conditions under which such a priori bounds may be obtained can be found 

in Crandall and Rablnowltz [2] and Wolkowlskey [8]. As another application of 

Theorem 6 involving a different kind of a priori bound, we will prove a generalized 

version of a theorem of Neharl [5]. Consider 

(18) -u" = f(x,u)u, 0 < x < ~ , u(0) = 0 = u(~) 

where f Is continuous on [0,~]× JR, f(x, 0)= 0, f(x,u)> 0 if u# 0, andthere 

exists a continuous function p : JR-- ]R ~ with p(s)-~ ~ as Is l--- ~ and such 

that lul > s implies f(x,u) > p(s). 

Note that (I 8) differs from the equations treated earlier in that its right 

hand side has no linear part at u = 0. 

Theorem 19: Under the above hypotheses on f, for each integer k > 0 there 

exists Uk~S k such that u k satisfies (18). 

To prove Theorem 19, we require the following lemma which will be proved 

in the Appendix. 

Lemma ZI: Consider the equation 
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(22) -u"=A(b(x)+f(x,u))u , 0< x<Tr , u(0)= 0=u(vr) 

where f is as above and b _> 0 is continuous in [0, Tr]. Then for each integer 

k > 0 there exists a continuous function Mk(A ) : (0, ~o)--, ]R + such that if (A, u) Is 

a solution of (22) wlth u E Sk, then flu II 1 _< Mk(X). 

Proof of Theorem 19: An approximation argument Is used. Let (9 e (0, I). Consider 

(23) 0 -u" = X(0 +f(x,u))u , 0 < x<Tr ; u(O) = 0 = u(Tr) 

The elgenvalues 0Jk(e) of 

(24) -w" = 0)~v , 0 < x < 7r ; w(0) = 0 = W(Tr) 

are ~k(e) = k2/O > 1 for all k _> I. By Corollary 16 (23)e possesses a component 

Ck(e) of solutions which Is unbounded In [0, ~k(O)] × S k. By Lemma 21, the 

projection of Ck(O) on ~ contains (0,~k(O)). In partlcularthere exists 

Uk(O),S k such that (l,Uk(O)), Ck(O ) and IIUk(0)IIl_< Mk(l,O). The proof of 

Lemma 21 shows that M k can be chosen independent of 0. From (23)0 , 

max lu~(0)l can be bounded independently of 0. These bounds, the Arzela 
x,[0, 'rr] 

-- 0 as n ~ ~o such Ascoli Theorem, and (23)0 imply there is a sequence O n 

that Uk(@n) converges in CZ[0,7r] to a solution u k of (18) with UkeS k. It only 

remains to show that u k ~ 0. But this follows by the argument of Lemma 9. The 

theorem Is proved. 

Remark 25: By using the ideas contained i n  the above proof, a version of 

Theorem 19 can be obtained for (22) with X = I. 

Many people have studied nonlinear eigenvalue problems such as (4), (2) 

by examining a corresponding initial value problem and using shooting techniques. 

It seems unlikely that such methods can be used to obtain Theorem 6. On the other 

hand, Theorem 6 can be employed to shed some light on the corresponding initial 

value problem. For convenience wereplace (2) by the B.C. 

(z6) u(0) = 0 = u(~) 

Moreover we assume F In (4) Is Lipschitz continuous in ~ and ~] and therefore 

the initial value problem for (4) possesses a unique solution. 

Consider the map ~ : S--- ~2 ~(X,u) = (X,u'(O)). The map ~ Is I-I via 

uniqueness of solutions to the initial value problem and is continuous. Therefore 

~{(Ck) - Jk Is a connected subset of ]R 2 and ,9 k NJj = ~ if k ¢ j. Note that even 
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though C k is unbounded in Rx E, Jk may be bounded in IR z. By the remarks 

following the proof of Theorem 6, Jk = J+ Jk -~ < k U ~( ) u~(<). As an interesting 

consequence of Corollary 1 6 we get 

C o r o l l a r y  Z7: S u p p o s e  in  a d d i t i o n  to  t h e  h y p o t h e s e s  of  C o r o l l a r y  17, F i s  L i loschi tz  

c o n t i n u o u s  in  ~ and  ~ and  (Z6) o b t a i n s .  Le t  ~t r be  t h e  s m a l l e s t  p o s i t i v e  e i g e n -  

v a l u e  o f  (3), (2).  If  A > ~k > ~ r '  t hen  t h e r e  e x i s t  c o n s t a n t s  
_ +_ 

c + >..> + s u c h  that  (A, aj, r < j < k.  r " Ck > 0 > C >°..> C r _ _ 

Proof: The r e s u l t  f o l l o w s  i m m e d i a t e l y  from C o r o l l a r y  16 and  t h e  p r o p e r t i e s  of  t he  
+ 

sets J~. 

+ 
-C r < M(A), one could use a shooting technique in Since C r , the i n t e r v a l  

of i n i t i a l  d e r i v a t i v e s  [ -M(A) ,  M(X)] to  f ind  t h e  s o l u t i o n s  w h o s e  e x i s t e n c e  i s  

g i v e n  b y  C o r o l l a r y  27. 

We c o n c l u d e  wi th  some r emarks  on p e r i o d i c  B . C .  S u p p o s e  a l l  f u n c t i o n s  

i n v o l v e d  in (1) and (4) a re  ~r p e r i o d i c  in x and (Z) i s  r e p l a c e d  b y  

(Z8) u(0) = u(=) , u'(0) : u'(~) . 

This  c a s e  i s  i n t e r e s t i n g  b e c a u s e  some  of  t he  impor tan t  s t r u c t u r e  o b t a i n e d  for  t he  

s e p a r a t e d  B . C .  c a s e  i s  l o s t .  The l i n e a r  t h e o r y  he re  a g a i n  g i v e s  an  i n c r e a s i n g  

wi th  ~ --, co a s  n - - 0 o .  H o w e v e r  t h e  e i g e n v a l u e s  s e q u e n c e  of  e i g e n v a l u e s  ~n n 

need  not  be  s i m p l e  a l t hough  t h e y  a re  of  m u l t i p l i c i t y  at  most  Z and t h e n  have  two 

c o r r e s p o n d i n g  l i n e a r l y  independent e i g e n v e c t o r s .  More  p rec i se ly  (see C o d d i n g t o n -  

L e v t n s o n  [1]) ~ 1 < ~ 2 -< ~ 3 < ~ 4 < ~5 <" " ' e t c .  Any e i g e n f u n c t i o n  c o r r e s p o n d -  

ing to  ~ l  h a s  no z e r o e s  in [0,w]; a n y  e i g e n f u n c t i o n s  c o r r e s p o n d i n g  to  ~ Zk'  

~Zk+l '  k_> 1 h a v e  e x a c t l y  2k s i m p l e  z e r o e s  in [ 0 , ~ ] .  Thus in  p a r t t c u l a r ,  ~ l  

i s  a s i m p l e  e i g e n v a l u e ,  W e  a g a i n  s e t  up a f a m i l y  of open  s e t s  to  t a k e  a d v a n t a g e  

o f  t h e  noda l  p r o p e r t i e s .  Let  ~ d e n o t e  t h e  s u b s e t  of  c l [ 0 ,  qr ] of  w p e r i o d i c  

+ + T0, and T k {~,~I¢ ÷ 0---T O , T 0=T 0U functions. Let T O = 

has exactly Zk simple zeroes In [0,Tr)}. 

Consider now (4), (Z81 Again as a convenience we assume 0 is not an 

elgenvalue of ~. Hence (4), (Z8) can be converted to an operator equation of the 
.-% 

form (7). Let g denote the closure of the set of nontrivial solutions of this 

equation. With a small modification, the proof of Lemma 9 gives us: 

Lemma 29: There  e x i s t s  a ne ighborhood  ~j of  (~2 j ,  0) (and ( ~ Z j ÷ l , 0 )  i f  j ¢ 0) 
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A 

suchthat (A,u) c Mj nS implies u~Tj or u = - 0. 

Since ~I is a simple eigenvalue of (I), (28), a combination of Lemmas Z9 

and 12, and Theorem 8 yields: 

A ,-% 

Theorem 30:8 contains a component C 1 which meets 

• ×T 0. 

(~ I' 0) and is unbounded In 

Whenever ~2k, k_> 1 is simple, the above lemmas and Theorem 8 implies 

that $ contains a component C k in (~ × Tk) u {(~2k, 0)} meeting (~Zk, 0). 

However C k need not be unbounded in ]Rx T k but may also meet (~ 2k+l' 0). 

Moreover if ~ 2k = ~ 2k+l' i.e. we have an eigenvalue of multiplicity 2, bifurcation 

need not occur at all. A simple such example Is given by: 

(31) -u" +u = A(u +(u') 3) 0< x< ~T 

with u satisfying (28). Multiplying (31)by u' and integrating over a period yields: 

A (u' dx = 0 . 
0 

Since the equation possesses no solutions when A = 0, (31), (Z8) possesses only 

the trivial solutions and the llne of solutions {(l,a)[a~ ]R} In •x T 0. 

Thus in general other than for (~ I' 0) results analogous to Theorem 6 do 

not obtain for (4), (I 9 ) and even to obtain bifurcation more hypotheses will have to 

be made. One way to guarantee bifurcation and even some sort of global result is 

to impose variational structure on the problem. More precisely suppose that F 
/k A 

in (4) iS independent of u', q _> 0, and F(x, u) = F(x,u) wlth F(x, 0) = 0. Then 

(4), (19) Is the Euler equation of the variational problem; 

j,,, ,, 
Extremize F(x, 9) dx 

0 
/k 

over the class of ~ E wlth 

~ Tr 2 q 2)d x 
(p(~') + = R , R a constant 

0 

By a theorem of Krasnoselskl [4], each point (~k' 0) will be a bifurcation point for 

(4), (28). Moreover if F is odd In u and appropriate technical conditions are 

satisfied, it follows from a theorem of LJusternik [4] that for each R > 0, there 

exist infinitely many distinct solutions (kn(R), Un(R)) of (4), (28) wlth 

(P,Un ,2 + q u  ) d x = R  . 
0 
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An interesting open question is whether for all integers 

tion . . . . ..(Ak(R),UkfR)) with Uk(R)E T k • 

k > 0, there exists a solu- 

APPENDIX 

max u < 

[Yl' Zl ] 

Proof of Lemma 21 : The proof c o n s i s t s  of  two s t e p s .  F i r s t  we show t h e r e  e x i s t s  

Mk(A, c) such  tha t  if (A,u) i s  a s  in the  s t a t e m e n t  of t he  lemma wi th  lu'(O)l_< c,  

t hen  llull 1 < Mk(A, c) .  Then we show Mk(A, c) can  be ~chosen i n d e p e n d e n t l y  of c .  

S u p p o s e  u'(O) > 0. (The a rgument  for  u ' (O) < 0 i s  t he  s a m e . )  Let  Yl be  

the  f i r s t  ze ro  of  u ' .  Then u i s  a monotone  i n c r e a s i n g  func t ion  and from (18), u"  

i s  a monotone  d e c r e a s i n g  func t ion  in [0, y l ] .  H e n c e  u '  is  monotone  d e c r e a s i n g  in 

[O, Yl]  and  u ' ( 0 ) =  max u ' (x ) -<  c,  max u_< c y  1. Let z 1 b e t h e f i r s t  z e r o o f  u 
[0, y] ] [0. Yl ] 

in (0,~. Then from (18), u and u' are monotonedecreasingin [yl,Zl] so 

c YI" Moreover integrating (I 8): 

(3Z) 

z 1 

- u ' ( z l )  = ~ ~ (b + f ) u  dx  . 

YI 

The bounds obtained for u in [yl,Zl] and (3Z) give aboundfor lu'(x)l in 

[YI' Zl]" Continuing in this fashion leads to an estimate flu Ill_< Mk(A, c) where 

M k Is continuous in A and c. Note also that if u' is known at any zero zj 

of u, an estimate of the same form for IlUlll obtains with c replaced by lu'(zj)l. 

It remains to show that Mk(A , c) can be chosen independently of c. If 

not, there exists a sequence (A, u n) satisfying (18) with Un c S k and lUn(0)l-~ oo. 

Let (~j,n denotethe jth zero of u n in [0,~r], 0_< J _< k. Byourabove remarks, 

lUn((~j,n)l-~ ~o as n-.. ~o. Let Ij, n = [5, n, (~j+l, n]. Since U'n has a zeroin 

Ij, n' the Mean Value Theorem implies that max {Un(X) l~ Qo as n-- Qo. Hence 

Ij, n 

from (18), max lUn(X)l-. ~o as n-~ oo. Therefore for any s > 0, if n = n(s) is 

lj, n 

sufficiently large, there exists xj, n E lj, n such that Un(Xj, n ) > s and 

f(xj, n' Un(Xj, n )) > p(s). 

Consider the subinterval of lj, n in which s = s(A,k) is so large that 

4k z 
p(s) > T and therefore A(b + f) > 4k z. By the Sturm Comparison Theorem the 

length of this subinterval is less than ~k " At least one of the intervals lj, n' 
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"K 

say Ip, n 7rhas length _> [. ConseguentlYk . . . .  we can find a subinterval [ Yn" 6n] of 

length _>-~ suchfhat Ifl < -~-= p(s), luI_< s with lul= s at oneendof 

the subinterval and u = 0 at the other end. For convenience suppose U(Yn) = 0, 
m 

U(6n) = s. From (181, 

lu~(~ n) - u~(6n)l = I (33) 

T h i s  i m p l i e s :  

-S (34) U(6n) = s = 

6 

n 

A(b + f)u dxl_< (A[]b][ + k Z ) s  . 

6 
n 

Yn 

u (x)dx > ~k [lUn(~n)l - (A Hb II + kZ) s] 

But  t h e  r i g h t  h a n d  s i d e  o f  ( 34 )  i s  u n b o u n d e d  a s  n --- ~ w h i l e  t h e  l e f t  h a n d  s i d e  i s  

b o u n d e d .  H e n c e  w e  h a v e  a c o n t r a d i c t i o n .  T h e  u n i f o r m i t y  of  t h e  a r g u m e n t  in  

o n  b o u n d e d  A i n t e r v a l s  g i v e s  t h e  c o n t i n u i t y  of  M k in  A a n d  t h e  l e m m a  i s  p r o v e d .  

Remark: Note that if b is replaced by 0 b, Oc [0, y], Mk(A) can be chosen inde- 

pendently of 0. Note also that as A -- 0, Mk(A) --- 0o. 
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