A NONLINEAR STURM-LIOUVILLE THEOREM

Paul H. Rabinowitz

A well known theorem of Sturm-Liouville in the theory of ordinary differential

equations concerns the eigenvalue problem:

(1) Su= - (p(x)u') +g{x)u =rx)u , 0<x<™

together with the separated boundary conditions (henceforth denoted by B.C.)
(2) aou(O) + bou'(O) =0 , alu('lT) + blu (m)=0

where (az + bé) (af + bf) # 0 and p,qg,a are respectively continuously differen-
tiable and positive, continuous, and continuous and positive on the interval [0,T].
Under the above assumptions, the eigenvalues u.n of (1) - (2) are simple and form an
increasing sequence with un -~ ® as n— «, In addition, any eigenvector vn
corresponding to un has exactly (n - 1) simple zeroes in (0,7). We are interested
in obtaining a nonlinear version of this result together with some applications,

First the result will be stated in a somewhat different fashion. As a techni-
cal convenience for what follows suppose that 0 1is not an eigenvalue for £ under

the B.C. (2). Then (1) - (2) can be converted to an equivalent integral equation:
™

(3) uee) =2 {7 96 ) aty) uiw) ay
0

where g 1is the Greens function for £ together with the B. C. Let
E= C1 [0, 7] n B. C. under the usual maximum norm:
full, = max Jux)[+ max |u'(x)] .
xe [0, 7] xe[0, ]
By a solution of (3) we mean a pair (A, u) e RX E, Let S: denote the set of ¢ ¢E
such that ¢ has exactly k ~1 simple zeroes in (0,7), all zeroes of ¢ in [0,7]
are simple, and ¢ s positive in a deleted neighborhood of x = 0. Set

+ o
Sk—-Sk and Sk—SkUSk.

eigenfunction Vi corresponding to u.k belongs to Sk' We make v,

Then S;:, Sl:, and S, are open subsets of E and any

X unique by
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+
requiring that I]vk I ;=1 and v €S,
Using the terminology just introduced, the Sturm-Liouville theorem can be
reformulated as follows: (3) possesses a line of trivial solutions { (A, 0) f'}\e R} and
in addition for each integer k > 0, a line of nontrivial solutions given by

{(uk. avk) la ¢ R}, We will obtain a nonlinear analogue of this result. Consider
(4) fu=AF(xuu'), O0<x<mq

together with the B.C, (2). It is assumed that F is a continuous function of its
arguments in {0, 7] % IRZ and F(x,&,n)=alx)t + 0((&Z + nz}llz) near (&,n)=(0,0).

As above, (4), (2) can be converted to the equivalent integral equation:

kis
(5) u(x) = 7\5' g(x, ) Fly, u(y), u'{y))dy .
0

Because of the form of F, (5) also possesses the line of trivial solutions

{0, 0)] A e R}, Let 8 denote the closure in RX E of the set of nontrivial solu-

tions of (5), By a theorem of Krasnoselski ([4]), the only possible trivial solutions

belonging to 8 are the points (u,k, 0), k ¢eN, i.e. the possible bifurcation points.
Concerning the structure of 8, we have:

Theorem 6; For each integer k > 0, 8 contains a component, ck’ which meets
(u.k, 0) and is unbounded in R X Sk.

(By a component of 8 we mean a maximal closed connected subset)., Thus the
statement of Theorem 6 contains in particular the linear case (3) where Ck is a
line. To prove Theorem 6, a general theorem from nonlinear functional analysis
which will be stated below and two lemmas are employed,

Let ,E\ be a real Banach space and G : RX ,E?—* ii:\ be compact, i.e. be
continuous and map bounded sets into relatively compact sets. Suppose further that
G(\, u) = ALu + H(A\,u) where L is a compact linear map and H(A\,u) = 0([u||) near

u = 0 uniformly on bounded N intervals. Consider the equation
(7} u = G(,u) .

A solution of (7)is a pair (A, u)e RX 'E\ Then (7) possesses the line of trivial sol~
utions. Let Q denote the closure of the set of nontrivial solutions of (7) and let

i be a real characteristic value of L., Then we have:

~

Theorem 8: If W is a real characteristic value of L of odd multiplicity, 8 contains

a component, C, containing {(u, 0) and which is either unbounded or meets { @, 0)
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where #ﬁ is a real characteristic value of L.

For a proof of Theorem 8, see Rabinowitz [7] or [8].

Note that (5) has the form (7) and u,k being a simple eigenvalue of £ is a
simple characteristic value of the corresponding linear integral operator., Hence the
hypotheses of Theorem 8 are satisfied here and ck, the component of 8 containing
(i K 0) is either unbounded in RX E or meets (uj. 0), i # k. Actually ck is un-

bounded in R X Sk as we shall see via the following two lemmas,

Lemma 9: There exists a neighborhood ’]]j of (u.j, 0) such that (A, u) e 7]1 neg

implies ue¢S, or u= 0.

b}
Proof: If not, there exists a sequence ()\n, un) ¢ 8 such that O\n' un) —- (p.j, 0) as
n —« and u, éSj. From (5) or equivalently (7),

u u H (7\n, un)

n
T =AL +
e, fi4 n= o lly ol ly

(10) .
The 0(||ul|;) conditionon H implies (N ||;1 H(\ ,u )= 0 as n— =, More-
over the compactness of L and boundedness of {u_/|lu_|l;} implies that

{Lun/ IlunHl} possesses a convergent subsequence {Lun /||un ||1}. From (10)
this subsequence converges in E to v with ]|v||1 =1 and satisfying
(11) v =i ij .

Hence v=v, or v=-v,, Ineitherevent v ¢S, and since S, 1s open,

] ] i ]
u /Jlu | €8, forall j large. But this implies u_ ¢S, a contradiction. Thus
np Tngly 1 n

P i
the lemma is established.
Lemma 12: Suppose (A,u) is a solution of (4) and u has a double zero, i.e.

there exists T¢ [0,7] such that u(t)=0=u'(7). Then u = 0,

Proof: If F(x,£,7) is locally Lipschitz continuous with respect to (¢,1), the result
follows immediately from the uniqueness theorem for the initial value problem for
(4). The more general case amounts to reproving the uniqueness result for the

special initial data (0, 0) using the "O-condition"on F - af, See (8] for a proof.

Proof of Theorem 6: Fix k > 0. Suppose ckc (R X Sk) u {(u.k, 0)}. Then by

Theorem 8, Ck must be unbounded in this set and we are through. Thus suppose
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¢ E(RX S )u {t,,0)}. By Lemma 9, ¢ "7, c ®RXS,)u {(u.k,O)} Since ¢, 1s
connected, there exists (')\,u) € ck N{Rx 88 ), (ou) # (uk, 0), and

(7\,u) = lim (?\ su )} with () Y )ick n {le s ) This implies u has a double
n—-®
zero and by Lemma 12, u = 0., Hence ('A,u) = (y,j, 0) for some j # k. (Recall that

the only trivial solutions belongingto 8 correspond to bifurcation points). But this

implies O‘n' un)e f/]j and therefore un ¢S, for n large. Since this is impossible,

J

the theorem {s proved.

Remarks: If 0 is an eigenvalue of §£, Theorem 6 still obtains with the aid of an
approximation argument. See Rabinowitz [6] or [8]. A sharper version of Theorem 8
for 1 a simple characteristic value (see [7]) shows that ck ck u ck where

Ck ck {(u.k, 0)} and ck. (_',k are unbounded in R X Sk'
Thus we get an even nicer correspondence with the linear case (3}, If F is smooth

Rx Sk respectively.

near (§n) = (0, 0),then a general theorem on bifurcation from simple eigenvalues
(see e.g. [2] or [3]) implies that ck near (u.k, 0) is a smooth curve of the form
(u) = +0(1), av, +0(]a)) for a near 0. Lastly we note that Theorem 6
can readily be generalized to permit £ to be nonlinear and a more general depen-
denceof £ and F on A (see [6]).
To give some idea of what the sets ck may look like, consider the
following example:
2 2
-u"=AN1+£f(u + (u') NHu 0<x<m
(13)
u{0) = ¢ = u(n)

where f is continuous and £(0) = 0, The linearization of (13) about u = 0 {s:
(14) -v'=yv , 0<x<x , v{0}=0=v{r)

which possesses elgenvalues u.n = n2 and eigenfunctions vn =an sin nx, We
will study c1 for (14)and in particular try for solutions of the form
(A u) = (A, c sinx). This leads to the equation:

(15) 1 =21 +£(c))

relating A and c. The freedom we have in choosing £ leads to a wide range of
possible behavior for c1 .

Next some qualitative consequences of Theorem 6 will be studied.
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Corollary 16: Suppose in (4) F(x, & n) = a(x) € + f(x, £, n)§ where f is continuous
in its arguments and f(x, 0,0)= 0, If p,k >0 and f > 0, then C',k lies in
[O,uk]x Sk while if My >0 and £< 0, (3k lies in [p,k,oo)x Sk'

Proof: The result is an immediate consequence of Theorem 6 together with a com-
parison argument which shows if e,.g. £ > 0 and (A u)e (RX Sk) n 8, then
A e [0, uk]. See [6] for detalls.

The effect of a priori bounds on the sets ck will be studied next.

Corollary 17: Suppose there exists a continuous real valued function M(A) for
+

A eR  suchthat (A u) a solution of (5)with A > 0 implies |u ||1 < M(QA).

If M > 0, then for all A e (p.k, ) there exists u e Sk such that (A u) ¢ ck

Proof: By Theorem 6, Ck is unbounded ih R X Sk’ Note that (0,u) cannot be
a solution of (5). Hence Ck lies in ]R+>< Sk' The existence of M()\) implies the
projection of Ck on lR+ cannot be bounded. Hence the result follows from the

connectedness of ck .

Conditions under which such a priori bounds may be obtained can be found
in Crandall and Rabinowitz [2] and Wolkowiskey [8]. As another application of
Theorem 6 involving a different kind of a priori bound, we will prove a generalized

version of a theorem of Nehari [5]. Consider
(18) -u" = f(x,u)u, o<x<1T, u(0) = 0 = u(m)

where f is continuous on {0,7]X R, f(x,0)=0, f(x,u) > 0 if u # 0, and there
exists a continuous function p: R — R with p(s) - = as |s|— » and such
that |u|> s implies f(x,u) > p(s).

Note that (18) differs from the equations treated earlier in that its right

hand side has no linear part at u =0,

Theorem 19: Under the above hypotheses on f, for each integer k > 0 there

exists u eSk such that u

X satisfies (18).

k

To prove Theorem 19, we require the following lemma which will be proved

in the Appendix.

Lemma 21: Consider the equation
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(22) -u”" = Ab(x) + f(x,u))u , 0<x<m7 , u(0)=0=u(m

where f is as above and b > 0 is continuous in [0,7]. Then for each integer
k > 0 there exists a continuous function Mk(7\) : (0, 0) — ]R+ such that if (A, u) is
a solution of (22) with u €8S, then [luf; < M, ().

Proof of Theorem 19: An approximation argument is used. Let 6 € (0,1). Consider

(23), —u"=NO+f(xu))u , O0<x<q ; u0)=0-=ulr)
The eigenvalues wk(e) of
(24) ~w" = gwow , 0<x<q ; wU0)=0-=wm

are wk(e) = kz/e >1 forall k > 1, By Corollary 16 (23)9 possesses a component
ck(e) of solutions which is unbounded in [0, wk(e) 1x Sk’ By Lemma 21, the
projection of ck(e) on R contains (0, wk(e)). In particular there exists

uk(e)e Sk such that (1, uk(e)) € ck(e) and ||uk(9) ||15 Mk(l, 8). The proof of

Lemma 21 shows that Mk can be chosen independent of 6. From (23)9 R
max [ui'((e)| can be bounded independently of 8. These bounds, the Arzela
xe[0, 7]

Ascoli Theorem, and (23)9 imply there is a sequence en —- 0 as n — o such

of (18) with u,_eS, . It only

k k 'k
remains to show that uk # 0, But this follows by the argument of Lemma 9. The

that uk(en) converges in CZ[O,qT] to a solution u

theorem is proved.

Remark 25: By using the ideas contained in the above proof, a version of
Theorem 19 can be obtained for (22) with A =1.

Many people have studied nonlinear eigenvalue problems such as (4), (2)
by examining a corresponding initial value problem and using shooting techniques.,
It seems unlikely that such methods can be used to obtain Theorem 6., On the other
hand, Theorem 6 can be employed to shed some light on the corresponding initial

value problem. For convenience wereplace (2) by the B.C.
(26) u(0) = 0 = u(rw) .

Moreover we assume F 1in (4) is Lipschitz continuous in € and 7 and therefore
the initial value problem for (4) possesses a unique solution.

Considerthe map ¥ : $ — ]RZ, YA, u) = (A, u'(0)). Themap v is 1-1 via
uniqueness of solutions to the initial value problem and is continuous. Therefore

\y(Ck) = Jk 1s a connected subset of RZ and Jk an =P if k #j. Note that even
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though ck is unbounded in R X E, Jk may be bounded in ]Rz. By the remarks
+, -t -
following the proof of Theorem 6, Jk = Jk U "k = \y(ck) U\y(ck). As an interesting

consequence of Corollary 16 we get

Corollary 27: Suppose in addition to the hypotheses of Corollary 17, F is Lipschitz
continuous in £ and n and (26) obtains. Let ut be the smallest positive eigen-
valueof (3), (2}). If A > uk > U - then there exist constants

+

+ + - = +
CJr S>> Ck>0> ck >...> Ct such that (')\,Cj)e,jj, r< i< k.

Proof: The result follows immediately from Corollary 16 and the properties of the

+
sets J, .

i

Since C:, -C; < M(}), one could use a shooting technique in the interval
of initial derivatives [-M(7), M(A)] to find the solutions whose existence is
given by Corollary 27.

We conclude with some remarks on periodic B.C, Suppose all functions

involved in (1) and (4) are v periodic in x and (2) is replaced by
(28) u(0) =ufw) , w(0)=u'(n) .

This case is interesting because some of the important structure obtained for the
separated B,C. case is lost, The linear theory here again gives an increasing
sequence of eigenvalues En with cn — o as n-- », However the eigenvalues
need not be simple although they are of multiplicity at most 2 and then have two
corresponding linearly independent eigenvectors. More precisely (see Coddington-
Levinson [1]) l;l < CZ < §3 <C4 < l;5 <... etc. Any eigenfunction correspond-
ing to gl has no zeroes in [0,7]; any eigenfunctions corresponding to CZk’
Z;Zk 4+ K> 1 have exactly 2k simple zeroes in [0,77]. Thus in particular, £,
is a simple eigenvalue, We again set up a family of open sets to take advantage
of the nodal properties. Let /E\ denote the subset of 01[0,77] of m periodic
functions. Let T{‘; = {¢eElo> 0}, Ty = -'rg, Ty = T; UTy, and T, = {ecElo
has exactly 2k simple zeroes in [0,7)}.

Consider now {4), (28} Again as a convenience we assume 0 {s not an
eigenvalue of £. Hence (4}, (28) can be converted to an operator equation of the
form (7). Let Q denote the closure of the set of nontrivial solutions of this

equation. With a small modification, the proof of Lemma 9 gives us:

Lemma 29: There exists a neighborhood mj of (CZJ'O) (and (c2j+1‘o’ if §£0)
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el
such that (A,u) e mj n8 implies u eTj or u= 0,
Since ¢ 1 is a simple eigenvalue of (1), (28), a combination of Lemmas 29

and 12, and Theorem 8 yields:

~
Theorem 30: 8 contains a component 81 which meets (¢ 1 0) and is unbounded in
XT..
RXT 0

Whenever Czw k> 1 is simple, the above lemmas and Theorem 8 implies
that 8 contains a component (_',k in (RXT )U {(CZk. 0)} meeting {CZk’

However Ck need not be unbounded in R X T but may also meet (¢ 2k41’ 0).

k
Moreover if CZk cZk 1° i.e, we have an elgenvalue of multiplicity 2, bifurcation

need not occur at all. A simple such example is given by:
(31) -u"+us= 3\(u+(u')3) 0<x<T

with u satisfying (28), Multiplying (31) by u' and integrating over a period yields:
T
7\5 w)¥ax=o0 .
0

Since the equation possesses no solutions when A = 0, (31), {28) possesses only
the trivial solutions and the line of solutions {(1,a)|ae R} in RXT o

Thus in general other than for (¢ 1’ 0) results analogous to Theorem 6 do
not obtain for (4), (19) and even to obtain bifurcation more hypotheses will have to
be made. One way to guarantee bifurcation and even some sort of global result is
to impose variational structure on the problem. More precisely suppose that F
in (4) is independent of u', q > 0, and F(x,u) = 5% ?(x,u) with ?(x, 0)= 0. Then
(4), (19) is the Euler equation of the variational problem;

T A
Extremize 5\ F(x, 9)dx
0

/N
over the class of ¢ ¢ E with
™ W2 2
{p(¢') +qo )dx=R , R a constant .
4]

By a theorem of Krasnoselsk! [4], each point { tk’ 0) will be a bifurcation point for
(4), (28). Moreover if F is odd in u and appropriate technical conditions are
satisfied, it follows from a theorem of Ljusternik [4] that for each R > 0, there
exist infinitely many distinct solutions (xn(R), un(R)) of (4), (28) with

i
S\ (plu’ ;2 + quz)dx =R ,
0 n n
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An interesting open question is whether for all integers k > 0, there exists a solu-
tion (7\k(R), uk(R)) with uk(R) € Tk'
APPENDIX

Proof of Lemma 21: The proof consists of two steps. First we show there exists

Mk()\, c) such that if (A, u) is as in the statement of the lemma with |u'(0)|< ¢,

then ]]u”1 < MkO\, c). Then we show Mk(7\, c) can be chosen independently of c.
Suppose u'(0) > 0. (The argument for u’(0) < 0 is the same.) Let vy be

the first zero of u'. Then u is a monotone increasing function and from (18), u"

is a monotone decreasing function in [0, yl]. Hence u' is monotone decreasing in

f0,v,] and u'(0)= max u'(x)< ¢, max u< cy,. Let z_  be the first zero of u
1 - - 1 1
[0,v,] [0,,]

in (0,n). Then from (18), u and u' are monotone decreasing in [yl,zl] so

max u<g ¢ yy- Moreover integrating (18):
[yl’ ZI] z
1
(32) -u'(zl):?\S\ (b +f)u dx
"

The bounds obtained for u in [yl, zl] and (32) give a bound for [u'(x)| in
[YI’ 21]' Continuing in this fashion leads to an estimate Jju ”1 < Mk(?\, c) where

Mk is continuous in A\ and c. Note also that if u' is known at any zero zj

of u, an estimate of the same form for [Ju||, obtains with c replaced by |u'(zj)l.
It remains to show that Mk(7\, ¢) can be chosen independently of c. If
not, there exists a sequence (3, un) satisfying (18) with u e Sk and {u;_l(O)}—-— o,

Let cj n denote the jth zero of un in [0,7], 0 € j £ k. By our above remarks,

u'(o -~ © a8 n-- e, Let I Since u' has a zero in
lugtoy, )l 3, n

n- [Uj, n’ c’j+l, n]'
Ij o the Mean Value Theorem implies that max [u';l(x)| — © as n— «, Hence
’
I
jyn
from {18), max }un(x)]—- o as n— o, Therefore forany s > 0, if n = n(s) is
I
jon
sufficiently large, there exists x €l such that u_(x
{0 Ln n

f(xj'n, un(xj’n)) > p(s).

] n)> s and

Consider the subinterval of Ij n in which s = s(A\,k) is so large that
z El

4k
p(s) > -~ and therefore A(b +f) > 4kz. By the Sturm Comparison Theorem the

length of this subinterval is less than %rg . At least one of the intervals Ij 0’
I
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pis

say 1 has length > —. Conse%uently we can find a subinterval [Y , 5 ] of
p,n T k x . - _ n n
length > oy such that  [f]| < = p(s), |uf< s with |uf=s atoneendof

the subinterval and u = 0 at the other end, For convenience suppose u(Yn) = 0,

u(s) ='s. From (18),

&
n
2 —
(33) las (v ) = (8 )] = |§Y Ao +fludx|< (b +K5)S .
n
This implies:
I
_ n ™ 2.—
(34) us )= =SY wexddx 2 2 [Jur (v )| - (b + k55T
n

But the right hand side of {34) is unbounded as n — « while the left hand side is
bounded. Hence we have a contradiction, The uniformity of the argument in A

on bounded A intervals gives the continuity of M, in A and the lemma is proved.

k

Remark: Note that if b is replaced by 6 b, 8¢ {0,v] Mk(}\) can be chosen inde-
pendently of 6, Note also that as A - 0, Mko‘) - 00,
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