Reaction-Diffusion Models and Bifurcation Theory Lecture 9: More applications of local and global bifurcation

Junping Shi

College of William and Mary, USA

(日)

Krasnoselski-Rabinowitz Global Bifurcation Theorem

Consider

$$F(\lambda, u) = u - \lambda L u - H(\lambda, u), \qquad (1)$$

where $L: X \to X$ is a linear compact operator, and $H(\lambda, u)$ is compact on $U \subset \mathbb{R} \times X$ such that $||H(\lambda, u)|| = o(||u||)$ near u = 0 uniformly on bounded λ intervals. Note the conditions imply that $F_u(\lambda, 0) = I - \lambda L$, and if 0 is an eigenvalue of $F_u(\lambda_0, 0)$, then λ_0^{-1} must be an eigenvalue of the linear operator L. Define

$$S = \{(\lambda, u) \in U : F(\lambda, u) = 0, u \neq 0\}.$$

We say $(\lambda_0, 0)$ is a bifurcation point for the equation (1) if $(\lambda_0, 0) \in \overline{S}$ (\overline{S} is the closure of S).

Krasnoselski-Rabinowitz Global Bifurcation Theorem

Consider

$$F(\lambda, u) = u - \lambda L u - H(\lambda, u), \tag{1}$$

where $L: X \to X$ is a linear compact operator, and $H(\lambda, u)$ is compact on $U \subset \mathbb{R} \times X$ such that $||H(\lambda, u)|| = o(||u||)$ near u = 0 uniformly on bounded λ intervals. Note the conditions imply that $F_u(\lambda, 0) = I - \lambda L$, and if 0 is an eigenvalue of $F_u(\lambda_0, 0)$, then λ_0^{-1} must be an eigenvalue of the linear operator L. Define

$$S = \{(\lambda, u) \in U : F(\lambda, u) = 0, u \neq 0\}.$$

We say $(\lambda_0, 0)$ is a bifurcation point for the equation (1) if $(\lambda_0, 0) \in \overline{S}$ (\overline{S} is the closure of S).

Theorem 8.1. (Krasnoselski-Rabinowitz Global Bifurcation Theorem) [Rabinowitz, 1971, JFA] Let X be a Banach space, and let U be an open subset of $\mathbb{R} \times X$ containing $(\lambda_0, 0)$. Suppose that L is a linear compact operator on X, and $H(\lambda, u) : \overline{U} \to X$ is a compact operator such that $||H(\lambda, u)|| = o(||u||)$ as $u \to 0$ uniformly for λ in any bounded interval. If $1/\lambda_0$ is an eigenvalue of L with odd algebraic multiplicity, then $(\lambda_0, 0)$ is a bifurcation point. Moreover if C is the connected component of \overline{S} which contains $(\lambda_0, 0)$, then one of the following holds:

- (i) C is unbounded in U;
- (ii) $C \cap \partial U \neq \emptyset$; or
- (iii) C contains $(\lambda_i, 0) \neq (\lambda_0, 0)$, such that λ_i^{-1} is also an eigenvalue of L.

Unilateral bifurcation theorem

[Rabinowitz, 1971, JFA], [Dancer, 1974, Indiana Math J], [Lopez-Gomez, 2000, book] Theorem 8.2. Let X be a Banach space, and let U be an open subset of $\mathbb{R} \times X$ containing $(\lambda_0, 0)$. Suppose that L is a linear compact operator on X, and $H(\lambda, u) : \overline{U} \to X$ is a compact operator such that $||H(\lambda, u)|| = o(||u||)$ as $u \to 0$ uniformly for λ in any bounded interval. Suppose that $1/\lambda_0$ is an eigenvalue of L with algebraic multiplicity 1. We define $\Gamma_+ = \{(\lambda(s), u(s)) : s \in (0, \epsilon)\}$ and $\Gamma_- = \{(\lambda(s), u(s)) : s \in (-\epsilon, 0)\}$. Let C be a connected component of \overline{S} where $S = \{(\lambda, u) \in V : u - \lambda Lu - H(\lambda, u) = 0, u \neq 0\}$ containing $(\lambda_0, 0)$. Let C⁺ (resp. C⁻) be the connected component of $C \setminus \Gamma_-$ which contains Γ_+ (resp. the connected component of $C \setminus \Gamma_+$ which contains Γ_-). Then each of the sets C⁺ and C⁻ satisfies one of the following:

(i) it is unbounded;

(ii) it contains a point ($\lambda_*, 0$) with $\lambda_* \neq \lambda_0$ such that $1/\lambda_*$ is also an eigenvalue of L; or

(iii) it contains a point (λ, z) , where $z \neq 0$ and $z \in Z$ which any complement of $span\{w_0\} = \mathcal{N}(I - \lambda_0 L)$ in X.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Global Bifurcation From Simple Eigenvalue

Theorem 8.3 [Crandall-Rabinowitz, 1971, JFA]

Let $F : \mathbb{R} \times X \to Y$ be continuously differentiable. Suppose that $F(\lambda, u_0) = 0$ for $\lambda \in \mathbb{R}$, the partial derivative $F_{\lambda \mu}$ exists and is continuous. At (λ_0, u_0) , F satisfies

(F1) $dimN(F_u(\lambda_0, u_0)) = codimR(F_u(\lambda_0, u_0)) = 1$, and

(F3) $F_{\lambda u}(\lambda_0, u_0)[w_0] \notin R(F_u(\lambda_0, u_0))$, where $w_0 \in N(F_u(\lambda_0, u_0))$,

Then the solutions of $F(\lambda, u) = 0$ near (λ_0, u_0) consists precisely of the curves $u = u_0$ and $(\lambda(s), u(s)), s \in I = (-\delta, \delta)$, where $(\lambda(s), u(s))$ are continuous functions such that $\lambda(0) = \lambda_0$, $u(0) = u_0$. If F is C^2 near (λ_0, u_0) , then $u'(0) = w_0$, and

$$\lambda'(0) = -rac{\langle I, F_{uu}(\lambda_0, u_0)[w_0, w_0]
angle}{2 \langle I, F_{\lambda u}(\lambda_0, u_0)[w_0]
angle}$$

Global Bifurcation From Simple Eigenvalue

Theorem 8.3 [Crandall-Rabinowitz, 1971, JFA]

Let $F : \mathbb{R} \times X \to Y$ be continuously differentiable. Suppose that $F(\lambda, u_0) = 0$ for $\lambda \in \mathbb{R}$, the partial derivative $F_{\lambda u}$ exists and is continuous. At (λ_0, u_0) , F satisfies

(F1) $dimN(F_u(\lambda_0, u_0)) = codimR(F_u(\lambda_0, u_0)) = 1$, and

(F3) $F_{\lambda u}(\lambda_0, u_0)[w_0] \notin R(F_u(\lambda_0, u_0))$, where $w_0 \in N(F_u(\lambda_0, u_0))$,

Then the solutions of $F(\lambda, u) = 0$ near (λ_0, u_0) consists precisely of the curves $u = u_0$ and $(\lambda(s), u(s)), s \in I = (-\delta, \delta)$, where $(\lambda(s), u(s))$ are continuous functions such that $\lambda(0) = \lambda_0$, $u(0) = u_0$. If F is C^2 near (λ_0, u_0) , then $u'(0) = w_0$, and

$$\lambda'(0) = -\frac{\langle I, F_{uu}(\lambda_0, u_0)[w_0, w_0] \rangle}{2 \langle I, F_{\lambda u}(\lambda_0, u_0)[w_0] \rangle}.$$

[Pejsachowicz-Rabier, 1998, J D'Anal Math] [Shi-Wang, 2009, JDE] If in addition, $F_u(\lambda, u)$ is a Fredholm operator for all $(\lambda, u) \in \mathbb{R} \times X$, then the curve $\{(\lambda(s), u(s)) : s \in I\}$ is contained in C, which is a connected component of $S = \{(\lambda, u) \in \mathbb{R} \times X : F(\lambda, u) = 0, u \neq u_0\}$; and either C is not compact, or C contains a point $(\lambda_*, 0)$ with $\lambda_* \neq \lambda_0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Unilateral Theorem

[Shi-Wang, 2009, JDE]

Theorem 8.4 Suppose that all conditions above are satisfied. Let C be defined as above. We define $\Gamma_+ = \{(\lambda(s), u(s)) : s \in (0, \epsilon)\}$ and $\Gamma_- = \{(\lambda(s), u(s)) : s \in (-\epsilon, 0)\}$. In addition we assume that

If $F_u(\lambda, u_0)$ is continuously differentiable in λ for $(\lambda, u_0) \in V$;

- 2 The norm function $u \mapsto ||u||$ in X is continuously differentiable for any $u \neq 0$;
- So For $k \in (0, 1)$, if (λ, u_0) and (λ, u) are both in V, then $(1-k)F_u(\lambda, u_0) + kF_u(\lambda, u)$ is a Fredholm operator.

Let C^+ (resp. C^-) be the connected component of $C \setminus \Gamma_-$ which contains Γ_+ (resp. the connected component of $C \setminus \Gamma_+$ which contains Γ_-). Then each of the sets C^+ and C^- satisfies one of the following: (i) it is not compact; (ii) it contains a point (λ_*, u_0) with $\lambda_* \neq \lambda_0$; or (iii) it contains a point $(\lambda, u_0 + z)$, where $z \neq 0$ and $z \in Z$.

SIR model

[Kermack-Mckendrick, 1927]

Susceptible population S(t): who are not yet infected

Infective population I(t): who are infected and are able to spread the disease by contact with susceptible

Removed population R(t): who have been infected and then removed from the possibility of being infected again or spreading (Methods of removal: isolation or immunization or recovery or death)

$$S' = -\beta' SI, I' = \beta' SI - \alpha I, R' = \alpha I,$$

1. Total population is a constant N (except death from the disease)

2. A average infective makes contact to transmit infection with $\beta = \beta' N$ others per unit time (β : contact rate)

3. A fraction α of infectives leave the infective class per unit time $(1/\alpha)$: infectious period)

(1) If $S(0) < \alpha/\beta'$, then I(t) is a decreasing function which tends to 0, and S(t) is also decreasing and tends to a constant level greater than 0. (2) If $S(0) > \alpha/\beta'$, then the behavior of S(t) is same, but I(t) will first increase in a time period $(0, T_0)$, then decrease and tends to 0 after T_0 .

Define a dimensionless quantity $R_0 = \frac{\beta' S(0)}{\alpha}$. This is a threshold quantity. If we introduce a small number of infectives $I(\vec{0})$ into the a susceptible population, then an ▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣�? epidemic will occur if $R_0 > 1$.

SIR endemic (including birth and death)

$$\frac{dS}{d\tau} = bN - \beta'SI - dS, \quad \frac{dI}{d\tau} = \beta SI - \alpha I - dI - cI, \quad \frac{dR}{d\tau} = \alpha I - dR.$$

b: birth rate; d: disease-unrelated death rate, c: disease-related death rate

Nondimensionalized version: (assuming
$$b = d$$
 and $c = 0$)
 $u = \frac{S}{N}$, $v = \frac{I}{N}$, $w = \frac{R}{N}$, $\beta = \beta' N$

$$\frac{du}{dt} = d - \beta uv - du, \ \frac{dv}{dt} = \beta uv - dv - \alpha v, \ \frac{dw}{dt} = \alpha v - dw$$

disease free equilibrium: (u, v, w) = (1, 0, 0), endemic equilibrium: $(u, v, w) = \left(\frac{b+\alpha}{\beta}, \frac{b(\beta - b - \alpha)}{\beta(b+\alpha)}, \frac{\alpha(\beta - b - \alpha)}{\beta(b+\alpha)}\right)$.

Basic reproductive number: $R_0 = \frac{\beta}{\alpha + b}$ When $R_0 < 1$, the disease will die, and the disease free equilibrium is stable; when $R_0 > 1$, the disease will stay in the population, the disease-free equilibrium is unstable, and the endemic equilibrium is stable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

A general framework

[van den Driessche, Watmough, 2002, Math. Biosci.]

"Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission" (cited 1164 times on Google Scholar, and 264 times on MathSciNet)

- **O** Consider a heterogeneous population whose individuals are distinguishable by age, behaviour, spatial position and/or stage of disease, but can be grouped into n homogeneous compartments. Let $x = (x_1, \dots, x_n) \in X = \{x \ge 0\}$, with each $x_i \ge 0$, be the number of individuals in each compartment.
- 2 The first *m* compartments correspond to infected individuals. Let X_s be the set of all disease free states. That is X_s = {x ≥ 0 : x_j = 0, 1 ≤ j ≤ m}. (1 ≤ m < n)</p>
- Solution Let $\mathcal{F}_i(x)$ be the rate of appearance of new infections in compartment *i*, $\mathcal{V}_i^+(x)$ be the rate of transfer of individuals into compartment *i* by all other means, and $\mathcal{V}_i^-(x)$ be the rate of transfer of individuals out of compartment *i*.

Model: $x'_i = \mathcal{F}_i(x) - \mathcal{V}_i(x), \ 1 \le i \le n$, where $\mathcal{V}_i(x) = \mathcal{V}_i^+(x) - \mathcal{V}_i^-(x)$.

・ロト・西ト・ヨト・ヨト しゅうへん

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A general framework

Model:
$$x'_i = \mathcal{F}_i(x) - \mathcal{V}_i(x), \ 1 \le i \le n$$
, where $\mathcal{V}_i(x) = \mathcal{V}_i^+(x) - \mathcal{V}_i^-(x)$.

(A1) if
$$x \ge 0$$
, then $\mathcal{F}_i, \mathcal{V}_i^+, \mathcal{V}_i^- \ge 0$ for $1 \le i \le n$;

- (A2) if $x_i = 0$, then $\mathcal{V}_i^-(x) = 0$. In particular, if $x \in X_s$, then $\mathcal{V}_i^-(x) = 0$ for $1 \le i \le m$;
- (A3) for $m + 1 \le i \le n$, $\mathcal{F}_i(x) = 0$ for all $x \in X$; (the incidence of infection for uninfected compartments is zero)
- (A4) for $1 \le i \le m$, $\mathcal{F}_i(x) = 0$ and $\mathcal{V}_i^+(x) = 0$ for all if $x \in X_s$; (if the population is free of disease then the population will remain free of disease)
- (A5) If $x_0 \in X_s$ is a DFE (disease free equilibrium), then all eigenvalues of $D\mathcal{F}(x_0)$ have negative real parts. (the DFE is stable in the absence of new infection)

If x_0 is a DFE, and \mathcal{F}_i , \mathcal{V}_i satisfies (A1)-(A5), then the derivatives $D\mathcal{F}(x_0)$ and $D\mathcal{V}(x_0)$ are partitioned as

$$D\mathcal{F}(x_0) = \begin{pmatrix} F & 0 \\ 0 & 0 \end{pmatrix}, \quad D\mathcal{V}(x_0) = \begin{pmatrix} V & 0 \\ J_3 & J_4 \end{pmatrix}.$$

Basic Reproduction Number

The basic reproduction number, denoted \mathcal{R}_0 , is the expected number of secondary cases produced, in a completely susceptible population, by a typical infective individual. If $\mathcal{R}_0 < 1$, then on average an infected individual produces less than one new infected individual over the course of its infectious period, and the infection cannot grow. Conversely, if $\mathcal{R}_0 > 1$, then each infected individual produces, on average, more than one new infection, and the disease can invade the population.

SIR model:
$$\frac{du}{dt} = d - \beta uv - du$$
, $\frac{dv}{dt} = \beta uv - dv - \alpha v$, $\frac{dw}{dt} = \alpha v - dw$
disease free equilibrium: $(u, v, w) = (1, 0, 0)$,
endemic equilibrium: $(u, v, w) = \left(\frac{b+\alpha}{\beta}, \frac{b(\beta - b - \alpha)}{\beta(b+\alpha)}, \frac{\alpha(\beta - b - \alpha)}{\beta(b+\alpha)}\right)$.
Basic reproductive number: $R_0 = \frac{\beta}{\alpha + b}$

General Model: $x'_i = \mathcal{F}_i(x) - \mathcal{V}_i(x), \quad 1 \le i \le n$, where $\mathcal{V}_i(x) = \mathcal{V}_i^+(x) - \mathcal{V}_i^-(x)$. If x_0 is a DFE, and $\mathcal{F}_i, \mathcal{V}_i$ satisfies (A1)-(A5), then the derivatives $D\mathcal{F}(x_0)$ and $D\mathcal{V}(x_0)$ are partitioned as $D\mathcal{F}(x_0) = \begin{pmatrix} F & 0 \\ 0 & 0 \end{pmatrix}, \quad D\mathcal{V}(x_0) = \begin{pmatrix} V & 0 \\ J_3 & J_4 \end{pmatrix}$. The matrix FV^{-1} is called the next generation matrix for the model and $\mathcal{R}_0 = \rho(FV^{-1})$, where $\rho(A)$ denotes the spectral radius of a matrix A. The DFE x_0 is locally asymptotically stable if $\mathcal{R}_0 < 1$, but unstable if $\mathcal{R}_0 > 1$.

590

Bifurcation of Endemic Equilibria

 $x_i' = \mathcal{F}_i(\mu, x) - \mathcal{V}_i(\mu, x), \quad 1 \le i \le n, \text{ where } \mathcal{V}_i(\mu, x) = \mathcal{V}_i^+(\mu, x) - \mathcal{V}_i^-(\mu, x).$ Suppose that $x = x_0$ is a DFE for $\mu > 0$. We define $F(\mu, x) = \mathcal{F}(\mu, x) - \mathcal{V}(\mu, x).$

[van den Driessche, Watmough, 2002, Math. Biosci.]

Theorem 9.1. Suppose that x_0 is a DFE for $\mu > 0$, \mathcal{F}_i , \mathcal{V}_i satisfies (A1)-(A5) for $\mu > 0$, and \mathcal{F}_i , \mathcal{V}_i are at least C^2 near (μ_0, x_0) . Suppose that $\mathcal{R}_0(\mu_0) = \rho(F(\mu_0)V^{-1}(\mu_0)) = 1$ for some $\mu_0 > 0$. Suppose that 0 is a simple eigenvalue of $F_x(\mu_0, x_0)$. Then there exists a family of endemic equilibria $\{(\mu(s), x(s) : 0 < s < \delta\}$ satisfying $\mu(s) = \mu_0 + \mu'(0)s + o(s)$ and $x(s) = x_0 + sw_0 + o(s)$, where w_0 satisfies $F_x(\mu_0, x_0)[w_0] = 0$,

$$\mu'(0) = -\frac{v_0 \cdot F_{xx}(\mu_0, x_0)[w_0, w_0]}{2v_0 \cdot F_{\mu x}(\mu_0, x_0)[w_0]}$$

and v_0 is the left (row) eigenvector of $F_x(\mu_0, x_0)$, that is $v \cdot F_x(\mu_0, x_0) = 0$ or $F_x^T(\mu_0, x_0)[v_0^T] = 0$ (T is the matrix transpose). We can assume that $v_0 \cdot w_0 = 1$. $\mathcal{R}(F_x(\mu_0, x_0)) = \{y \in \mathbb{R}^n : v_0 \cdot y = 0\}.$

Global bifurcation: there is an unbounded continuum $\Sigma \subset \mathbb{R}^+ \times X^0$ of solutions of $F(\mu, x) = 0$ such that $(\mu_0, x_0) \in \Sigma$, and $proj_{\mu}(\Sigma) = (\mu_0, \infty)$ (assuming that there is no endemic equilibria for small μ).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bifurcation and stability of Endemic Equilibria

Remarks:

- If the function $\mu \mapsto \mathcal{R}_0(\mu)$ is one-to-one, then one can use \mathcal{R}_0 instead of μ as bifurcation parameter, then the projection of the unbounded continuum onto \mathcal{R}_0 covers the interval $(1, \infty)$.
- ² If the bifurcating endemic equilibria exist for $\mathcal{R}_0 < 1$, then they are unstable and the bifurcation is called backward; if the bifurcating endemic equilibria exist for $\mathcal{R}_0 > 1$, then they are stable and the bifurcation is called forward.

Generalization to PDE (reaction-diffusion system): [Wendi Wang and Xiao-Qiang Zhao, 2012, SIAM-ADS] Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models

$$(x_i)_t = \nabla(d_i(x)\nabla x_i) + \mathcal{F}_i(\mu, x) - \mathcal{V}_i(\mu, x), \ 1 \leq i \leq n, \ d_i \geq 0.$$

æ

A model of misteltoe and bird

[Wang-Liu-Shi-del Rio, 2013, JMB to appear]

$$\begin{cases} \frac{\partial M}{\partial t} = \alpha e^{-d_i \tau} \mathcal{K}[f(\mathcal{M}(t-\tau,\cdot))\mathcal{B}(t-\tau,\cdot)] - d_m \mathcal{M} & x \in \overline{\Omega}, t > 0, \\ \frac{\partial B}{\partial t} = D\Delta \mathcal{B} - \nabla \left(\beta \mathcal{B} \nabla \mathcal{M}\right) + g(\mathcal{B}) + c\mathcal{K}[f(\mathcal{M}(t,\cdot))\mathcal{B}(t,\cdot)], & x \in \Omega, t > 0, \\ \mathcal{M}(t,x) = \mathcal{M}_0(t,x), \mathcal{B}(t,x) = \mathcal{B}_0(t,x), & x \in \Omega, -\tau \le t \le 0, \\ [D\nabla \mathcal{B}(t,x) - \beta \mathcal{B}(t,x)\nabla \mathcal{M}(t,x)] \cdot n(x) = 0, & x \in \partial\Omega, \end{cases}$$

$$(2)$$

We assume that
$$K : C(\overline{\Omega}) \to C(\overline{\Omega})$$
 is a linear mapping satisfying
(K1) $||K[u]||_{C(\overline{\Omega})} \leq A_1 ||u||_{C(\overline{\Omega})}$ for some $A_1 > 0$;
(K2) If $u(x) \geq 0$ for all $x \in \overline{\Omega}$, then for $0 \leq C_1 < C_2$, $K[C_1u](x) \leq K[C_2u](x)$ for
 $x \in \overline{\Omega}$, and
 $K[u](x) \leq A_2 \max\left\{u(x), \int_{\Omega} u(x)dx\right\}$, (3)

for some $A_2 > 0$.

The function f satisfies a Holling type growth rate:

(f)
$$f \in C^1(\mathbb{R}^+), f(0) = 0, f'(M) > 0$$
 for $M \ge 0$, and $\lim_{M \to \infty} f(M) = f_{\infty}$.

Without mistletoes, the bird population has a logistic growth rate g(B) which satisfies

(g)
$$g \in C^1(\mathbb{R}^+), g(0) = g(K_B) = 0, g(B) > 0$$
 in $(0, K_B)$, and $g(B) < 0$ for $B > K_B$.

Equilibrium problem

$$\begin{aligned} & \alpha e^{-d_i \tau} \mathcal{K} \left[\frac{MB}{M+w} \right] (x) - d_m \mathcal{M}(x) = 0, & x \in \overline{\Omega}, \\ & D\Delta B(x) - \beta \nabla (B(x) \nabla \mathcal{M}(x)) + B(x)(1 - B(x)) + c \mathcal{K} \left[\frac{MB}{M+w} \right] (x) = 0, & x \in \Omega, \\ & (D\nabla B(x) - \beta B(x) \nabla \mathcal{M}(x)] \cdot n(x) = 0, & x \in \partial \Omega. \end{aligned}$$

Using d_m as a bifurcation parameter, the equilibrium problem (4) can be written in the following abstract form:

$$F(d_m, M, B) = 0, \tag{5}$$

where $F : \mathbb{R} \times W^{2,p}(\Omega) \times W^{2,p}(\Omega) \to W^{2,p}(\Omega) \times L^p(\Omega) \times W^{1,p}(\partial\Omega)$ is defined by

$$F(d_m, M, B) = \begin{pmatrix} \alpha e^{-d_i \tau} K\left[\frac{MB}{M+w}\right] - d_m M \\ D\Delta B - \beta \nabla (B\nabla M) + B(1-B) + cK\left[\frac{MB}{M+w}\right] \\ (D\nabla B - \beta B\nabla M) \cdot n \end{pmatrix}.$$
 (6)

The model (4) has two trivial solutions $E_0 = (0, 0)$ and $E_1 = (0, 1)$ for any $d_m > 0$. We consider the bifurcation of nontrivial solutions to (5) from the line of trivial solutions $\{(d_m, 0, 1) : d_m > 0\}$.

Fredholm integral operator

Besides (K1) and (K2), we also assume that the dispersal operator $K : C(\overline{\Omega}) \to C(\overline{\Omega})$ satisfies

(K3) $K : C(\overline{\Omega}) \to C(\overline{\Omega})$ is compact, and K is strongly positive, that is, for any $u \in C(\overline{\Omega})$ and $u \ge 0$, K[u](x) > 0 for $x \in \overline{\Omega}$.

We notice that the identity mapping K[u] = u considered in Section 4 does not satisfy (K3), but the integral operator defined in (H2) satisfies (K3) if the kernel function k(x, y) > 0 for $(x, y) \in \overline{\Omega} \times \overline{\Omega}$. The main consequence of the assumption (K3) is the renown Krein-Rutman Theorem which asserts the existence of a principal eigenvalue with a positive eigenvector.

From the compactness assumption in (K3), it follows from well-known results for compact operators, $K : C(\overline{\Omega}) \to C(\overline{\Omega})$ possesses a sequence of eigenvalues $\{\lambda_i\}$ such that $\lambda_i \in \mathbb{R}$,

$$0 \leq \dots \leq |\lambda_3| \leq |\lambda_2| \leq |\lambda_1|,\tag{7}$$

and the only possible limit point of $\{\lambda_i\}$ is zero. Moreover, since K is strongly positive, then from Krein-Rutman theorem, we have $\lambda_1 > 0$ with its corresponding function $\phi_1(x) > 0$. In the following we normalize ϕ_1 so that $\max_{x \in \overline{\Omega}} \phi_1(x) = 1$, and we also assume that

(K4)
$$\phi_1 \in W^{2,p}(\Omega)$$
 for any $p > n$.

Linearized problem

The linearization of F at the boundary equilibrium $E_1 = (0,1)$ is

$$F_{(M,B)}(d_m,0,1)[\phi,\psi] = \begin{pmatrix} \frac{\alpha e^{-d_i\tau}}{w} K[\phi] - d_m\phi \\ D\Delta\psi - \psi + \frac{c}{w} K[\phi] - \beta\Delta\phi \\ (D\nabla\psi - \beta\nabla\phi) \cdot n \end{pmatrix}$$

Therefore, 0 is a simple eigenvalue of $F_{(M,B)}(d_m, 0, 1)$ if and only if

$$\begin{cases}
\mathcal{K}[\phi] = \frac{d_m w}{\alpha e^{-d_i \tau}} \phi, & x \in \overline{\Omega}, \\
-D\Delta \psi + \psi = \frac{c}{w} \mathcal{K}[\phi] - \beta \Delta \phi, & x \in \Omega, \\
\frac{\partial \psi}{\partial n} = \frac{\beta}{D} \frac{\partial \phi}{\partial n}, & x \in \partial \Omega.
\end{cases}$$
(8)

has a unique nonzero solution up to a constant multiple. Define

$$\widetilde{d}_{m,\tau}^{k} := \widetilde{d}_{m,\tau} \lambda_{1} = \frac{\alpha}{w} e^{-d_{i}\tau} \lambda_{1},$$
(9)

and let ψ_1 be the unique solution of

$$-D\Delta\psi + \psi = \frac{c\widetilde{d}_{m,\tau}^{k}}{\alpha e^{-d_{i}\tau}}\phi_{1} - \beta\Delta\phi_{1}, \ x \in \Omega, \ \frac{\partial\psi}{\partial n} = \frac{\beta}{D}\frac{\partial\phi_{1}}{\partial n}, x \in \partial\Omega.$$
(10)

Then when $d_m = \tilde{d}_{m,\tau}^k$, (8) is solvable thus a bifurcation occurs at $d_m = \tilde{d}_{m,\tau}^k$, $\tilde{d}_m = \tilde{d}_{m,\tau}^k$.

Global bifurcation

$$\begin{cases} \alpha e^{-d_i \tau} \mathcal{K}\left[\frac{MB}{M+w}\right](x) - d_m \mathcal{M}(x) = 0, & x \in \overline{\Omega}, \\ D\Delta B(x) - \beta \nabla (B(x) \nabla \mathcal{M}(x)) + B(x)(1 - B(x)) + c\mathcal{K}\left[\frac{MB}{M+w}\right](x) = 0, & x \in \Omega, \\ [D\nabla B(x) - \beta B(x) \nabla \mathcal{M}(x)] \cdot \mathbf{n}(x) = 0, & x \in \partial \Omega \end{cases}$$

Theorem. Assume that $\beta \ge 0$, and the dispersal mapping K satisfies (K1) - (K4). Then there is a smooth curve Γ^k_{τ} of positive equilibrium solutions of (2) bifurcating from the line of trivial solutions $\{(d_m, 0, 1) : d_m > 0\}$ at $d_m = \tilde{d}^k_{m,\tau}$, and Γ^k_{τ} is contained in a global branch C^k_{τ} of positive equilibrium solutions of (2). Moreover

- $\begin{aligned} \bullet \quad & \text{Near } (d_m, M, B) = (\widetilde{d}_{m,\tau}^k, 0, 1), \ \Gamma_{\tau}^k = \{(d_m(s), M(s, x), B(s, x)) : s \in (0, \epsilon)\}, \\ & \text{where } M(s, x) = s\phi_1(x) + s\Psi_1(s, x), \ B(s, x) = 1 + s\psi_1(x) + s\Psi_2(s, x), \ \phi_1 \text{ is } \\ & \text{the principal eigenfunction of } K, \text{ and } \psi_1 \text{ is defined as in } (10); \ d_m(s), \ \Psi_1(s, \cdot) \\ & \text{and } \Psi_2(s, \cdot) \text{ are smooth functions defined for } s \in (0, \epsilon) \text{ such that} \\ & \Psi_1(0, \cdot) = \Psi_2(0, \cdot) = 0, \ d_m(0) = \widetilde{d}_{m,\tau}^k, \text{ and} \\ & d_m'(0) = \frac{\alpha e^{-d_i \tau} \int_{\Omega} K[-\phi_1^2(\cdot) + w\phi_1(\cdot)\psi_1(\cdot)](x)\phi_1(x)dx}{w^2 \int_{\Omega} \phi_1^2(x)dx}. \end{aligned}$
- **2** For $s \in (0, \epsilon)$, the bifurcating solution $(d_m(s), M(s, \cdot), B(s, \cdot))$ is locally asymptotically stable if $d'_m(0) < 0$, and it is unstable if $d'_m(0) > 0$.

Fredholm operator

To apply the global bifurcation theorem (Theorem 8.3), we first show that the linearized operator $F_{(M,B)}$ is a Fredholm operator for any $(d_m, M, B) \in \mathbb{R}^+ \times W^{2,p}(\Omega) \times W^{2,p}(\Omega)$. For that purpose we write $F(d_m, M, B) = F_1(d_m, M, B) + F_2(M, B)$, where

$$F_1(d_m, M, B) = \begin{pmatrix} -d_m M \\ D\Delta B - \beta \nabla (B\nabla M) + B(1-B) \\ (D\nabla B - \beta B \nabla M) \cdot n \end{pmatrix},$$

and

$$F_{2}(M,B) = \begin{pmatrix} \alpha e^{-d_{i}\tau} K \left[\frac{MB}{M+w} \right] \\ c K \left[\frac{MB}{M+w} \right] \\ 0 \end{pmatrix}$$

It is standard to verify that the linearization $(F_1)_{(M,B)}$ of F_1 at any (d_m, M, B) is Fredholm as $N((F_1)_{(M,B)})$ is finite dimensional, and $R((F_1)_{(M,B)})$ has a finite codimension. And the linearization $(F_2)_{(M,B)}$ of F_2 at any (d_m, M, B) is compact from (K3). Therefore $F_{(M,B)}$ is Fredholm as it is a compact perturbation of a Fredholm operator (see [Kato, 1980, book] page 238 Theorem 5.26). Consequently the existence of a global branch C_{τ}^k containing Γ_{τ}^k follows from Theorem 8.3.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

(日)

Predator-prey system with cross-diffusion

Cross-diffusion system:

$$\begin{cases} \Delta[(1+\alpha_1u+\alpha_2v)u]+u(\lambda-u-bv)=0, & x\in\Omega,\\ \Delta[(1+\beta_1u+\beta_2v)v]+v(\mu+cu-v)=0, & x\in\Omega,\\ u=v=0, & x\in\partial\Omega. \end{cases}$$

Competing species with passive diffusion, self-diffusion, cross-diffusion. [Shigesada, Kawasaki and Teramoto, 1979, JTB] [Nakashima, Yamada, 1996, ADE] [Kuto, Yamada, 2004, JDE]: $\alpha_1 = \beta_2 = 0$ Their idea: $U = (1 + \alpha_2 v)u$, $V = (1 + \beta u)v$, then the system becomes semilinear but with messy nonlinearities.

We prove the existence of a bounded branch of coexistence solutions which connecting the two semi-trivial solution branches via our new global bifurcation theorem. Our method is definitely more direct.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Setup

Review

$$\begin{cases} (1+\alpha v)\Delta u + \alpha u\Delta v + 2\alpha\nabla u \cdot \nabla v + u(\lambda - u - bv) = 0, & x \in \Omega, \\ \beta v\Delta u + (1+\beta u)\Delta v + 2\beta\nabla u \cdot \nabla v + v(\mu + cu - v) = 0, & x \in \Omega, \\ u = v = 0, & x \in \partial\Omega. \end{cases}$$
(12)

Define 2×2 matrix:

$$A_1(u,v) = \begin{pmatrix} 1+\alpha v & \alpha u \\ \beta v & 1+\beta u \end{pmatrix},$$

and for $1 \leq i, j \leq n$, $\mathbf{u} = (u, v)^T$,

$$f(\mu, \mathbf{u}, \nabla \mathbf{u}) = - \begin{pmatrix} 2\alpha \nabla u \cdot \nabla v + u(\lambda - u - bv) \\ 2\beta \nabla u \cdot \nabla v + v(\mu + cu - v) \end{pmatrix},$$

Then (12) is equivalent to

$$A(\mu, \mathbf{u}) \equiv -A_1(\mathbf{u})\Delta \mathbf{u} + f(\mu, \mathbf{u}, \nabla \mathbf{u}) = 0,$$

where $\mathbf{u} \in X \equiv (W_B^{2,p}(\Omega))^2 = (W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega))^2.$ (13)

Linearization

The linearization of $A(\mu, \mathbf{u})$ at \mathbf{u} is given by $(\mathbf{w} = (w_1, w_2) \in X)$

$$D_{\mathbf{u}}\mathcal{A}(\mu,\mathbf{u})[\mathbf{w}] = -\mathcal{A}_1(\mathbf{u})\Delta\mathbf{w} - \mathcal{A}_2(\mathbf{w})\Delta\mathbf{u} - \mathcal{A}_3(\nabla\mathbf{u})\cdot\nabla\mathbf{w} - J(\mathbf{u})\mathbf{w},$$

where

$$A_2(\mathbf{w}) = \begin{pmatrix} \alpha w_2 & \alpha w_1 \\ \beta w_2 & \beta w_1 \end{pmatrix}, \quad A_3(\nabla \mathbf{u}) = \begin{pmatrix} 2\alpha \nabla \mathbf{v} & 2\alpha \nabla \mathbf{u} \\ 2\beta \nabla \mathbf{v} & 2\beta \nabla \mathbf{u} \end{pmatrix},$$

and J is the Jacobian

$$J = \begin{pmatrix} \lambda - 2u - bv & -bu \\ cv & \mu + cu - 2v \end{pmatrix}.$$

For a small $\varepsilon > 0$, we define

$$X_{\varepsilon} = \{(u, v) \in X : u(x) > -\varepsilon, v(x) > -\varepsilon\}.$$

Then X_{ε} is an open connected subset of X. Clearly for $\mathbf{u} \in X$, $Trace(A_1(\mathbf{u})) > 0$ and $Det(A_1(\mathbf{u})) > 0$. So $A_1(\mathbf{u})$ is an elliptic operator, and $D_u A(\mu, \mathbf{u}) : X \to Y \equiv (L^p(\Omega))^2$ is Fredholm with index 0; Moreover, $A: \mathbb{R} \times X_{\varepsilon} \to Y$ is C^1 smooth. (see details in [Shi-Wang, 2009, JDE]).

Semitrivial steady states

Denote by $\lambda_1(q)$ the principal eigenvalue of

$$-\Delta \phi + q(x)\phi = \gamma \phi, \ x \in \Omega, \ \phi = 0, \ x \in \partial \Omega,$$

where q(x) is a continuous function in $\overline{\Omega}$. And we also use the notation $\lambda_1 = \lambda_1(0)$. Notice that $\lambda_1(q)$ is an increasing function in q in the sense: if $q_1(x) \ge q_2(x)$ and $q_1(x) \ne q_2(x)$, then $\lambda_1(q_1) > \lambda_1(q_2)$. It is well-known that for the scalar equation

$$\Delta u + u(\lambda - u) = 0, x \in \Omega; u = 0, x \in \partial \Omega,$$

there exists a unique positive solution θ_{λ} if $\lambda > \lambda_1$. Moreover $\{(\lambda, \theta_{\lambda}) : \lambda > \lambda_1\}$ is a smooth curve in $\mathbb{R} \times W_B^{2,P}(\Omega)$; θ_{λ} is stable in the sense that the linearized eigenvalue problem

$$-\Delta\phi - \lambda\phi + 2\theta_{\lambda}\phi = \eta\phi, \ x \in \Omega; \ \phi = 0, \ x \in \partial\Omega,$$

has a positive principal eigenvalue $\lambda_1(-\lambda + 2\theta_{\lambda})$. Thus $-\Delta - \lambda + 2\theta_{\lambda}$ is invertible and $(-\Delta - \lambda + 2\theta_{\lambda})^{-1}\phi$ is positive if ϕ is positive.

イロト (雪) (声) (声) (声) (つ)

A priori estimates

$$\begin{cases} (1+\alpha v)\Delta u + \alpha u\Delta v + 2\alpha \nabla u \cdot \nabla v + u(\lambda - u - bv) = 0, & x \in \Omega, \\ \beta v\Delta u + (1+\beta u)\Delta v + 2\beta \nabla u \cdot \nabla v + v(\mu + cu - v) = 0, & x \in \Omega, \\ u = v = 0, & x \in \partial \Omega \end{cases}$$

We fix $\lambda > \lambda_1$. Then the system has trivial solution (0,0) and semi-trivial solution (θ_{λ} , 0) for any $\mu \in \mathbb{R}$, and semi-trivial solution ($0, \theta_{\mu}$) for $\mu > \lambda_1$.

If λ ≤ λ₁, then there exist no positive solutions.
 If (u, v) is a positive solution, then

$$0 \le u(x) \le U(x) \le M_1 \equiv \begin{cases} \lambda & \text{if } \lambda \alpha \le b \\ (\lambda \alpha + b)^2 / 4\alpha b & \text{if } \lambda \alpha > b \end{cases}$$
$$0 \le v(x) \le V(x) \le M_2 \equiv (1 + \beta M_1)(1 + cM_1),$$

where $U(x) = (1 + \alpha v(x))u(x)$ and $V(x) = (1 + \beta u(x))v(x)$.

So There exists $\mu_0 = -cM_1$, and $\mu^0 > \mu_0$ such that there is no positive solution if $\mu < \mu_0$ or $\mu > \mu^0$.

[Nakashima, Yamada, 1996, ADE] [Kuto, Yamada, 2004, JDE]

Bifurcation points

Two semi-trivial solution branches:

$$\Gamma_{u} = \{(\theta_{\lambda}, \mathbf{0}) : \mu \in \mathbb{R}\}, \quad \Gamma_{v} = \{(\mathbf{0}, \theta_{\mu}) : \mu > \lambda_{1}\}.$$

First we let $\mathbf{u} = (\theta_{\lambda}, \mathbf{0})$. Simplifying the equations, we obtain

$$D_{\mathbf{u}}\mathcal{A}(\mu,(\theta_{\lambda},0))[\mathbf{w}] = - \begin{pmatrix} \Delta w_{1} + (\lambda - 2\theta_{\lambda})w_{1} + \alpha\Delta(\theta_{\lambda}w_{2}) - b\theta_{\lambda}w_{2} \\ \Delta[(1 + \beta\theta_{\lambda})w_{2}] + (\mu + c\theta_{\lambda})w_{2} \end{pmatrix}.$$

If we set $D_{\mathbf{u}}\mathcal{A}(\mu,(heta_{\lambda},0))[\mathbf{w}]=0$, then the equation of w_2 is equivalent to

$$\Delta W_2 + \frac{\mu + c\theta_\lambda}{1 + \beta\theta_\lambda} W_2 = 0, \quad x \in \Omega; \quad W_2 = 0, \quad x \in \partial\Omega,$$
(14)

where $W_2(x) = (1 + \beta \theta_\lambda) w_2(x)$. Thus the possible bifurcation point μ_1 is the one such that

$$\lambda_1 \left(\frac{-\mu_1 - c\theta_\lambda}{1 + \beta \theta_\lambda} \right) = 0.$$
(15)

(日) (同) (三) (三) (三) (○) (○)

Bifurcation Points

Similar analysis can be done on the other semi-trivial branch, but $(0, \theta_{\mu})$ is not a fixed point in X so we consider the operator $A'(\mu, \mathbf{u}) = A(\mu, \mathbf{u} + (0, \theta_{\mu}))$ for which $\mathbf{u} = (0, 0)$ is always a solution of $A'(\mu, \mathbf{u}) = 0$ for all μ . The corresponding linearized equation is

$$D_{\mathbf{u}}\mathcal{A}'(\mu,0)[\mathbf{w}] = - \begin{pmatrix} \Delta[(1+\alpha\theta_{\mu})w_{1}] + (\lambda - b\theta_{\mu})w_{1} \\ \Delta w_{2} + (\mu - 2\theta_{\mu})w_{2} + \beta\Delta(\theta_{\mu}w_{1}) + cb\theta_{\mu}w_{1} \end{pmatrix}$$

Thus the possible bifurcation point is μ_2 such that

$$\lambda_1 \left(\frac{-\lambda + b\theta_{\mu_2}}{1 + \alpha \theta_{\mu_2}} \right) = 0.$$
(16)

Lemma. There exists a unique $\mu_1 \in (-\infty, \infty)$ so that (15) holds, and there exists a unique $\mu_2 \in (\lambda_1, \infty)$ so that (16) holds. Moreover the corresponding null spaces $\mathcal{N}(D_u \mathcal{A}(\mu_1, (\theta_{\lambda}, 0)))$ and $\mathcal{N}(D_u \mathcal{A}'(\mu_2, (0, 0)))$ are one-dimensional.

Proof of lemma

Lemma. There exists a unique $\mu_1 \in (-\infty, \infty)$ so that (15) holds, and there exists a unique $\mu_2 \in (\lambda_1, \infty)$ so that (16) holds. Moreover the corresponding null spaces $\mathcal{N}(D_u \mathcal{A}(\mu_1, (\theta_{\lambda}, 0)))$ and $\mathcal{N}(D_u \mathcal{A}'(\mu_2, (0, 0)))$ are one-dimensional. Proof: Define

Then $q_1(\mu)$ is decreasing in μ . From the properties of $\lambda(q)$, we deduce that $f_1(\mu) \to \pm \infty$ as $\mu \to \mp \infty$ and f_1 is decreasing. Hence μ_1 exists and it is unique. With $\mu = \mu_1$, (14) has a positive solution W_2 . Then $w_2 = (1 + \beta \theta_\lambda)^{-1} W_2$, and $w_1 = (-\Delta - \lambda + 2\theta_\lambda)^{-1} (\alpha \Delta(\theta_\lambda w_2) - b\theta_\lambda w_2)$ give rise to the unique solution of $D_{\mathbf{u}} \mathcal{A}(\mu, (\theta_\lambda, 0))[\mathbf{w}] = 0$ up to a constant multiplier. Similarly we define

Since θ_{μ} is increasing in μ (pointwisely for $x \in \Omega$), then q_2 and f_2 are increasing in μ . One can show that $f_2(\mu) \rightarrow \lambda_1 + b/\alpha > 0$ as $\mu \rightarrow \infty$, and $f_2(\mu) \rightarrow \lambda_1 - \lambda < 0$ as $\mu \rightarrow \lambda_1 + 0$. Hence μ_2 exists and is unique. Similarly to the above case, the null space is one-dimensional with $w_1 > 0$.

Global bifurcation

[Shi-Wang, 2009, JDE]

$$\begin{cases} (1 + \alpha v)\Delta u + \alpha u\Delta v + 2\alpha \nabla u \cdot \nabla v + u(\lambda - u - bv) = 0, & x \in \Omega, \\ \beta v\Delta u + (1 + \beta u)\Delta v + 2\beta \nabla u \cdot \nabla v + v(\mu + cu - v) = 0, & x \in \Omega, \\ u = v = 0, & x \in \partial \Omega \end{cases}$$

Theorem. Suppose that $\alpha, \beta, b, c > 0$ and $\lambda > \lambda_1$. Let \mathcal{S}^+ be the set of positive solutions to the equation above. Then there exists a connected component \mathcal{C}^* of \mathcal{S}^+ such that the closure of \mathcal{C}^* includes the bifurcation points $(\mu, u, v) = (\mu_1, \theta_\lambda, 0)$ and $(\mu, u, v) = (\mu_2, 0, \theta_{\mu_2})$. In other words, bifurcations occur at both $(\mu, u, v) = (\mu_1, \theta_\lambda, 0)$ and $(\mu, u, v) = (\mu_2, 0, \theta_{\mu_2})$, and the bifurcating continua from the two points are connected to each other.

Proof. We apply the abstract theorem at $(\mu, u, v) = (\mu_1, \theta_\lambda, 0)$ with $V = \mathbb{R} \times X_{\varepsilon}$. We have already observed that $A: V \to Y$ is C^1 smooth, and $D_u A(\lambda, u)$ is Fredholm with zero index for any $(\lambda, u) \in V$. We have also shown in Lemma that $\mathcal{N}(D_{\mathbf{u}}\mathcal{A}(\mu_1,(\theta_{\lambda},0))) = span\{(w_1,w_2)\}$ with $w_2 > 0$. For the transversality condition,

$$D_{\mu \mathbf{u}} A(\mu_1, (\theta_{\lambda}, 0)) \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 0 \\ -w_2 \end{pmatrix} \notin \mathcal{R}(D_{\mathbf{u}} A(\mu_1, (\theta_{\lambda}, 0))),$$

because the equation $\Delta[(1 + \beta \theta_{\lambda})\psi] + (\mu_1 + c\theta_{\lambda})\psi = w_2$ is not solvable since $\int_{\Omega} (1 + \beta \theta_{\lambda}) w_2^2 dx \neq 0.$ くしゃ (雪) (雪) (雪) (雪) (雪) (

Review Integral-differential equations Predator-prev with cross-diffusion Uniqueness for predator-prey

Proof

Now we can apply Theorem 8.3 to obtain a connected component C of the set S of all solutions emanating from $(\mu, u, v) = (\mu_1, \theta_\lambda, 0)$. Similarly we can show the existence of a connected component of S emanating from $(\mu, u, v) = (\mu_2, 0, \theta_{\mu_2})$. Moreover near the bifurcation point, C has the form $(\mu(s), \theta_{\lambda} + o(s), sw_2 + o(s))$ for s small. Then the solution is positive for s > 0 since $w_2 > 0$ and $\theta_{\lambda} > 0$. Let $P = \{(u, v) \in v\}$ $C^{1}(\overline{\Omega}) \times C^{1}(\overline{\Omega}) : u > 0, v > 0$ for $x \in \Omega, \partial u / \partial v < 0, \partial v / \partial v < 0$ for $x \in \partial \Omega$, where ν is the unit outer normal vector field of $\partial \Omega$. Then $\mathcal{C} \cap (\mathbb{R} \times P) \neq \emptyset$.

Let $\mathcal{C}^* = \mathcal{C} \cap (\mathbb{R} \times P)$. Let \mathcal{C}^+ and \mathcal{C}^- be the sub-continua in Theorem 8.4 (Conditions 1-3 in that theorem can be easily verified). By definition, $C^* \subset C^+$. By the elliptic regularity theory, the first alternative in Theorem 8.4 for \mathcal{C}^+ is equivalent to "the closure of \mathcal{C}^+ intersects ∂V or is unbounded in the norm of $\mathbb{R} \times X$ ". On the other hand, by the a priori estimates, the positive solutions (u, v) are bounded in L^{∞} norm, and the range of μ for existence of such solutions is also bounded. Thus by the elliptic regularity theory again, \mathcal{C}^* cannot be unbounded in $\mathbb{R} \times X$ norm. Now we see that if the first alternative in Theorem 8.4 occurs, then $\overline{\mathcal{C}^*} \cap (\mathbb{R} \times \partial P)$ contains a point (μ^*, u^*, v^*) other than $(\mu_1, \theta_\lambda, 0)$. This is obviously true if the other alternatives occur

Proof

By continuity, (μ^*, u^*, v^*) is a solution of the equation, and $u^* \ge 0$, $v^* \ge 0$. By the maximum principle, $u^* \equiv 0$ or $u^* > 0$, and the same for v^* . If $(u^*, v^*) = (0, 0)$, then we can show that $D_u A(\mu^*, 0) = -(\Delta + \lambda, \Delta + \mu^*)$ is degenerate and its null space contains a $(w_1, w_2) \ge 0, \neq 0$. Since $\lambda > \lambda_1$, $w_1 = 0$; hence $w_2 > 0$ and $\mu^* = \lambda_1$. Applying Theorem 8.3 to the trivial solution branch $\{(\mu, 0, 0) : \mu \in \mathbb{R}\}$ at $(\lambda_1, 0, 0)$, we have that all the nontrivial solutions of near $(\lambda_1, 0, 0)$ are the semitrivial ones $(\mu, 0, \theta_{\mu})$, contradicting the definition of (μ^*, u^*, v^*) . Thus $(u^*, v^*) \neq (0, 0)$. Note that $(\mu^*, u^*, v^*) \notin \Gamma_u$ since $\mu = \mu_1$ is the only point on Γ_u where positive solutions bifurcate.

Bifurcation branch from one semitrivial solution to another one: [Blat-Brown, 1986, SIAM-MA]

The result implies the existence of positive solutions for $\mu \in (\mu_1, \mu_2)$ or $\mu \in (\mu_2, \mu_1)$ if $\mu_1 \neq \mu_2$. Indeed $\mu \in (\mu_1, \mu_2)$ is equivalent to

$$\lambda_1 \left(\frac{-\mu - c\theta_{\lambda}}{1 + \beta \theta_{\lambda}} \right) < 0, \quad \lambda_1 \left(\frac{-\lambda + b\theta_{\mu}}{1 + \alpha \theta_{\mu}} \right) < 0; \tag{17}$$

and $\mu \in (\mu_2, \mu_1)$ is equivalent to

$$\lambda_1 \left(\frac{-\mu - c\theta_{\lambda}}{1 + \beta \theta_{\lambda}} \right) > 0, \quad \lambda_1 \left(\frac{-\lambda + b\theta_{\mu}}{1 + \alpha \theta_{\mu}} \right) > 0.$$
(18)

Even when $\mu_1 = \mu_2$, a solution branch still connects the two bifurcation points, $\mu_1 = \mu_2$, a solution branch still connects the two bifurcation points.

More properties

$$\begin{cases} (1+\alpha v)\Delta u + \alpha u\Delta v + 2\alpha \nabla u \cdot \nabla v + u(\lambda - u - bv) = 0, & x \in \Omega, \\ \beta v\Delta u + (1+\beta u)\Delta v + 2\beta \nabla u \cdot \nabla v + v(\mu + cu - v) = 0, & x \in \Omega, \\ u = v = 0, & x \in \partial \Omega. \end{cases}$$

Theorem. Suppose that $\alpha, \beta, b, c > 0$ and $\lambda > \lambda_1$. Let S^+ be the set of positive solutions to the equation above. Then there exists a connected component C^* of S^+ such that the closure of C^* includes the bifurcation points $(\mu, u, v) = (\mu_1, \theta_\lambda, 0)$ and $(\mu, u, v) = (\mu_1, \theta_\lambda, 0)$ and $(\mu, u, v) = (\mu_1, \theta_\lambda, 0)$ and $(\mu, u, v) = (\mu_2, 0, \theta_{\mu_2})$. In other words, bifurcations occur at both $(\mu, u, v) = (\mu_1, \theta_\lambda, 0)$ and $(\mu, u, v) = (\mu_2, 0, \theta_{\mu_2})$, and the bifurcating continua from the two points are connected to each other.

Remark:

1. The bifurcation direction. When $\alpha=\beta=$ 0, then there is no backward bifurcation. When $\alpha,\beta>$ 0, ? (homework)

2. Uniqueness of coexistence steady state. When $\alpha = \beta = 0$ and n = 1 ($\Omega = (0, L)$), the uniqueness was proved in [Lopez-Gomez and Pardo, 1993, DIE]. (This can be generalized to the case of α , *beta* > 0?) The higher dimensional case is open. 3. Stability of coexistence steady state. Open even in the case $\alpha = \beta = 0$ and n = 1 ($\Omega = (0, L)$).

1-D problem

[Lopez-Gomez and Pardo, 1993, DIE]

$$\begin{cases} u'' + u(\lambda - u - bv) = 0, & x \in (0, L), \\ v'' + v(\mu + cu - v) = 0, & x \in (0, L), \\ u(0) = u(L) = v(0) = v(L) = 0. \end{cases}$$

Fix $\lambda > \lambda_1 = \pi^2/L^2$, we have proved that there exists a positive solution (u, v) if $\mu \in (\mu_1, \mu_2)$, where μ_1 and μ_2 satisfy

$$-\mu_1 + \lambda_1(-c\theta\lambda) = \lambda_1(-\mu_1 - c\theta_\lambda) = 0, \quad -\lambda + \lambda_1(b\theta_{\mu_2}) = \lambda_1(-\lambda + b\theta_{\mu_2}) = 0.$$

Hence $\mu_1 = \lambda_1(-c\theta\lambda) < \lambda_1(0) = \lambda_1 < \mu_2$.

We can prove that when $\mu \leq \mu_1$ or $\mu \geq \mu_2$, then there is no positive solutions.

We only need to show that if (u, v) is a positive solution, then (u, v) is non-degenerate.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linearization

Suppose that (u, v) is degenerate, then the linearized equation

$$\begin{cases} \phi'' + (\lambda - 2u - bv)\phi - bu\psi = 0, & x \in (0, L), \\ \psi'' + cv\phi + (\mu + cu - 2v)\psi = 0, & x \in (0, L), \\ \phi(0) = \phi(L) = \psi(0) = \psi(L) = 0, \end{cases}$$

has a non-trivial solution (ϕ, ψ) . Define $L_1[\phi] = \phi'' + (\lambda - 2u - bv)\phi$ and $L_2[\psi] = \psi'' + (\mu + cu - 2v)\psi$. Then $\lambda_1(L_1) = \lambda_1(-\lambda + 2u + bv) > \lambda_1(-\lambda + u + bv) = 0$ and $\lambda_1(L_2) = \lambda_1(-\mu - cu + 2v) > \lambda_1(-\mu - cu + v) = 0$. Hence L_1 and L_2 are both invertible, and $(L_i)^{-1}$ is a negative operator on C[0, L] in the sense that if $L_i[g] = f$ and $f \ge 0$, then g > 0.

Then the linearized equation becomes $L_1[\phi] = bu\psi$ and $L_2[\psi] = -cv\phi$.

Both ϕ and ψ have to change sign. Suppose $\phi > 0$, then $\psi = L_2^{-1}[-cv\phi] > 0$; and $\phi = L_1^{-1}[bu\psi] < 0$, which is a contradiction.

Nondegeneracy

Suppose that ϕ has $m(\geq 3)$ zeros

$$0 = x_0 < x_1 < x_2 < \cdots < x_{m-1} < x_m = L$$

such that

$$\begin{aligned} \phi(x) < 0, \ x \in (x_{2j}, x_{2j+1}), \ j \ge 0, \ 2j+1 \le m, \\ \phi(x) > 0, \ x \in (x_{2j-1}, x_{2j}), \ j \ge 1, \ 2j \le m. \end{aligned}$$

Then

$$\psi(x_{2j}) > 0, \ \psi(x_{2j+1}) < 0 \ \text{for} \ x_{2j}, x_{2j+1} \in 0 < 2j < 2j + 1 < m$$

This contradicts with $\psi(x_m) = \psi(L) = 0$.

Remark: The same proof works for radially symmetric positive solutions on *n*-dimensional balls.

[Dancer, Lopez-Gomez, Ortega, 1995, DIE], [Du, 2005, book chapter]

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへ⊙