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Krasnoselski-Rabinowitz Global Bifurcation Theorem

Consider
F(\, u) =u—ALu— H(\ u), (1)

where L : X — X is a linear compact operator, and H(\, u) is compact on U C R x X
such that ||H(X, u)|| = o(||u|]) near u = 0 uniformly on bounded X intervals. Note the
conditions imply that F,(X,0) =/ — AL, and if 0 is an eigenvalue of F,()g,0), then
AO_I must be an eigenvalue of the linear operator L. Define

S={(\u)eU:F(\u)=0,u+#0}.

We say (Ao, 0) is a for the equation (1) if (Xg,0) € S (S is the
closure of S).
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where L : X — X is a linear compact operator, and H(\, u) is compact on U C R x X
such that ||H(X, u)|| = o(||u|]) near u = 0 uniformly on bounded X intervals. Note the
conditions imply that F,(X,0) =/ — AL, and if 0 is an eigenvalue of F,()g,0), then
AO_I must be an eigenvalue of the linear operator L. Define

S={(\u)eU:F(\u)=0,u+#0}.

We say (Ao, 0) is a for the equation (1) if (Xg,0) € S (S is the
closure of S).

. (Krasnoselski-Rabinowitz Global Bifurcation Theorem) [Rabinowitz,

1971, JFA] Let X be a Banach space, and let U be an open subset of R x X
containing_()\o,O). Suppose that L is a linear compact operator on X, and
H(\, u) : U— X is a compact operator such that ||[H(), u)|| = o(||u||) as u — 0
uniformly for X in any bounded interval. If 1/)¢ is an eigenvalue of L with odd
algebraic multiplicity, then (Xo,0) is a bifurcation point. Moreover if C is the
connected component of S which contains (Ao, 0), then one of the following holds:

(i) Cis unbounded in U;

(i) €NOU #0; or

(iii) C contains (A;,0) # (Xo,0), such that A;"! is also an eigenvalue of L.
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Unilateral bifurcation theorem

[Rabinowitz, 1971, JFA], [Dancer, 1974, Indiana Math J], [Lopez-Gomez, 2000, book]
. Let X be a Banach space, and let U be an open subset of R x X

containing (Ao, 0). Suppose that L is a linear compact operator on X, and

H(\, u) : U — X is a compact operator such that ||H(), u)|| = o(||u]|) as v — 0

uniformly for X in any bounded interval. Suppose that 1/)g is an eigenvalue of L with

algebraic multiplicity 1. We define I+ = {(\(s), u(s)) : s € (0,€)} and

I = {(A\(s), u(s)) : s € (—¢,0)}. Let C be a connected component of S where

S={(\u) €V :u—ALu— H(\ u) =0,u# 0} containing (\,0). Let CT (resp.

C™) be the connected component of C\I'_ which contains '} (resp. the connected

component of C\l'; which contains [_). Then each of the sets C* and C™ satisfies

one of the following:

(i) it is unbounded,;

(ii) it contains a point (A«, 0) with A« # Ao such that 1/\. is also an eigenvalue of L;

or

(iii) it contains a point (), z), where z # 0 and z € Z which any complement of

span{wp} = N'(I — AolL) in X.
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Global Bifurcation From Simple Eigenvalue

[Crandall-Rabinowitz, 1971, JFA]

Let F:R X X — Y be continuously differentiable. Suppose that F(\, up) = 0 for
A € R, the partial derivative Fy, exists and is continuous. At (\g, up), F satisfies

(F1) dimN(Fy(Xo, u)) = codimR(Fu(Xo, up)) =1, and

(F3) Fau(Xo, wo)[wo] € R(Fu(Xo, o)), where wy € N(Fyu(Xo, to)),
Then the solutions of F(A, u) = 0 near (Ao, tg) consists precisely of the curves u = up
and (A(s), u(s)), s € I = (=46, 6), where (A(s), u(s)) are continuous functions such
that A\(0) = A, u(0) = ug. If F is C? near (Mo, tp), then u/(0) = wp, and

(I, Fuu(Xo, uo)[wo, wol)
2(1, Fxu(Xo, uo)[wo])

N(0) = —
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Global Bifurcation From Simple Eigenvalue

[Crandall-Rabinowitz, 1971, JFA]

Let F:R X X — Y be continuously differentiable. Suppose that F(\, up) = 0 for
A € R, the partial derivative Fy, exists and is continuous. At (\g, up), F satisfies

(F1) dimN(Fy(Xo, u)) = codimR(Fu(Xo, up)) =1, and

(F3) Fau(Xo, wo)[wo] € R(Fu(Xo, o)), where wy € N(Fyu(Xo, to)),
Then the solutions of F(A, u) = 0 near (Ao, tg) consists precisely of the curves u = up
and (A(s), u(s)), s € I = (=46, 6), where (A(s), u(s)) are continuous functions such
that A\(0) = A, u(0) = ug. If F is C? near (Mo, tp), then u/(0) = wp, and

(I, Fuu(Xo, uo)[wo, wol)

A (0) =— 2(1, F>\U(>\O’ uo)[W0]> .

[Pejsachowicz-Rabier, 1998, J D'Anal Math] [Shi-Wang, 2009, JDE]

If in addition, Fu(X, u) is a Fredholm operator for all (A, u) € R X X, then the curve
{(A\(s), u(s)) : s € I} is contained in C, which is a connected component of
S={(\u)ERx X:F(A\u)=0,u# up}; and either C is not compact, or C
contains a point (A, 0) with A« # Ag.
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Unilateral Theorem

[Shi-Wang, 2009, JDE]

Suppose that all conditions above are satisfied. Let C be defined as

above. We define 'y = {(A\(s), u(s)) : s € (0,¢€)} and
F— = {(\(s), u(s)) : s € (—e,0)}. In addition we assume that

@ F.()\, o) is continuously differentiable in A for (), up) € V;

@ The norm function u — ||u|| in X is continuously differentiable for any u # 0;

© For k€ (0,1), if (\,up) and (), u) are both in V, then

(1 = k)Fu(\, up) + kFu(X, u) is a Fredholm operator.

Let C* (resp. C™) be the connected component of C\I'_ which contains 1 (resp.
the connected component of C\I'; which contains I_). Then each of the sets C* and
C~ satisfies one of the following: (i) it is not compact; (ii) it contains a point (A«, ug)
with A« # Ag; or (iii) it contains a point (A, ug + z), where z # 0 and z € Z.
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SIR model

[Kermack-Mckendrick, 1927]
Susceptible population S(t): who are not yet infected

Infective population /(t): who are infected and are able to spread the disease by
contact with susceptible
Removed population R(t): who have been infected and then removed from the

possibility of being infected again or spreading (Methods of removal: isolation or
immunization or recovery or death)

S'=-3Sl, I'=p'Sl —al, R =al,

1. Total population is a constant N (except death from the disease)

2. A average infective makes contact to transmit infection with 3 = 3’ N others per
unit time (3: contact rate)

3. A fraction « of infectives leave the infective class per unit time (1/a: infectious
period)

(1) If 5(0) < a/f’, then I(t) is a decreasing function which tends to 0, and S(t) is
also decreasing and tends to a constant level greater than 0.
(2) If 5(0) > «/f’, then the behavior of S(t) is same, but /(t) will first increase in a
time period (0, Tp), then decrease and tends to O after Ty.

' . . . B8'5(0) . .
Define a dimensionless quantity Ry = ——. This is a threshold quantity. If we

«a

introduce a small number of infectives /(0) into the a susceptible population, then an
epidemic will occur if Ry > 1.
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SIR endemic (including birth and death)

d. dl dR
—S:beﬁ’Slde, — =068l —al —dl —cl, — =al —dR.
dr dr dr

b: birth rate; d: disease-unrelated death rate, c: disease-related death rate

Nondimensionalized version: (assuming b = d and ¢ = 0)

S I R ,
== v=—,w=—,8=0N
u N v N w Nﬁ B
ﬂ:d—Buv—du,ﬂ:Buv—dv—av,d—W:av—dw
dt dt dt

disease free equilibrium: (u, v, w) = (1,0, 0),
b+a b(B—b—a) a(ﬁfbfa))
g7 Blbta) T Bbta) )
B

Basic reproductive number: Ry = ?
a
When Ry < 1, the disease will die, and the disease free equilibrium is stable;
when Ry > 1, the disease will stay in the population, the disease-free equilibrium is

unstable, and the endemic equilibrium is stable.

endemic equilibrium: (u, v, w) = (
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A general framework

[van den Driessche, Watmough, 2002, Math. Biosci.]

“Reproduction numbers and sub-threshold endemic equilibria for compartmental
models of disease transmission” (cited 1164 times on Google Scholar, and 264 times
on MathSciNet)

@ Consider a heterogeneous population whose individuals are distinguishable by
age, behaviour, spatial position and/or stage of disease, but can be grouped into
n homogeneous compartments. Let x = (x1,- -+ ,xn) € X = {x > 0}, with each
x; > 0, be the number of individuals in each compartment.

Q The first m compartments correspond to infected individuals. Let Xs be the set
of all disease free states. Thatis Xs = {x >0:x; =0, 1 <j < m}.
(1<m<n)

© Let F;(x) be the rate of appearance of new infections in compartment i, Vf(x)
be the rate of transfer of individuals into compartment i by all other means, and
V. (x) be the rate of transfer of individuals out of compartment /.

Model: x! = Fj(x) — Vi(x), 1<i < n, where Vi(x) = Vf(x) -V (x).
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A general framework

Model: x! = Fi(x) — Vi(x), 1<i< n, where Vi(x) =V (x) -V (x).

(A1) if x >0, then F;, V", V7 >0for 1 <i<n;

(A2) if x; =0, then V7 (x) = 0. In particular, if x € Xs, then V" (x) = 0 for
1<i<m

(A3) for m+1<i<n, Fi(x)=0 for all x € X; (the incidence of infection for
uninfected compartments is zero)

(A4) for 1< i< m, Fi(x) =0and Vif(x) =0 for all if x € Xs; (if the population is
free of disease then the population will remain free of disease)

(A5) If xg € Xs is a DFE (disease free equilibrium), then all eigenvalues of DF(xp)

have negative real parts. (the DFE is stable in the absence of new infection)

If xo is a DFE, and F;j, V; satisfies (A1)-(A5), then the derivatives DF(xg) and
DV(xp) are partitioned as

D]—'(xo)=<§ 8>v DV(XO)Z(i Jg)
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Basic Reproduction Number

The basic reproduction number, denoted Ry, is the expected number of secondary
cases produced, in a completely susceptible population, by a typical infective
individual. If Rg < 1, then on average an infected individual produces less than one
new infected individual over the course of its infectious period, and the infection
cannot grow. Conversely, if Ro > 1, then each infected individual produces, on
average, more than one new infection, and the disease can invade the population.

SIR model: ﬂ:d—ﬁuv—du, ﬂ:ﬁuv—dv—cw,CZI—VZ:ozv—cIW

disease free equilibrium: (u, v, w) = (1,0, 0),
b+a b(B—b—a) a(ﬁfbfa))
g7 Blbta) T Bbta) )

endemic equilibrium: (u, v, w) = (

Basic reproductive number: Ry =
a+b

General Model: x! = Fj(x) — Vi(x), 1<i<n, where V;(x) = V" (x) — V7 (x).
If xo is a DFE, and F;, V; satisfies (A1)-(A5), then the derivatives DF(xg) and

DV(xp) are partitioned as DF(xg) = ( g 8 ) , DV(x) = ( Z _?4 > .
The matrix FV~1 is called the next generation matrix for the model and

Ro = p(FV 1), where p(A) denotes the spectral radius of a matrix A.

The DFE X is locally asymptotically stable if Rg < 1, but unstable if Ry > 1.
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Bifurcation of Endemic Equilibria

x! = Fi(p, x) = Vi(p, x), 1 <i< n, where Vi(p, x) = Vi (u,x) — Vi (1, x).
Suppose that x = xp is a DFE for 1 > 0. We define F(u, x) = F(p, x) — V(u, x).

[van den Driessche, Watmough, 2002, Math. Biosci.]

. Suppose that xg is a DFE for u > 0, F;, V; satisfies (A1)-(A5) for
>0, and F;, V; are at least C? near (uo,xp). Suppose that
Ro(po) = p(F(10)V (o)) = 1 for some o > 0. Suppose that 0 is a simple
eigenvalue of Fx(uo,x0). Then there exists a family of endemic equilibria
{(u(s), x(s) : 0 < s < &} satisfying p(s) = po + 1/ (0)s + o(s) and
x(s) = xo + swo + o(s), where wy satisfies Fx(uo, x0)[wo] = 0,

_ w0 - Fu(po, x0)[wo, wol

WO = = (o x0) o]

and vy is the left (row) eigenvector of Fx(uo,xo0), that is v - Fx(uo,x0) = 0 or
FI (1o, x0)[vg 1 =0 (T is the matrix transpose). We can assume that vp - wp = 1.

R(Fx(po,x0)) ={y € R": v -y = 0}.

Global bifurcation: there is an unbounded continuum ¥ C Rt x X0 of solutions of
F(p, x) = 0 such that (uo,x0) € X, and proj, (X) = (po, 00) (assuming that there is
no endemic equilibria for small p).
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Bifurcation and stability of Endemic Equilibria

Remarks:
@ If the function p — Ro(p) is one-to-one, then one can use Ry instead of  as
bifurcation parameter, then the projection of the unbounded continuum onto
Ro covers the interval (1, 00).
@ If the bifurcating endemic equilibria exist for Rg < 1, then they are unstable and
the bifurcation is called backward; if the bifurcating endemic equilibria exist for
Ro > 1, then they are stable and the bifurcation is called forward.

Generalization to PDE (reaction-diffusion system):
[Wendi Wang and Xiao-Qiang Zhao, 2012, SIAM-ADS]
Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models

(X,‘)t = v(d,'(X)VX,') +f,‘(ﬂ, X) - V,'(},L,X)7 1 S i S n, CI,' 2 0.
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A model of misteltoe and bird

[Wang-Liu-Shi-del Rio, 2013, JMB to appear]

oM
aas
2 = DAB — V (BBYM) + g(B) + cK[F(M(t,-))B(t,-)], x€Qt>0,

I\/I(t x) = Mo(t, x), B(t, x) = Bo(t, x), xeQ,—1<t<0,
[DVB(t,x) — BB(t,x)VM(t,x)] - n(x) =0, x € 09,

ae 9TK[F(M(t —T,-))B(t — 7,-)] — dmM xeQ,t>0,

_ _ )
We assume that K : C(2) — C(Q) is a linear mapping satisfying

(K1) ||K[u]||C(§) < A1||uHC(5) for some A; > 0;

(K2) If u(x) >0 for all x € Q, then for 0 < 1 < G, K[Cru](x) < K[Cou](x) for
x € Q, and

K[u](x) < Ao max{u(x), /Q u(x)dx} : 3)

for some Ay > 0.
The function f satisfies a Holling type growth rate:
(f) fe CYRY), f(0)=0, f/(M)>0for M >0, and lim f(M) = fx.
— 00
Without mistletoes, the bird population has a logistic growth rate g(B) which satisfies
(8) g€ CY(R), g(0) = g(Kg) =0, g(B) >0in (0, Kg), and g(B) < 0 for
B > Kg.
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Equilibrium problem

ae~ 9K {MLJrBW} (x) — dmM(x) =0, x € Q,
MB

DAB(x) — BV(B(x)VM(x)) + B(x)(1 — B(x)) + cK {M n W} (x)=0, xeqQ,

[DVB(x) — BB(x)VM(x)] - n(x) =0, x € 0N.

(4)

Using dm as a bifurcation parameter, the equilibrium problem (4) can be written in the
following abstract form:

F(dm,M,B) =0, (5)

where F : R x W2P(Q) x W2P(Q) — W?2P(Q) x LP(Q) x WLP(8Q) is defined by

ae_d"TK[ MB ]—de

M4+ w

Fdm, M, B) = DABfﬁV(BVM)JrB(lfB)JrcK{ MB } - (6)
M+ w

(DVB — BBVM) - n

The model (4) has two trivial solutions Eg = (0,0) and E; = (0, 1) for any dpy, > 0.
We consider the bifurcation of nontrivial solutions to (5) from the line of trivial
solutions {(dm,0,1) : dm > 0}.
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Fredholm integral operator

Besides (K1) and (K2), we also assume that the dispersal operator K : C(Q) — C(Q)
satisfies

(K3) K:C(Q) — C(Q) is compact, and K is strongly positive, that is, for any
ue C(2) and u >0, K[u](x) > 0 for x € Q.

We notice that the identity mapping K[u] = u considered in Section 4 does not satisfy
(K3), but the integral operator defined in (H2) satisfies (K3) if the kernel function
k(x,y) > 0 for (x,y) € Q x Q. The main consequence of the assumption (K3) is the
renown Krein-Rutman Theorem which asserts the existence of a principal eigenvalue
with a positive eigenvector.

From the compactness assumption in (K3), it follows from well-known results for
compact operators, K : C(Q) — C(2Q) possesses a sequence of eigenvalues {);} such
that \; € R,

0< - <As] < e < A, (")

and the only possible limit point of {\;} is zero. Moreover, since K is strongly
positive, then from Krein-Rutman theorem, we have A; > 0 with its corresponding
function ¢1(x) > 0. In the following we normalize ¢; so that max, . ¢1(x) =1, and
we also assume that

(K4) ¢1 € W2P(Q) for any p > n.
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Linearized problem

The linearization of F at the boundary equilibrium E; = (0,1) is

ae 9T

K¢l — dmo
Fm,5)(dm, 0, 1)[, 9] = DAqup — ¢+ SK[g] - BAS
(DVY — V) - n
Therefore, 0 is a simple eigenvalue of Fy, g)(dm,0,1) if and only if

Klol = "%, xeq,
~DAY+ v =~ K[g] - BAG, x€Q,
v _ B0

an — D an’ x € 0.

has a unique nonzero solution up to a constant muItipIe. Define
d¥ o= dmA = Le=diTy,,
w
and let v1 be the unique solution of

cdk oYy B Oo¢r

— DAY+ =~ m7¢>*ﬁA¢>1, x€Q, —==—-,x€

on D on

Then when dpy = dm -+ (8) is solvable thus a bifurcation occurs at dm = E,kw

(8)

(9)

(10)
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Global bifurcation

ae_d"TK{
M+ w

:| (X)fde(X):O, x € Q,

DAB(x) — BV (B(x)VM(x)) + B(x)(1 — B(x)) + cK {M n W} (x)=0, xeqQ,
[DVB(x) — BB(x)VM(x)] - n(x) = 0, x € 0.

. Assume that 3 > 0, and the dispersal mapping K satisfies (K1) — (K4).
Then there is a smooth curve X of positive equilibrium solutions of (2) bifurcating
from the line of trivial solutions {(dm,0,1) : dm > 0} at dm = :1,’:,’T, and 'k is
contained in a global branch CX of positive equilibrium solutions of (2). Moreover
@ Near (dm, M, B) = (3,’;,77_,0, 1), T = {(dm(s), M(s, x), B(s,x)) : s € (0,¢)},
where M(s, x) = s¢1(x) + sVi(s, x), B(s,x) = 1 + sip1(x) + sW¥a(s, x), ¢1 is
the principal eigenfunction of K, and 1 is defined as in (10); dm(s), Wi(s,-)
and Wj(s, ) are smooth functions defined for s € (0, €) such that
W1(0,-) = W2(0,-) = 0, dm(0) = df ., and
ae™47 [ KI=g30) + wor (Jx () ()en (x)ox
d’(0) = @ . (11)
W2/ 2 (x)dx
Q

@ For s € (0,¢), the bifurcating solution (dm(s), M(s,-), B(s, -)) is locally
asymptotically stable if d’.(0) < 0, and it is unstable if d’.(0) > 0.
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Fredholm operator

To apply the global bifurcation theorem (Theorem 8.3), we first show that the
linearized operator F(y pg) is a Fredholm operator for any

(dm, M, B) € Rt x W2P(Q) x W?P(Q). For that purpose we write

F(dm, M, B) = Fi(dm, M, B) + F2(M, B), where

—dmM
Fi(dm,M,B) = | DAB—pBV(BYM)+B(1-B) |,
(DVB — BBVM) - n

and

aefdfTK{ M8 }

M+ w

Fa(M,B)= | _ [ _MB
M4+ w

0

It is standard to verify that the linearization (F1)y ) of F1 at any (dm, M, B) is
Fredholm as N((F1)(m,s)) is finite dimensional, and R((F1)(m,8g)) has a finite
codimension. And the linearization (F2)(u,g) of F2 at any (dm, M, B) is compact from
(K3). Therefore Fy ) is Fredholm as it is a compact perturbation of a Fredholm
operator (see [Kato, 1980, book] page 238 Theorem 5.26). Consequently the existence
of a global branch CX containing 'k follows from Theorem 8.3.
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Predator-prey system with cross-diffusion

Cross-diffusion system:

A1+ aru+av)ul +u(A—u—bv) =0, x€Q,
A[(L+ Bru+ Bav)vl+v(p+cu—v) =0, x € Q,
u=v=0, x € 092

Competing species with passive diffusion, self-diffusion, cross-diffusion.
[Shigesada, Kawasaki and Teramoto, 1979, JTB]
[Nakashima, Yamada, 1996, ADE] [Kuto, Yamada, 2004, JDE]: a; = 32 =0
U= (14 av)u, V= (1+ Bu)v, then the system becomes semilinear but
with messy nonlinearities.

We prove the existence of a bounded branch of coexistence solutions which connecting
the two semi-trivial solution branches via our new global bifurcation theorem. Our
method is definitely more direct.
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Setup

1+ av)Au+ aulAv+2aVu-Vv+udA—u—bv) =0, x€Q,
BvAu—+ (1+ Bu)Av +28Vu-Vv+v(p+cu—v)=0, x € Q,

u=v=0, x € 09.

Define 2 x 2 matrix:
1+ av au
Al(uvv):< Bv 1+ Bu >a

and for 1 <i,j < n, u=(u,v)7,

. 2aVu-Vv+u(XA—u—bv)
f(l/’/auyvu)—_< 25VU'VV+V(/J+CLI7V) )7

Then (12) is equivalent to

A(p,u) = — A1(u)Au + f(u,u, Vu) =0,

where u € X = (W2P(Q))? = (W2P(Q) N Wy P(R))%

(12)

(13)
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Linearization

The linearization of A(u,u) at u is given by (w = (w1, ws) € X)
DyA(p, u)[w] = —Ai(u)Aw — Ax(w)Au — A3(Vu) - Vw — J(u)w,
where

awy  aw; 2aVv  2aVu
AZ(W) = < 5W§ ﬁwi ) y A3(Vu) = ( 28Vv  28Vu ) s

and J is the Jacobian

J— A—2u—bv —bu
- cv wtcu—2v )

For a small € > 0, we define
Xe ={(u,v) € X :u(x) > —¢, v(x) > —¢}.

Then Xc is an open connected subset of X. Clearly for u € X, Trace(Ai(u)) > 0 and
Det(A1(u)) > 0. So A;i(u) is an elliptic operator, and D,A(u,u) : X — Y = (LP(Q))?
is Fredholm with index 0; Moreover, A: R x X. — Y is C! smooth. (see details in
[Shi-Wang, 2009, JDE]).
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Semitrivial steady states

Denote by A\1(q) the principal eigenvalue of
“AG+q(X)b =76, xEQ, $=0, x€0Q,

where g(x) is a continuous function in Q. And we also use the notation A\; = \1(0).
Notice that A1(q) is an increasing function in g in the sense: if g1(x) > g2(x) and
q1(x) #Z go(x), then A1(g1) > A1(g2). It is well-known that for the scalar equation

Au+uA—u)=0, x€Q;, u=0, x €I,

there exists a unique positive solution 0 if A > A;. Moreover {(X\,0)): A > A1} isa
smooth curve in R x Wé’P(Q); 0 is stable in the sense that the linearized eigenvalue

problem
DG —Ap+ 2056 =np, xEQ $=0, x €,

has a positive principal eigenvalue A1(—X + 260). Thus —A — X + 20, is invertible
and (—A — X+ 20,)"1¢ is positive if ¢ is positive.



Review Epedmics Integral-differential equations Predator-prey with cross-diffusion Uniqueness for predator-prey

A priori estimates

(1+av)Au+aulAv+2aVu-Vv+uA—u—bv)=0, x€Q,
BvAu+ (14 Bu)Av +28Vu-Vv+ v(u+cu—v)=0, x € Q,
u=v=0, x € 09.
We fix A > A1. Then the system has trivial solution (0, 0) and semi-trivial solution
(0x,0) for any p € R, and semi-trivial solution (0, 6,,) for p > A1.
0 If A < A1, then there exist no positive solutions.
@ If (u,v) is a positive solution, then

0< <Ux)< M
<u(x) S U(x) < My (Aa + b)?/4ab if A > b,

0< v(x) < V(x) < My = (1+ BMy)(L + cMy),

{,\ if Aa < b,

where U(x) = (1 + av(x))u(x) and V(x) = (1 + Bu(x))v(x).
9 There exists g = —cMjy, and uo > po such that there is no positive solution if
< po or p > pl.

[Nakashima, Yamada, 1996, ADE] [Kuto, Yamada, 2004, JDE]
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Bifurcation points

Two semi-trivial solution branches:
My ={(0x,0): peR}, T, ={(0,0u):p>XN\}

First we let u = (0, 0). Simplifying the equations, we obtain

A1+ B0 )wo] + (1 + cOr)wo

DuA(1, (0, 0))[w] = — < Awy + (XA —20))wy + aA(Oxwa) — bOyw > .

If we set DyA(u, (0x,0))[w] = 0, then the equation of ws is equivalent to

B+ Oy

AW, + — =
2+1+ﬁ9>\

W =0, xeQ; Wo=0, x€09Q, (14)

where W5 (x) = (1 + B86))wa(x). Thus the possible bifurcation point p; is the one

such that 0
—H1 — CUX
M| ————>) =0. 15
1( 1+ 605 > (15)
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Bifurcation Points

Similar analysis can be done on the other semi-trivial branch, but (0,6,) is not a fixed
point in X so we consider the operator A’(u,u) = A(u,u+ (0,6,)) for which

u = (0,0) is always a solution of A’(u,u) = 0 for all 1. The corresponding linearized
equation is

/ _ A1+ abu)wi] + (A — bOy)w
DA (p, 0)[w] = — ( Aws + (1 — 205.”2 1+ ﬁA(GlesL—i— ébﬁuwl >

Thus the possible bifurcation point is u such that

-\ + b0
A1 <¥> = 0. (16)
1+ aby,

. There exists a unique p; € (—o0,00) so that (15) holds, and there exists a
unique pp € (A1, 00) so that (16) holds. Moreover the corresponding null spaces
N (DuA(u1, (0x,0))) and N(DyA’ (12, (0, 0))) are one-dimensional.
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Proof of lemma

. There exists a unique p; € (—o0,00) so that (15) holds, and there exists a
unique up € (A1, 00) so that (16) holds. Moreover the corresponding null spaces
N(DyA(u1,(6x,0))) and N (DA (12, (0,0))) are one-dimensional.

Proof: Define

—p — cby —p — cby
fi =X\|——=], and = — .
ilu) 1( 1+ 60y ) Al =",

Then g1(u) is decreasing in p. From the properties of A(q), we deduce that

fi(n) — +oo as p — Foo and fi is decreasing. Hence p; exists and it is unique. With
p = p1, (14) has a positive solution Ws. Then wy = (1 + 36)) "1 W, and

wi = (—A — X+ 20,\)"(aA(Osw2) — bOxyws) give rise to the unique solution of
DyA(u, (0x,0))[w] = 0 up to a constant multiplier.

Similarly we define

—A+ bl
14+ af,

— X+ bb,

fz(u):xl( A+ O,
"

) , and qa(p) =

Since 6, is increasing in p (pointwisely for x € Q), then g» and £ are increasing in p.
One can show that (1) — A1 + b/a > 0 as u — o0, and fH(u) — A1 — A < 0 as

© — A1+ 0. Hence py exists and is unique. Similarly to the above case, the null space
is one-dimensional with w; > 0.
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Global bifurcation

[Shi-Wang, 2009, JDE]

1+ av)Au+ auAv +2aVu-Vv+uA—u—bv)=0, x€Q,
BvAu+ (1+ Bu)Av+28Vu-Vv+v(p+cu—v)=0, x € Q,
u=v=0, x € 09.

. Suppose that a, 3, b,c > 0 and A > A\1. Let ST be the set of positive
solutions to the equation above. Then there exists a connected component C* of ST
such that the closure of C* includes the bifurcation points (p, u, v) = (p1, 6y, 0) and
(p, u, v) = (12,0, 0,,). In other words, bifurcations occur at both
(w, u, v) = (p1,0x,0) and (u, u, v) = (p2,0,60y,), and the bifurcating continua from
the two points are connected to each other.

Proof. We apply the abstract theorem at (p, u,v) = (u1,0x,0) with V =R x X.. We
have already observed that A: V — Y is C! smooth, and DyA(\, u) is Fredholm with
zero index for any (X, u) € V. We have also shown in Lemma that
N(DuA(u1,(0x,0))) = span{(wi, wz2)} with wo > 0. For the transversality condition,

Duulin, 03,00 (2 ) = (%, ) & R(OuAG (62,0,

w: —wp

because the equation A[(1 + 88x)9] + (p1 + cfx)y = wa is not solvable since
Jo(1+ BO)W2dx # 0.
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Proof

Now we can apply Theorem 8.3 to obtain a connected component C of the set S of all
solutions emanating from (u, u, v) = (p1,0x,0). Similarly we can show the existence
of a connected component of S emanating from (u, u, v) = (2,0, 0,,). Moreover
near the bifurcation point, C has the form (u(s), 0 + o(s), swa + o(s)) for s small.
Then the solution is positive for s > 0 since wo > 0 and 0y > 0. Let P = {(u,v) €
CY(Q) x CY(Q) : u>0,v >0 for x € Q,0u/dv < 0,0v/dv < 0 for x € IQ}, where
v is the unit outer normal vector field of Q. Then C N (R x P) # 0.

Let C* =CN (R x P). Let C* and C~ be the sub-continua in Theorem 8.4
(Conditions 1-3 in that theorem can be easily verified). By definition, C* C C*. By
the elliptic regularity theory, the first alternative in Theorem 8.4 for C™ is equivalent
to “the closure of C* intersects OV or is unbounded in the norm of R x X". On the
other hand, by the a priori estimates, the positive solutions (u, v) are bounded in L*®
norm, and the range of u for existence of such solutions is also bounded. Thus by the
elliptic regularity theory again, C* cannot be unbounded in R x X norm. Now we see
that if the first alternative in Theorem 8.4 occurs, then C* N (R x dP) contains a
point (u*, u*, v*) other than (u1,6x,0). This is obviously true if the other
alternatives occur.
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Proof

By continuity, (p*, u*, v*) is a solution of the equation, and u* >0, v* > 0. By the
maximum principle, u* = 0 or u* > 0, and the same for v*. If (u*, v*) = (0,0), then
we can show that D,A(p*,0) = —(A + X\, A + p*) is degenerate and its null space
contains a (wy, w2) > 0,%# 0. Since A > A1, wi = 0; hence wo > 0 and p* = A;.
Applying Theorem 8.3 to the trivial solution branch {(u,0,0) : u € R} at (A1,0,0),
we have that all the nontrivial solutions of near (A1, 0,0) are the semitrivial ones
(1,0,0,), contradicting the definition of (p*, u*,v*). Thus (u*,v*) # (0,0). Note
that (u*, u*, v*) € ', since u = py is the only point on ', where positive solutions
bifurcate. We conclude (p*, u*,v*) = (2,0, 0,,), the only possible point on T,
where positive solutions bifurcate. O

Bifurcation branch from one semitrivial solution to another one: [Blat-Brown, 1986,
SIAM-MA]

The result implies the existence of positive solutions for p € (p1, po) or p € (p2, pa) if
1 # po. Indeed p € (u1, p2) is equivalent to

A (M) <0, N <M> <0 (17)
1+ 86, 1+ab,
and p € (u2,p1) is equivalent to
A (M) S0, A <M> >0 (18)
1+ 86, 1+ab,

Even when p; = pp, a solution branch still connects the two, bifurcation -points.
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More properties

(1+av)Au+aulAv+2aVu-Vv+uA—u—bv)=0, x€Q,
BvAu+ (14 Bu)Av +28Vu-Vv+ v(u+cu—v)=0, x € Q,
u=v=0, x € 09.

. Suppose that «, 3, b,c > 0 and A > )\;. Let ST be the set of positive
solutions to the equation above. Then there exists a connected component C* of S+
such that the closure of C* includes the bifurcation points (p, u, v) = (u1, 0, 0) and
(1, u, v) = (p2,0,0,,). In other words, bifurcations occur at both
(s, u, v) = (p1,0x,0) and (p, u, v) = (2, 0,0,,), and the bifurcating continua from
the two points are connected to each other.

Remark:

1. The bifurcation direction. When o = 3 = 0, then there is no backward bifurcation.
When o, 8 > 0, ? (homework)

2. Uniqueness of coexistence steady state. When a =3 =0and n=1 (2 = (0, L)),
the uniqueness was proved in [Lopez-Gomez and Pardo, 1993, DIE]. (This can be
generalized to the case of «, beta > 07?) The higher dimensional case is open.

3. Stability of coexistence steady state. Open even in the cass a = =0and n=1
(@ = (0,L)).
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1-D problem

[Lopez-Gomez and Pardo, 1993, DIE]

u” +u(A—u—bv)=0, x € (0, L),
v+ v(p+cu—v) =0, x € (0, L),
u(0) = u(L) = v(0) = v(L) = 0.

Uniqueness for predator-prey

Fix A > A1 = 72/L?, we have proved that there exists a positive solution (u, v) if

€ (p1, p2), where g and po satisfy

—p1 + )\1(7C9)\) = )\1(7}1,1 — C@)\) =0, —\+ )\1(b9u2) = )\1(7}\ + b@uz) =0.

Hence p1 = A1(—cX) < A1(0) = A1 < po.

We can prove that when p < p3 or > pp, then there is no positive solutions.

We only need to show that if (u, v) is a positive solution, then (u, v) is

non-degenerate.



Review Epedmics Integral-differential equations Predator-prey with cross-diffusion Uniqueness for predator-prey

Linearization

Suppose that (u, v) is degenerate, then the linearized equation

"+ (AN=2u—bv)p—bup =0, xe(0,L),
P’ +eve+ (n+cu—2v)p =0, x¢€(0,L),
$(0) = ¢(L) = 9(0) = ¥(L) =0,

has a non-trivial solution (¢, v).

Define Li[¢] = ¢ + (A — 2u — bv)¢ and Lo[yp)] = ¢” + (n+ cu — 2v)ih. Then
A(Ly) =M (=2 +2u+bv) > Xi(—A+u+bv)=0and

A(L2) = Ai(—p — cu+2v) > Ai(—p — cu+ v) = 0. Hence L; and L; are both
invertible, and (L;)~! is a negative operator on C|[0, L] in the sense that if L;[g] = f
and f > 0, then g > 0.

Then the linearized equation becomes Li[¢] = but) and La[¢)] = —cv.

Both ¢ and 1) have to change sign. Suppose ¢ > 0, then ¢ = Lz_l[—cvqb] > 0; and
¢ = L;l[buw] < 0, which is a contradiction.
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Nondegeneracy

Suppose that ¢ has m(> 3) zeros
O=xp<x1<x < < Xm_1<Xm=1L
such that

d(x) <0, x € (x9j,x2541), j >0, 2j+1 < m,
¢(X) > 07 X € (X2j—17X2j)7 J 2 17 2,/ S m.

Then
’lﬂ(ij) >0, w(X2j+1) < 0 for X2jy X2j+1 SRS 2_] < 2_] +1<m.
This contradicts with ¥ (xm) = (L) = 0.

Remark: The same proof works for radially symmetric positive solutions on
n-dimensional balls.
[Dancer, Lopez-Gomez, Ortega, 1995, DIE], [Du, 2005, book chapter]
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