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Krasnoselski-Rabinowitz Global Bifurcation Theorem

Consider
F (λ, u) = u − λLu − H(λ, u), (1)

where L : X → X is a linear compact operator, and H(λ, u) is compact on U ⊂ R × X

such that ||H(λ, u)|| = o(||u||) near u = 0 uniformly on bounded λ intervals. Note the
conditions imply that Fu(λ, 0) = I − λL, and if 0 is an eigenvalue of Fu(λ0, 0), then

λ−1
0 must be an eigenvalue of the linear operator L. Define

S = {(λ, u) ∈ U : F (λ, u) = 0, u 6= 0}.

We say (λ0, 0) is a bifurcation point for the equation (1) if (λ0, 0) ∈ S (S is the
closure of S).



Review Epedmics Integral-differential equations Predator-prey with cross-diffusion Uniqueness for predator-prey

Krasnoselski-Rabinowitz Global Bifurcation Theorem

Consider
F (λ, u) = u − λLu − H(λ, u), (1)

where L : X → X is a linear compact operator, and H(λ, u) is compact on U ⊂ R × X

such that ||H(λ, u)|| = o(||u||) near u = 0 uniformly on bounded λ intervals. Note the
conditions imply that Fu(λ, 0) = I − λL, and if 0 is an eigenvalue of Fu(λ0, 0), then

λ−1
0 must be an eigenvalue of the linear operator L. Define

S = {(λ, u) ∈ U : F (λ, u) = 0, u 6= 0}.

We say (λ0, 0) is a bifurcation point for the equation (1) if (λ0, 0) ∈ S (S is the
closure of S).

Theorem 8.1. (Krasnoselski-Rabinowitz Global Bifurcation Theorem) [Rabinowitz,
1971, JFA] Let X be a Banach space, and let U be an open subset of R × X

containing (λ0, 0). Suppose that L is a linear compact operator on X , and
H(λ, u) : U → X is a compact operator such that ||H(λ, u)|| = o(||u||) as u → 0
uniformly for λ in any bounded interval. If 1/λ0 is an eigenvalue of L with odd
algebraic multiplicity, then (λ0, 0) is a bifurcation point. Moreover if C is the
connected component of S which contains (λ0, 0), then one of the following holds:

(i) C is unbounded in U;

(ii) C
⋂
∂U 6= ∅; or

(iii) C contains (λi , 0) 6= (λ0, 0), such that λ−1
i

is also an eigenvalue of L.
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Unilateral bifurcation theorem

[Rabinowitz, 1971, JFA], [Dancer, 1974, Indiana Math J], [Lopez-Gomez, 2000, book]
Theorem 8.2. Let X be a Banach space, and let U be an open subset of R × X

containing (λ0, 0). Suppose that L is a linear compact operator on X , and
H(λ, u) : U → X is a compact operator such that ||H(λ, u)|| = o(||u||) as u → 0
uniformly for λ in any bounded interval. Suppose that 1/λ0 is an eigenvalue of L with
algebraic multiplicity 1. We define Γ+ = {(λ(s), u(s)) : s ∈ (0, ǫ)} and
Γ− = {(λ(s), u(s)) : s ∈ (−ǫ, 0)}. Let C be a connected component of S where
S = {(λ, u) ∈ V : u − λLu − H(λ, u) = 0, u 6= 0} containing (λ0, 0). Let C+ (resp.
C−) be the connected component of C\Γ− which contains Γ+ (resp. the connected
component of C\Γ+ which contains Γ−). Then each of the sets C+ and C− satisfies
one of the following:
(i) it is unbounded;
(ii) it contains a point (λ∗, 0) with λ∗ 6= λ0 such that 1/λ∗ is also an eigenvalue of L;
or
(iii) it contains a point (λ, z), where z 6= 0 and z ∈ Z which any complement of
span{w0} = N (I − λ0L) in X .
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Global Bifurcation From Simple Eigenvalue

Theorem 8.3 [Crandall-Rabinowitz, 1971, JFA]
Let F : R × X → Y be continuously differentiable. Suppose that F (λ, u0) = 0 for
λ ∈ R, the partial derivative Fλu exists and is continuous. At (λ0, u0), F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and
(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)), where w0 ∈ N(Fu(λ0, u0)),

Then the solutions of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves u = u0

and (λ(s), u(s)), s ∈ I = (−δ, δ), where (λ(s), u(s)) are continuous functions such
that λ(0) = λ0, u(0) = u0. If F is C2 near (λ0, u0), then u′(0) = w0, and

λ′(0) = −
〈l ,Fuu(λ0, u0)[w0,w0]〉

2〈l , Fλu(λ0, u0)[w0]〉
.
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Global Bifurcation From Simple Eigenvalue

Theorem 8.3 [Crandall-Rabinowitz, 1971, JFA]
Let F : R × X → Y be continuously differentiable. Suppose that F (λ, u0) = 0 for
λ ∈ R, the partial derivative Fλu exists and is continuous. At (λ0, u0), F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and
(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)), where w0 ∈ N(Fu(λ0, u0)),

Then the solutions of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves u = u0

and (λ(s), u(s)), s ∈ I = (−δ, δ), where (λ(s), u(s)) are continuous functions such
that λ(0) = λ0, u(0) = u0. If F is C2 near (λ0, u0), then u′(0) = w0, and

λ′(0) = −
〈l ,Fuu(λ0, u0)[w0,w0]〉

2〈l , Fλu(λ0, u0)[w0]〉
.

[Pejsachowicz-Rabier, 1998, J D’Anal Math] [Shi-Wang, 2009, JDE]
If in addition, Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ R × X , then the curve
{(λ(s), u(s)) : s ∈ I} is contained in C, which is a connected component of
S = {(λ, u) ∈ R × X : F (λ, u) = 0, u 6= u0}; and either C is not compact, or C
contains a point (λ∗, 0) with λ∗ 6= λ0.
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Unilateral Theorem

[Shi-Wang, 2009, JDE]

Theorem 8.4 Suppose that all conditions above are satisfied. Let C be defined as
above. We define Γ+ = {(λ(s), u(s)) : s ∈ (0, ǫ)} and
Γ− = {(λ(s), u(s)) : s ∈ (−ǫ, 0)}. In addition we assume that

1 Fu(λ, u0) is continuously differentiable in λ for (λ, u0) ∈ V ;

2 The norm function u 7→ ||u|| in X is continuously differentiable for any u 6= 0;

3 For k ∈ (0, 1), if (λ, u0) and (λ, u) are both in V , then
(1 − k)Fu(λ, u0) + kFu(λ, u) is a Fredholm operator.

Let C+ (resp. C−) be the connected component of C\Γ− which contains Γ+ (resp.
the connected component of C\Γ+ which contains Γ−). Then each of the sets C+ and
C− satisfies one of the following: (i) it is not compact; (ii) it contains a point (λ∗, u0)
with λ∗ 6= λ0; or (iii) it contains a point (λ, u0 + z), where z 6= 0 and z ∈ Z .
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SIR model

[Kermack-Mckendrick, 1927]
Susceptible population S(t): who are not yet infected

Infective population I (t): who are infected and are able to spread the disease by
contact with susceptible
Removed population R(t): who have been infected and then removed from the

possibility of being infected again or spreading (Methods of removal: isolation or
immunization or recovery or death)

S ′ = −β′SI , I ′ = β′SI − αI , R′ = αI ,

1. Total population is a constant N (except death from the disease)
2. A average infective makes contact to transmit infection with β = β′N others per
unit time (β: contact rate)
3. A fraction α of infectives leave the infective class per unit time (1/α: infectious
period)

(1) If S(0) < α/β′, then I (t) is a decreasing function which tends to 0, and S(t) is
also decreasing and tends to a constant level greater than 0.
(2) If S(0) > α/β′, then the behavior of S(t) is same, but I (t) will first increase in a
time period (0,T0), then decrease and tends to 0 after T0.

Define a dimensionless quantity R0 =
β′S(0)

α
. This is a threshold quantity. If we

introduce a small number of infectives I (0) into the a susceptible population, then an
epidemic will occur if R0 > 1.
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SIR endemic (including birth and death)

dS

dτ
= bN − β′SI − dS,

dI

dτ
= βSI − αI − dI − cI ,

dR

dτ
= αI − dR.

b: birth rate; d: disease-unrelated death rate, c: disease-related death rate

Nondimensionalized version: (assuming b = d and c = 0)

u =
S

N
, v =

I

N
, w =

R

N
, β = β′N

du

dt
= d − βuv − du,

dv

dt
= βuv − dv − αv ,

dw

dt
= αv − dw

disease free equilibrium: (u, v ,w) = (1, 0, 0),

endemic equilibrium: (u, v ,w) =

(
b + α

β
,
b(β − b − α)

β(b + α)
,
α(β − b − α)

β(b + α)

)
.

Basic reproductive number: R0 =
β

α+ b
When R0 < 1, the disease will die, and the disease free equilibrium is stable;
when R0 > 1, the disease will stay in the population, the disease-free equilibrium is
unstable, and the endemic equilibrium is stable.
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A general framework

[van den Driessche, Watmough, 2002, Math. Biosci.]
“Reproduction numbers and sub-threshold endemic equilibria for compartmental
models of disease transmission” (cited 1164 times on Google Scholar, and 264 times
on MathSciNet)

1 Consider a heterogeneous population whose individuals are distinguishable by
age, behaviour, spatial position and/or stage of disease, but can be grouped into
n homogeneous compartments. Let x = (x1, · · · , xn) ∈ X = {x ≥ 0}, with each
xi ≥ 0, be the number of individuals in each compartment.

2 The first m compartments correspond to infected individuals. Let Xs be the set
of all disease free states. That is Xs = {x ≥ 0 : xj = 0, 1 ≤ j ≤ m}.
(1 ≤ m < n)

3 Let Fi (x) be the rate of appearance of new infections in compartment i , V+
i

(x)
be the rate of transfer of individuals into compartment i by all other means, and
V−

i
(x) be the rate of transfer of individuals out of compartment i .

Model: x ′

i
= Fi (x) − Vi (x), 1 ≤ i ≤ n, where Vi (x) = V+

i
(x) − V−

i
(x).
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A general framework

Model: x ′

i = Fi (x) − Vi (x), 1 ≤ i ≤ n, where Vi (x) = V+
i

(x) − V−

i
(x).

(A1) if x ≥ 0, then Fi ,V
+
i
,V−

i
≥ 0 for 1 ≤ i ≤ n;

(A2) if xi = 0, then V−

i
(x) = 0. In particular, if x ∈ Xs , then V−

i
(x) = 0 for

1 ≤ i ≤ m;

(A3) for m + 1 ≤ i ≤ n, Fi (x) = 0 for all x ∈ X ; (the incidence of infection for
uninfected compartments is zero)

(A4) for 1 ≤ i ≤ m, Fi (x) = 0 and V+
i

(x) = 0 for all if x ∈ Xs ; (if the population is
free of disease then the population will remain free of disease)

(A5) If x0 ∈ Xs is a DFE (disease free equilibrium), then all eigenvalues of DF(x0)
have negative real parts. (the DFE is stable in the absence of new infection)

If x0 is a DFE, and Fi , Vi satisfies (A1)-(A5), then the derivatives DF(x0) and
DV(x0) are partitioned as

DF(x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)
.



Review Epedmics Integral-differential equations Predator-prey with cross-diffusion Uniqueness for predator-prey

Basic Reproduction Number

The basic reproduction number, denoted R0, is the expected number of secondary
cases produced, in a completely susceptible population, by a typical infective
individual. If R0 < 1, then on average an infected individual produces less than one
new infected individual over the course of its infectious period, and the infection
cannot grow. Conversely, if R0 > 1, then each infected individual produces, on
average, more than one new infection, and the disease can invade the population.

SIR model:
du

dt
= d − βuv − du,

dv

dt
= βuv − dv − αv ,

dw

dt
= αv − dw

disease free equilibrium: (u, v ,w) = (1, 0, 0),

endemic equilibrium: (u, v ,w) =

(
b + α

β
,
b(β − b − α)

β(b + α)
,
α(β − b − α)

β(b + α)

)
.

Basic reproductive number: R0 =
β

α+ b

General Model: x ′

i = Fi (x) − Vi (x), 1 ≤ i ≤ n, where Vi (x) = V+
i

(x) − V−

i
(x).

If x0 is a DFE, and Fi , Vi satisfies (A1)-(A5), then the derivatives DF(x0) and

DV(x0) are partitioned as DF(x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)
.

The matrix FV−1 is called the next generation matrix for the model and
R0 = ρ(FV−1), where ρ(A) denotes the spectral radius of a matrix A.
The DFE x0 is locally asymptotically stable if R0 < 1, but unstable if R0 > 1.
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Bifurcation of Endemic Equilibria

x ′

i = Fi (µ, x) − Vi (µ, x), 1 ≤ i ≤ n, where Vi (µ, x) = V+
i

(µ, x) − V−

i
(µ, x).

Suppose that x = x0 is a DFE for µ > 0. We define F (µ, x) = F(µ, x) − V(µ, x).

[van den Driessche, Watmough, 2002, Math. Biosci.]

Theorem 9.1. Suppose that x0 is a DFE for µ > 0, Fi , Vi satisfies (A1)-(A5) for
µ > 0, and Fi , Vi are at least C2 near (µ0, x0). Suppose that
R0(µ0) = ρ(F (µ0)V−1(µ0)) = 1 for some µ0 > 0. Suppose that 0 is a simple
eigenvalue of Fx (µ0, x0). Then there exists a family of endemic equilibria
{(µ(s), x(s) : 0 < s < δ} satisfying µ(s) = µ0 + µ′(0)s + o(s) and
x(s) = x0 + sw0 + o(s), where w0 satisfies Fx (µ0, x0)[w0] = 0,

µ′(0) = −
v0 · Fxx (µ0, x0)[w0,w0]

2v0 · Fµx (µ0, x0)[w0]
,

and v0 is the left (row) eigenvector of Fx (µ0, x0), that is v · Fx (µ0, x0) = 0 or
FT

x (µ0, x0)[v
T
0 ] = 0 (T is the matrix transpose). We can assume that v0 · w0 = 1.

R(Fx (µ0, x0)) = {y ∈ R
n : v0 · y = 0}.

Global bifurcation: there is an unbounded continuum Σ ⊂ R
+ × X 0 of solutions of

F (µ, x) = 0 such that (µ0, x0) ∈ Σ, and projµ(Σ) = (µ0,∞) (assuming that there is
no endemic equilibria for small µ).
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Bifurcation and stability of Endemic Equilibria

Remarks:

1 If the function µ 7→ R0(µ) is one-to-one, then one can use R0 instead of µ as
bifurcation parameter, then the projection of the unbounded continuum onto
R0 covers the interval (1,∞).

2 If the bifurcating endemic equilibria exist for R0 < 1, then they are unstable and
the bifurcation is called backward; if the bifurcating endemic equilibria exist for
R0 > 1, then they are stable and the bifurcation is called forward.

Generalization to PDE (reaction-diffusion system):
[Wendi Wang and Xiao-Qiang Zhao, 2012, SIAM-ADS]
Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models

(xi )t = ∇(di (x)∇xi ) + Fi (µ, x) − Vi (µ, x), 1 ≤ i ≤ n, di ≥ 0.
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A model of misteltoe and bird

[Wang-Liu-Shi-del Rio, 2013, JMB to appear]






∂M

∂t
= αe−di τK [f (M(t − τ, ·))B(t − τ, ·)] − dmM x ∈ Ω, t > 0,

∂B

∂t
= D∆B −∇ (βB∇M) + g(B) + cK [f (M(t, ·))B(t, ·)], x ∈ Ω, t > 0,

M(t, x) = M0(t, x),B(t, x) = B0(t, x), x ∈ Ω,−τ ≤ t ≤ 0,
[D∇B(t, x) − βB(t, x)∇M(t, x)] · n(x) = 0, x ∈ ∂Ω,

(2)
We assume that K : C(Ω) → C(Ω) is a linear mapping satisfying

(K1) ||K [u]||
C (Ω) ≤ A1||u||C (Ω) for some A1 > 0;

(K2) If u(x) ≥ 0 for all x ∈ Ω, then for 0 ≤ C1 < C2, K [C1u](x) ≤ K [C2u](x) for
x ∈ Ω, and

K [u](x) ≤ A2 max

{
u(x),

∫

Ω
u(x)dx

}
, (3)

for some A2 > 0.

The function f satisfies a Holling type growth rate:

(f ) f ∈ C1(R+), f (0) = 0, f ′(M) > 0 for M ≥ 0, and lim
M→∞

f (M) = f∞.

Without mistletoes, the bird population has a logistic growth rate g(B) which satisfies

(g) g ∈ C1(R+), g(0) = g(KB ) = 0, g(B) > 0 in (0,KB), and g(B) < 0 for
B > KB .
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Equilibrium problem






αe−di τK

[
MB

M + w

]
(x) − dmM(x) = 0, x ∈ Ω,

D∆B(x) − β∇(B(x)∇M(x)) + B(x)(1 − B(x)) + cK

[
MB

M + w

]
(x) = 0, x ∈ Ω,

[D∇B(x) − βB(x)∇M(x)] · n(x) = 0, x ∈ ∂Ω.
(4)

Using dm as a bifurcation parameter, the equilibrium problem (4) can be written in the
following abstract form:

F (dm ,M,B) = 0, (5)

where F : R × W 2,p(Ω) × W 2,p(Ω) → W 2,p(Ω) × Lp(Ω) × W 1,p(∂Ω) is defined by

F (dm ,M,B) =




αe−di τK

[
MB

M + w

]
− dmM

D∆B − β∇(B∇M) + B(1 − B) + cK

[
MB

M + w

]

(D∇B − βB∇M) · n


 . (6)

The model (4) has two trivial solutions E0 = (0, 0) and E1 = (0, 1) for any dm > 0.
We consider the bifurcation of nontrivial solutions to (5) from the line of trivial
solutions {(dm , 0, 1) : dm > 0}.
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Fredholm integral operator

Besides (K1) and (K2), we also assume that the dispersal operator K : C(Ω) → C(Ω)
satisfies

(K3) K : C(Ω) → C(Ω) is compact, and K is strongly positive, that is, for any
u ∈ C(Ω) and u ≥ 0, K [u](x) > 0 for x ∈ Ω.

We notice that the identity mapping K [u] = u considered in Section 4 does not satisfy
(K3), but the integral operator defined in (H2) satisfies (K3) if the kernel function
k(x , y) > 0 for (x , y) ∈ Ω × Ω. The main consequence of the assumption (K3) is the
renown Krein-Rutman Theorem which asserts the existence of a principal eigenvalue
with a positive eigenvector.

From the compactness assumption in (K3), it follows from well-known results for
compact operators, K : C(Ω) → C(Ω) possesses a sequence of eigenvalues {λi} such
that λi ∈ R,

0 ≤ · · · ≤ |λ3| ≤ |λ2| ≤ |λ1|, (7)

and the only possible limit point of {λi} is zero. Moreover, since K is strongly
positive, then from Krein-Rutman theorem, we have λ1 > 0 with its corresponding
function φ1(x) > 0. In the following we normalize φ1 so that max

x∈Ω φ1(x) = 1, and
we also assume that

(K4) φ1 ∈ W 2,p(Ω) for any p > n.
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Linearized problem

The linearization of F at the boundary equilibrium E1 = (0, 1) is

F(M,B)(dm , 0, 1)[φ,ψ] =




αe−di τ

w
K [φ] − dmφ

D∆ψ − ψ +
c

w
K [φ] − β∆φ

(D∇ψ − β∇φ) · n


 .

Therefore, 0 is a simple eigenvalue of F(M,B)(dm , 0, 1) if and only if





K [φ] =
dmw

αe−di τ
φ, x ∈ Ω,

−D∆ψ + ψ =
c

w
K [φ] − β∆φ, x ∈ Ω,

∂ψ

∂n
=
β

D

∂φ

∂n
, x ∈ ∂Ω.

(8)

has a unique nonzero solution up to a constant multiple. Define

d̃k
m,τ := d̃m,τλ1 =

α

w
e−di τλ1, (9)

and let ψ1 be the unique solution of

− D∆ψ + ψ =
cd̃k

m,τ

αe−di τ
φ1 − β∆φ1, x ∈ Ω,

∂ψ

∂n
=
β

D

∂φ1

∂n
, x ∈ ∂Ω. (10)

Then when dm = d̃k
m,τ , (8) is solvable thus a bifurcation occurs at dm = d̃k

m,τ .
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Global bifurcation





αe−di τK

[
MB

M + w

]
(x) − dmM(x) = 0, x ∈ Ω,

D∆B(x) − β∇(B(x)∇M(x)) + B(x)(1 − B(x)) + cK

[
MB

M + w

]
(x) = 0, x ∈ Ω,

[D∇B(x) − βB(x)∇M(x)] · n(x) = 0, x ∈ ∂Ω.

Theorem. Assume that β ≥ 0, and the dispersal mapping K satisfies (K1) − (K4).
Then there is a smooth curve Γk

τ of positive equilibrium solutions of (2) bifurcating

from the line of trivial solutions {(dm , 0, 1) : dm > 0} at dm = d̃k
m,τ , and Γk

τ is

contained in a global branch Ck
τ of positive equilibrium solutions of (2). Moreover

1 Near (dm ,M,B) = (d̃k
m,τ , 0, 1), Γk

τ = {(dm(s),M(s, x),B(s, x)) : s ∈ (0, ǫ)},
where M(s, x) = sφ1(x) + sΨ1(s, x), B(s, x) = 1 + sψ1(x) + sΨ2(s, x), φ1 is
the principal eigenfunction of K , and ψ1 is defined as in (10); dm(s), Ψ1(s, ·)
and Ψ2(s, ·) are smooth functions defined for s ∈ (0, ǫ) such that

Ψ1(0, ·) = Ψ2(0, ·) = 0, dm(0) = d̃k
m,τ , and

d ′

m(0) =

αe−di τ

∫

Ω
K [−φ2

1(·) + wφ1(·)ψ1(·)](x)φ1(x)dx

w2

∫

Ω
φ2

1(x)dx

. (11)

2 For s ∈ (0, ǫ), the bifurcating solution (dm(s),M(s, ·),B(s, ·)) is locally
asymptotically stable if d ′

m(0) < 0, and it is unstable if d ′
m(0) > 0.
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Fredholm operator

To apply the global bifurcation theorem (Theorem 8.3), we first show that the
linearized operator F(M,B) is a Fredholm operator for any

(dm ,M,B) ∈ R
+ × W 2,p(Ω) × W 2,p(Ω). For that purpose we write

F (dm ,M,B) = F1(dm ,M,B) + F2(M,B), where

F1(dm ,M,B) =




−dmM

D∆B − β∇(B∇M) + B(1 − B)
(D∇B − βB∇M) · n



 ,

and

F2(M,B) =




αe−di τK

[
MB

M + w

]

cK

[
MB

M + w

]

0


 .

It is standard to verify that the linearization (F1)(M,B) of F1 at any (dm ,M,B) is
Fredholm as N((F1)(M,B)) is finite dimensional, and R((F1)(M,B)) has a finite
codimension. And the linearization (F2)(M,B) of F2 at any (dm,M,B) is compact from
(K3). Therefore F(M,B) is Fredholm as it is a compact perturbation of a Fredholm
operator (see [Kato, 1980, book] page 238 Theorem 5.26). Consequently the existence
of a global branch Ck

τ containing Γk
τ follows from Theorem 8.3.
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Predator-prey system with cross-diffusion

Cross-diffusion system:





∆[(1 + α1u + α2v)u] + u(λ − u − bv) = 0, x ∈ Ω,

∆[(1 + β1u + β2v)v ] + v(µ + cu − v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Competing species with passive diffusion, self-diffusion, cross-diffusion.
[Shigesada, Kawasaki and Teramoto, 1979, JTB]
[Nakashima, Yamada, 1996, ADE] [Kuto, Yamada, 2004, JDE]: α1 = β2 = 0
Their idea: U = (1 + α2v)u, V = (1 + βu)v , then the system becomes semilinear but
with messy nonlinearities.

We prove the existence of a bounded branch of coexistence solutions which connecting
the two semi-trivial solution branches via our new global bifurcation theorem. Our
method is definitely more direct.
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Setup





(1 + αv)∆u + αu∆v + 2α∇u · ∇v + u(λ− u − bv) = 0, x ∈ Ω,

βv∆u + (1 + βu)∆v + 2β∇u · ∇v + v(µ+ cu − v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(12)

Define 2 × 2 matrix:

A1(u, v) =

(
1 + αv αu

βv 1 + βu

)
,

and for 1 ≤ i , j ≤ n, u = (u, v)T ,

f (µ, u,∇u) = −

(
2α∇u · ∇v + u(λ− u − bv)
2β∇u · ∇v + v(µ + cu − v)

)
,

Then (12) is equivalent to

A(µ, u) ≡− A1(u)∆u + f (µ, u,∇u) = 0,

where u ∈ X ≡ (W 2,p
B

(Ω))2 = (W 2,p(Ω) ∩ W
1,p
0 (Ω))2.

(13)
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Linearization

The linearization of A(µ, u) at u is given by (w = (w1,w2) ∈ X )

DuA(µ, u)[w] = −A1(u)∆w − A2(w)∆u − A3(∇u) · ∇w − J(u)w,

where

A2(w) =

(
αw2 αw1

βw2 βw1

)
, A3(∇u) =

(
2α∇v 2α∇u

2β∇v 2β∇u

)
,

and J is the Jacobian

J =

(
λ− 2u − bv −bu

cv µ+ cu − 2v

)
.

For a small ε > 0, we define

Xε = {(u, v) ∈ X : u(x) > −ε, v(x) > −ε}.

Then Xε is an open connected subset of X . Clearly for u ∈ X , Trace(A1(u)) > 0 and
Det(A1(u)) > 0. So A1(u) is an elliptic operator, and DuA(µ, u) : X → Y ≡ (Lp(Ω))2

is Fredholm with index 0; Moreover, A : R × Xε → Y is C1 smooth. (see details in
[Shi-Wang, 2009, JDE]).
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Semitrivial steady states

Denote by λ1(q) the principal eigenvalue of

−∆φ+ q(x)φ = γφ, x ∈ Ω, φ = 0, x ∈ ∂Ω,

where q(x) is a continuous function in Ω. And we also use the notation λ1 = λ1(0).
Notice that λ1(q) is an increasing function in q in the sense: if q1(x) ≥ q2(x) and
q1(x) 6≡ q2(x), then λ1(q1) > λ1(q2). It is well-known that for the scalar equation

∆u + u(λ− u) = 0, x ∈ Ω; u = 0, x ∈ ∂Ω,

there exists a unique positive solution θλ if λ > λ1. Moreover {(λ, θλ) : λ > λ1} is a

smooth curve in R × W
2,P
B

(Ω); θλ is stable in the sense that the linearized eigenvalue
problem

−∆φ− λφ+ 2θλφ = ηφ, x ∈ Ω; φ = 0, x ∈ ∂Ω,

has a positive principal eigenvalue λ1(−λ+ 2θλ). Thus −∆ − λ+ 2θλ is invertible
and (−∆ − λ+ 2θλ)−1φ is positive if φ is positive.
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A priori estimates






(1 + αv)∆u + αu∆v + 2α∇u · ∇v + u(λ− u − bv) = 0, x ∈ Ω,

βv∆u + (1 + βu)∆v + 2β∇u · ∇v + v(µ+ cu − v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

We fix λ > λ1. Then the system has trivial solution (0, 0) and semi-trivial solution
(θλ, 0) for any µ ∈ R, and semi-trivial solution (0, θµ) for µ > λ1.

1 If λ ≤ λ1, then there exist no positive solutions.

2 If (u, v) is a positive solution, then

0 ≤ u(x) ≤ U(x) ≤ M1 ≡

{
λ if λα ≤ b,

(λα+ b)2/4αb if λα > b,

0 ≤ v(x) ≤ V (x) ≤ M2 ≡ (1 + βM1)(1 + cM1),

where U(x) = (1 + αv(x))u(x) and V (x) = (1 + βu(x))v(x).

3 There exists µ0 = −cM1, and µ0 > µ0 such that there is no positive solution if
µ < µ0 or µ > µ0.

[Nakashima, Yamada, 1996, ADE] [Kuto, Yamada, 2004, JDE]
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Bifurcation points

Two semi-trivial solution branches:

Γu = {(θλ, 0) : µ ∈ R}, Γv = {(0, θµ) : µ > λ1}.

First we let u = (θλ, 0). Simplifying the equations, we obtain

DuA(µ, (θλ, 0))[w] = −

(
∆w1 + (λ− 2θλ)w1 + α∆(θλw2) − bθλw2

∆[(1 + βθλ)w2] + (µ+ cθλ)w2

)
.

If we set DuA(µ, (θλ, 0))[w] = 0, then the equation of w2 is equivalent to

∆W2 +
µ+ cθλ

1 + βθλ

W2 = 0, x ∈ Ω; W2 = 0, x ∈ ∂Ω, (14)

where W2(x) = (1 + βθλ)w2(x). Thus the possible bifurcation point µ1 is the one
such that

λ1

(
−µ1 − cθλ

1 + βθλ

)
= 0. (15)
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Bifurcation Points

Similar analysis can be done on the other semi-trivial branch, but (0, θµ) is not a fixed
point in X so we consider the operator A′(µ, u) = A(µ, u + (0, θµ)) for which
u = (0, 0) is always a solution of A′(µ, u) = 0 for all µ. The corresponding linearized
equation is

DuA
′(µ, 0)[w] = −

(
∆[(1 + αθµ)w1] + (λ− bθµ)w1

∆w2 + (µ− 2θµ)w2 + β∆(θµw1) + cbθµw1

)
.

Thus the possible bifurcation point is µ2 such that

λ1

(
−λ+ bθµ2

1 + αθµ2

)
= 0. (16)

Lemma. There exists a unique µ1 ∈ (−∞,∞) so that (15) holds, and there exists a
unique µ2 ∈ (λ1,∞) so that (16) holds. Moreover the corresponding null spaces
N (DuA(µ1, (θλ, 0))) and N (DuA

′(µ2, (0, 0))) are one-dimensional.
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Proof of lemma

Lemma. There exists a unique µ1 ∈ (−∞,∞) so that (15) holds, and there exists a
unique µ2 ∈ (λ1,∞) so that (16) holds. Moreover the corresponding null spaces
N (DuA(µ1, (θλ, 0))) and N (DuA

′(µ2, (0, 0))) are one-dimensional.
Proof: Define

f1(µ) = λ1

(
−µ− cθλ

1 + βθλ

)
, and q1(µ) =

−µ− cθλ

1 + βθλ

.

Then q1(µ) is decreasing in µ. From the properties of λ(q), we deduce that
f1(µ) → ±∞ as µ → ∓∞ and f1 is decreasing. Hence µ1 exists and it is unique. With
µ = µ1, (14) has a positive solution W2. Then w2 = (1 + βθλ)−1W2, and
w1 = (−∆ − λ+ 2θλ)−1(α∆(θλw2) − bθλw2) give rise to the unique solution of
DuA(µ, (θλ, 0))[w] = 0 up to a constant multiplier.
Similarly we define

f2(µ) = λ1

(
−λ+ bθµ

1 + αθµ

)
, and q2(µ) =

−λ+ bθµ

1 + αθµ

.

Since θµ is increasing in µ (pointwisely for x ∈ Ω), then q2 and f2 are increasing in µ.
One can show that f2(µ) → λ1 + b/α > 0 as µ→ ∞, and f2(µ) → λ1 − λ < 0 as
µ→ λ1 + 0. Hence µ2 exists and is unique. Similarly to the above case, the null space
is one-dimensional with w1 > 0.
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Global bifurcation

[Shi-Wang, 2009, JDE]






(1 + αv)∆u + αu∆v + 2α∇u · ∇v + u(λ− u − bv) = 0, x ∈ Ω,

βv∆u + (1 + βu)∆v + 2β∇u · ∇v + v(µ+ cu − v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Theorem. Suppose that α, β, b, c > 0 and λ > λ1. Let S+ be the set of positive
solutions to the equation above. Then there exists a connected component C∗ of S+

such that the closure of C∗ includes the bifurcation points (µ, u, v) = (µ1, θλ, 0) and
(µ, u, v) = (µ2, 0, θµ2). In other words, bifurcations occur at both
(µ, u, v) = (µ1, θλ, 0) and (µ, u, v) = (µ2, 0, θµ2 ), and the bifurcating continua from
the two points are connected to each other.

Proof. We apply the abstract theorem at (µ, u, v) = (µ1, θλ, 0) with V = R × Xε. We
have already observed that A : V → Y is C1 smooth, and DuA(λ, u) is Fredholm with
zero index for any (λ, u) ∈ V . We have also shown in Lemma that
N (DuA(µ1, (θλ, 0))) = span{(w1,w2)} with w2 > 0. For the transversality condition,

DµuA(µ1, (θλ, 0))

(
w1

w2

)
=

(
0

−w2

)
6∈ R(DuA(µ1, (θλ, 0))),

because the equation ∆[(1 + βθλ)ψ] + (µ1 + cθλ)ψ = w2 is not solvable since∫
Ω
(1 + βθλ)w2

2 dx 6= 0.
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Proof

Now we can apply Theorem 8.3 to obtain a connected component C of the set S of all
solutions emanating from (µ, u, v) = (µ1, θλ, 0). Similarly we can show the existence
of a connected component of S emanating from (µ, u, v) = (µ2, 0, θµ2). Moreover
near the bifurcation point, C has the form (µ(s), θλ + o(s), sw2 + o(s)) for s small.
Then the solution is positive for s > 0 since w2 > 0 and θλ > 0. Let P = {(u, v) ∈
C1(Ω) × C1(Ω) : u > 0, v > 0 for x ∈ Ω, ∂u/∂ν < 0, ∂v/∂ν < 0 for x ∈ ∂Ω}, where
ν is the unit outer normal vector field of ∂Ω. Then C ∩ (R × P) 6= ∅.

Let C∗ = C ∩ (R × P). Let C+ and C− be the sub-continua in Theorem 8.4
(Conditions 1-3 in that theorem can be easily verified). By definition, C∗ ⊂ C+. By
the elliptic regularity theory, the first alternative in Theorem 8.4 for C+ is equivalent
to “the closure of C+ intersects ∂V or is unbounded in the norm of R × X”. On the
other hand, by the a priori estimates, the positive solutions (u, v) are bounded in L∞

norm, and the range of µ for existence of such solutions is also bounded. Thus by the
elliptic regularity theory again, C∗ cannot be unbounded in R × X norm. Now we see
that if the first alternative in Theorem 8.4 occurs, then C∗ ∩ (R × ∂P) contains a
point (µ∗, u∗, v∗) other than (µ1, θλ, 0). This is obviously true if the other
alternatives occur.
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Proof

By continuity, (µ∗, u∗, v∗) is a solution of the equation, and u∗ ≥ 0, v∗ ≥ 0. By the
maximum principle, u∗ ≡ 0 or u∗ > 0, and the same for v∗. If (u∗, v∗) = (0, 0), then
we can show that DuA(µ∗, 0) = −(∆ + λ,∆ + µ∗) is degenerate and its null space
contains a (w1,w2) ≥ 0, 6= 0. Since λ > λ1, w1 = 0; hence w2 > 0 and µ∗ = λ1.
Applying Theorem 8.3 to the trivial solution branch {(µ, 0, 0) : µ ∈ R} at (λ1, 0, 0),
we have that all the nontrivial solutions of near (λ1, 0, 0) are the semitrivial ones
(µ, 0, θµ), contradicting the definition of (µ∗, u∗, v∗). Thus (u∗, v∗) 6= (0, 0). Note
that (µ∗, u∗, v∗) 6∈ Γu since µ = µ1 is the only point on Γu where positive solutions
bifurcate. We conclude (µ∗, u∗, v∗) = (µ2, 0, θµ2), the only possible point on Γv

where positive solutions bifurcate.

Bifurcation branch from one semitrivial solution to another one: [Blat-Brown, 1986,
SIAM-MA]
The result implies the existence of positive solutions for µ ∈ (µ1, µ2) or µ ∈ (µ2, µ1) if
µ1 6= µ2. Indeed µ ∈ (µ1, µ2) is equivalent to

λ1

(
−µ− cθλ

1 + βθλ

)
< 0, λ1

(
−λ+ bθµ

1 + αθµ

)
< 0; (17)

and µ ∈ (µ2, µ1) is equivalent to

λ1

(
−µ− cθλ

1 + βθλ

)
> 0, λ1

(
−λ+ bθµ

1 + αθµ

)
> 0. (18)

Even when µ1 = µ2, a solution branch still connects the two bifurcation points.
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More properties






(1 + αv)∆u + αu∆v + 2α∇u · ∇v + u(λ− u − bv) = 0, x ∈ Ω,

βv∆u + (1 + βu)∆v + 2β∇u · ∇v + v(µ+ cu − v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Theorem. Suppose that α, β, b, c > 0 and λ > λ1. Let S+ be the set of positive
solutions to the equation above. Then there exists a connected component C∗ of S+

such that the closure of C∗ includes the bifurcation points (µ, u, v) = (µ1, θλ, 0) and
(µ, u, v) = (µ2, 0, θµ2). In other words, bifurcations occur at both
(µ, u, v) = (µ1, θλ, 0) and (µ, u, v) = (µ2, 0, θµ2 ), and the bifurcating continua from
the two points are connected to each other.

Remark:
1. The bifurcation direction. When α = β = 0, then there is no backward bifurcation.
When α, β > 0, ? (homework)
2. Uniqueness of coexistence steady state. When α = β = 0 and n = 1 (Ω = (0, L)),
the uniqueness was proved in [Lopez-Gomez and Pardo, 1993, DIE]. (This can be
generalized to the case of α, beta > 0?) The higher dimensional case is open.
3. Stability of coexistence steady state. Open even in the case α = β = 0 and n = 1
(Ω = (0, L)).
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1-D problem

[Lopez-Gomez and Pardo, 1993, DIE]





u′′ + u(λ − u − bv) = 0, x ∈ (0, L),

v ′′ + v(µ+ cu − v) = 0, x ∈ (0, L),

u(0) = u(L) = v(0) = v(L) = 0.

Fix λ > λ1 = π2/L2, we have proved that there exists a positive solution (u, v) if
µ ∈ (µ1, µ2), where µ1 and µ2 satisfy

−µ1 + λ1(−cθλ) = λ1(−µ1 − cθλ) = 0, −λ+ λ1(bθµ2 ) = λ1(−λ+ bθµ2 ) = 0.

Hence µ1 = λ1(−cθλ) < λ1(0) = λ1 < µ2.

We can prove that when µ ≤ µ1 or µ ≥ µ2, then there is no positive solutions.

We only need to show that if (u, v) is a positive solution, then (u, v) is
non-degenerate.
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Linearization

Suppose that (u, v) is degenerate, then the linearized equation






φ′′ + (λ − 2u − bv)φ− buψ = 0, x ∈ (0, L),

ψ′′ + cvφ+ (µ + cu − 2v)ψ = 0, x ∈ (0, L),

φ(0) = φ(L) = ψ(0) = ψ(L) = 0,

has a non-trivial solution (φ, ψ).
Define L1[φ] = φ′′ + (λ− 2u − bv)φ and L2[ψ] = ψ′′ + (µ+ cu − 2v)ψ. Then
λ1(L1) = λ1(−λ+ 2u + bv) > λ1(−λ+ u + bv) = 0 and
λ1(L2) = λ1(−µ− cu + 2v) > λ1(−µ− cu + v) = 0. Hence L1 and L2 are both
invertible, and (Li )

−1 is a negative operator on C [0,L] in the sense that if Li [g ] = f

and f ≥ 0, then g > 0.

Then the linearized equation becomes L1[φ] = buψ and L2[ψ] = −cvφ.

Both φ and ψ have to change sign. Suppose φ > 0, then ψ = L−1
2 [−cvφ] > 0; and

φ = L−1
1 [buψ] < 0, which is a contradiction.
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Nondegeneracy

Suppose that φ has m(≥ 3) zeros

0 = x0 < x1 < x2 < · · · < xm−1 < xm = L

such that

φ(x) < 0, x ∈ (x2j , x2j+1), j ≥ 0, 2j + 1 ≤ m,

φ(x) > 0, x ∈ (x2j−1, x2j ), j ≥ 1, 2j ≤ m.

Then
ψ(x2j ) > 0, ψ(x2j+1) < 0 for x2j , x2j+1 ∈ 0 < 2j < 2j + 1 < m.

This contradicts with ψ(xm) = ψ(L) = 0.

Remark: The same proof works for radially symmetric positive solutions on
n-dimensional balls.
[Dancer, Lopez-Gomez, Ortega, 1995, DIE], [Du, 2005, book chapter]
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