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Fredholm if the dimension of its kernel N (L) and the co-dimension of its range
R(L) are both finite. The Fredholm index of L is defined to be
ind(L) = dimN (L) − codimR(L).

6 Let L be a linear compact operator from X to Y . The spectrum of L is
consisted of eigenvalues only.

7 Let L be a linear compact operator from X to X . Then I − L is a linear
Fredholm operator with index 0.
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0 (Ω) → Cα(Ω) (defined

by i(x) = x) is a linear compact mapping.

6 Hence (−∆)−1 = i ◦ K : Lp(Ω) → Lp(Ω) (Cα(Ω) → Cα(Ω)) is a linear
compact operator.
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2 If F : X → Y is a compact mapping, and F is differentiable, then
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3 Fredholm mapping: let Ω be an open subset of X . A differentiable mapping
F : Ω → Y is Fredholm if F ′(x0) : X → Y is Fredholm for any x0 ∈ Ω.

4 If G : X → X is a linear compact mapping, then I − G : X → X is a linear
Fredholm operator.

Let L be a linear compact operator on X . From Riesz-Schauder theory, the set of
eigenvalues of L is at most countably many, and the only possible limit point is λ = 0.
For any eigenvalue λ of L, the subspace

Xλ =
∞
⋃

n=1

{u ∈ X : (L − λI )nu = 0}

is finite dimensional, and dim(Xλ) is the algebraic multiplicity of the eigenvalue λ.
The geometric multiplicity of λ is defined as dim{u ∈ X : (L − λI )u = 0}.
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such that ||H(λ, u)|| = o(||u||) near u = 0 uniformly on bounded λ intervals. Note the
conditions imply that Fu(λ, 0) = I − λL, and if 0 is an eigenvalue of Fu(λ0, 0), then

λ−1
0 must be an eigenvalue of the linear operator L. Define

S = {(λ, u) ∈ U : F (λ, u) = 0, u 6= 0}.

We say (λ0, 0) is a bifurcation point for the equation (1) if (λ0, 0) ∈ S (S is the
closure of S).
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0 must be an eigenvalue of the linear operator L. Define

S = {(λ, u) ∈ U : F (λ, u) = 0, u 6= 0}.

We say (λ0, 0) is a bifurcation point for the equation (1) if (λ0, 0) ∈ S (S is the
closure of S).

Theorem 8.1. (Krasnoselski-Rabinowitz Global Bifurcation Theorem) [Rabinowitz,
1971, JFA] Let X be a Banach space, and let U be an open subset of R × X

containing (λ0, 0). Suppose that L is a linear compact operator on X , and
H(λ, u) : U → X is a compact operator such that ||H(λ, u)|| = o(||u||) as u → 0
uniformly for λ in any bounded interval. If 1/λ0 is an eigenvalue of L with odd
algebraic multiplicity, then (λ0, 0) is a bifurcation point. Moreover if C is the
connected component of S which contains (λ0, 0), then one of the following holds:

(i) C is unbounded in U;

(ii) C
⋂

∂U 6= ∅; or

(iii) C contains (λi , 0) 6= (λ0, 0), such that λ−1
i

is also an eigenvalue of L.
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Leray-Schauder degree

Let X be a Banach space, and let U be an open bounded subset of X . Denote by
K(U) the set of compact operators from U to X , and define

M = {(I − G ,U, y) : U ⊂ X open bounded ,G ∈ K(U), and y 6∈ (I − G)(∂U)}.

Then the Leray-Schauder degree d : M → Z is a well-defined function, which satisfies
the following properties:

1 d(I ,U, y) = 1 if y ∈ U, and d(I ,U, y) = 0 if y 6∈ U;

2 (Additivity) d(I − G ,U, y) = d(I − G ,U1, y) + d(I − G ,U2, y) if U1 and U2 are
disjoint open subsets of U so that y 6∈ (I − G)(U\(U1

⋃

U2));

3 (Homotopy invariance) Suppose that h : [0, 1] × U → X is compact and
y : [0, 1] → X is continuous, and y(t) 6∈ (I − G)(∂U), then
D(t) = d(I − h(t, ·),U, y(t)) is a constant independent of t ∈ [0, 1].

4 (Existence) If d(I − G ,U, y) 6= 0, then there exists u ∈ U such that
u − G(u) = y ;

5 If for G1,G2 ∈ K(U), G1(u) = G2(u) for any u ∈ ∂U, then
d(I − G1,U, y) = d(I − G2,U, y).
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Degree in finite dimensional spaces

For continuous f : U ≡ [−1, 1] → R, d(I − f ,U, 0) can be defined by
d(I − f ,U, 0) = sgn(f (−1)) · sgn(f (1)), where sgn(y) = y/|y |. Another definition is
d(I − f ,U, 0) =

∑

x∈U,x=f (x) f ′(x) for function f satisfying f ′(x) 6= 0 whenever

f (x) = x . Here we must have x 6= f (x) for x = ±1.

For continuous f : U(⊂ Rn) → Rn (n ≥ 2),
d(I − f ,U, 0) =

∑

x∈U,x=f (x) sgn(Det(f ′(x))) for function f satisfying Det(f ′(x)) 6= 0

whenever f (x) = x . Here we must have x 6= f (x) for x ∈ ∂U.

Toy proof: Let f (x , y) = (x2, y2). Prove that f (x , y) = (3, 4) has a positive solution
(x1, y1).

1. Let U = {(x , y) ∈ R2 : x > 0, y > 0, x2 + y2 = 62}.
2. Prove that Gt(x , y) = I (x , y) − tf (x , y) = (x − tx2, y − ty2) has no solution
(xt , yt) ∈ ∂U satisfying Gt(xt , yt) = (3, 4).
3. G0(x , y) = I (x , y) = (x , y) has a solution (x0, y0) = (3, 4) ∈ U such that
G0(x , y) = (3, 4) since (3, 4) ∈ U.
4. d(G0,U, (3, 4)) = 1 since Det(I ) = 1 and (3, 4) is the unique solution of
G0(x , y) = (3, 4).
5. d(G0,U, (3, 4)) = d(G1,U, (3, 4)) from the homotopy invariance property of
Leray-Schauder degree, then d(G1,U, (3, 4)) = 1.
6. Then G1(x , y) = (3, 4) has a solution in U.
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Properties of Leray-Schauder degree

1 If L is a linear compact operator on X , then d(I − λL,BR (0), 0) = (−1)β , where
BR (v) is a ball centered at v with radius R, and β is the sum of algebraic
multiplicity of eigenvalues µ of L satisfying λµ > 1.

2 Suppose that G ∈ K(U), u0 ∈ U and R > 0 such that u0 is the unique solution
satisfies u − G(u) = 0 in BR (u0), then the derivative G ′(u0) : X → X is a linear
compact operator; if λ = 1 is not an eigenvalue of G ′(u0), then
d(I − G ,BR (u0), 0) = d(I − G ′(u0),BR (0), 0) for some sufficiently small R > 0
(this number is also called fixed point index of u0 with respect to G).

Example: ∆u + λf (u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

Suppose that f (0) = 0. What is the fixed point index of u = 0?

1. K : (−∆)−1 : Cα(Ω) → Cα(Ω) is well defined as K(f ) = u that u ∈ C
2,α
0 (Ω) such

that −∆u = f for any f ∈ Cα(Ω).
2. For H(λ, u) = u − λK(f (u)) = 0, Hu(λ, u)[w ] = w − λK(f ′(u))[w ] and
Hu(λ, 0)[w ] = w − λK(f ′(0))[w ].
3. For L[w ] = K(f ′(0))[w ] = µw , we have µλ∆w + λf ′(0)w = 0 or
∆w + (µλ)−1λf ′(0)w = 0.
4. So for µλ > 1, let ρk < λf ′(0) < ρk+1 then the fixed point index of 0 is
∑k

j=1 M(ρk ), whereρk is the k-th eigenvalue of ∆φ+ ρφ = 0, and M(ρk) is the
algebraic multiplicity of ρk .
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Krasnoselski Bifurcation Theorem

[Krasnoselski, 1964] Let X be a Banach space, and let U be an open subset of R × X

containing (λ0, 0). Suppose that L is a linear compact operator on X , and
H(λ, u) : U → X is a compact operator such that ||H(λ, u)|| = o(||u||) as u → 0
uniformly for λ in any bounded interval. If 1/λ0 is an eigenvalue of L with odd
algebraic multiplicity, then (λ0, 0) is a bifurcation point.

Proof. Suppose not, then there exists a R > 0 such that in the region
O = {(λ, u) : |λ− λ0| ≤ R, |u| ≤ R}, the only solutions of F (λ, u) = 0 are
{(λ, 0) : |λ−λ0| ≤ R}. We choose λ−, λ+ so that λ0 −R < λ− < λ0 < λ+ < λ0 +R.
From the homotopy invariance of the Leray-Schauder degree,

d(F (λ− , ·),Bρ(0), 0) = d(F (λ+ , ·),Bρ(0), 0),

for any ρ ∈ (0,R). For ρ small enough, d(F (λ± , ·),Bρ(0), 0) = d(I − λ±L,Bρ(0), 0).
But on the other hand,

|d(I − λ+L,Bρ(0), 0) − d(I − λ−L,Bρ(0), 0)| = 1,

since λ−1
0 is the only eigenvalue of L in between λ−1

− and λ−1
+ , and the algebraic

multiplicity of λ−1
0 is odd. That is a contradiction. Thus (λ0, 0) is a bifurcation point.
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Rabinowitz Global Bifurcation Theorem

If C is the connected component of S which contains (λ0, 0), then one of the
following holds:

(i) C is unbounded in U;

(ii) C
⋂

∂U 6= ∅; or

(iii) C contains (λi , 0) 6= (λ0, 0), such that λ−1
i

is also an eigenvalue of L.

Separation Lemma. Let (M, d) be a compact metric space, and let A and B be close
subsets of M such that A

⋂

B = ∅. Then there exist compact subsets MA and MB of
M such that MA

⋃

MB = M, MA

⋂

MB = ∅, MA ⊃ A, and MB ⊃ B.
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Proof (1)

Proof. we assume the stated alternatives do not hold, then C is bounded in U,
C

⋂

∂U = ∅, and C
⋂

{(λ, 0) ∈ U} = {(λ0, 0)}. From the compactness of L and H, C

is compact since it is bounded. Let Cε = {(λ, u) ∈ U : dist((λ, u),C) < ε}. Let
A = C and B = S

⋂

∂Cε. From Separation Lemma, there exists compact MA and MB

such that MA

⋂

MB = ∅, MA

⋃

MB = S
⋂

Cε, MA ⊃ C and MB ⊃ S
⋂

∂Cε. Hence
there exists an open bounded U0 = MA such that

C ⊂ U0 ⊂ U0 ⊂ U, and S
⋂

∂U0 = ∅. (2)

Define U0(λ) = {u ∈ X : (λ, u) ∈ U0} for λ ∈ I where
I = {λ ∈ R : ({λ} × X )

⋂

U0 6= ∅}. Then D(λ) = d(F (λ, ·),U0(λ), 0) is constant for
λ ∈ I since S

⋂

∂U0 = ∅ and the homotopy invariance of d(F ,Ω, 0), where
d(F (λ, ·),Ω, 0) is the Leray-Schauder degree.

Since (λ0, 0) is the only intersection of C with the line {(λ, 0)}, U0 can be chosen so
that U0

⋂

{(λ, 0) ∈ U} = [λ0 − δ, λ0 + δ] × {0}, and no any point λ in
[λ0 − 2δ, λ0 + 2δ] satisfies that λ−1 is an eigenvalue of L. We choose λ± which satisfy
λ0 − δ < λ− < λ0 < λ+ < λ0 + δ. We choose ρ > 0 small enough so that
F (λ, u) 6= 0 for λ ∈ [λ+, λ0 + 2δ] and u ∈ Bρ(0)\{0}, and we also choose
λ∗ > λ0 + 2δ such that U0(λ

∗) = ∅.
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Proof (2)

From the homotopy invariance of the Leray-Schauder degree on
U0\([λ+, λ∗] × Bρ(0)), we have

d(F (λ+, ·),U0(λ+)\Bρ(0), 0) = d(F (λ∗ , ·),U0(λ
∗), 0) = 0. (3)

For the same argument,

d(F (λ− , ·),U0(λ−)\Bρ(0), 0) = 0. (4)

On the other hand, from the additivity of the Leray-Schauder degree,

D(λ±) = d(F (λ± , ·),U0(λ±)\Bρ(0), 0) + d(F (λ± , ·),Bρ(0), 0). (5)

Hence we obtain

d(F (λ+, ·),Bρ(0), 0) = d(F (λ− , ·),Bρ(0), 0). (6)

For ρ > 0 small enough,

d(F (λ± , ·),Bρ(0), 0) = d(I − λ±L,Bρ(0), 0). (7)

From the formula of Leray-Schauder degree of I − λL, we have

|d(I − λ+L,Bρ(0), 0) − d(I − λ−L,Bρ(0), 0)| = 1, (8)

But (8) is a contradiction with (7). Hence the alternatives in the theorem hold.
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Unilateral bifurcation theorem

[Rabinowitz, 1971, JFA], [Dancer, 1974, Indiana Math J], [Lopez-Gomez, 2000, book]
Theorem 8.2. Let X be a Banach space, and let U be an open subset of R × X

containing (λ0, 0). Suppose that L is a linear compact operator on X , and
H(λ, u) : U → X is a compact operator such that ||H(λ, u)|| = o(||u||) as u → 0
uniformly for λ in any bounded interval. Suppose that 1/λ0 is an eigenvalue of L with
algebraic multiplicity 1. We define Γ+ = {(λ(s), u(s)) : s ∈ (0, ǫ)} and
Γ− = {(λ(s), u(s)) : s ∈ (−ǫ, 0)}. Let C be a connected component of S where
S = {(λ, u) ∈ V : H(λ, u) = 0, u 6= 0} containing (λ0, 0). Let C+ (resp. C−) be the
connected component of C\Γ− which contains Γ+ (resp. the connected component of
C\Γ+ which contains Γ−). Then each of the sets C+ and C− satisfies one of the
following:
(i) it is unbounded;
(ii) it contains a point (λ∗, 0) with λ∗ 6= λ0; or
(iii) it contains a point (λ, z), where z 6= 0 and z ∈ Z which any complement of
span{w0} = N (Hu(λ0, 0)) in X .
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Application 1: Reaction-diffusion population model















∂u

∂t
= D∆u + uf (x , u), x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

u(x , t): population density at position x and time t

Ω: a bounded habitat, u = 0 on boundary ∂Ω: hostile exterior environment
f (x , u): heterogeneous growth rate per capita
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f (x , u): (a) logistic; (b) weak Allee effect; (c) strong Allee effect.
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Bifurcation problem

∆u + λuf (x , u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

u = 0 is always a solution for any λ > 0, λ1(f ,Ω) (minimal patch size) is the principal
eigenvalue of ∆ψ + λf (x , 0)ψ = 0, x ∈ Ω, ψ = 0, x ∈ ∂Ω. We consider positive
solutions only.
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Logistic case: a supercritical transcritical bifurcation occurs at λ1(f ,Ω); for λ > λ1,
there is a unique steady state which is globally stable. [Cantrell-Cosner, 2003]
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Bifurcation problem

∆u + λuf (x , u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

u = 0 is always a solution for any λ > 0, λ1(f ,Ω) (minimal patch size) is the principal
eigenvalue of ∆ψ + λf (x , 0)ψ = 0, x ∈ Ω, ψ = 0, x ∈ ∂Ω. We consider positive
solutions only.

Logistic case: a supercritical transcritical bifurcation occurs at λ1(f ,Ω); for λ > λ1,
there is a unique steady state which is globally stable. [Cantrell-Cosner, 2003]

Weak Allee effect case:
(A) a subcritical (backward) transcritical bifurcation occurs at λ1(f ,Ω) > 0;
(B) for λ ∈ (λ∗, λ1), there are at least two steady state solutions (bistability);
(C) a saddle-node bifurcation occurs at λ∗ (at least when Ω is a ball);
(D) for λ large, it is similar to logistic case. [Shi-Shivaji, JMB, 2006]

The solution curve near (λ, u) = (λ1, 0) is {(λ(s), u(s)) : 0 < s < δ}, where δ > 0 is a
constant, λ(s) = λ1(f ,Ω) + η(s), u(s) = sϕ1 + sv(s), 0 < s < δ, η(0) = 0 and
v(0) = 0, and

η′(0) = −2[λ1(f ,Ω)]2
∫

Ω
fu(x , 0)ϕ3

1(x)dx
∫

Ω |∇ϕ1(x)|2dx
.

Allee effect caused by diffusion (ODE with weak Allee effect is similar to logistic case);
danger of hysteresis. [Jiang-Shi, book chapter, 2009]
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Bifurcation Diagrams

∆u + λuf (x , u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω,

(Left) logistic; (Right) weak Allee effect;

Proposition: the bifurcating branch belongs to a global continuum in Cα(Ω).



Basic Global Bifurcation Theorem Application New Theorem

Bifurcation Diagrams

∆u + λuf (x , u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω,
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Proposition: the bifurcating branch belongs to a global continuum in Cα(Ω).

1. K = (−∆)−1 : Cα(Ω) → Cα(Ω) is well defined as K(f ) = u that u ∈ C
2,α
0 (Ω)

such that −∆u = f for any f ∈ Cα(Ω).
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Bifurcation Diagrams

∆u + λuf (x , u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω,

(Left) logistic; (Right) weak Allee effect;

Proposition: the bifurcating branch belongs to a global continuum in Cα(Ω).

1. K = (−∆)−1 : Cα(Ω) → Cα(Ω) is well defined as K(f ) = u that u ∈ C
2,α
0 (Ω)

such that −∆u = f for any f ∈ Cα(Ω).
2. We apply K to the equation, and we consider

G(λ, u) ≡ u − λKuf (x , u) = 0,

where u ∈ Cα(Ω).
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Global Branch

1 Let E = Cα(Ω), and let S = {(λ, u) ∈ R+ × E : G(λ, u) = 0, u 6= 0}. Then
there exists a a connected component C of S such that (λ1, 0) ∈ C.
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(R+ × E+) is unbounded.
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Global Branch

1 Let E = Cα(Ω), and let S = {(λ, u) ∈ R+ × E : G(λ, u) = 0, u 6= 0}. Then
there exists a a connected component C of S such that (λ1, 0) ∈ C.

2 Let E+ = {u ∈ E : u(x) ≥ 0 in Ω}. Then C+ = C
⋂

(R+ × E+) is unbounded.

3 If f (x , u) satisfies f (x , u) < 0 for u > 1, then 0 < u(x) < 1 for x ∈ Ω, where u

is any positive solution of

∆u + λuf (x , u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

Therefore the projection of C+ to λ-axis is unbounded in R+, and hence it
contains (λ1,∞). This proves the existence of a positive solution for any
λ > λ1.
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Uniqueness in logistic case

Assume fu(x , u) ≤ 0 (logistic case). A positive solution to

∆u + λuf (x , u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω,

is stable if all eigenvalues µi of

−∆φ− λf (x , u)φ− λufu(x , u)φ = µφ, x ∈ Ω, φ = 0, x ∈ ∂Ω,

are positive.

From u’s equation, u is the principal eigenfunction of the eigenvalue problem (with
η = 0):

−∆ψ − λf (x , u)ψ = ηψ, x ∈ Ω, ψ = 0, x ∈ ∂Ω,

But

µ1 = min
φ∈W

1,2
0 (Ω), φ 6=0

∫

Ω

(

|∇φ|2 − λf (x , u)φ2 − λufu(x , u)φ2
)

dx
∫

Ω φ
2dx

> min
ψ∈W

1,2
0 (Ω), ψ 6=0

∫

Ω

(

|∇ψ|2 − λf (x , u)ψ2
)

dx
∫

Ω ψ
2dx

= η1 = 0,

So any positive solution u is stable, hence non-degenerate.
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Application 2: 1-D scalar problem

[Rabinowitz, 1972, book chapter]
Consider

−(p(x)u′)′ + q(x)u = λa(x)u + λF (x , u, u′), 0 < x < π,

a0u(0) + b0u
′(0) = 0, a1u(1) + b1u

′(1) = 0,

where a0, b0, a1, b1 satisfy (a2
0 + b2

0)(a
2
1 + b2

1) 6= 0. Let E be the set of functions in

C1[0, π] satisfying boundary condition. Let S+
k

be the set of φ ∈ E such that φ has
exactly k − 1 simple zeros in (0, π), all zeros of φ in [0, π] are simple, and φ is positive
near x = 0. Set S−

k
= −S+

k
and Sk = S+

k

⋃

S−
k

. Let S be the closure in R × E of the
set of nontrivial solutions of the equation. It is known that the eigenvalue problem

− (p(x)φ′)′ + q(x)φ = λa(x)φ, 0 < x < π,

a0φ(0) + b0φ
′(0) = 0, a1φ(1) + b1φ

′(1) = 0,

has a sequence of eigenvalues λ1 < λ2 ≤ λ3 ≤ · · · → ∞.
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Application 2: 1-D scalar problem

[Rabinowitz, 1972, book chapter]
Consider

−(p(x)u′)′ + q(x)u = λa(x)u + λF (x , u, u′), 0 < x < π,

a0u(0) + b0u
′(0) = 0, a1u(1) + b1u

′(1) = 0,

where a0, b0, a1, b1 satisfy (a2
0 + b2

0)(a
2
1 + b2

1) 6= 0. Let E be the set of functions in

C1[0, π] satisfying boundary condition. Let S+
k

be the set of φ ∈ E such that φ has
exactly k − 1 simple zeros in (0, π), all zeros of φ in [0, π] are simple, and φ is positive
near x = 0. Set S−

k
= −S+

k
and Sk = S+

k

⋃

S−
k

. Let S be the closure in R × E of the
set of nontrivial solutions of the equation. It is known that the eigenvalue problem

− (p(x)φ′)′ + q(x)φ = λa(x)φ, 0 < x < π,

a0φ(0) + b0φ
′(0) = 0, a1φ(1) + b1φ

′(1) = 0,

has a sequence of eigenvalues λ1 < λ2 ≤ λ3 ≤ · · · → ∞.

Theorem. If F (x , u, u′) = o(|u| + |u′|) near (u, u′) = (0, 0), then for each positive
integer k > 0, S contains a connected component Ck , which meets (λk , 0) and is
unbounded in R × Sk .

In particular, if the equation has only trivial solutions when λ > 0, and all solutions are
uniformly bounded, then for λ > λk , the problem has at least k distinct solutions, with
one each in Sk .
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Application 3: Global Turing Bifurcation

Theorem: Suppose that f (u0, v0) = g(u0, v0) = 0, and at (u0, v0),
(A) fu < 0 (inhibitor), gv > 0 (activator);
(B) D1 = fugv − fvgu > 0 and fu + gv < 0.

For fixed λ > 0, if dk(λ) ≡
λ[gvk2 − λD1]

k2(k2 − λfu)
6= dj (λ) for any j 6= k,

(i) d = dk is a bifurcation point where a continuum Σ of non-trivial solutions of

{

uxx + λf (u, v) = 0, dvxx + λg(u, v) = 0, x ∈ (0, ℓπ),

ux (0) = ux (ℓπ) = vx (0) = vx (ℓπ) = 0,

bifurcates from the line of trivial solutions (d, u0, v0);
(ii) The continuum Σ is either unbounded in the space of (d, u, v), or it connects to
another (dj (λ), u0, v0);
(iii) Σ is locally a curve near (dk (λ), u0, v0) in form of
(d, u, v) = (d(s), u0 + sA cos(kx) + o(s), v0 + sB cos(kx) + o(s)), |s| < δ, and
d ′(0) = 0 thus the bifurcation is of pitchfork type (d ′′(0) can be computed in term of
D3(f , g)).

[Rabinowitz, 1971, JFA],

[Shi-Wang, 2009, JDE] [Shi, 2009, Frontier Math. China]
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Turing bifurcation in CIMA model































ut = uxx + 5α− u −
4uv

1 + u2
, x ∈ (0, ℓπ), t > 0,

vt = m

(

dvxx + u −
uv

1 + u2

)

, x ∈ (0, ℓπ), t > 0,

ux (x , t) = vx(x , t) = 0, x = 0, ℓπ, t > 0,

u(x , 0) = u0(x), v(x , 0) = v0(x), x ∈ (0, ℓπ),

(9)

Constant equilibrium: (u∗, v∗) = (α, 1 + α2)

Jacobian at (u∗, v∗): J =
1

1 + α2

(

3α2 − 5 −4α

2α2 −α

)

.

Assume 0 < 3α2 − 5 < α (or 1.291 < α < 1.468)

fu > 0, gv < 0, D1 = fugv − fvgu > 0 and fu + gv < 0.

Bifurcation points: dj =
α

1 + α2
·

5 + λj

λj (f0 − λj )
,

where f0 =
3α2 − 5

1 + α2
, and λj = j2/ℓ2.

[Ni-Tang, 2005] also true for higher dimensions
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Global Turing Bifurcation for CIMA reaction

[Ni-Tang, 2005] Trans. Amer. Math. Soc.:
(A) For d > 0 small, (u∗, v∗) is the only steady state solution;
(B) All non-negative steady state solution satisfies 0 < u(x) < 5α,
0 < v(x) < 1 + 25α2.

[Jang-Ni-Tang, 2004] J. Dynam. Diff. Equa.:
(C) Each connected component bifurcated from (dj , u∗, v∗) is unbounded in the space
of (d, u, v), and its projection over d-axis covers (dj ,∞).
(D) For each d > min{dj} and d 6= dk , there exists a non-constant steady state
solution.

[Jin-Shi-Wei-Yi, to appear] Bifurcation with α as parameter.
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Bifurcation in CIMA system



















uxx + 5α− u −
4uv

1 + u2
= 0, x ∈ (0, ℓπ),

dvxx + u −
uv

1 + u2
= 0, x ∈ (0, ℓπ),

ux (0) = vx (0) = ux (ℓπ) = vx (ℓπ) = 0.

D(α, p) := d(1 + α2)p2 − p[d(3α2 − 5) − α] + 5α = 0

Bifurcation points: (p = j2/ℓ2), α(p) =
p + 5 +

√

(p + 5)2 + 4d2p2(3 − p)(p + 5)

2dp(3 − p)
.

For 0 < j2/ℓ2 < 3, there are finitely many j points αS
j

= αS
j
(d, ℓ), 1 ≤ j ≤ n, satisfying

α∗ < αS
1 < αS

2 < · · · < αS
n < ∞,

with αS
j = α2(j

2/ℓ2), and α = αS
n is a possible bifurcation point.

1 There exists a C∞ smooth curve Γj of solutions bifurcating from

(α, u, v) = (αS
j
, u
αS

j
, v
αS

j
), with Γj contained in a global branch Cj of solutions;

2 Near (α, u, v) = (αS
j , uαS

j
, v
αS

j
), Γj =

{

(αj (s), uj (s), vj(s)) : s ∈ (−ǫ, ǫ)
}

, where

uj (s) = αS
j

+ saj cos(jx/ℓ) + sψ1,j (s),

vj(s) = (1 + αS
j )2 + sbj cos(jx/ℓ) + sψ2,j (s) for s ∈ (−ǫ, ǫ) for some C∞

smooth functions αj , ψ1,j , ψ2,j such that αj (0) = αS
j

and ψ1,j (0) = ψ2,j (0) = 0;

3 Each Cj is unbounded: the projection of Cj on the α-axis contains (αS
j
,∞).
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Unbounded branches

Since 0 < u(x) < 5α and 0 < v(x) < 1 + 25α2, then Cj must remain bounded for
finite α. Suppose that the projection of Cj in α-axis is bounded. Then Cj must contain

another bifurcation point (αS
i , α

S
i , 1 + (αS

i )2) for some i 6= j . Indeed Cj contains

finitely many bifurcation points in form of (αS
i , α

S
i , 1 + (αS

i )2), since there are only

finitely i ∈ N such that i2/ℓ2 < 3 for fixed ℓ > 0. Among these finitely many αS
i , there

is one with largest index iM . Notice that the equation is also well-defined for the
interval (0, ℓπ/iM), and the bifurcation points (depending on the length) have the
relation

αS
iM

(ℓπ) = α2(i
2
M/ℓ

2) = αS
1 (ℓπ/iM ) := αM .

Hence αM is also a bifurcation point for the equation with interval (0, ℓπ/iM ). From
global bifurcation theorem, the global branch CM

1 bifurcating from α = αM for the
equation with interval (0, ℓπ/iM ) is also unbounded or contains another bifurcation
point. But any solution with interval (0, ℓπ/iM) can be extended to (0, ℓπ) by
reflection, hence that CM

1 is unbounded implies that Cj is unbounded, which

contradicts our assumption. Or CM
1 contains another bifurcation point αS

k
(ℓπ/iM ), but

that will imply αS
kiM

(ℓπ) = αS
k
(ℓπ/iM ) is on the branch Cj , and clearly kiM > iM since

k > 1, which contradicts with the maximality of iM . Therefore the projection of Cj in
α-axis is not bounded.
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The weakness of Rabinowitz Theorem

It requires strong compactness. For applications in PDEs, it usually requires to take
inverse of ∆ operators or more general elliptic operators. For some applications with
cross-diffusion or nonlinear boundary conditions, taking inverse operators are not easy.

Cross-diffusion equation: [Shigesada-Kawasaki-Teramoto, 1979]











∆[(1 + αv)u] + u(λ − u − bv) = 0, x ∈ Ω,

∆[(1 + βu)v ] + v(µ+ cu − v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Problem with nonlinear boundary condition



















u′′ − f (u)v = 0, x ∈ (0, 1),

λv ′′ − χ(vψ′(u)u′)′ + (kf (u) − θ − βv)v = 0, x ∈ (0, 1),

u′(0) = 0, u′(1) = h(1 − u(1)),

λv ′ − χvψ′(u)u′ = 0, x = 0, 1.
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Global Bifurcation From Simple Eigenvalue

Theorem [Crandall-Rabinowitz, 1971, JFA]
Let F : R × X → Y be continuously differentiable. Suppose that F (λ, u0) = 0 for
λ ∈ R, the partial derivative Fλu exists and is continuous. At (λ0, u0), F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and
(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)), where w0 ∈ N(Fu(λ0, u0)),

Then the solutions of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves u = u0

and (λ(s), u(s)), s ∈ I = (−δ, δ), where (λ(s), u(s)) are C1 functions such that
λ(0) = λ0, u(0) = u0, u′(0) = w0.
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Global Bifurcation From Simple Eigenvalue

Theorem [Crandall-Rabinowitz, 1971, JFA]
Let F : R × X → Y be continuously differentiable. Suppose that F (λ, u0) = 0 for
λ ∈ R, the partial derivative Fλu exists and is continuous. At (λ0, u0), F satisfies

(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and
(F3) Fλu(λ0, u0)[w0] 6∈ R(Fu(λ0, u0)), where w0 ∈ N(Fu(λ0, u0)),

Then the solutions of F (λ, u) = 0 near (λ0, u0) consists precisely of the curves u = u0

and (λ(s), u(s)), s ∈ I = (−δ, δ), where (λ(s), u(s)) are C1 functions such that
λ(0) = λ0, u(0) = u0, u′(0) = w0.

[Pejsachowicz-Rabier, 1998] [Shi-Wang, 2009, JDE]
If in addition, Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ R × X , then the curve
{(λ(s), u(s)) : s ∈ I} is contained in C, which is a connected component of
S = {(λ, u) ∈ R × X : F (λ, u) = 0, u 6= u0}; and either C is not compact, or C
contains a point (λ∗, 0) with λ∗ 6= λ0.
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Unilateral Theorem

Suppose that all conditions above are satisfied. Let C be defined as above. We define
Γ+ = {(λ(s), u(s)) : s ∈ (0, ǫ)} and Γ− = {(λ(s), u(s)) : s ∈ (−ǫ, 0)}. In addition we
assume that

1 Fu(λ, u0) is continuously differentiable in λ for (λ, u0) ∈ V ;

2 The norm function u 7→ ||u|| in X is continuously differentiable for any u 6= 0;

3 For k ∈ (0, 1), if (λ, u0) and (λ, u) are both in V , then
(1 − k)Fu(λ, u0) + kFu(λ, u) is a Fredholm operator.

Let C+ (resp. C−) be the connected component of C\Γ− which contains Γ+ (resp.
the connected component of C\Γ+ which contains Γ−). Then each of the sets C+ and
C− satisfies one of the following: (i) it is not compact; (ii) it contains a point (λ∗, u0)
with λ∗ 6= λ0; or (iii) it contains a point (λ, u0 + z), where z 6= 0 and z ∈ Z .
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Fredholm Operators of Index Zero

Quasilinear elliptic systems with nonlinear boundary conditions are Fredholm operators
of index zero

Theorem [Shi-Wang, 2009, JDE]
Suppose that p > n, ∂Ω ∈ C3, and the regularity assumption above holds. Let U be
an open connected set of R × (W 2,p(Ω))N . Assume that for each fixed (λ, u) ∈ U,
DuT (λ, u) = (DuA(λ, u),DuB(λ, u)) is elliptic on Ω, and that for a particular
(λ0, u0) ∈ U, DuT (λ0, u0) satisfies Agmon’s condition at a θ0, then the Fredholm
index of DuT (λ, u) is 0 for all (λ, u) ∈ U.

It will have many applications in reaction-diffusion systems in mathematical biology,
physics, and chemistry.
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Application

Cross-diffusion system:











∆[(1 + α1u + α2v)u] + u(λ − u − bv) = 0, x ∈ Ω,

∆[(1 + β1u + β2v)v ] + v(µ + cu − v) = 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

Competing species with passive diffusion, self-diffusion, cross-diffusion.
[Shigesada, Kawasaki and Teramoto, 1979]
[Nakashima, Yamada, 1996] [Kuto, Yamada, 2004]: α1 = β2 = 0
Their idea: U = (1 + α2v)u, V = (1 + βu)v , then the system becomes semilinear but
with messy nonlinearities.

We prove the existence of a bounded branch of coexistence solutions which connecting
the two semi-trivial solution branches via our new global bifurcation theorem. Our
method is definitely more direct.
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