

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Reaction-Diffusion Models and Bifurcation Theory Lecture 8: Global bifurcation

Junping Shi

College of William and Mary, USA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear Functional Analysis

Let X and Y be Banach spaces.

Bounded operator: a linear mapping $L: X \to Y$ such that $||Lu||_Y \le K||u||_X$ for any $x \in X$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear Functional Analysis

- **Bounded operator:** a linear mapping $L: X \to Y$ such that $||Lu||_Y \le K||u||_X$ for any $x \in X$.
- **2** Compact: a subset of M of X is compact if for any sequence $\{x_n\} \subset M$, there is a convergent subsequence with limit in M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Linear Functional Analysis

- **Bounded operator:** a linear mapping $L: X \to Y$ such that $||Lu||_Y \le K||u||_X$ for any $x \in X$.
- **2** Compact: a subset of M of X is compact if for any sequence $\{x_n\} \subset M$, there is a convergent subsequence with limit in M.
- Selatively compact: a subset of M of X is relatively compact (or precompact) if \overline{M} (the closure of M in X) is compact.

Linear Functional Analysis

- **Bounded operator:** a linear mapping $L: X \to Y$ such that $||Lu||_Y \le K||u||_X$ for any $x \in X$.
- **2** Compact: a subset of M of X is compact if for any sequence $\{x_n\} \subset M$, there is a convergent subsequence with limit in M.
- Selatively compact: a subset of M of X is relatively compact (or precompact) if \overline{M} (the closure of M in X) is compact.
- Linear compact operator: a linear mapping $L: X \to Y$ is compact if for every bounded subset B of X, the image $L(B) = \{Lu : u \in B\}$ is a relatively compact subset of Y.

Linear Functional Analysis

- **Bounded operator:** a linear mapping $L: X \to Y$ such that $||Lu||_Y \le K||u||_X$ for any $x \in X$.
- **2** Compact: a subset of M of X is compact if for any sequence $\{x_n\} \subset M$, there is a convergent subsequence with limit in M.
- Relatively compact: a subset of M of X is relatively compact (or precompact) if \overline{M} (the closure of M in X) is compact.
- Linear compact operator: a linear mapping $L: X \to Y$ is compact if for every bounded subset B of X, the image $L(B) = \{Lu : u \in B\}$ is a relatively compact subset of Y.
- S Linear Fredholm operator: A bounded linear mapping *L* from *X* to *Y* is Fredholm if the dimension of its kernel $\mathcal{N}(L)$ and the co-dimension of its range $\mathcal{R}(L)$ are both finite. The Fredholm index of *L* is defined to be $ind(L) = dim \mathcal{N}(L) - codim \mathcal{R}(L)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear Functional Analysis

- **Bounded operator:** a linear mapping $L: X \to Y$ such that $||Lu||_Y \le K||u||_X$ for any $x \in X$.
- **2** Compact: a subset of M of X is compact if for any sequence $\{x_n\} \subset M$, there is a convergent subsequence with limit in M.
- Selatively compact: a subset of M of X is relatively compact (or precompact) if \overline{M} (the closure of M in X) is compact.
- Linear compact operator: a linear mapping $L: X \to Y$ is compact if for every bounded subset B of X, the image $L(B) = \{Lu : u \in B\}$ is a relatively compact subset of Y.
- S Linear Fredholm operator: A bounded linear mapping *L* from *X* to *Y* is Fredholm if the dimension of its kernel $\mathcal{N}(L)$ and the co-dimension of its range $\mathcal{R}(L)$ are both finite. The Fredholm index of *L* is defined to be $ind(L) = dim \mathcal{N}(L) - codim \mathcal{R}(L)$.
- Let L be a linear compact operator from X to Y. The spectrum of L is consisted of eigenvalues only.

Linear Functional Analysis

- **Bounded operator:** a linear mapping $L: X \to Y$ such that $||Lu||_Y \le K||u||_X$ for any $x \in X$.
- **2** Compact: a subset of M of X is compact if for any sequence $\{x_n\} \subset M$, there is a convergent subsequence with limit in M.
- Selatively compact: a subset of M of X is relatively compact (or precompact) if \overline{M} (the closure of M in X) is compact.
- Linear compact operator: a linear mapping $L: X \to Y$ is compact if for every bounded subset B of X, the image $L(B) = \{Lu : u \in B\}$ is a relatively compact subset of Y.
- S Linear Fredholm operator: A bounded linear mapping *L* from *X* to *Y* is Fredholm if the dimension of its kernel $\mathcal{N}(L)$ and the co-dimension of its range $\mathcal{R}(L)$ are both finite. The Fredholm index of *L* is defined to be $ind(L) = dim \mathcal{N}(L) - codim \mathcal{R}(L)$.
- Let L be a linear compact operator from X to Y. The spectrum of L is consisted of eigenvalues only.
- Let L be a linear compact operator from X to X. Then I L is a linear Fredholm operator with index 0.

Elliptic Operators

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Consider the Possion's equation

$$-\Delta u(x) = f(x), x \in \Omega, u(x) = 0, x \in \partial \Omega.$$

() $-\Delta$ is a linear operator, but it is NOT bounded since it has a sequence of eigenvalues ρ_i which tend to ∞ .

Elliptic Operators

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Consider the Possion's equation

$$-\Delta u(x) = f(x), x \in \Omega, u(x) = 0, x \in \partial \Omega.$$

() $-\Delta$ is a linear operator, but it is NOT bounded since it has a sequence of eigenvalues ρ_i which tend to ∞ .

Solution For every $f \in L^{p}(\Omega)$, p > 1, Possion's equation has a unique solution $u \in W^{2,p}(\Omega) \cap W_{0}^{1,p}(\Omega)$, and $||u||_{W^{2,p}} \leq c||f||_{L^{p}}$. (L^p estimate)

Elliptic Operators

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Consider the Possion's equation

$$-\Delta u(x) = f(x), x \in \Omega, u(x) = 0, x \in \partial \Omega.$$

() $-\Delta$ is a linear operator, but it is NOT bounded since it has a sequence of eigenvalues ρ_i which tend to ∞ .

- **2** For every $f \in L^{p}(\Omega)$, p > 1, Possion's equation has a unique solution $u \in W^{2,p}(\Omega) \cap W_{0}^{1,p}(\Omega)$, and $||u||_{W^{2,p}} \leq c||f||_{L^{p}}$. (L^{p} estimate)
- So For every $f \in C^{\alpha}(\overline{\Omega})$, $\alpha \in (0, 1)$, Possion's equation has a unique solution $u \in C_0^{2,\alpha}(\overline{\Omega})$, and $||u||_{C^{2,\alpha}} \leq c||f||_{C^{\alpha}}$. (Schauder estimate)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Elliptic Operators

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Consider the Possion's equation

$$-\Delta u(x) = f(x), x \in \Omega, u(x) = 0, x \in \partial \Omega.$$

() $-\Delta$ is a linear operator, but it is NOT bounded since it has a sequence of eigenvalues ρ_i which tend to ∞ .

- **2** For every $f \in L^{p}(\Omega)$, p > 1, Possion's equation has a unique solution $u \in W^{2,p}(\Omega) \cap W_{0}^{1,p}(\Omega)$, and $||u||_{W^{2,p}} \leq c||f||_{L^{p}}$. (L^p estimate)
- So For every $f \in C^{\alpha}(\overline{\Omega})$, $\alpha \in (0, 1)$, Possion's equation has a unique solution $u \in C_0^{2,\alpha}(\overline{\Omega})$, and $||u||_{C^{2,\alpha}} \leq c||f||_{C^{\alpha}}$. (Schauder estimate)
- $-\Delta$ is an invertible linear operator. Let $K = (-\Delta)^{-1}$. Then $K : L^p(\Omega) \to W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ or $K : C^{\alpha}(\overline{\Omega}) \to C_0^{2,\alpha}(\overline{\Omega})$ is a bounded linear operator. So $(-\Delta)^{-1}$ is bounded.

Elliptic Operators

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Consider the Possion's equation

$$-\Delta u(x) = f(x), x \in \Omega, u(x) = 0, x \in \partial \Omega.$$

- **()** $-\Delta$ is a linear operator, but it is NOT bounded since it has a sequence of eigenvalues ρ_i which tend to ∞ .
- **2** For every $f \in L^{p}(\Omega)$, p > 1, Possion's equation has a unique solution $u \in W^{2,p}(\Omega) \cap W_{0}^{1,p}(\Omega)$, and $||u||_{W^{2,p}} \leq c||f||_{L^{p}}$. (L^{p} estimate)
- So For every $f \in C^{\alpha}(\overline{\Omega})$, $\alpha \in (0, 1)$, Possion's equation has a unique solution $u \in C_0^{2,\alpha}(\overline{\Omega})$, and $||u||_{C^{2,\alpha}} \leq c||f||_{C^{\alpha}}$. (Schauder estimate)
- O → is an invertible linear operator. Let K = (-Δ)⁻¹. Then
 K : L^p(Ω) → W^{2,p}(Ω) ∩ W^{1,p}₀(Ω) or K : C^α(Ω) → C^{2,α}₀(Ω) is a bounded linear
 operator. So (-Δ)⁻¹ is bounded.
- So The inclusion mapping $i: W^{2,p}(\Omega) \to L^p(\Omega)$ or $i: C_0^{2,\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$ (defined by i(x) = x) is a linear compact mapping.

New Theorem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Elliptic Operators

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary. Consider the Possion's equation

$$-\Delta u(x) = f(x), x \in \Omega, u(x) = 0, x \in \partial \Omega.$$

- **()** $-\Delta$ is a linear operator, but it is NOT bounded since it has a sequence of eigenvalues ρ_i which tend to ∞ .
- **2** For every $f \in L^{p}(\Omega)$, p > 1, Possion's equation has a unique solution $u \in W^{2,p}(\Omega) \cap W_{0}^{1,p}(\Omega)$, and $||u||_{W^{2,p}} \leq c||f||_{L^{p}}$. (L^{p} estimate)
- So For every $f \in C^{\alpha}(\overline{\Omega})$, $\alpha \in (0, 1)$, Possion's equation has a unique solution $u \in C_0^{2,\alpha}(\overline{\Omega})$, and $||u||_{C^{2,\alpha}} \leq c||f||_{C^{\alpha}}$. (Schauder estimate)
- O → is an invertible linear operator. Let K = (-Δ)⁻¹. Then
 K : L^p(Ω) → W^{2,p}(Ω) ∩ W^{1,p}₀(Ω) or K : C^α(Ω) → C^{2,α}₀(Ω) is a bounded linear
 operator. So (-Δ)⁻¹ is bounded.
- So The inclusion mapping $i: W^{2,p}(\Omega) \to L^p(\Omega)$ or $i: C_0^{2,\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$ (defined by i(x) = x) is a linear compact mapping.
- **i** Hence $(-\Delta)^{-1} = i \circ K : L^p(\Omega) \to L^p(\Omega) \ (C^{\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega}))$ is a linear compact operator.

Nonlinear Mappings

Compact mapping: a mapping $F : X \to Y$ is compact if F is continuous, and for every bounded subset B of X, the image $F(B) = \{F(u) : u \in B\}$ is a relatively compact subset of Y.

Nonlinear Mappings

- Compact mapping: a mapping $F : X \to Y$ is compact if F is continuous, and for every bounded subset B of X, the image $F(B) = \{F(u) : u \in B\}$ is a relatively compact subset of Y.
- If $F: X \to Y$ is a compact mapping, and F is differentiable, then $F'(x_0): X \to Y$ is a linear compact mapping.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Nonlinear Mappings

- Compact mapping: a mapping $F : X \to Y$ is compact if F is continuous, and for every bounded subset B of X, the image $F(B) = \{F(u) : u \in B\}$ is a relatively compact subset of Y.
- If $F: X \to Y$ is a compact mapping, and F is differentiable, then $F'(x_0): X \to Y$ is a linear compact mapping.
- **§** Fredholm mapping: let Ω be an open subset of X. A differentiable mapping $F: \Omega \to Y$ is Fredholm if $F'(x_0): X \to Y$ is Fredholm for any $x_0 \in \Omega$.
- If $G: X \to X$ is a linear compact mapping, then $I G: X \to X$ is a linear Fredholm operator.

Nonlinear Mappings

- Compact mapping: a mapping $F : X \to Y$ is compact if F is continuous, and for every bounded subset B of X, the image $F(B) = \{F(u) : u \in B\}$ is a relatively compact subset of Y.
- If $F: X \to Y$ is a compact mapping, and F is differentiable, then $F'(x_0): X \to Y$ is a linear compact mapping.
- **§** Fredholm mapping: let Ω be an open subset of X. A differentiable mapping $F: \Omega \to Y$ is Fredholm if $F'(x_0) : X \to Y$ is Fredholm for any $x_0 \in \Omega$.
- If $G : X \to X$ is a linear compact mapping, then $I G : X \to X$ is a linear Fredholm operator.

Let *L* be a linear compact operator on *X*. From Riesz-Schauder theory, the set of eigenvalues of *L* is at most countably many, and the only possible limit point is $\lambda = 0$. For any eigenvalue λ of *L*, the subspace

$$X_{\lambda} = \bigcup_{n=1}^{\infty} \{ u \in X : (L - \lambda I)^n u = 0 \}$$

is finite dimensional, and $dim(X_{\lambda})$ is the algebraic multiplicity of the eigenvalue λ . The geometric multiplicity of λ is defined as $dim\{u \in X : (L - \lambda I)u = 0\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Krasnoselski-Rabinowitz Global Bifurcation Theorem

Consider

$$F(\lambda, u) = u - \lambda L u - H(\lambda, u), \tag{1}$$

where $L: X \to X$ is a linear compact operator, and $H(\lambda, u)$ is compact on $U \subset \mathbb{R} \times X$ such that $||H(\lambda, u)|| = o(||u||)$ near u = 0 uniformly on bounded λ intervals. Note the conditions imply that $F_u(\lambda, 0) = I - \lambda L$, and if 0 is an eigenvalue of $F_u(\lambda_0, 0)$, then λ_0^{-1} must be an eigenvalue of the linear operator L. Define

$$S = \{(\lambda, u) \in U : F(\lambda, u) = 0, u \neq 0\}.$$

We say $(\lambda_0, 0)$ is a bifurcation point for the equation (1) if $(\lambda_0, 0) \in \overline{S}$ (\overline{S} is the closure of S).

Krasnoselski-Rabinowitz Global Bifurcation Theorem

Consider

$$F(\lambda, u) = u - \lambda L u - H(\lambda, u), \tag{1}$$

where $L: X \to X$ is a linear compact operator, and $H(\lambda, u)$ is compact on $U \subset \mathbb{R} \times X$ such that $||H(\lambda, u)|| = o(||u||)$ near u = 0 uniformly on bounded λ intervals. Note the conditions imply that $F_u(\lambda, 0) = I - \lambda L$, and if 0 is an eigenvalue of $F_u(\lambda_0, 0)$, then λ_0^{-1} must be an eigenvalue of the linear operator L. Define

$$S = \{(\lambda, u) \in U : F(\lambda, u) = 0, u \neq 0\}.$$

We say $(\lambda_0, 0)$ is a bifurcation point for the equation (1) if $(\lambda_0, 0) \in \overline{S}$ (\overline{S} is the closure of S).

Theorem 8.1. (Krasnoselski-Rabinowitz Global Bifurcation Theorem) [Rabinowitz, 1971, JFA] Let X be a Banach space, and let U be an open subset of $\mathbb{R} \times X$ containing $(\lambda_0, 0)$. Suppose that L is a linear compact operator on X, and $H(\lambda, u) : \overline{U} \to X$ is a compact operator such that $||H(\lambda, u)|| = o(||u||)$ as $u \to 0$ uniformly for λ in any bounded interval. If $1/\lambda_0$ is an eigenvalue of L with odd algebraic multiplicity, then $(\lambda_0, 0)$ is a bifurcation point. Moreover if C is the connected component of \overline{S} which contains $(\lambda_0, 0)$, then one of the following holds:

- (i) C is unbounded in U;
- (ii) $C \cap \partial U \neq \emptyset$; or
- (iii) C contains $(\lambda_i, 0) \neq (\lambda_0, 0)$, such that λ_i^{-1} is also an eigenvalue of L.

Leray-Schauder degree

Let X be a Banach space, and let U be an open bounded subset of X. Denote by $K(\overline{U})$ the set of compact operators from \overline{U} to X, and define

 $M = \{ (I - G, U, y) : U \subset X \text{ open bounded }, G \in K(\overline{U}), \text{ and } y \notin (I - G)(\partial U) \}.$

Then the Leray-Schauder degree $d: M \rightarrow \mathbf{Z}$ is a well-defined function, which satisfies the following properties:

- 1 d(I, U, y) = 1 if $y \in U$, and d(I, U, y) = 0 if $y \notin \overline{U}$;
- (Additivity) $d(I G, U, y) = d(I G, U_1, y) + d(I G, U_2, y)$ if U_1 and U_2 are disjoint open subsets of U so that $y \notin (I G)(\overline{U} \setminus (U_1 \bigcup U_2))$;
- (Homotopy invariance) Suppose that $h : [0,1] \times \overline{U} \to X$ is compact and $y : [0,1] \to X$ is continuous, and $y(t) \notin (I G)(\partial U)$, then $D(t) = d(I h(t, \cdot), U, y(t))$ is a constant independent of $t \in [0,1]$.
- (Existence) If $d(I G, U, y) \neq 0$, then there exists $u \in U$ such that u G(u) = y;
- **③** If for $G_1, G_2 \in K(\overline{U}), G_1(u) = G_2(u)$ for any $u \in \partial U$, then $d(I G_1, U, y) = d(I G_2, U, y)$.

Degree in finite dimensional spaces

For continuous $f: U \equiv [-1, 1] \to \mathbb{R}$, d(I - f, U, 0) can be defined by $d(I - f, U, 0) = sgn(f(-1)) \cdot sgn(f(1))$, where sgn(y) = y/|y|. Another definition is $d(I - f, U, 0) = \sum_{x \in U, x = f(x)} f'(x)$ for function f satisfying $f'(x) \neq 0$ whenever f(x) = x. Here we must have $x \neq f(x)$ for $x = \pm 1$.

For continuous $f: U(\subset \mathbb{R}^n) \to \mathbb{R}^n \ (n \ge 2)$, $d(I - f, U, 0) = \sum_{x \in U, x = f(x)} sgn(Det(f'(x)))$ for function f satisfying $Det(f'(x)) \neq 0$ whenever f(x) = x. Here we must have $x \neq f(x)$ for $x \in \partial U$.

Toy proof: Let $f(x, y) = (x^2, y^2)$. Prove that f(x, y) = (3, 4) has a positive solution (x_1, y_1) .

1. Let $U = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0, x^2 + y^2 = 6^2\}$. 2. Prove that $G_t(x, y) = I(x, y) - tf(x, y) = (x - tx^2, y - ty^2)$ has no solution $(x_t, y_t) \in \partial U$ satisfying $G_t(x_t, y_t) = (3, 4)$. 3. $G_0(x, y) = I(x, y) = (x, y)$ has a solution $(x_0, y_0) = (3, 4) \in U$ such that $G_0(x, y) = (3, 4)$ since $(3, 4) \in U$. 4. $d(G_0, U, (3, 4)) = 1$ since Det(I) = 1 and (3, 4) is the unique solution of $G_0(x, y) = (3, 4)$. 5. $d(G_0, U, (3, 4)) = d(G_1, U, (3, 4))$ from the homotopy invariance property of Leray-Schauder degree, then $d(G_1, U, (3, 4)) = 1$. 6. Then $G_1(x, y) = (3, 4)$ has a solution in U.

Properties of Leray-Schauder degree

- If L is a linear compact operator on X, then d(I λL, B_R(0), 0) = (-1)^β, where B_R(v) is a ball centered at v with radius R, and β is the sum of algebraic multiplicity of eigenvalues μ of L satisfying λμ > 1.
- Suppose that $G \in K(\overline{U})$, $u_0 \in U$ and R > 0 such that u_0 is the unique solution satisfies u - G(u) = 0 in $B_R(u_0)$, then the derivative $G'(u_0) : X \to X$ is a linear compact operator; if $\lambda = 1$ is not an eigenvalue of $G'(u_0)$, then $d(I - G, B_R(u_0), 0) = d(I - G'(u_0), B_R(0), 0)$ for some sufficiently small R > 0(this number is also called fixed point index of u_0 with respect to G).

Example: $\Delta u + \lambda f(u) = 0, x \in \Omega, u = 0, x \in \partial \Omega.$

Suppose that f(0) = 0. What is the fixed point index of u = 0?

1. $K: (-\Delta)^{-1}: C^{\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$ is well defined as K(f) = u that $u \in C_{0}^{2,\alpha}(\overline{\Omega})$ such that $-\Delta u = f$ for any $f \in C^{\alpha}(\overline{\Omega})$. 2. For $H(\lambda, u) = u - \lambda K(f(u)) = 0$, $H_{u}(\lambda, u)[w] = w - \lambda K(f'(u))[w]$ and $H_{u}(\lambda, 0)[w] = w - \lambda K(f'(0))[w]$. 3. For $L[w] = K(f'(0))[w] = \mu w$, we have $\mu \lambda \Delta w + \lambda f'(0)w = 0$ or $\Delta w + (\mu \lambda)^{-1} \lambda f'(0)w = 0$. 4. So for $\mu \lambda > 1$, let $\rho_k < \lambda f'(0) < \rho_{k+1}$ then the fixed point index of 0 is $\sum_{j=1}^{k} M(\rho_k)$, where ρ_k is the k-th eigenvalue of $\Delta \phi + \rho \phi = 0$, and $M(\rho_k)$ is the algebraic multiplicity of ρ_k .

Krasnoselski Bifurcation Theorem

[Krasnoselski, 1964] Let X be a Banach space, and let U be an open subset of $\mathbb{R} \times X$ containing $(\lambda_0, 0)$. Suppose that L is a linear compact operator on X, and $H(\lambda, u) : \overline{U} \to X$ is a compact operator such that $||H(\lambda, u)|| = o(||u||)$ as $u \to 0$ uniformly for λ in any bounded interval. If $1/\lambda_0$ is an eigenvalue of L with odd algebraic multiplicity, then $(\lambda_0, 0)$ is a bifurcation point.

Proof. Suppose not, then there exists a R > 0 such that in the region $O = \{(\lambda, u) : |\lambda - \lambda_0| \le R, |u| \le R\}$, the only solutions of $F(\lambda, u) = 0$ are $\{(\lambda, 0) : |\lambda - \lambda_0| \le R\}$. We choose λ_-, λ_+ so that $\lambda_0 - R < \lambda_- < \lambda_0 < \lambda_+ < \lambda_0 + R$. From the homotopy invariance of the Leray-Schauder degree,

$$d(F(\lambda_-,\cdot),B_{\rho}(0),0)=d(F(\lambda_+,\cdot),B_{\rho}(0),0),$$

for any $\rho \in (0, R)$. For ρ small enough, $d(F(\lambda_{\pm}, \cdot), B_{\rho}(0), 0) = d(I - \lambda_{\pm}L, B_{\rho}(0), 0)$. But on the other hand,

$$|d(I-\lambda_+L,B_
ho(0),0)-d(I-\lambda_-L,B_
ho(0),0)|=1,$$

since λ_0^{-1} is the only eigenvalue of L in between λ_-^{-1} and λ_+^{-1} , and the algebraic multiplicity of λ_0^{-1} is odd. That is a contradiction. Thus $(\lambda_0, 0)$ is a bifurcation point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Rabinowitz Global Bifurcation Theorem

If C is the connected component of \overline{S} which contains $(\lambda_0, 0)$, then one of the following holds:

- (i) C is unbounded in U;
- (ii) $C \cap \partial U \neq \emptyset$; or

(iii) C contains $(\lambda_i, 0) \neq (\lambda_0, 0)$, such that λ_i^{-1} is also an eigenvalue of L.

Separation Lemma. Let (M, d) be a compact metric space, and let A and B be close subsets of M such that $A \cap B = \emptyset$. Then there exist compact subsets M_A and M_B of M such that $M_A \bigcup M_B = M$, $M_A \cap M_B = \emptyset$, $M_A \supset A$, and $M_B \supset B$.

Basic

Proof (1)

Proof. we assume the stated alternatives do not hold, then *C* is bounded in *U*, $C \cap \partial U = \emptyset$, and $C \cap \{(\lambda, 0) \in U\} = \{(\lambda_0, 0)\}$. From the compactness of *L* and *H*, *C* is compact since it is bounded. Let $C_{\varepsilon} = \{(\lambda, u) \in U : dist((\lambda, u), C) < \varepsilon\}$. Let A = C and $B = S \cap \partial C_{\varepsilon}$. From Separation Lemma, there exists compact M_A and M_B such that $M_A \cap M_B = \emptyset$, $M_A \cup M_B = S \cap \overline{C_{\varepsilon}}$, $M_A \supset C$ and $M_B \supset S \cap \partial C_{\varepsilon}$. Hence there exists an open bounded $U_0 = M_A$ such that

$$C \subset U_0 \subset \overline{U_0} \subset U$$
, and $\overline{S} \bigcap \partial U_0 = \emptyset$. (2)

Define $U_0(\lambda) = \{u \in X : (\lambda, u) \in U_0\}$ for $\lambda \in I$ where $I = \{\lambda \in \mathbb{R} : (\{\lambda\} \times X) \cap U_0 \neq \emptyset\}$. Then $D(\lambda) = d(F(\lambda, \cdot), U_0(\lambda), 0)$ is constant for $\lambda \in I$ since $\overline{S} \cap \partial U_0 = \emptyset$ and the homotopy invariance of $d(F, \Omega, 0)$, where $d(F(\lambda, \cdot), \Omega, 0)$ is the Leray-Schauder degree.

Since $(\lambda_0, 0)$ is the only intersection of C with the line $\{(\lambda, 0)\}$, U_0 can be chosen so that $U_0 \cap \{(\lambda, 0) \in U\} = [\lambda_0 - \delta, \lambda_0 + \delta] \times \{0\}$, and no any point λ in $[\lambda_0 - 2\delta, \lambda_0 + 2\delta]$ satisfies that λ^{-1} is an eigenvalue of L. We choose λ_{\pm} which satisfy $\lambda_0 - \delta < \lambda_- < \lambda_0 < \lambda_+ < \lambda_0 + \delta$. We choose $\rho > 0$ small enough so that $F(\lambda, u) \neq 0$ for $\lambda \in [\lambda_+, \lambda_0 + 2\delta]$ and $u \in B_\rho(0) \setminus \{0\}$, and we also choose $\lambda^* > \lambda_0 + 2\delta$ such that $U_0(\lambda^*) = \emptyset$.

Basic

Application

Proof (2)

From the homotopy invariance of the Leray-Schauder degree on $U_0\backslash([\lambda_+,\lambda^*]\times\overline{B}_\rho(0)),$ we have

$$d(F(\lambda_+,\cdot), U_0(\lambda_+) \setminus \overline{B}_{\rho}(0), 0) = d(F(\lambda^*, \cdot), U_0(\lambda^*), 0) = 0.$$
(3)

For the same argument,

$$d(F(\lambda_{-},\cdot), U_0(\lambda_{-}) \setminus \overline{B}_{\rho}(0), 0) = 0.$$
(4)

On the other hand, from the additivity of the Leray-Schauder degree,

$$D(\lambda_{\pm}) = d(F(\lambda_{\pm}, \cdot), U_0(\lambda_{\pm}) \setminus \overline{B}_{\rho}(0), 0) + d(F(\lambda_{\pm}, \cdot), B_{\rho}(0), 0).$$
(5)

Hence we obtain

$$d(F(\lambda_{+},\cdot),B_{\rho}(0),0) = d(F(\lambda_{-},\cdot),B_{\rho}(0),0).$$
(6)

For $\rho > 0$ small enough,

$$d(F(\lambda_{\pm}, \cdot), B_{\rho}(0), 0) = d(I - \lambda_{\pm}L, B_{\rho}(0), 0).$$
(7)

From the formula of Leray-Schauder degree of $I - \lambda L$, we have

$$|d(I - \lambda_{+}L, B_{\rho}(0), 0) - d(I - \lambda_{-}L, B_{\rho}(0), 0)| = 1,$$
(8)

But (8) is a contradiction with (7). Hence the alternatives in the theorem hold.

(日)

Unilateral bifurcation theorem

[Rabinowitz, 1971, JFA], [Dancer, 1974, Indiana Math J], [Lopez-Gomez, 2000, book] Theorem 8.2. Let X be a Banach space, and let U be an open subset of $\mathbb{R} \times X$ containing $(\lambda_0, 0)$. Suppose that L is a linear compact operator on X, and $H(\lambda, u) : U \to X$ is a compact operator such that $||H(\lambda, u)|| = o(||u||)$ as $u \to 0$ uniformly for λ in any bounded interval. Suppose that $1/\lambda_0$ is an eigenvalue of L with algebraic multiplicity 1. We define $\Gamma_+ = \{(\lambda(s), u(s)) : s \in (0, \epsilon)\}$ and $\Gamma_- = \{(\lambda(s), u(s)) : s \in (-\epsilon, 0)\}$. Let C be a connected component of \overline{S} where $S = \{(\lambda, u) \in V : H(\lambda, u) = 0, u \neq 0\}$ containing $(\lambda_0, 0)$. Let C⁺ (resp. C⁻) be the connected component of $C \setminus \Gamma_-$ which contains Γ_+ (resp. the connected component of $C \setminus \Gamma_+$ which contains Γ_-). Then each of the sets C⁺ and C⁻ satisfies one of the following:

(i) it is unbounded;

(ii) it contains a point $(\lambda_*, 0)$ with $\lambda_* \neq \lambda_0$; or

(iii) it contains a point (λ, z) , where $z \neq 0$ and $z \in Z$ which any complement of $span\{w_0\} = \mathcal{N}(H_u(\lambda_0, 0))$ in X.

Basic	Global Bifurcation Theorem	Application	New Theorem

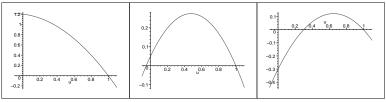
ł

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Application 1: Reaction-diffusion population model

$$\begin{cases} \frac{\partial u}{\partial t} = \mathcal{D}\Delta u + uf(x, u), & x \in \Omega, \ t > 0, \\ u(x, t) = 0, & x \in \partial\Omega, \ t > 0, \\ u(x, 0) = u_0(x) \ge 0, & x \in \Omega. \end{cases}$$

u(x, t): population density at position x and time t Ω : a bounded habitat, u = 0 on boundary $\partial \Omega$: hostile exterior environment f(x, u): heterogeneous growth rate per capita



f(x, u): (a) logistic; (b) weak Allee effect; (c) strong Allee effect.

Bifurcation problem

$$\Delta u + \lambda u f(x, u) = 0, x \in \Omega, u = 0, x \in \partial \Omega.$$

u = 0 is always a solution for any $\lambda > 0$, $\lambda_1(f, \Omega)$ (minimal patch size) is the principal eigenvalue of $\Delta \psi + \lambda f(x, 0)\psi = 0$, $x \in \Omega$, $\psi = 0$, $x \in \partial \Omega$. We consider positive solutions only.

(日)

Bifurcation problem

$$\Delta u + \lambda u f(x, u) = 0, x \in \Omega, u = 0, x \in \partial \Omega.$$

u = 0 is always a solution for any $\lambda > 0$, $\lambda_1(f, \Omega)$ (minimal patch size) is the principal eigenvalue of $\Delta \psi + \lambda f(x, 0)\psi = 0$, $x \in \Omega$, $\psi = 0$, $x \in \partial \Omega$. We consider positive solutions only.

Logistic case: a supercritical transcritical bifurcation occurs at $\lambda_1(f, \Omega)$; for $\lambda > \lambda_1$, there is a unique steady state which is globally stable. [Cantrell-Cosner, 2003]

Bifurcation problem

$$\Delta u + \lambda u f(x, u) = 0, x \in \Omega, u = 0, x \in \partial \Omega.$$

u = 0 is always a solution for any $\lambda > 0$, $\lambda_1(f, \Omega)$ (minimal patch size) is the principal eigenvalue of $\Delta \psi + \lambda f(x, 0)\psi = 0$, $x \in \Omega$, $\psi = 0$, $x \in \partial \Omega$. We consider positive solutions only.

Logistic case: a supercritical transcritical bifurcation occurs at $\lambda_1(f, \Omega)$; for $\lambda > \lambda_1$, there is a unique steady state which is globally stable. [Cantrell-Cosner, 2003]

Weak Allee effect case:

(A) a subcritical (backward) transcritical bifurcation occurs at $\lambda_1(f, \Omega) > 0$; (B) for $\lambda \in (\lambda_*, \lambda_1)$, there are at least two steady state solutions (bistability); (C) a saddle-node bifurcation occurs at λ_* (at least when Ω is a ball); (D) for λ large, it is similar to logistic case. [Shi-Shivaji, JMB, 2006]

The solution curve near $(\lambda, u) = (\lambda_1, 0)$ is $\{(\lambda(s), u(s)) : 0 < s < \delta\}$, where $\delta > 0$ is a constant, $\lambda(s) = \lambda_1(f, \Omega) + \eta(s)$, $u(s) = s\varphi_1 + sv(s)$, $0 < s < \delta$, $\eta(0) = 0$ and v(0) = 0, and

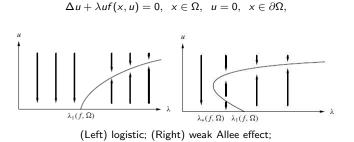
$$\eta'(0) = -2[\lambda_1(f,\Omega)]^2 \frac{\int_{\Omega} f_u(x,0)\varphi_1^3(x)dx}{\int_{\Omega} |\nabla\varphi_1(x)|^2 dx}$$

Allee effect caused by diffusion (ODE with weak Allee effect is similar to logistic case); danger of hysteresis. [Jiang-Shi, book chapter, 2009]

ヘロト 人間ト ヘヨト ヘヨト

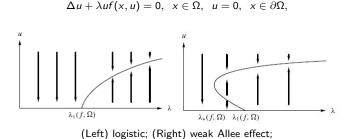
3

Bifurcation Diagrams



Proposition: the bifurcating branch belongs to a global continuum in $C^{\alpha}(\overline{\Omega})$.

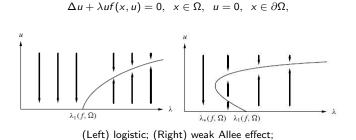
Bifurcation Diagrams



Proposition: the bifurcating branch belongs to a global continuum in $C^{\alpha}(\overline{\Omega})$.

1. $K = (-\Delta)^{-1} : C^{\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$ is well defined as K(f) = u that $u \in C_0^{2,\alpha}(\overline{\Omega})$ such that $-\Delta u = f$ for any $f \in C^{\alpha}(\overline{\Omega})$.

Bifurcation Diagrams



Proposition: the bifurcating branch belongs to a global continuum in $C^{\alpha}(\overline{\Omega})$.

1. $K = (-\Delta)^{-1} : C^{\alpha}(\overline{\Omega}) \to C^{\alpha}(\overline{\Omega})$ is well defined as K(f) = u that $u \in C_0^{2,\alpha}(\overline{\Omega})$ such that $-\Delta u = f$ for any $f \in C^{\alpha}(\overline{\Omega})$. 2. We apply K to the equation, and we consider

$$G(\lambda, u) \equiv u - \lambda Kuf(x, u) = 0,$$

where $u \in C^{\alpha}(\overline{\Omega})$.

Global Branch

• Let $E = C^{\alpha}(\overline{\Omega})$, and let $S = \{(\lambda, u) \in \mathbb{R}^+ \times E : G(\lambda, u) = 0, u \neq 0\}$. Then there exists a a connected component C of \overline{S} such that $(\lambda_1, 0) \in C$.

Global Branch

- Let $E = C^{\alpha}(\overline{\Omega})$, and let $S = \{(\lambda, u) \in \mathbb{R}^+ \times E : G(\lambda, u) = 0, u \neq 0\}$. Then there exists a a connected component C of \overline{S} such that $(\lambda_1, 0) \in C$.
- 2 Let $E^+ = \{u \in E : u(x) \ge 0 \text{ in } \Omega\}$. Then $C_+ = C \cap (\mathbb{R}^+ \times E^+)$ is unbounded.

Global Branch

- **(**) Let $E = C^{\alpha}(\overline{\Omega})$, and let $S = \{(\lambda, u) \in \mathbb{R}^+ \times E : G(\lambda, u) = 0, u \neq 0\}$. Then there exists a connected component C of \overline{S} such that $(\lambda_1, 0) \in C$.
- 2 Let $E^+ = \{ u \in E : u(x) \ge 0 \text{ in } \Omega \}$. Then $C_+ = C \cap (\mathbb{R}^+ \times E^+)$ is unbounded.
- If f(x, u) satisfies f(x, u) < 0 for u > 1, then 0 < u(x) < 1 for $x \in \Omega$, where u is any positive solution of

$$\Delta u + \lambda u f(x, u) = 0, x \in \Omega, u = 0, x \in \partial \Omega$$

Therefore the projection of \mathcal{C}_+ to λ -axis is unbounded in \mathbb{R}^+ , and hence it contains (λ_1, ∞) . This proves the existence of a positive solution for any $\lambda > \lambda_1$.

Application

New Theorem

Uniqueness in logistic case

Assume $f_u(x, u) \leq 0$ (logistic case). A positive solution to

$$\Delta u + \lambda u f(x, u) = 0, x \in \Omega, u = 0, x \in \partial \Omega,$$

is stable if all eigenvalues μ_i of

$$-\Delta\phi - \lambda f(x, u)\phi - \lambda u f_u(x, u)\phi = \mu\phi, \ x \in \Omega, \ \phi = 0, \ x \in \partial\Omega,$$

are positive.

From *u*'s equation, *u* is the principal eigenfunction of the eigenvalue problem (with $\eta = 0$):

$$-\Delta\psi - \lambda f(x, u)\psi = \eta\psi, \ x \in \Omega, \ \psi = 0, \ x \in \partial\Omega,$$

But

$$\begin{split} \mu_{1} &= \min_{\phi \in W_{0}^{1,2}(\Omega), \ \phi \neq 0} \frac{\int_{\Omega} \left(|\nabla \phi|^{2} - \lambda f(x, u) \phi^{2} - \lambda u f_{u}(x, u) \phi^{2} \right) dx}{\int_{\Omega} \phi^{2} dx} \\ &> \min_{\psi \in W_{0}^{1,2}(\Omega), \ \psi \neq 0} \frac{\int_{\Omega} \left(|\nabla \psi|^{2} - \lambda f(x, u) \psi^{2} \right) dx}{\int_{\Omega} \psi^{2} dx} = \eta_{1} = 0, \end{split}$$

So any positive solution u is stable, hence non-degenerate, $\Box \rightarrow \langle B \rangle \rightarrow \langle$

Application 2: 1-D scalar problem

[Rabinowitz, 1972, book chapter] Consider

$$\begin{split} -(p(x)u')' + q(x)u &= \lambda a(x)u + \lambda F(x, u, u'), \quad 0 < x < \pi \\ a_0 u(0) + b_0 u'(0) &= 0, \quad a_1 u(1) + b_1 u'(1) = 0, \end{split}$$

where a_0, b_0, a_1, b_1 satisfy $(a_0^2 + b_0^2)(a_1^2 + b_1^2) \neq 0$. Let *E* be the set of functions in $C^1[0, \pi]$ satisfying boundary condition. Let S_k^+ be the set of $\phi \in E$ such that ϕ has exactly k - 1 simple zeros in $(0, \pi)$, all zeros of ϕ in $[0, \pi]$ are simple, and ϕ is positive near x = 0. Set $S_k^- = -S_k^+$ and $S_k = S_k^+ \bigcup S_k^-$. Let *S* be the closure in $\mathbb{R} \times E$ of the set of nontrivial solutions of the equation. It is known that the eigenvalue problem

$$\begin{aligned} &-(p(x)\phi')'+q(x)\phi=\lambda a(x)\phi, \quad 0< x<\pi, \\ &a_0\phi(0)+b_0\phi'(0)=0, \quad a_1\phi(1)+b_1\phi'(1)=0, \end{aligned}$$

has a sequence of eigenvalues $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \rightarrow \infty$.

Application 2: 1-D scalar problem

[Rabinowitz, 1972, book chapter] Consider

$$\begin{aligned} &-(p(x)u')'+q(x)u=\lambda a(x)u+\lambda F(x,u,u'), \ \ 0< x<\pi\\ &a_0u(0)+b_0u'(0)=0, \ \ a_1u(1)+b_1u'(1)=0, \end{aligned}$$

where a_0, b_0, a_1, b_1 satisfy $(a_0^2 + b_0^2)(a_1^2 + b_1^2) \neq 0$. Let *E* be the set of functions in $C^1[0, \pi]$ satisfying boundary condition. Let S_k^+ be the set of $\phi \in E$ such that ϕ has exactly k - 1 simple zeros in $(0, \pi)$, all zeros of ϕ in $[0, \pi]$ are simple, and ϕ is positive near x = 0. Set $S_k^- = -S_k^+$ and $S_k = S_k^+ \bigcup S_k^-$. Let *S* be the closure in $\mathbb{R} \times E$ of the set of nontrivial solutions of the equation. It is known that the eigenvalue problem

$$\begin{split} &-(p(x)\phi')'+q(x)\phi=\lambda a(x)\phi, \quad 0< x<\pi,\\ &a_0\phi(0)+b_0\phi'(0)=0, \quad a_1\phi(1)+b_1\phi'(1)=0, \end{split}$$

has a sequence of eigenvalues $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \rightarrow \infty$.

Theorem. If F(x, u, u') = o(|u| + |u'|) near (u, u') = (0, 0), then for each positive integer k > 0, S contains a connected component C_k , which meets $(\lambda_k, 0)$ and is unbounded in $\mathbb{R} \times S_k$.

In particular, if the equation has only trivial solutions when $\lambda > 0$, and all solutions are uniformly bounded, then for $\lambda > \lambda_k$, the problem has at least k distinct solutions, with one each in S_k .

Application 3: Global Turing Bifurcation

Theorem: Suppose that $f(u_0, v_0) = g(u_0, v_0) = 0$, and at (u_0, v_0) , (A) $f_u < 0$ (inhibitor), $g_v > 0$ (activator); (B) $D_1 = f_u g_v - f_v g_u > 0$ and $f_u + g_v < 0$. For fixed $\lambda > 0$, if $d_k(\lambda) \equiv \frac{\lambda [g_v k^2 - \lambda D_1]}{k^2 (k^2 - \lambda f_u)} \neq d_j(\lambda)$ for any $j \neq k$, (i) $d = d_v$ is a bifurcation point where a continuum Σ of non trivial

(i) $d = d_k$ is a bifurcation point where a continuum Σ of non-trivial solutions of

$$\begin{cases} u_{xx} + \lambda f(u, v) = 0, & dv_{xx} + \lambda g(u, v) = 0, \\ u_x(0) = u_x(\ell \pi) = v_x(0) = v_x(\ell \pi) = 0, \end{cases} \quad x \in (0, \ell \pi),$$

bifurcates from the line of trivial solutions (d, u_0, v_0) ;

(ii) The continuum Σ is either unbounded in the space of (d, u, v), or it connects to another (d_j(λ), u₀, v₀);
(iii) Σ is locally a curve near (d_k(λ), u₀, v₀) in form of (d, u, v) = (d(s), u₀ + sA cos(kx) + o(s), v₀ + sB cos(kx) + o(s)), |s| < δ, and d'(0) = 0 thus the bifurcation is of pitchfork type (d''(0) can be computed in term of D³(f, g)).

[Rabinowitz, 1971, JFA],

[Shi-Wang, 2009, JDE] [Shi, 2009, Frontier Math. China]

Turing bifurcation in CIMA model

$$\begin{cases} u_t = u_{xx} + 5\alpha - u - \frac{4uv}{1+u^2}, & x \in (0, \ell\pi), \ t > 0, \\ v_t = m \left(dv_{xx} + u - \frac{uv}{1+u^2} \right), & x \in (0, \ell\pi), \ t > 0, \\ u_x(x, t) = v_x(x, t) = 0, & x = 0, \ell\pi, \ t > 0, \\ u(x, 0) = u_0(x), \ v(x, 0) = v_0(x), & x \in (0, \ell\pi), \end{cases}$$
(9)

Constant equilibrium:
$$(u_*, v_*) = (\alpha, 1 + \alpha^2)$$

Jacobian at (u_*, v_*) : $J = \frac{1}{1 + \alpha^2} \begin{pmatrix} 3\alpha^2 - 5 & -4\alpha \\ 2\alpha^2 & -\alpha \end{pmatrix}$.

Assume 0 < 3 $lpha^2$ - 5 < lpha (or 1.291 < lpha < 1.468)

$$f_u > 0, \ g_v < 0, \ D_1 = f_u g_v - f_v g_u > 0 \ \text{and} \ f_u + g_v < 0.$$

Bifurcation points: $d_j = \frac{\alpha}{1 + \alpha^2} \cdot \frac{5 + \lambda_j}{\lambda_j (f_0 - \lambda_j)}$, where $f_0 = \frac{3\alpha^2 - 5}{1 + \alpha^2}$, and $\lambda_j = j^2/\ell^2$. [Ni-Tang, 2005] also true for higher dimensions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Global Turing Bifurcation for CIMA reaction

[Ni-Tang, 2005] Trans. Amer. Math. Soc.: (A) For d > 0 small, (u_*, v_*) is the only steady state solution; (B) All non-negative steady state solution satisfies $0 < u(x) < 5\alpha$, $0 < v(x) < 1 + 25\alpha^2$.

[Jang-Ni-Tang, 2004] J. Dynam. Diff. Equa.:

(C) Each connected component bifurcated from (d_j, u_*, v_*) is unbounded in the space of (d, u, v), and its projection over *d*-axis covers (d_j, ∞) . (D) For each $d > \min\{d_j\}$ and $d \neq d_k$, there exists a non-constant steady state solution.

[Jin-Shi-Wei-Yi, to appear] Bifurcation with α as parameter.

Bifurcation in CIMA system

$$\begin{cases} u_{xx} + 5\alpha - u - \frac{4uv}{1 + u^2} = 0, & x \in (0, \ell\pi), \\ dv_{xx} + u - \frac{uv}{1 + u^2} = 0, & x \in (0, \ell\pi), \\ u_x(0) = v_x(0) = u_x(\ell\pi) = v_x(\ell\pi) = 0. \end{cases}$$

 $D(\alpha, p) := d(1 + \alpha^2)p^2 - p[d(3\alpha^2 - 5) - \alpha] + 5\alpha = 0$

Bifurcation points: $(p = j^2/\ell^2)$, $\alpha(p) = \frac{p+5+\sqrt{(p+5)^2+4d^2p^2(3-p)(p+5)}}{2dp(3-p)}$. For $0 < j^2/\ell^2 < 3$, there are finitely many j points $\alpha_j^S = \alpha_j^S(d,\ell)$, $1 \le j \le n$, satisfying $\alpha_* < \alpha_1^S < \alpha_2^S < \cdots < \alpha_n^S < \infty$,

with $\alpha_j^{\mathsf{S}} = \alpha_2 (j^2/\ell^2)$, and $\alpha = \alpha_n^{\mathsf{S}}$ is a possible bifurcation point.

There exists a C[∞] smooth curve Γ_j of solutions bifurcating from
 (α, u, v) = (α_j^S, u_{αj}^S, v_{αj}^S), with Γ_j contained in a global branch C_j of solutions;
 Near (α, u, v) = (α_j^S, u_{αj}^S, v_{αj}^S), Γ_j = {(α_j(s), u_j(s), v_j(s)) : s ∈ (-ε, ε)}, where
 u_j(s) = α_j^S + sa_j cos(jx/ℓ) + sψ_{1,j}(s),
 v_j(s) = (1 + α_j^S)² + sb_j cos(jx/ℓ) + sψ_{2,j}(s) for s ∈ (-ε, ε) for some C[∞]
 smooth functions α_j, ψ_{1,j}, ψ_{2,j} such that α_j(0) = α_j^S and ψ_{1,j}(0) = ψ_{2,j}(0) = 0;
 Each C_j is unbounded: the projection of C_j on the α-axis contains (α_j^S, ∞).

Unbounded branches

Since $0 < u(x) < 5\alpha$ and $0 < v(x) < 1 + 25\alpha^2$, then \mathcal{C}_j must remain bounded for finite α . Suppose that the projection of \mathcal{C}_j in α -axis is bounded. Then \mathcal{C}_j must contain another bifurcation point $(\alpha_i^S, \alpha_i^S, 1 + (\alpha_i^S)^2)$ for some $i \neq j$. Indeed \mathcal{C}_j contains finitely many bifurcation points in form of $(\alpha_i^S, \alpha_i^S, 1 + (\alpha_i^S)^2)$, since there are only finitely $i \in \mathbb{N}$ such that $i^2/\ell^2 < 3$ for fixed $\ell > 0$. Among these finitely many α_i^S , there is one with largest index i_M . Notice that the equation is also well-defined for the interval $(0, \ell \pi / i_M)$, and the bifurcation points (depending on the length) have the relation

$$\alpha_{i_M}^{\mathcal{S}}(\ell\pi) = \alpha_2(i_M^2/\ell^2) = \alpha_1^{\mathcal{S}}(\ell\pi/i_M) := \alpha^M.$$

Hence α^M is also a bifurcation point for the equation with interval $(0, \ell \pi/i_M)$. From global bifurcation theorem, the global branch C_1^M bifurcating from $\alpha = \alpha^M$ for the equation with interval $(0, \ell \pi/i_M)$ is also unbounded or contains another bifurcation point. But any solution with interval $(0, \ell \pi/i_M)$ can be extended to $(0, \ell \pi)$ by reflection, hence that C_1^M is unbounded implies that C_j is unbounded, which contradicts our assumption. Or C_1^M contains another bifurcation point $\alpha^S_k(\ell \pi/i_M)$, but that will imply $\alpha^S_{ki_M}(\ell \pi) = \alpha^S_k(\ell \pi/i_M)$ is on the branch C_j , and clearly $ki_M > i_M$ since k > 1, which contradicts with the maximality of i_M . Therefore the projection of C_j in α -axis is not bounded.

The weakness of Rabinowitz Theorem

It requires strong compactness. For applications in PDEs, it usually requires to take inverse of Δ operators or more general elliptic operators. For some applications with cross-diffusion or nonlinear boundary conditions, taking inverse operators are not easy.

Cross-diffusion equation: [Shigesada-Kawasaki-Teramoto, 1979]

$$\begin{cases} \Delta[(1+\alpha v)u] + u(\lambda - u - bv) = 0, & x \in \Omega, \\ \Delta[(1+\beta u)v] + v(\mu + cu - v) = 0, & x \in \Omega, \\ u = v = 0, & x \in \partial\Omega \end{cases}$$

Problem with nonlinear boundary condition

$$\int u'' - f(u)v = 0, \qquad \qquad x \in (0,1),$$

$$\begin{cases} \lambda v'' - \chi(v\psi'(u)u')' + (kf(u) - \theta - \beta v)v = 0, & x \in (0,1), \\ u'(0) = 0, & u'(1) = h(1 - u(1)), \end{cases}$$

$$\left(\lambda v' - \chi v \psi'(u) u' = 0, \qquad x = 0, 1.\right.$$

◆□> ◆□> ◆三> ◆三> 三三 のへぐ

Global Bifurcation From Simple Eigenvalue

Theorem [Crandall-Rabinowitz, 1971, JFA]

Let $F : \mathbb{R} \times X \to Y$ be continuously differentiable. Suppose that $F(\lambda, u_0) = 0$ for $\lambda \in \mathbb{R}$, the partial derivative $F_{\lambda u}$ exists and is continuous. At (λ_0, u_0) , F satisfies

(F1) $dimN(F_u(\lambda_0, u_0)) = codimR(F_u(\lambda_0, u_0)) = 1$, and

(F3) $F_{\lambda u}(\lambda_0, u_0)[w_0] \notin R(F_u(\lambda_0, u_0))$, where $w_0 \in N(F_u(\lambda_0, u_0))$,

Then the solutions of $F(\lambda, u) = 0$ near (λ_0, u_0) consists precisely of the curves $u = u_0$ and $(\lambda(s), u(s))$, $s \in I = (-\delta, \delta)$, where $(\lambda(s), u(s))$ are C^1 functions such that $\lambda(0) = \lambda_0$, $u(0) = u_0$, $u'(0) = w_0$.

(日) (同) (三) (三) (三) (○) (○)

Global Bifurcation From Simple Eigenvalue

Theorem [Crandall-Rabinowitz, 1971, JFA]

Let $F : \mathbb{R} \times X \to Y$ be continuously differentiable. Suppose that $F(\lambda, u_0) = 0$ for $\lambda \in \mathbb{R}$, the partial derivative $F_{\lambda u}$ exists and is continuous. At (λ_0, u_0) , F satisfies

(F1) $dimN(F_u(\lambda_0, u_0)) = codimR(F_u(\lambda_0, u_0)) = 1$, and

(F3) $F_{\lambda u}(\lambda_0, u_0)[w_0] \notin R(F_u(\lambda_0, u_0))$, where $w_0 \in N(F_u(\lambda_0, u_0))$,

Then the solutions of $F(\lambda, u) = 0$ near (λ_0, u_0) consists precisely of the curves $u = u_0$ and $(\lambda(s), u(s))$, $s \in I = (-\delta, \delta)$, where $(\lambda(s), u(s))$ are C^1 functions such that $\lambda(0) = \lambda_0, u(0) = u_0, u'(0) = w_0.$

[Pejsachowicz-Rabier, 1998] [Shi-Wang, 2009, JDE]

If in addition, $F_u(\lambda, u)$ is a Fredholm operator for all $(\lambda, u) \in \mathbb{R} \times X$, then the curve $\{(\lambda(s), u(s)) : s \in I\}$ is contained in \mathcal{C} , which is a connected component of $S = \{(\lambda, u) \in \mathbb{R} \times X : F(\lambda, u) = 0, u \neq u_0\}$; and either \mathcal{C} is not compact, or \mathcal{C} contains a point $(\lambda_*, 0)$ with $\lambda_* \neq \lambda_0$.

Unilateral Theorem

Suppose that all conditions above are satisfied. Let C be defined as above. We define $\Gamma_+ = \{(\lambda(s), u(s)) : s \in (0, \epsilon)\}$ and $\Gamma_- = \{(\lambda(s), u(s)) : s \in (-\epsilon, 0)\}$. In addition we assume that

1 $F_u(\lambda, u_0)$ is continuously differentiable in λ for $(\lambda, u_0) \in V$;

2 The norm function $u \mapsto ||u||$ in X is continuously differentiable for any $u \neq 0$;

So $For \ k \in (0, 1)$, if (λ, u_0) and (λ, u) are both in V, then $(1-k)F_u(\lambda, u_0) + kF_u(\lambda, u)$ is a Fredholm operator.

Let C^+ (resp. C^-) be the connected component of $C \setminus \Gamma_-$ which contains Γ_+ (resp. the connected component of $C \setminus \Gamma_+$ which contains Γ_-). Then each of the sets C^+ and C^- satisfies one of the following: (i) it is not compact; (ii) it contains a point (λ_*, u_0) with $\lambda_* \neq \lambda_0$; or (iii) it contains a point $(\lambda, u_0 + z)$, where $z \neq 0$ and $z \in Z$.

Fredholm Operators of Index Zero

Quasilinear elliptic systems with nonlinear boundary conditions are Fredholm operators of index zero

Theorem [Shi-Wang, 2009, JDE] Suppose that p > n, $\partial \Omega \in C^3$, and the regularity assumption above holds. Let U be an open connected set of $\mathbb{R} \times (W^{2,p}(\Omega))^N$. Assume that for each fixed $(\lambda, u) \in U$, $D_u T(\lambda, u) = (D_u A(\lambda, u), D_u B(\lambda, u))$ is elliptic on $\overline{\Omega}$, and that for a particular $(\lambda_0, u_0) \in U$, $D_u T(\lambda_0, u_0)$ satisfies Agmon's condition at a θ_0 , then the Fredholm index of $D_u T(\lambda, u)$ is 0 for all $(\lambda, u) \in U$.

It will have many applications in reaction-diffusion systems in mathematical biology, physics, and chemistry.

Application

Cross-diffusion system:

$$\begin{cases} \Delta[(1+\alpha_1u+\alpha_2v)u]+u(\lambda-u-bv)=0, & x\in\Omega,\\ \Delta[(1+\beta_1u+\beta_2v)v]+v(\mu+cu-v)=0, & x\in\Omega,\\ u=v=0, & x\in\partial\Omega. \end{cases}$$

Competing species with passive diffusion, self-diffusion, cross-diffusion. [Shigesada, Kawasaki and Teramoto, 1979] [Nakashima, Yamada, 1996] [Kuto, Yamada, 2004]: $\alpha_1 = \beta_2 = 0$ Their idea: $U = (1 + \alpha_2 v)u$, $V = (1 + \beta u)v$, then the system becomes semilinear but with messy nonlinearities.

We prove the existence of a bounded branch of coexistence solutions which connecting the two semi-trivial solution branches via our new global bifurcation theorem. Our method is definitely more direct.