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Equation: F(A\,u) =0, F:RXx X — Y (X and Y are Banach spaces)
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If F(X\, u) = Au+ Af(u), then
Fu(\, u)[¢] = B¢ + A ()¢, Fa(Xu) = F(u),  Fau(A u) = f'(u).
Fxa(\u) =0, Fuu(\, u)[g, 9] = M/ (u) .

Fu(\, u) is a linear mapping from X to Y
N(Fu(X, u)) C X is the null space (the space of solutions of Fy (X, u)[¢] = 0)
R(Fu(A, u)) C Y is the range space
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Derivatives as linear mappings

Fu(X,u) : X = Y is a linear mapping.
Fx(M\, u) : R — Y is a linear mapping. But we use Fy (X, u)[1] as F) (A, u) since
Fx(\, u)[7] is TFx(A, u)[1]. Hence we can understand that Fy(\,u) € Y.
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Fu(X,u) : X = Y is a linear mapping.
Fx(M\, u) : R — Y is a linear mapping. But we use Fy (X, u)[1] as F) (A, u) since
Fx(\, u)[7] is TFx (A, u)[1]. Hence we can understand that Fy(\,u) € Y.

Fuu(X,u) : X x X — Y is a bilinear mapping (linear in both variables). That is,
(i) FUU(Af U)[¢1 + ¢27'¢)] = FUU(Av U)[¢>1, @Z’] + FUU(>" u)[d)27 w]v

Fuu(X, 0)[9, 1 + 2] = Fuu(X, 0)[8, 91 + tha] + Fuu(X, u)[, o1 + ¢a].

(i)) Fuu(X, v)[ag, ¥] = aFuu(A, )6, ¥; Fuu(X, u)[d, b] = bFuu(A, u)[6, 9.

Similarly, Fuuu(A, u) : X x X x X = Y is a trilinear mapping.

Finite dimensional case:
F=FM\u):RxR"—5R" n>1.

Fy = (Jj = 9jF;), n x n Jacobian matrix

Fxu = (Mjj = 05jF;), n x n matrix

Fuu = (Kjjx = OjFi), n x n x n Hessian matroid

Linear operator: Fy[(x1, - ,xn)] = (Z Jjxjy e, Z Jnjxj)
J j

Bilinear operator:

Fuu[(Xla"' 7X")7(y17"' ayn)] = (Z Klijj}’kv"' 7ZKnijij) .
Jsk Jsk



Contraction mapping principle

. [Banach, 1922] Let (M, d) be a non-empty completed metric space.
Assume that T : M — M is a contraction mapping, that is, there exists k € (0, 1)
such that for any x,y € M,
d(Tx, Ty) < k- d(x,y).

Then the mapping T has a unique fixed point xx in M such that Tx, = x«.
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Contraction mapping principle

. [Banach, 1922] Let (M, d) be a non-empty completed metric space.
Assume that T : M — M is a contraction mapping, that is, there exists k € (0, 1)
such that for any x,y € M,

d(Tx, Ty) < k- d(x,y).

Then the mapping T has a unique fixed point xx in M such that Tx, = x«.

Proof.

1. Choose any xg € M, and define x,
d(Xnt1,%n) < k"d(x1,x0).

2. {xn} is a Cauchy sequence in M since k < 1, and thus {x,} has a limit x, € M
from the completeness of (M, d).

3. Since d(xp+1, Tx«) — 0 as n — oo, then Txx = x.

4. If there exists y« € M such that Ty. = yx, then

0 < d(xx,ys) = d(Txs, Tys) < k- d(xs,yx). But k <1so d(x«,y«)=0.

(Indeed, for any xp € M, limp—oo T"x0 = Xx)

Txp—1 for n > 1. Then

Counterexamples:

1. If M is not complete? f(x) = x/2, x € M = (0,1)

2. Ifk=1? f(x) =x+1,x€Ror f(§) =0+, 0 € St = (R mod 27)
3. If d(Tx, Ty) < d(x,y)? f(x) =7+ x —arctanx, x € R



Solving from implicit function

Implicit function: f(x1,x2,x3,++ ,xn) = 0.
Can one solve x; from an implicit function?

Q A(N\y)=3\+4y —5 Then3\+4y —5=0, y = (5—3))/4. (globally
uniquely solvable)

Q H(\y)=X+y?2—1 Then N2+ y2—1=0, y = £v1— 2. (locally uniquely
solvable if A € (—1,1), not uniquely solvable if near A = £1)

© ()N, y) =X —sinye’. Then A —sinye” =0, linearization at (\,y) = (0,0):
A —y =0, then y(X) & X near A = 0. (uniquely solvable? cannot be explicitly
solved)



Solving from implicit function

Implicit function: f(x1,x2,x3,++ ,xn) = 0.
Can one solve x; from an implicit function?
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© ()N, y) =X —sinye’. Then A —sinye” =0, linearization at (\,y) = (0,0):
A —y =0, then y(X) & X near A = 0. (uniquely solvable? cannot be explicitly
solved)

Suppose that f : R X R — R is smooth, and (g, y0) = 0.

Implicit function theorem: If f,(Xo, yo) # 0, then for X near Ag, f(A,y) =0 has a
unique solution y(\) so that f(\,y()\)) =0.

Submersion theorem (preimage theorem): If

ViAo, y0) = (A (Mo, ¥0), fy (Mo, ¥0)) # (0,0), then the set {(X,y) : f(\, y) = 0} near
(Ao, ¥0) is a curve.



Implicit Function Theorem: No Bifurcation

. Assume that X, Y are Banach spaces. Let (Ao, up) € R X X and let F be
a continuously differentiable mapping of an open neighborhood V of (Ao, tp) into Y.
Let F(Xo, up) =0 and Fu(Xo, up) is invertible (Fu(Xo, up)[¢] = O only has zero
solution). Then the solutions of F(A, u) = 0 near (Ao, ug) form a curve (X, u(})),
u(N) = ug + (A — Xo)wo + z()\), where wo = —[F, (Ao, uo)] "L (Fx (Mo, uo)) and
A — z(\) € X is a continuously differentiable function near s = 0 with
z(0) = Z/(0) =0.

. (Finite dimensional) Suppose that f : R™ x R” — R" is a C¥ smooth
mapping such that f(o, ug) = 0. Suppose that at (Ao, up) € R™ x R", the matrix
fu(Mo, up) : R" — R" is invertible. Then there exists a neighborhood A of Ag and a
neighborhood B of ug, such that for every A € A, there exists a unique u = u(\) € B
such that f(\, u) = 0. The map X — u()) is CK.



Implicit Function Theorem: more general version

. Let X, Y and Z be Banach spaces, and let U C X X Y be a
neighborhood of (Ao, up). Let F: U — Z be a continuously differentiable mapping.
Suppose that F(Ao, tg) = 0 and Fy(Xo, tp) is an isomorphism, i.e. Fy(Xo, tp) is
one-to-one and onto, and F[l()\o, up) : Z — Y is a linear bounded operator. Then
there exists a neighborhood A of g in X, and a neighborhood B of up in Y, such that
for any A € A, there exists a unique u()) € B satisfying F(X, u(X)) = 0. Moreover
u(-) : A — B is continuously differentiable, and u’(X\g) : X — Y is defined as
' (Mo)[¥] = —[Fu(Xo, )]t o Fx(Xo, uo)[eb]. If Fis CK, then u: A — B is also Ck.

History:

Implicit function:

[Descartes, 1637] [Newton, 1669] [Leibnitz, 1676] [J. Bernoulli, 1695]
Implicit function theorem in R": [Dini, 1878]

Equivalent forms:
Inverse function theorem, Submersion theorem,
Constant rank theorem, Preimage theorem



Inverse function theorem

. Let X, Y be Banach spaces, and let U C X be a neighborhood of up. Let
F : U — Y be a continuously differentiable mapping. Suppose that F(up) = v and
the Frechét derivative F/(up) is an isomorphism, i.e. F'(ug) is one-to-one and onto,
and [F'(u)]™!: Y — X is a linear bounded operator. Then there exists a
neighborhood A of up in U and a neighborhood B of vy in Y, such that F: A — B is
an isomorphism, and for every v € B, there exists a unique u € A such that F(u) = v.
Hence F~1: B — A is well-defined, and (F~1)/(F(u)) = [F/(u)]~! for u € A.
Moreover F~1 is as smooth as F.

. (Finite dimensional) Suppose that f : R” — R"” is a Ck smooth mapping
such that f(up) = 0. Suppose that the matrix f/(up) : R” — R" is invertible. Then
there exists a neighborhood A of ug and a neighborhood B of f(up), such that for
every v € B, there exists a unique u = u € A such that f(u) = v. The inverse
function f~1: B — A'is also Ck.

Proof. Define G: U X Y — Y by G(u,v) = F(u) — v. Then G(up, vp) =0 and
Gu(uo, vo) = F’(up) is invertible. Then G(u,v) = 0 is solvable for u = u(v) so that
G(u(v),v)=0.



Preimage Theorem

. (finite dimensional) Suppose that f : R™" — R" is a C¥ smooth
mapping such that f(up) = 0. Suppose that the matrix f/(up) : R™" — R" is rank n
(full rank). Then there exists a neighborhood A of wug, such that the set
S={ue A:f(u) =0} is a m-dimensional submanifold of A. (a special case is when
m =1, then S is a curve)

Let X, Y be Banach spaces.

1. A bounded linear mapping L from X to Y is Fredholm if the dimension of its kernel
N(L) and the co-dimension of its range R(L) are both finite, and R(L) is closed. The
Fredholm index of L is defined to be ind(L) = dimN'(L) — codimR(L).

2. A nonlinear mapping F : X — Y is Fredholm if its derivative F' : X — Y is
Fredholm.

3. For any linear mapping L : R” — R™, ind(L) = dimN(L) — codimR(L) = n — m.
(rank-nullity theorem in linear algebra)

. [Smale, 1964, AMJ] Let X, Y be Banach spaces, and let U C X be a
neighborhood of ug. Let F: U — Y be a continuously differentiable mapping.
Suppose that F(ug) = vp and the Frechét derivative F/(ug) is Fredholm and
surjective, then there exists a neighborhood A of ug in U, such that the set
S={u€ A: F(u) =0} is a manifold of dimension ind(F’(up)) = dimN/(L).



Immersion and submersion

Let X, Y be Banach spaces, and let U C X be a subset. Suppose that f : U — Y is a
continuously differentiable mapping, and its derivative at up € X is a Fredholm
operator f'(up) : X = Y.

@ 1 is an submersion at ug if f/(up) is surjective, i.e. R(f'(up)) =Y. fisa
submersion on U if it is a submersion at each ug € U.
@ f is an immersion at ug if f'(ug) is injective, i.e. N'(f'(up)) = {0}. f is an

immersion on U if it is an immersion at each uyy € U.

Submersion manifold: f~1(f(up)) is locally a manifold of dimension dim N(f/(ug))
containing up.

Immersion manifold: the image f(U) is locally a Banach manifold of codimension
codim(R(f"(wo))).

In general f(U) may not be a true manifold. If f : U — Y is an immersion and
injective, and U is compact, then f(U) is a manifold. This is an embedding.



Examples

@ 1 :R? = R defined by f(x,y) = x3 + y3 — 3xy. Then f(x,y) = 0 is the Folium
of Descrates. It is locally a curve (except (x,y) = (0,0) since Vf is surjective
except at (0, 0).

@ f:R — R? defined by f(t) = (cost,sint). It is an immersion since f'(t) is
injective, and f(R) is compact. In this case f(R) is a manifold although f is not
injective.

@ (irrational winding of a torus) The curve y = v/2x on R? induces a curve on a
torus T = R2/Z2. This curve is not closed on torus, and it is an immersion, but
it is not an embedded manifold. Indeed it is dense on the torus. This is another
example of the image of immersion may not be a manifold. This is does not
have self-intersecting points as the first one.



Saddle-Node Bifurcation

[Crandall-Rabinowitz, ARMA, 1973]
Let U be a neighborhood of (Ag, ug) in R X X, and let F: U — Y be a continuously
differentiable mapping. Assume that F(\g, up) = 0, F satisfies
(F1) dimN (Fy(Xo, uo)) = codimR(Fu(Xo, uo)) =1, and
(F2) Fa(Xo, uo) & R(Fu(Xo, wo)).

If Z is a complement of N'(Fy(Xo, up)) = span{wp} in X, then the solutions of

F(\, u) = 0 near (Ao, up) form a curve

{(A(s), u(s)) = (A(s), uo + swo + z(s)) : |s| < 8}, where s — (A(s),z(s)) ERx Zis a
continuously differentiable function, A(0) = A\’(0) = 0, and z(0) = z’(0) = 0.



Saddle-Node Bifurcation

[Crandall-Rabinowitz, ARMA, 1973]
Let U be a neighborhood of (Ag, ug) in R X X, and let F: U — Y be a continuously
differentiable mapping. Assume that F(\g, up) = 0, F satisfies
(F1) dimN (Fy(Xo, uo)) = codimR(Fu(Xo, uo)) =1, and
(F2) Fa(Xo, uo) & R(Fu(Xo, wo)).

If Z is a complement of N'(Fy(Xo, up)) = span{wp} in X, then the solutions of

F(\, u) = 0 near (Ao, up) form a curve

{(A(s), u(s)) = (A(s), uo + swo + z(s)) : |s| < 8}, where s — (A(s),z(s)) ERx Zis a
continuously differentiable function, A(0) = A\’(0) = 0, and z(0) = z’(0) = 0.

Proof 1: Define G(s, A\, z) = F(\, up + swp + z) and prove that
G(Ayz)(O, X0,0) : R X Z — Y is an isomorphism. Then apply the implicit function
theorem.

Proof 2: Apply preimage theorem to F(\, u). Then
F’ (Mo, uo)[r, w] = TFx(Xo, uo) + Fu(Xo, uo)[w] which is surjective. Also
F’(Xo, ug)[7, w] = 0 has a 1-dimensional kernel {(0, wp)}.

We will later consider the case
(F2’) Fx(Xo, uo) € R(Fu(Mo, uo)).



Turning direction

Condition (F1): dim N(F,(Xo, uo)) = codim R(Fy(Xo, up)) = 1

X = ./\/—(Fu()\o7 uo)) ez

Y = R(Fu(Xo, uo)) ® Y1

wo(# 0) € N(Fu(Xo, uo))

Fu(Xo, u0)|z : Z — R(Fu(Xo, up)) is an isomorphism

there exists | € Y* such that R(Fu(Xo,w)) ={ve Y :(l,v) =0}

(Y* is the dual space of Y, and {/, v) is the dual pair between Y* and Y)
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Condition (F1): dim N(F,(Xo, uo)) = codim R(Fy(Xo, up)) = 1

X = ./\/—(Fu()\o7 uo)) ez

Y = R(Fu(Xo, uo)) ® Y1

wo(# 0) € N(Fu(Xo, uo))

Fu(Xo, u0)|z : Z — R(Fu(Xo, up)) is an isomorphism

there exists | € Y* such that R(Fu(Xo,w)) ={ve Y :(l,v) =0}

(Y* is the dual space of Y, and {/, v) is the dual pair between Y* and Y)

The solution curve {(A(s), u(s)) = (A(s), up + swo + z(s)) : |s| < 6}, where
s+ (A(s),2(s)) €R x Zis Ct, A\(0) = up, M (0) =0, z(0) = z/(0) = 0.



Turning direction

Condition (F1): dim N(F,(Xo, uo)) = codim R(Fy(Xo, up)) = 1

X = ./\/—(Fu()\o7 uo)) ez

Y = R(Fu(Xo, uo)) ® Y1

wo(# 0) € N(Fu(Xo, uo))

Fu(Xo, u0)|z : Z — R(Fu(Xo, up)) is an isomorphism

there exists | € Y* such that R(Fu(Xo,w)) ={ve Y :(l,v) =0}

(Y* is the dual space of Y, and {/, v) is the dual pair between Y* and Y)

The solution curve {(A(s), u(s)) = (A(s), up + swo + z(s)) : |s| < 6}, where
s+ (A(s),2(s)) €R x Zis Ct, A\(0) = up, M (0) =0, z(0) = z/(0) = 0.

If Fis C2 in u near (Ao, up), then A\(s) is C2 at A = )g, and

7 7_(’1 FUU(>\07UO)[W07WO]>
A (0) - </,F)\()\o,u0)) '

F(A\,u) = Au+ X (u), Fu(\ u)[w] = Aw + A (u)w,
Fa(A\ u) = f(u), Fuu(\, u)[d, 9] = M (u) ).
If g € R(Fu(Xo, up)), Aw + Af'(u)w = g and /Qg(x)wo(x) =0

So /:Y — Ris defined by /(g) = / g(x)wo(x)0.
Q



Transcritical-Pitchfork Bifurcation

. [Crandall-Rabinowitz, 1971, JFA]

Let U be a neighborhood of (Ag, ug) in R X X, and let F: U — Y be a continuously
differentiable mapping such that F), exists and continuous in U. Assume that
F(X, up) =0 for (A, up) € U. At (Xo, up), F satisfies

(F1) dimN (Fy(Xo, uo)) = codimR(Fu(Xo, up)) =1, and

(F3) Fau(Xo; uo)[wo] € R(Fu(Xo, uo)), where wy € N'(Fu(Xo, to)),
Let Z be any complement of N'(F,(Xo, up)) = span{wp} in X. Then the solution set
of F(X,u) =0 near ()Xo, ug) consists precisely of the curves u = ug and
{(A(s),u(s)):s €l =(—€¢€)}, where \: | = R, z: | — Z are continuous functions
such that u(s) = up + swp + sz(s), A(0) = Ao, z(0) = 0.

known as bifurcation from simple eigenvalue
[Chow and Hale, 1982, book] [Deimling, 1985, book]

Applications: (cited 346 times in MathSciNet)

Existence of steady periodic water waves

[Constantin-Strauss, 2004, CPAM], [Strauss, 2010, BAMS]

Free boundary problem in tumor models [Friedman-Hu, 2007, SIAM-MA]
Nonconstant stationary patterns in spatial ecological models

[Du-Hsu, 2010, SIAM-MA], [Shi-Shivaji, 2006, JMB]



Turning direction

Condition (F1): dimN (Fy(Xo, up)) = codimR(Fy(Xo, up)) =1

X = N(Fu(Xo,w)) ® Z

Y = R(Fu(Mo,u)) ® Y1

Wo(;ﬁ 0) S N(Fu(ko, UO))

Fu(Xo, uo)|z : Z — R(Fu(Xo, up)) is an isomorphism

there exists | € Y* such that R(Fy(Xo, u)) ={v e Y :(l,v) =0}



Turning direction

Condition (F1): dimN (Fy(Xo, up)) = codimR(Fy(Xo, up)) =1

X = N(Fu(Xo,w)) ® Z

Y = R(Fu(Mo,u)) ® Y1

Wo(;ﬁ O) S N(Fu(ko, UO))

Fu(Xo, uo)|z : Z — R(Fu(Xo, up)) is an isomorphism

there exists | € Y* such that R(Fy(Xo, u)) ={v e Y :(l,v) =0}

The nontrivial solution curve {(A(s), u(s)) = (A\(s), uo + swo + sz(s)) : |s| < &}, where
s+ (A(s),2(s)) €R x Zis C° A(0) = wg, z(0) =0, and if Fis C?in u

{1, Fuu(Xo, uo)[wo, wo])

MO = = (o, wo)wo])

So if
(F4) Fuu(Xo, uo)[wo, wo] & R(Fu(Xo, o)),
is satisfied, then a transcritical bifurcation occurs.



Turning direction

Condition (F1): dimN (Fy(Xo, up)) = codimR(Fy(Xo, up)) =1

X = N(Fu(Xo,w)) ® Z

Y = R(Fu(Mo,u)) ® Y1

Wo(;ﬁ O) S N(Fu(ko, UO))

Fu(Xo, uo)|z : Z — R(Fu(Xo, up)) is an isomorphism

there exists | € Y* such that R(Fy(Xo, u)) ={v e Y :(l,v) =0}

The nontrivial solution curve {(A(s), u(s)) = (A\(s), uo + swo + sz(s)) : |s| < &}, where
s+ (A(s),2(s)) €R x Zis C° A(0) = wg, z(0) =0, and if Fis C?in u

{1, Fuu(Xo, uo)[wo, wo])

MO = = (o, wo)wo])

So if
(F4) Fuu(Xo, uo)[wo, wo] & R(Fu(Xo, o)),
is satisfied, then a transcritical bifurcation occurs.

If (F4) is not satisfied, and F is C3, then (6 satisfies
Fuu(Xo, uo)[wo, wo] + Fu(Xo, uo)[0] = 0)

</7 Fuuu()\o, U())[Wo7 wo, W0]> + 3(/, Fuu()\07 uo)[Wo, 9]>
3(/, Fau(o, uo)[wo])

and if \/(0) # 0, then a pitchfork bifurcation occurs.

)\//(0) —

)



Crossing Curve Bifurcation

. [Liu, Shi and Wang, 2007, JFA]
Let F:R x X — Y be a C2 mapping. Suppose that F(\g, ug) = 0, F satisfies
(F1) dimN (Fy(Xo, u)) = codimR(Fu(Xo, up)) =1, and
(F2’) Fx(Xo, uo) € R(Fu(Xo, uo)).
Let X = N(Fu(Xo, uo)) & Z be a fixed splitting of X, let vi € Z be the unique solution
of F\ + Fu[v] =0, and let | € Y* such that R(Fu(Xo,u)) ={v e Y :(l,v) =0}
We assume that the matrix (all derivatives are evaluated at (Ao, o))
_ _ [ LB+ 2Fxu[vi] + Fuu[vi]®) (1, Faulwol 4 Fus[wo, vi])
Ho= Hoow) = (sl L Sl iy )
is non-degenerate, i.e., det(Hp) # 0.
@ If Hp is definite, i.e. det(Hp) > 0, then the solution set of F(\, u) = 0 near
(A, u) = (Ao, o) is {(No, uo)}-
@ If Hp is indefinite, i.e. det(Hp) < 0, then the solution set of F(\, u) = 0 near
(A, u) = (Mo, tp) is the union of two intersecting C! curves, and the two curves
are in form of (Ai(s), ui(s)) = (Ao + pis + s0i(s), uo + niswo + syi(s)), i = 1,2,
where s € (=4, ) for some 6 > 0, (u1,71) and (p2,72) are non-zero linear
independent solutions of the equation

(I Fax + 2Fxulv] + FUU[V1]2>M2 + 2(1, Fxu[wo] + Fuu[wo, vi])np
+ (I, Fuu[wo]*)n* = 0,
where 0;(s), yi(s) are some functions defined on s € (—§, ) which satisfy
)

0;(0) = 0/(0) =0, yi(s) € Z, and y;(0) = y/(0) =0, i =1,2.

i



Remarks

@ When Fy (Ao, up) =0, we have v; = 0.
Hy = (1, Faxx(Xo, uo)) {1, Fxu(Xo, uo)[wol)
— L Fau(Qo, wo)[wol)  {, Fuu(Ao, wo)[wo, wol)
and the equation of tangents of curves become

(1, Fxx(o, wo) )i + 2(1, Fxu(Mo, uo)[wol) pm + (1, Fuu(Xo, to)[wo, wo])n® = 0.

@ If F()\, up) =0, then Theorem 6 (classical transcritical and pitchfork bifurcation
theorem) follows from Theorem 7.

© Theorem 7 is a natural complement Crandall-Rabinowitz saddle-node bifurcation
theorem (Theorem 5), where (F2) is imposed. Our result is based on condition

the opposite (F2') and a generic second order non-degeneracy condition
det(Hp) # 0.

@ An example for single point solution set is F(\, u) = A% 4+ u?. Then
(A, u) = (0,0) is the only solution (also a degenerate solution)



Secondary Bifurcation

. [Liu-Shi-Wang, 2007, JFA] [Crandall-Rabinowitz, 1971, JFA]
Let X and Y be Banach spaces, let U be an open subset of X and let F: U — Y be
twice differentiable. Suppose

Q F(uw) =0,
Q dimN(F'(up)) = 2, codim R(F'(up)) = 1.
Then

@ if for any ¢(#£ 0) € N(F'(w0)), F"(uo)[é, #] € R(F'(wp)), then the set of
solutions to F(u) = 0 near u = up is the singleton {up}.

@ if there exists ¢1(# 0) € N(F'(up)) such that F”(up)[¢1]? € R(F'(up)), and
there exists ¢p € N(F'(up)) such that F"(up)[¢1, 2] & R(F'(wo)), then up is a
bifurcation point of F(u) = 0 and in some neighborhood of wug, the totality of
solutions of F(u) = 0 form two differentiable curves intersecting only at wug.
Moreover the solution curves are in form of up + s¥; + s6;(s), s € (=96, 6),
0;(0) = 67(0) = 0, where 9); (i = 1,2) are the two linear independent solutions
of the equation (I, F""(ug)[+),%]) = 0 and | € Y* satisfies N'(/) = R(F'(wp))-



Summary of bifurcation results

Bifurcation problem: F(), u) = 0, assuming F(Ag, up) = 0, in all case
dim N (Fy(Xo, ug)) = codim(F, (Ao, ug)) (Fredholm index 0)

Name dim N solution set Trans-cond theorem
implicit function 0 1 monotone curve none Theorem 1
saddle-node 1 1 turning curve Fx€R Theorem 5
transcritical, pitchfork 1 2 crossing curves Faulwo] € R Theorem 6
crossing-curve 1 2 crossing curves detH < 0 Theorem 7
degenerate simple 1 3 crossing curves Fxu[wo] € R, more Theorem 9
double saddle-node 2 2 tangent curves Fx &R Theorem 10

Mapping (no parameter): F(u) = 0, assuming F(up) =0

Name dimN | codimR solution set Theorem
inverse function 0 0 one point Theorem 3
preimage 1 0 a curve Theorem 4
preimage k 0 a k-d manifold Theorem 4
secondary 2 1 two crossing curves | Theorem 8




Degenerate bifurcation from simple eigenvalue

. [Liu-Shi-Wang, 2013, JFA]

Let U be a neighborhood of (Mg, up) in R x X, and let F € C3(U, Y). Assume that
F(X\, up) =0 for (A, up) € U. At (Mo, up), F satisfies (F1),

(F3/) F>\L,(/\o7 uo)[Wo] (S R(Fu()\o, uo)); and

(F4') Fuu(Xo, uo)[W[)]2 € R(Fu(Xo, uo)).-
Let X = N(Fu(Xo, uo)) @ Z be a fixed splitting of X, and let / € Y* such that
R(Fu(Xo,uw)) ={v € Y: (I,v) =0}. Denote by vi € Z the unique solution of
Fxu(Xo, uo)[wo] + Fu(Xo, uo)[v] =0, and vo» € Z the unique solution of
Fuu(Xo, o) [wo]? + Fu(Xo, to)[v] = 0. We assume that the matrix (all derivatives are
evaluated at (Ao, up))

H H
H= w0 = ([ )

is non-degenerate, i.e., det(H) # 0, where Hj; is given by

1
Hi1 = (I, Faxu[wo] + 2Fxu[v1]), Ho2 = 5(/, Fuuu[wo]® + 3Fuu[wo, va]),

1
Hi = 5(’; Fuu[wol® + Faulva] + 2Fuu[wo, vi])



Degenerate bifurcation from simple eigenvalue

@ If H is definite, i.e. det(H) > 0, then the solution set of F(A,u) = 0 near
(A, u) = (Ao, o) is the line {(X, up)}.
@ If H is indefinite, i.e. det(H) < 0, then the solution set of F(\, u) = 0 near
(A, u) = (Mo, tp) is the union of C! curves intersecting at (o, tp), including the
line of trivial solutions My = {(\, ug)} and two other curves
I = {(Xi(s), ui(s)) : |s| < 6} (i =1,2) for some § > 0, with

Ai(s) = o + pis + s0i(s), wui(s) = uo + miswo + svi(s),

where (p1,7m1) and (u2,172) are non-zero linear independent solutions of the
equation
Hi1p® + 2Hiopm + Haan® =0,

0;(0) = 0/(0) =0, vi(s) € Z, and v;(0) = v/(0) =0, i =1,2.

Example: (Left):F(\, u) = u(A\? — v?); (Right):F(\, u) = u(u — A)(u — 2)).

—\— | —> ) <«




More examples

(Left): F(\, u) = u(N — v? + u*); (Right): F(\, u) = u(A*— X2 4 u?).



What if Kernel is 2-dimensional?

Let F:R x X — Y be continuously differentiable. F(Xo, up) = 0, F satisfies
(F1-2) dimN(Fu(Xo, ug)) = codimR(Fu(Xo, ug)) = 2, and
(F2) Fx(Xo, uo) & R(Fu(Xo, uo)).
and additional non-degeneracy condition on D?F

Then a saddle-node bifurcation of two curves occurs
[Liu-Shi-Wang, 2013 to appear, CPAA]



What if Kernel is 2-dimensional?

Let F:R x X — Y be continuously differentiable. F(Xo, up) = 0, F satisfies
(F1-2) dimN(Fu(Xo, ug)) = codimR(Fu(Xo, ug)) = 2, and
(F2) Fx(Xo, uo) & R(Fu(Xo, uo)).
and additional non-degeneracy condition on D?F

Then a saddle-node bifurcation of two curves occurs
[Liu-Shi-Wang, 2013 to appear, CPAA]

If F satisfies (F1-2),

(F2’) Fx(Xo, uo) € R(Fu(Xo, o)),
more complicated, depending on the symmetry of the problem
(example: two-dimensional surface, four curves)



Double Saddle-Node Bifurcation

[Liu-Shi-Wang, 2013 to appear, CPAA]
Let F:R x X — Y be a CP mapping, and assume (F1-2) and (F2). Let
X = N(Fu(Xo, up)) ® Z be a fixed splitting of X, and let vi,v» € Y* such that
R(Fu) ={h € Y :{vi,h) =0 and (vp, h) = 0} so that (v, Fx) # 0 and (v, F)) = 0.
We assume that the matrix (all derivatives are evaluated at (Ao, uo))

_ ({ve, Fuu[wi,wi1])  (va, Fuu[wa, we])

Hy = Ha(A =

2= Holdo, wo) (m, Fulwiwal)  {va. Fuu[we, wal)
is non-degenerate, i.e., det(H) # 0. Let S be the solution set of F(\, u) = 0 near
(A, u) = (Ao, o).

@ If H, is definite, i.e. det(Hz2) > 0, then S is {(Xo, uo)}-

@ If H, is indefinite, i.e. det(H2) < 0, then S is the union of two cr-1 tangent

curves.



An Example

lambda lambda lambda

Three types of double saddle-node bifurcations: (left) A — x> =0 and A — y?> =0,
supercritical; (middle) A — x2 +2y? = 0 and X — y? + 2x? = 0, subcritical; (right)
A—x2—2xy =0and XA — y? — 2xy = 0, transcritical.



An Example

lambda lambda lambda

Three types of double saddle-node bifurcations: (left) A — x> =0 and A — y?> =0,
supercritical; (middle) A — x2 +2y? = 0 and X — y? + 2x? = 0, subcritical; (right)
A—x2—2xy =0and XA — y? — 2xy = 0, transcritical.

Question: Is there a realistic example of double saddle-node bifurcation?



Lyapunov-Schmidt reduction

Suppose that F: R X X — Y is a CP map such that F(\g, up) = yo, and F satisfies
(F1) at (Ao, ug). Then F(A, u) = yo for (X, u) near (Ao, up) can be reduced to

(I, F(X, up + two + g(\, t))) =0, where t € (=6,68), A € (Ao — I, Ao + 8) where § is a
small constant,, / € Y* such that (/,u) = 0 if and only if u € R(Fu(Xo, up)), and g is
a CP function into Z such that g(Xo,0) = 0 and Z is a complement of N(F,(\o, ug))
in X.

Let the projection from Y into R(Fy,(Xo, up)) be Q. Then F(X, u) = 0 is equivalent to

QoF(A\u)=0, and (I —Q)oF(\ u)=0.
We rewrite the first equation in form

G(At,8) = Qo F(X uo+two +g) =0

where t € R and g € Z. Calculation shows that Gg(Xp,0,0) = Q o F,(Xo, ug) is an
isomorphism from Z to R(Fu(Xo, ug)). Then g = g(\, t) is uniquely solvable from the
implicit function theorem for (), t) near (Ao, 0), and g is C2. Hence
u=ug+ twp + g(A, t) is a solution to F(X,u) = 0 if and only if

(I —Q)o F(A\, up + twg + g(A, t)) = 0. Since R(Fu(Xo, uo)) is co-dimensional one,
hence it becomes the scalar equation (/, F(X, up + two + g(A, t))) = 0.



1. Lyapunov-Schmidt reduction: reduce F(A, u) =0 to

G\, t) = (I, F(\, up + two + g(X, t))) =0
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Proof of Main Results

1. Lyapunov-Schmidt reduction: reduce F(A, u) =0 to
G\ t) = (I, F(\ uo + two + g(A, t))) =0

2. A finite dimensional result (improving result based on Morse lemma)



Proof of Main Results

1. Lyapunov-Schmidt reduction: reduce F(A, u) =0 to
G\ t) = (I, F(\ uo + two + g(A, t))) =0
2. A finite dimensional result (improving result based on Morse lemma)

Morse lemma: [Nirenberg, 1974, book] Suppose that f : Rk — R is a CP function,
k > 2. 1f f(0) =0, £(0) =0, and the Hessian f«(0) is a non-degenerate k X k
matrix. Then there exists a local CP~2 coordinate change y(x) defined in a
neighborhood of the origin with y(0) = 0, yx(0) = / such that

) = 2300 Oy (),

where y(x)7 is the transpose of y(x), and y(x) is assumed to be column vector in R.
In particular if k =2 and f,«(0) is indefinite, then the set of solutions of f(x) = 0 near
the origin consists of two CP~2 curves intersecting only at the origin.



A Finite Dimensional Theorem

[Liu-Wang-Shi, 2007, JFA]
Suppose that (xp, yo) € R? and U is a neighborhood of (x, o). Assume that
f:U— Risa CP function for p > 2, f(xo0,y) = 0, Vf(x0,Y0) =0, and the Hessian
H = H(xo, yo) is non-degenerate. Then
@ If H is definite, then (xo, yo) is the unique zero point of f(x,y) = 0 near (xo,¥0);
@ |If H is indefinite, then there exist two CP~! curves (x;(t),yi(t)), i = 1,2,
t € (=04, 9), such that the solution set of f(x,y) = 0 consists of exactly the two
curves near (xo, y0), (xi(0),yi(0)) = (x0,¥0). Moreover t can be rescaled and
indices can be rearranged so that (x;(0), y{(0)) and (x5(0), y5(0)) are the two
linear independent solutions of

fux (X0, Y0 )11 =+ 2fsy (X0, Y0 )T + fyy (X0, Y0)72 = 0.



Proof of the “Calculus Problem”

Consider
o2 Aen) y O),

o (x(0).¥(0) €

Then it is a Hamiltonian system with potential function f(x,y), (xo, y0) is the only
equilibrium point in U, and (xg, y0) is a saddle point. From the invariant manifold
theory of differential equations, the set {f(x,y) = 0} near (xo, yo) is consisted of the
1-dimensional stable and unstable manifolds at (xo, yo), which are CP~1! since f is CP.



Proof of the “Calculus Problem”

Consider
o2 Aen) y O),

o (x(0).¥(0) €

Then it is a Hamiltonian system with potential function f(x,y), (xo, y0) is the only
equilibrium point in U, and (xg, y0) is a saddle point. From the invariant manifold
theory of differential equations, the set {f(x,y) = 0} near (xo, yo) is consisted of the
1-dimensional stable and unstable manifolds at (xo, yo), which are CP~1! since f is CP.

Question: is there a proof without using invariant manifold theory but only elementary
calculus?

another more general theorem:

splitting lemma [Kuiper, 1972] [Chang, 1993, book] [Li-Li-Liu, 2005, JFA]



Complete the Proof

Proof of Theorem 7 (crossing-curves)

Apply the 2-D lemma to the bifurcation equation
G\ t) = (I, F(\, up + twog + g(A, t))) = 0.

Proof of Theorem 9 (degenerate simple eigenvalue)

G\ t) = (I, F(\, up + two + g(X, t))) = 0 has a line of trivial solutions: t = 0 for all
A. So we apply the 2-D lemma to the function h(\, t) = {éigj\’og?’ :; ; i 87
Proof of theorem 10 (double saddle-node)

Since the kernel is 2-D, then the Lyapunov-Schmidt reduction reduces it to

Gi(A, s1,8) = (vi, F(\, up + siwi + sowo + g(A, 51, %2))), i =1,2.

But A can be solved by (s1,s2) by implicit function theorem (since
Fx € R(Fu(Xo, uo))). Then we can apply the 2-D lemma to
f2(s1,2) = G1(A(s1, 2), 51, 52).



Stability

In the bifurcation from simple eigenvalue described in Theorem 6, an exchange of
stability occurs at the bifurcation point between the known trivial solutions and the
bifurcating nontrivial solutions.

Let T,K € B(X,Y) (the set of bounded linear maps from X into Y). We say that
peERIsa of T, if

dim N(T — uK) = codim R(T — uK) =1, N(T — puK) =span{w},

and
Klwo] € R(T — pK).

Lemma|Crandall and Rabinowitz, 1973]: Suppose that To, K € B(X,Y) and o is a
K-simple eigenvalue of Ty. Then there exists § > 0 such that if T € B(X, Y) and

|T — To|| <6, then there exists a unique p(T) € R satisfying ||u(T) — pol| < d such
that N(T — u(T)K) # 0 and u(T) is a K-simple eigenvalue of T. Moreover if

N(To — oK) = span{wp} and Z is a complement of span{wg} in X, then there exists
a unique w(T) € X such that N(T — u(T)K) = span{w(T)}, w(T) — wp € Z and
the map T — (u(T), w(T)) is analytic.



Exchange of stability

Theorem [Crandall and Rabinowitz, 1973] Let X, Y, U, F, Z, Ao, and wp be the
same as in Theorem 2, and let all assumptions in Theorem 2 on F be satisfied. Let
(A(t), u(t)) be the curve of nontrivial in Theorem 2, there exist C2 functions
mA): (M-, o+e) =R z:(Ao—eg, o+¢e)—= X, p:(=4,8) = R, and

w: (—6,8) — X, such that

Fu(X up)z(A) = m(A)K(z(N)), for X € (Mo —e,Xo0+¢), (1)
Fu(A(t), u(t))d(t) = u(t)K(&(t)), for te€(—6,9). ()

where m(Xg) = p(0) =0, z(Ao) = w(0) = wy. Moreover, near t = 0 the functions
wu(t) and —tN (t)m’(Ao) have the same zeroes and, whenever p(t) # 0 the same sign
and satisfy
—tA (t)m’ (A
(O )

t—0 u(t) =1 3)



Direction of bifurcations

A saddle-node bifurcation is supercritical (forward) if A”(0) > 0, and it is subcritical
(backward) if A”(0) < 0.

A pitchfork bifurcation is supercritical (forward) if A”(0) > 0, and it is subcritical
(backward) if A”/(0) < 0.

In a transcritical bifurcation, it is often that only the positive portion (the part with

s € (0,6)) of curve is concerned). If the solutions with s € (0,0) are stable, then it is
forward transcritical bifurcation; and if the solutions with s € (0,0) are unstable, then
it is backward transcritical bifurcation.



An ODE system of epidemic model

Adapted from [Wang Wending, 2006, Math. Bios.]

kI
S'=A—dS—)\SI, I' =)\S| — v — ——
1+1
parameters A: recruitment of population, d,~: mortality rates, \: infection rate, T(/):

treatment
A—dS — \S/
Trivial equilibrium: (S,/) = (A/d,0). Define F(\,S,1) = AS/ — ~] — kI
R
F —d— Al —AS
= k. ,
(5.1) Mo AS—y - e

—d —)A/d
Fis.n(X,A/d,0) = ( 0 )\A/d—'y/— k/a )
_ 7 tk/a_day+k)

So bifurcation point A = A\, = =
A/d Aa

Eigenvector wp = [¢, Y] = (—A:A, d?)
RFs,n(AA/d,0) = {(a,b) € R? : b =10} = {(a,b) € R?: (a,b) - (0,1) = 0}.



An ODE system of epidemic model

F(SI S,1) [(d) w] _( 2)\¢,(;3_/\;5;p¢2/a )

Fais.nl(e, 9] = ( ;/q\;fl//dd )

N(0) = — (I, Fs iys.y(Ro, A/d, 0)[wo, wol) — d®[(ay + k)2 — kA3]

2(I, Fxs,in(ho, A/d,0)[wo]) a2 A2

So a backward bifurcation (A\'(0) < 0) occurs if A is large.



Oyster Model

[Jordan-Cooley, Lipcius, Shaw, Shen, Shi, 2011, JTB]

% = rOf(d) (1— %) — uf(d)0 — (1 — £(d))O, *)
5 = Wf(d)O + (1~ F(d))0 ~ B, )
Z—f — _BS+ Cge . (6)

0]
Here d = > + B — S, and f = f(d) satisfies

f'(d) > 0, f(0)=1, (d)=0, and lim f(d)=1;
2 d—o0

lim f
d——oo
the function g(x) = g(O + B) satisfies

g(0)=1, g'(x)<0 for x>0, and lim g(x)=0;
X—> 00
and F = F(y) = F(Cg) satisfies
F(0)=0; lim F(y)=0; and there exists yp > 0 such that
y—0o0

F'(y) >0 for 0<y <y, F'(y)<O0 for y>yo, and F(y) = Fo.



Trivial equilibrium (O, B, S) = (0,0, C/8), Parameter C.
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Bifurcation Point

Trivial equilibrium (O, B, S) = (0,0, C/B), Parameter C. We make a change of
variable z =S — C/f then (O, B,z) = (0,0,0) is a constant solution. We define

rOf(d) <2 - %) — uf(d)O — ¢(1 — £(d))O

¢(¢,0.B,2) = rf(d)%Jruf(d)Of'yBJre(lff(d))O - D

_Fo
Cge % —pz—C
Then for u = (O, B, z), the derivative G,(C,0,0,0) is given by
f(—=C/B)(r—p+e)—e 0 0 )

J(0707 C/ﬁ): ( f(_C/B)(:U'_6)+€ -7 0
Cg'(0) - F(C) Cg'(0) -8



Bifurcation Point

Trivial equilibrium (O, B, S) = (0,0, C/B), Parameter C. We make a change of
variable z =S — C/f then (O, B,z) = (0,0,0) is a constant solution. We define

rOf(d) <2 - %) — uf(d)O — ¢(1 — £(d))O

¢(¢,0.B,2) = rf(d)%Jruf(d)Of'yBJre(lff(d))O - D

iy o)
Cge % —pz—C

Then for u = (O, B, z), the derivative G,(C,0,0,0) is given by

f(=C/B)(r—p+e)—e 0 0
J(0,0,C/ﬁ): ( f(_C/B)(:U'_6)+€ - 0 ) .
Cg'(0) — F(C) Cg'(0) -8

A bifurcation point C« can be uniquely determined by f(—C/8) = ¢/(r — p + €).



Transcritical Bifurcation

At C = C,, Gu(Cs,0,0,0) can be written as

0 0 0
er
L= Gy(C4,0,0,0) = —pate - 0 . (8)

C.g’(0) — F(Cy) Cig'(0) -8

We take the eigenvector of L to be wy = (1, wop, woz) where

€r
W2 = />
Y(r—p+e)
’ _ ’
wos = C.g'(0) — F(C) | Cg'(0er

B By(r—p+e)

one can see that the range of L is {(0,y, z) € R®} which is two-dimensional, so we
can take the vector / to be (1,0,0).



Turning direction

(I, Gxu(Cx,0,0,0)[wo]) = —f'(—Cx/B)(r — p+¢€)/B < 0, and

(1 Guu( €., 0,0, 0)wo, wol) = 2L (~C. /)1,

where

Nr—p+oK  F(=C/B) AeK K (c*g/(O)—F(C*)+

| = _
2r f'(—=C/B) v 8

C.g'(0)er )
Ar—p+9)

9
So

C/(O)_ 7(’7 Guu(C*vovozo)[W0>W0]> _ rl
2(’7 GAU(C*707 070)[W0]> k(”i““re)’

If I < 0 then the bifurcation is forward; if / > 0 then it is backward which implies
bistable parameter ranges.
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