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Banach spaces

1 Metric space: a pair (M, d) where M is a set and d : M × M → R is a metric
which satisfies for any x , y , z ∈ M: (i) d(x , y) ≥ 0; (ii) d(x , y) = 0 if and only if
x = y ; (iii) d(x , y) = d(y , x); and (iv) (triangle inequality)
d(x , z) ≤ d(x , y) + d(y , z).

2 Complete: A metric space (M, d) is complete if any Cauchy sequence
{xn} ⊂ M has a limit in M.

3 Normed vector space: a pair (V , || · ||) where V is a linear vector space over
real numbers and the norm || · || : V → R is a function which satisfies for any
a ∈ R and x , y ∈ V : (i) ||ax || = |a| · ||x ||; (ii) ||x || ≥ 0, and ||x || = 0 if and only
if x = 0 (the zero vector); and (iii) (triangle inequality) ||x + y || ≤ ||x || + ||y ||.
A normed vector space is a metric space with the metric d(x , y) = ||x − y ||.

4 Banach space: a complete normed vector space.

5 Linear operator: Let X and Y be Banach spaces. A mapping F : X → Y is
linear if (i) F (ax) = aF (x) and (ii) F (x + y) = F (x) + F (y) for any a ∈ R and
x , y ∈ X .

6 Nonlinear operator: A mapping F : X → Y which is not linear.

7 Dimension: For n ∈ N, a Banach space X is n-dimensional if there is a subset of
X with n non-zero linear independent elements, but there is no such a set with
n + 1 element.

8 Example: Rn, C(Ω) (the set of continuous functions defined on Ω).
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6 Let L be a linear compact operator from X to Y . The spectrum of L is
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7 Let L be a linear compact operator from X to X . Then I − L is a linear
Fredholm operator with index 0.



Elliptic Equations Parabolic Equations Stability Existence/Uniqueness Systems Conclusion

Function spaces

Let Ω be a bounded domain in Rn.

1 Sobolev spaces: Lp(Ω), W k,p(Ω), W
k,p
0 (Ω) and for k ∈ N and 1 ≤ p ≤ ∞

(Banach spaces).

2 W k,2(Ω) and L2(Ω) (Hilbert spaces).

3 Hölder spaces C k,α(Ω), C
k,α

0 (Ω), C k(Ω) and C k
0 (Ω) for k ∈ N ∪ {0} and

α ∈ (0, 1] (Banach spaces).

4 W
k,p
0 (Ω), C

k,α

0 (Ω): u = 0 on ∂Ω.

5 W
k,p
N

(Ω) (k ≥ 2), C
k,α

N
(Ω) (k ≥ 1): ∇u · n = 0 on ∂Ω.

6 (Sobolev embedding)

(i) If p < n, then W k,p(Ω) →֒ Lq(Ω) for 1 ≤ q ≤
np

n − p

(ii) If p > n, then W k,p(Ω) →֒ C k−1,α(Ω) for α = 1 − n/p.
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Eigenvalues of Elliptic Operators

Let Ω be a bounded domain with smooth boundary. For any q(x) in C
(
Ω̄

)
and d > 0,

consider the linear eigenvalue problem

{
− d∆φ + q(x)φ = ρφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

1 Any eigenvalue is real-valued, and the eigenvalue problem has an infinite
sequence of eigenvalues, ρ1 < ρ2 ≤ ρ3 ≤ · · · → ∞.

2 The principal eigenvalue ρ1 = ρ1 (−d∆ + q(x)) is simple, and associated
eigenfunction φ1(x) can be chosen as positive.

3 An eigenfunction φi (x) corresponding to ρi with i ≥ 2 are sign-changing since∫
Ω

φi (x)φ1(x)dx = 0.

4 ρ1 is strictly increasing in the sense that q1(x), q2(x) ∈ C
(
Ω̄

)
, q1(x) ≤ q2(x)

and q1(x) 6≡ q2(x) implies that ρ1 (−d∆ + q1(x)) < ρ1 (−d∆ + q2(x)).

5 The variational characterization for ρ1:

ρ1 (−d∆ + q(x)) = inf
ϕ∈W

1,2
0 (Ω),ϕ6=0

∫
Ω

(
d|∇ϕ|2 + qϕ2

)
dx

∫
Ω

ϕ2dx
.
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Eigenvalues of Elliptic Operators

If q(x) = 0, λi = ρi (−∆) is the i -th eigenvalue of −∆ subject to homogeneous
Dirichlet boundary condition, and the corresponding eigenfunction is denoted by ϕi (x).
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If q(x) = 0, λi = ρi (−∆) is the i -th eigenvalue of −∆ subject to homogeneous
Dirichlet boundary condition, and the corresponding eigenfunction is denoted by ϕi (x).
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n = 2 (rectangle):
−φxx − φyy = λφ, (x , y) ∈ (0, aπ) × (0, bπ), and φ(x , y) = 0 on the boundary.

λm,n =
m2

a2
+

n2

b2
(m, n = 1, 2, 3, · · · ), and φm,n(x , y) = sin(mπx/a) sin(nπy/b).

(not all eigenvalues are simple ones.)

Positive or negative eigenvalues?

−d∆φ + q(x)φ = ρφ, x ∈ Ω, φ = 0, x ∈ ∂Ω
has an infinite sequence of eigenvalues, ρ1 < ρ2 ≤ ρ3 ≤ · · · → ∞, and the principal
eigenvalue ρ1 is the smallest eigenvalue. This is mostly used by people in elliptic
equations.
d∆φ − q(x)φ = ρφ, x ∈ Ω, φ = 0, x ∈ ∂Ω
has an infinite sequence of eigenvalues, ρ1 > ρ2 ≥ ρ3 ≥ · · · → −∞, and the principal
eigenvalue ρ1 is the largest eigenvalue. This is mostly used by people in dynamical
systems (as linearization of nonlinear equation like ut = d∆u + f (u)).
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Elliptic Operators

Let Ω be a bounded domain in Rn with smooth boundary. Consider the Possion’s
equation

−∆u(x) = f (x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

1 −∆ is a linear operator, but it is NOT bounded since it has a sequence of
eigenvalues ρi which tend to ∞.



Elliptic Equations Parabolic Equations Stability Existence/Uniqueness Systems Conclusion

Elliptic Operators

Let Ω be a bounded domain in Rn with smooth boundary. Consider the Possion’s
equation

−∆u(x) = f (x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

1 −∆ is a linear operator, but it is NOT bounded since it has a sequence of
eigenvalues ρi which tend to ∞.

2 For every f ∈ Lp(Ω), p > 1, Possion’s equation has a unique solution

u ∈ W 2,p(Ω)
⋂

W
1,p
0 (Ω), and ||u||W 2,p ≤ c||f ||Lp . (Lp estimate)



Elliptic Equations Parabolic Equations Stability Existence/Uniqueness Systems Conclusion

Elliptic Operators

Let Ω be a bounded domain in Rn with smooth boundary. Consider the Possion’s
equation

−∆u(x) = f (x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

1 −∆ is a linear operator, but it is NOT bounded since it has a sequence of
eigenvalues ρi which tend to ∞.

2 For every f ∈ Lp(Ω), p > 1, Possion’s equation has a unique solution

u ∈ W 2,p(Ω)
⋂

W
1,p
0 (Ω), and ||u||W 2,p ≤ c||f ||Lp . (Lp estimate)

3 For every f ∈ Cα(Ω), α ∈ (0, 1), Possion’s equation has a unique solution

u ∈ C
2,α

0 (Ω), and ||u||C2,α ≤ c||f ||Cα . (Schauder estimate)



Elliptic Equations Parabolic Equations Stability Existence/Uniqueness Systems Conclusion

Elliptic Operators

Let Ω be a bounded domain in Rn with smooth boundary. Consider the Possion’s
equation

−∆u(x) = f (x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

1 −∆ is a linear operator, but it is NOT bounded since it has a sequence of
eigenvalues ρi which tend to ∞.

2 For every f ∈ Lp(Ω), p > 1, Possion’s equation has a unique solution

u ∈ W 2,p(Ω)
⋂

W
1,p
0 (Ω), and ||u||W 2,p ≤ c||f ||Lp . (Lp estimate)

3 For every f ∈ Cα(Ω), α ∈ (0, 1), Possion’s equation has a unique solution

u ∈ C
2,α

0 (Ω), and ||u||C2,α ≤ c||f ||Cα . (Schauder estimate)

4 −∆ is an invertible linear operator. Let K = (−∆)−1. Then

K : Lp(Ω) → W 2,p(Ω)
⋂

W
1,p
0 (Ω) or K : Cα(Ω) → C

2,α

0 (Ω) is a bounded linear
operator. So (−∆)−1 is bounded.



Elliptic Equations Parabolic Equations Stability Existence/Uniqueness Systems Conclusion

Elliptic Operators

Let Ω be a bounded domain in Rn with smooth boundary. Consider the Possion’s
equation

−∆u(x) = f (x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

1 −∆ is a linear operator, but it is NOT bounded since it has a sequence of
eigenvalues ρi which tend to ∞.

2 For every f ∈ Lp(Ω), p > 1, Possion’s equation has a unique solution

u ∈ W 2,p(Ω)
⋂

W
1,p
0 (Ω), and ||u||W 2,p ≤ c||f ||Lp . (Lp estimate)

3 For every f ∈ Cα(Ω), α ∈ (0, 1), Possion’s equation has a unique solution

u ∈ C
2,α

0 (Ω), and ||u||C2,α ≤ c||f ||Cα . (Schauder estimate)

4 −∆ is an invertible linear operator. Let K = (−∆)−1. Then

K : Lp(Ω) → W 2,p(Ω)
⋂

W
1,p
0 (Ω) or K : Cα(Ω) → C

2,α

0 (Ω) is a bounded linear
operator. So (−∆)−1 is bounded.

5 The inclusion mapping i : W 2,p(Ω) → Lp(Ω) or i : C
2,α

0 (Ω) → Cα(Ω) (defined
by i(x) = x) is a linear compact mapping.



Elliptic Equations Parabolic Equations Stability Existence/Uniqueness Systems Conclusion

Elliptic Operators

Let Ω be a bounded domain in Rn with smooth boundary. Consider the Possion’s
equation

−∆u(x) = f (x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω.

1 −∆ is a linear operator, but it is NOT bounded since it has a sequence of
eigenvalues ρi which tend to ∞.

2 For every f ∈ Lp(Ω), p > 1, Possion’s equation has a unique solution

u ∈ W 2,p(Ω)
⋂

W
1,p
0 (Ω), and ||u||W 2,p ≤ c||f ||Lp . (Lp estimate)

3 For every f ∈ Cα(Ω), α ∈ (0, 1), Possion’s equation has a unique solution

u ∈ C
2,α

0 (Ω), and ||u||C2,α ≤ c||f ||Cα . (Schauder estimate)

4 −∆ is an invertible linear operator. Let K = (−∆)−1. Then

K : Lp(Ω) → W 2,p(Ω)
⋂

W
1,p
0 (Ω) or K : Cα(Ω) → C

2,α

0 (Ω) is a bounded linear
operator. So (−∆)−1 is bounded.

5 The inclusion mapping i : W 2,p(Ω) → Lp(Ω) or i : C
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6 Hence (−∆)−1 = i ◦ K : Lp(Ω) → Lp(Ω) (Cα(Ω) → Cα(Ω)) is a linear
compact operator.

7 (−∆)−1 : C1,α(Ω) → C1,α(Ω) or (−∆)−1 : C(Ω) → W 2,p(Ω) (p > n) is also
compact.
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Other boundary conditions and systems

1 Neumann boundary:

{
− d∆φ + q(x)φ = ρφ, x ∈ Ω,

∇φ · n = 0, x ∈ ∂Ω.

All are same except

ρ1 (−d∆ + q(x)) = inf
ϕ∈W 1,2(Ω),ϕ6=0

∫
Ω

(
d|∇ϕ|2 + qϕ2

)
dx∫

Ω ϕ2dx
.

2 The Neumann problem

−∆u(x) = f (x), x ∈ Ω, ∇u(x) · n = 0, x ∈ ∂Ω.

is solvable if

∫

Ω
f (x)dx = 0. Let X0 = {f ∈ X :

∫
Ω f (x)dx = 0}. Then

−∆ : Y0 → X0 is invertible where X , Y are appropriate function spaces.

3 All these properties are still valid if the scalar equation is replaced by a system
of equations with similar boundary conditions. (at least when there is no
cross-diffusion)
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Maximum Principle

(General version) Define Lc = −∆ + c(x). Suppose that Ω is a bounded connected
domain in Rn with n ≥ 2, c ∈ L∞(Ω), and c(x) ≥ 0 for x ∈ Ω. If u ∈ C2(Ω) ∩C0(Ω),
Lcu ≥ 0 in Ω, u(x) ≥ 0 on ∂Ω, then

1 (weak maximum principle) u(x) ≥ 0 for x ∈ Ω;

2 (strong maximum principle) If there exists x∗ ∈ Ω such that u(x∗) = 0, then
u(x) ≡ 0 for x ∈ Ω;

3 (Hopf boundary lemma) If there is a ball Br ⊂ Ω such that x∗ ∈ ∂Br ∩ ∂Ω, and
u(x) > u(x∗) for all x ∈ Br , then for any outward direction ν at x∗ with respect
to ∂Br (i.e., ν · n(x∗) > 0 for the outer normal vector n(x∗) of ∂Br ),

lim sup
t→0

u(x∗) − u(x∗ − tν)

t
< 0; if u ∈ C1(Ω), then

∂u

∂n
(x∗) < 0.

(Special version). If u ∈ C2(Ω) ∩ C0(Ω), Lcu ≥ 0 in Ω, u(x) ≥ 0 on ∂Ω. If u(x) ≥ 0
for all x ∈ Ω, then either u(x) > 0 for all x ∈ Ω, or u(x) ≡ 0. If u(x) > 0 in Ω, ∂Ω is
of class C2,α, u ∈ C2(Ω) ∩ C1(Ω), and there exists x∗ ∈ ∂Ω such that u(x∗) = 0,

then
∂u

∂n
(x∗) < 0. there is no assumption on the sign of c(x)!
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Optimal Maximum Principle

We say that the maximum principle holds for Lc in Ω if u ∈ C2(Ω) ∩ C0(Ω), Lcu ≥ 0
in Ω, u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

1 The maximum principle holds in Ω if the principal eigenvalue ρ1(c) is positive.

2 If ρ1(c) = 0, and these exists u ∈ C2(Ω) ∩ C0(Ω), Lcu ≥ 0 in Ω, u ≥ 0 on ∂Ω,
then u = cφ1, where φ1 is an eigenfunction corresponding to ρ1(c).

3 Consider the equation −Lcu + λu = f , where f ∈ Lp(Ω) (p > n) and f > 0.
Then
(a) If λ < ρ1(c), then there is a unique solution u ∈ W 2,p(Ω) ∩ W

1,p
0 (Ω) such

that u > 0 in Ω and ∇u · n < 0 on ∂Ω.
(b) If λ = ρ1(c) = 0, then there is no solution.
(c) (anti-maximum principle) If ρ1(c) < λ < ρ1(c) + δ, then there is a unique

solution u ∈ W 2,p(Ω) ∩ W
1,p
0 (Ω) such that u < 0 in Ω and ∇u · n > 0 on ∂Ω.

[Clement-Peletier, 1979, JDE] [Hess, 1981, JDE]
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A priori bound

1 (Dirichlet Boundary) Suppose that f ∈ C(Ω × R
+) and Ω is a bounded

connected domain in R
n (n ≥ 2) with C2,α boundary. Suppose that

u ∈ C2(Ω) ∩ C1(Ω) is a solution of

{
∆u(x) + f (x , u(x)) = 0 in Ω,

u = 0 on ∂Ω,

satisfying u(x) ≥ 0 for x ∈ Ω.
(a) If f (x , 0) ≥ 0 for all x ∈ Ω, then either u(x) > 0 for all x ∈ Ω and
∇u(x) · n(x) < 0 for all x ∈ ∂Ω, or u(x) ≡ 0 for x ∈ Ω.
(b) If u(x) 6≡ 0, and uM = u(x0) = max

x∈Ω u(x), then f (x , uM ) > 0.

2 (Neumann Boundary) Suppose that f ∈ C(Ω × R+) and Ω is a bounded
connected domain in Rn (n ≥ 2) with C2,α boundary. Suppose that
u ∈ C2(Ω) ∩ C1(Ω) satisfies





∆u(x) + f (x , u(x)) ≥ 0 in Ω,

∂u

∂n
≤ 0 on ∂Ω,

and u(x0) = max
x∈Ω u(x), then f (x0, u(x0)) ≥ 0.
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Smoothness of solutions to elliptic equations

Example: Fisher-KPP equation

d∆u + u(1 − u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

Prove: if u(x) is a nonnegative solution, then either u(x) ≡ 0 or 0 < u(x) < 1 for
x ∈ Ω.

d∆u + u(1 − u) = 0, x ∈ Ω, ∇u · n = 0, x ∈ ∂Ω.

Prove: if u(x) is a nonnegative solution, then either u(x) ≡ 0 or u(x) ≡ 1 for x ∈ Ω.
That is: there is no non-constant solution.

∆u + f (x , u) = 0, x ∈ Ω, u = 0, x ∈ ∂Ω.

u : Ω → R is a classical solution if u ∈ C2(Ω) ∩ C (Ω), satisfying
∆u(x) + f (x , u(x)) = 0 for any x ∈ Ω, and u(x) = 0 for any x ∈ ∂Ω.

Often we obtain a weak solution u ∈ W 2,p(Ω) for p ≥ 2. Then we can prove the
solution is indeed a classical one by using Schauder estimates, Lp estimates and
Sobolev embedding theorems, if f is a Hölder continuous function.
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Parabolic equations





ut = d∆u − V · ∇u + f (t, x , u), x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

u : Ω × (0, T ) → R is a classical solution if u ∈ C2,1(Ω × [0,T ]) ∩ C (Ω × (0, T ]),
satisfying ut(x , t) = d∆u(x , t) + f (t, x , u(x , t)) = 0 for any (x , t) ∈ Ω × (0, T ],
u(x , t) = 0 for any (x , t) ∈ ∂Ω × (0, T ], and u(x , 0) = u0(x) for x ∈ Ω.

Existence Theorem: Suppose that f is locally Lipschitz continuous, u0 ∈ Xα where
Xα is a proper subspace of X = W 2,2(Ω) ∩ W

1,2
0 (Ω), then the parabolic equation

above has a unique classical solution u(x , t) for t ∈ [0,T ].

1 Usually the initial value function u0(x) is required to be at least continuous,
although the equation may still have a solution even if u0 is not continuous, or
u0 is a generalized function like Delta function.

2 The solution u(x , t) exists globally if a classical solution u(x , t) exists for

(x , t) ∈ Ω × (0,∞), and u(x , t) is uniformly bounded if there exists M > 0 such

that |u(x , t)| ≤ M for (x , t) ∈ Ω × (0, T ].
3 The solution map St : u0 7→ u(·, t) generates a semiflow in Xα, which is useful

in the dynamical system approach. A semiflow S : Xα × (0, T ) → Xα satisfies
(i) S(x , 0) = x ; (ii) S(S(x , t1), t2) = S(x , t1 + t2); (iii) St = S(·, t) : Xα → Xα

is continuous; and (iv) for each x ∈ Xα, t 7→ S(x , t) is continuous.
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Comparison Principle





ut = d∆u − V · ∇u + f (t, x , u), x ∈ Ω, t > 0,

u(x , t) = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Comparison Principle: Suppose that f is C1, and
u, v ∈ C2,1(Ω × [0, T ]) ∩ C (Ω × (0, T ]) satisfy





ut − d∆u + V · ∇u − f (t, x , u) ≥ vt − d∆v + V · ∇v − f (t, x , v), x ∈ Ω, t ∈ (0, T ],

u(x , t) ≥ v(x , t), or ∇u · n ≥ ∇v · n, x ∈ ∂Ω, t ∈ (0, T ],

u(x , 0) ≥ v(x , 0), x ∈ Ω,

then u(x , t) ≥ v(x , t) for (x , t) ∈ Ω × (0, T ]; and if u(x , 0) 6≡ v(x , 0), then
u(x , t) > v(x , t) for (x , t) ∈ Ω × (0, T ].

Example: Fisher-KPP equation




ut = d∆u − V · ∇u + u(1 − u), x ∈ Ω, t > 0,

u(x , t) = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Prove: If u0(x) ≥ 0 is continuous for x ∈ Ω, then a solution u(x , t) exists globally for
t ∈ (0,∞). If the boundary condition is Neumann, prove that lim

t→∞
u(x , t) = 1

uniformly for x ∈ Ω.
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Steady state solution





ut = d∆u − V · ∇u + f (t, x , u), x ∈ Ω, t > 0,

u(x , t) = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Steady state solution: if f (t, x , u) = f (x , u), then a solution u(x , t) satisfies
u(x , t) ≡ u(x), and it satisfies an elliptic equation

{
d∆u − V · ∇u + f (x , u) = 0, x ∈ Ω,

u(x) = 0, or ∇u · n = 0, x ∈ ∂Ω.

Periodic solution: a solution u(x , t) satisfies u(x , t + T ) = u(x , t) for all
(x , t) ∈ Ω × (0,∞) and a T > 0. We assume that there is a smallest such T > 0
exists. Notice that if u(x , t) is periodic, so is u(x , t + t1) for 0 < t1 < T . But they
have the same orbit in the phase space: {u(x , t) : t > 0}. Hence a periodic solution
corresponds to a periodic orbit.
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Stability






ut = d∆u − V · ∇u + f (x , u), x ∈ Ω, t > 0,

u(x , t) = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Suppose that v(x) is a steady state solution. Let X be an open set of Banach space
such that u0, v ∈ X , and the solution u(x , t; u0) exists.

1 A steady state solution v is stable (Lyapunov stable) in X if for any ε > 0, there
exists a δ > 0 such that when ||u0 − v ||X < δ, then ||u(·, t; u0) − v(·)||X < ε for
all t > 0; v is unstable if it is not stable.

2 A steady state solution v is (locally) asymptotically stable (attractive) in X if v

is stable, and there exists η > 0, such that when ||u0 − v ||X < η, then
lim

t→∞
||u(·, t; u0) − v(·)||X = 0.

3 If v(x) is locally asymptotically stable, then the set

Xv =
{
u0 ∈ X : lim

t→∞
||u(·, t; u0) − v(·)||X = 0

}
is the basin of attraction of v .

A steady state solution v is globally asymptotically stable if Xv = X .

Examples of X : C(Ω), W 1,p(Ω), C2,α(Ω), C+(Ω) = {u0 ∈ C(Ω) : u0(x) ≥ 0, x ∈ Ω}.
[Brown-Dunne-Gardner, 1981, JDE] these stabilities are same (under some conditions).
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Principle of Linearized Stability






ut = d∆u − V · ∇u + f (x , u), x ∈ Ω, t > 0,

u(x , t) = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Principle of Linearized Stability: Suppose that v(x) is a steady state solution.
Consider the eigenvalue problem:

{
Lφ ≡ d∆φ − V · ∇φ + fu(x , v(x))φ = µφ, x ∈ Ω,

φ(x) = 0, or ∇φ · n = 0, x ∈ ∂Ω.

If all the eigenvalues of L have negative real part, then v is locally asymptotically
stable; and if at least one of eigenvalues of L has positive real part, then v is unstable.
Corollary.
1. Let ρ1 be the principal eigenvalue of L, then v is locally asymptotically stable if
ρ1 < 0, and v is unstable if ρ1 > 0.

2. Define I (φ) =

∫

Ω
[|∇φ(x)|2 − fu(x , v(x))φ2(x)]dx . If V = 0, then v is locally

asymptotically stable if I (φ) > 0 for any φ ∈ W 1,2(Ω), and v is unstable if there exists

a φ (∈ W 1,2(Ω) for Neumann or ∈ W
1,2
0 (Ω) for Dirichlet) such that I (φ) < 0.

[Smoller, 1982, book, Chapter 11], [Webb, 1985, book]
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Autonomous Neumann Problem






ut = d∆u + f (u), x ∈ Ω, t > 0,

∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Linearized equation at a steady state solution v :

{
d∆φ + f ′(v)φ = µφ, x ∈ Ω,

∇φ · n = 0, x ∈ ∂Ω.

Theorem. Suppose that v(x) = c is a constant steady state solution (so f (c) = 0).
Then v(x) = c is locally asymptotically stable if f ′(c) < 0, and v(x) = c is unstable if
f ′(c) < 0.

Theorem. [Casten-Holland, 1978, JDE], [Matano, 1979, Pub RIMS] Suppose that Ω is
a bounded convex domain. Let v(x) be a locally asymptotically stable steady state
solution on Ω. Then v(x) is a constant function.

[Matano, 1979, Pub RIMS] If Ω is not convex, then there may exist non-constant
locally asymptotically stable steady state solutions.
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Non-autonomous sublinear problem





ut = d∆u + f (x , u), x ∈ Ω, t > 0,

u = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

{
d∆φ1 + fu(x , u)φ1 = µ1φ1, x ∈ Ω,

φ1 = 0, or ∇φ1 · n = 0, x ∈ ∂Ω.

Sublinear: f (x , u) ≥ ufu(x , u) for u ≥ 0.

Theorem. If f is sublinear, then any positive steady state solution u(x) is locally
asymptotically stable.

Proof. By using Green’s Theorem

d

∫

Ω
[u∆φ1 − φ1∆u] +

∫

Ω
φ1[ufu(x , u) − f (x , u)] = µ

∫

Ω
uφ1.

Example: Non-homogeneous Fisher-KPP
d∆u + (m(x) − k(x)u)u = 0, x ∈ Ω, u = 0, or ∇u · n = 0, x ∈ ∂Ω.

If f is superlinear (f (x , u) ≤ ufu(x , u) for u ≥ 0), then any positive steady state
solution u(x) is unstable.
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Upper-Lower solution method

{
d∆u + f (x , u) = 0, x ∈ Ω,

u(x) = 0, or ∇u · n = 0, x ∈ ∂Ω.

v(x) ∈ C2(Ω) ∩ C1(Ω) is an upper (lower) solution if

{
d∆v + f (x , v) ≤ (≥)0, x ∈ Ω,

v(x) ≥ (≤)0, or ∇v · n ≥ (≤)0, x ∈ ∂Ω.

Theorem. Suppose that f is Lipschitz continuous in u and Hölder continuous in x . If
there is a upper solution u and a lower solution u satisfying u(x) ≥ u(x) for all x ∈ Ω,
then there exist steady state solutions uM (x) and um(x) satisfying
u(x) ≥ uM (x) ≥ um(x) ≥ u(x). Moreover uM is the maximum solution and um is the
minimum solution which satisfy u(x) ≥ u(x) ≥ u(x).

[Amann, 1976, SIAM-Rev], [Du, 2006, book]

Theorem. [Sattinger, Indiana J Math, 1971] Let uM (x) and um(x) be the maximum
solution and minimum solution above. Consider the linearized eigenvalue problem (for
∗ = M,m) {

d∆φ1 + fu(x , u∗)φ1 = µφ1, x ∈ Ω,

φ1 = 0, or ∇φ1 · n = 0, x ∈ ∂Ω.

Then µ1(u∗) ≤ 0 for ∗ = M, m.
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Fisher-KPP equation

Example: Non-homogeneous Fisher-KPP equation
d∆u + (m(x) − k(x)u)u = 0, x ∈ Ω, u = 0, or ∇u · n = 0, x ∈ ∂Ω.

Suppose k(x) ≥ δ > 0 for x ∈ Ω, and M ≥ m(x) for x ∈ Ω and there exists a positive
measure set Ω0 ⊂ Ω such that m(x) > 0 on Ω0.

Upper solution u = M/δ.

lower solution (Dirichlet): u = εφ1(x), where φ1 satisfies
d∆φ1 + m(x)φ1 = µ1φ1, x ∈ Ω, φ1 = 0, x ∈ ∂Ω.
if 0 < d < 1/ρ1 or µ1 > 0

lower solution (Neumann): u = εφ1(x), where φ1 satisfies
d∆φ1 + m(x)φ1 = µ1φ1, x ∈ Ω, ∇φ1 · n = 0, x ∈ ∂Ω.

if

∫

Ω
m(x)dx > 0 and for any d > 0.

or if

∫

Ω
m(x)dx < 0 and for any 0 < d < 1/ρ1.

We need µ1 > 0.
[Lou, 2006, JDE], [Ni, 2011, book]
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Two eigenvalue problems

{
− d∆φ + q(x)φ = µφ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

Eigenvalues: µ1 < µ2 ≤ µ3 ≤ · · · → ∞

µ1 = inf
ϕ∈H1

0 (Ω),ϕ6=0

∫
Ω

(
d|∇ϕ|2 + qϕ2

)
dx∫

Ω ϕ2dx
.

{
− ∆φ = ρq(x)φ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

(Possible) Eigenvalues: ρ1 < ρ2 ≤ ρ3 ≤ · · · → ∞ (exist if {ϕ :
∫
Ω q(x)ϕ2dx > 0} 6= ∅)

and ρ−1 > ρ2 ≥ ρ3 ≥ · · · → −∞ (exist if {ϕ :
∫
Ω q(x)ϕ2dx < 0} 6= ∅)

ρ1 = inf
ϕ∈H1

0 (Ω),ϕ6=0,
∫
Ω q(x)ϕ2>0

∫
Ω |∇ϕ|2dx

∫
Ω q(x)ϕ2dx

.

ρ−1 = − inf
ϕ∈H1

0 (Ω),ϕ6=0,
∫
Ω q(x)ϕ2<0

∫
Ω
|∇ϕ|2dx

∫
Ω q(x)ϕ2dx

.

0 < d < ρ−1
1 is equivalent to µ1 > 0.

[Brown-Lin, JMAA, 1980], [Hess-Kato, CPDE, 1980]
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Uniqueness

Example: Non-homogeneous Fisher-KPP equation
d∆u + (m(x) − k(x)u)u = 0, x ∈ Ω, u = 0, or ∇u · n = 0, x ∈ ∂Ω.

Let uM (x) be the maximum solution, and let u(x) be another solution. Then
uM (x) ≥ u(x) for all x ∈ Ω.

0 =d

∫

Ω
(u∆uM − uM∆u)dx = d

∫

Ω
(u∆uM − uM∆u)dx

=

∫

Ω
[(m(x) − k(x)u)uuM − (m(x) − k(x)uM )uMu]dx =

∫

Ω
k(x)uM u(uM − u)dx .

Then uM ≡ u since k(x) ≥ δ > 0.

Theorem. Suppose that f (x , u) ≥ ufu(x , u) for u ≥ 0.

d∆u + f (x , u) = 0, x ∈ Ω, u = 0, or ∇u · n = 0, x ∈ ∂Ω,

has at most one positive solution, and it is locally asymptotically stable if it exists.
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LaSalle’s invariance principle

[LaSalle, 1960] [Henry, 1981, Lecture notes, Theorem 4.3.4]

1 Let Y be a complete metric space. A semiflow S : Y × (0, T ) → Y satisfies (i)
S(x , 0) = x ; (ii) S(S(x , t1), t2) = S(x , t1 + t2); (iii) S(t) = S(·, t) : Y → Y is
continuous; and (iv) for each x ∈ Y , t 7→ S(x , t) is continuous.

2 Suppose that S(t)Y → Y is a semiflow. Then V : Y → R is a

Lyapunov function, if V̇ (x) = limt→0+
V (S(t)x) − V (x)

t
≤ 0 for all x ∈ Y .

3 Let x0 ∈ Y . Then the orbit through x0 is γ(x0) = {S(t)x0 : t ≥ 0}.

4 A set K ⊂ Y is invariant if for any x0 ∈ K , there exists a continuous curve
x : R → K such that x(0) = x0 and S(t)x(τ) = x(t + τ), for τ ∈ R and t ≥ 0.
That is, γ(x0) ⊂ K .

5 The ω-limit set of x0 is
ω(x0) = ω(γ(x0)) = {x ∈ Y : there exists tn → ∞ such that S(t)x0 → x}.

6 Theorem. Suppose that x0 ∈ Y , and the orbit γ(x0) is compact. Then ω(x0) is
nonempty, invariant, connected and compact, and dist(S(t)x0, ω(x0)) → 0 as
t → ∞.

7 LaSalle’s invariance principle Let V be a Lyapunov function on Y . Define
E = {x ∈ Y : V̇ (x) = 0}, and M is the maximum invariance subset of E . If the
orbit γ(x0) is compact, then S(t)x0 → M as t → ∞.
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Global Stability





ut = d∆u + f (x , u), x ∈ Ω, t > 0,

u = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

1 It generates a semiflow St on Xα if f is Lipchitz continuous.

2 There is a Lyapunov function V (u) =

∫

Ω
[|∇u(x)|2 − 2F (x , u(x))]dx , where

F (x , u) =
∫ u
0 f (x , s)ds.

3 A solution orbit is compact if it is bounded.
4 If V̇ (u) = 0, then u is a steady state solution.

Example: Non-homogeneous Fisher-KPP equation






ut = d∆u + u(m(x) − k(x)u), x ∈ Ω, t > 0,

u = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

1 All solutions are uniformly bounded.
2 There is a unique positive steady state solution or u = 0 is the only

non-negative steady state solution.
3 Theorem. The unique positive steady state solution is globally asymptotically

stable when it exists, and otherwise u = 0 is globally asymptotically stable.
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Grand Finale

Theorem Consider






ut = d∆u + u(m(x) − k(x)u), x ∈ Ω, t > 0,

u = 0, or ∇u · n = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

Here Ω is bounded smooth domain, u0(6≡ 0) is continuous, m(x), k(x) are continuous
functions on Ω such that k(x) ≥ δ > 0 for x ∈ Ω, and M ≥ m(x) for x ∈ Ω and there
exists a positive measure set Ω0 ⊂ Ω such that m(x) > 0 on Ω0.

1 For the Dirichlet boundary case u = 0 on ∂Ω, let ρ1 be the principal eigenvalue
of ∆φ1 + ρ1m(x)φ1 = 0, x ∈ Ω, φ1 = 0, x ∈ ∂Ω. Then when d ≥ ρ−1

1 , u = 0

is globally asymptotically stable; and when 0 < d < ρ−1
1 , there is a unique

positive steady state solution ud which is globally asymptotically stable.

2 For the Neumann boundary case ∇u · n = 0 on ∂Ω, if
∫
Ω m(x)dx > 0, then for

d > 0, there is a unique positive steady state solution ud which is globally
asymptotically stable; if

∫
Ω m(x)dx < 0, then for 0 < d < ρ−1

1 , there is a unique
positive steady state solution ud which is globally asymptotically stable, while
for d ≥ ρ−1

1 , u = 0 is globally asymptotically stable.
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Bistability





ut = d∆u + w(1 − w)(w − b), x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

u(x , 0) = u0(x) ≥ 0, x ∈ Ω.

1 For any d > 0 and 0 < b < 1, the constant steady state u = 0 is locally
asymptotically stable.

2 If 1/2 ≤ b < 1, then for any d > 0, the only nonnegative steady state solution is
u = 0.

3 If 0 < b < 1/2, then the only nonnegative steady state solution is u = 0 if

d >
(1 − b)2

4λD
1 (Ω)

, and there exists a constant D0 = D0(Ω) > 0 such that for

0 < d < D0, it has at least two positive steady state solutions. Moreover, for
0 < d1 < D0, it has a maximal steady state solution ũ(x) such that for any
steady state solution u(x), ũ(x) > u(x) for x ∈ Ω.

4 If 0 < b < 1/2, and Ω is a ball of Rn for n ≥ 1, then there exists D0 > 0 such
that it has exactly two positive steady state solutions for 0 < d < D0, has
exactly one positive steady state solution for d = D0, and has no positive steady
state solution for d > D0. [Ouyang-Shi, JDE, 1998]

5 In the last case with 0 < d < D0, there are three non-negative steady state
solutions 0 < û(x) < ũ(x). For any u∗(≥ 0) ∈ Xα, there exists β0(u∗) > 0 such
that if u0 = βu∗, then as t → ∞, (i) u(·, t) → 0 if 0 < β < β0, (ii)
u(·, t) → û(·) if β = β0, and (iii) u(·, t) → ũ(·) if β > β0. [Jiang-Shi, DCDS-A,
2008]
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Cooperative system





∆u + λf (u, v) = 0, x ∈ Ω,

∆v + λg(u, v) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

Linearized equation:





∆ξ + λfu(u, v)ξ + λfv (u, v)η = −µξ, x ∈ Ω,

∆η + λgu(u, v)ξ + λgv (u, v)η = −µη, x ∈ Ω,

ξ(x) = η(x) = 0, x ∈ ∂Ω,

Cooperative: fv (u, v) ≥ 0, gu(u, v) ≥ 0 for (u, v) ∈ R
+ × R

+

If the system is cooperative, then

1 A positive solution with Ω = Bn (ball in Rn) is radially symmetric. [Troy, JDE,
1981]

2 For Neumann boundary problem, if (u, v) is a stable solution, and the domain Ω
is convex, then (u, v) must be constant. [Kishimoto-Weinberger, JDE, 1985]

3 The eigenvalue with smallest real part is real-valued, and it is a principal
eigenvalue µ1 with a positive eigenfunction. [Sweers, Math Z, 1992]
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Sublinear system

[Chern-Tang-Lin-Shi, PRSE, 2011], [Cui-Li-Shi-Wang, TMNA, 2013 to appear]





∆u + λf (u, v) = 0, x ∈ Ω,

∆v + λg(u, v) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

Suppose that (u, v) is a positive solution. Then (u, v) is stable (µ1 > 0) if (f , g)
satisfies one of the following conditions: for any (u, v) ∈ R+ × R+,

(A1) f (u, v) > fu(u, v)u + fv (u, v)v , g(u, v) > gu(u, v)u + gv (u, v)v , or
(A2) f (u, v) > fu(u, v)u + gu(u, v)v , g(u, v) > gv (u, v)v + fv (u, v)u, or
(A3) f (u, v) > fv (u, v)v + gv (u, v)u, g(u, v) > gu(u, v)u + fu(u, v)v , or
(A4) f (u, v) > gv (u, v)u + gu(u, v)v , g(u, v) > fv (u, v)u + fu(u, v)v .

Proof. The conjugate linearized operator has the same principal eigenvalue µ1 with
positive eigenfunction (ξ∗, η∗).

µ1

∫
Ω(uξ∗ + vη∗)dx = λ

∫
Ω[f − fuu − fvv ]η∗dx + λ

∫
Ω[g − guu − gv v ]ξ∗dx .

Example: existence, stability and uniqueness of positive solution of cooperative logistic
system (here a, b, c, d > 0 and p, q > 1)






∆u + λ(au − up + cv) = 0, x ∈ Ω,

∆v + λ(bv − vq + du) = 0, x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.
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Competition model: Sublinear but not cooperative






ut = d1∆u + f1(z(x) − au − bv)u = 0, x ∈ Ω,

vt = d2∆v + f2(z(x) − cu − dv)v = 0, x ∈ Ω,

Bu(x) = Bv(x) = 0, x ∈ ∂Ω.

where fi is a non-increasing function, the resource function z(x) > 0, a, b, c, d > 0.

Lotka-Volterra model: fi (u) = miu.
[Dockery et.al., JMB, 1998], [Hutson et.al., JDE, 2002, 2005]
[Lou, JDE, 2006], [Lam-Ni, SIAM-MA, 2012], [He-Ni, JDE, 2013]

Chemostat model: fi =
miu

ai + u
, a = b = c = d = 1. [Hsu-Waltman, SIAM-AM, 1993]

1. The coexistence steady state solution (u > 0, v > 0) may not be stable.
2. The coexistence steady state solution (u > 0, v > 0) may not be unique
(non-convex domain).
3. When the boundary steady state solutions are unstable, then there is a coexistence
steady state solution.
Question: for convex domain, is the coexistence steady state solution unique and
globally stable?
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Route to global stability

General reaction-diffusion systems: ut = d1∆u + f (x , u, v), vt = d2∆v + f (x , u, v)
General reaction-diffusion equation: ut = d∆u − V · ∇u + f (x , u)
Fisher-KPP equation: ut = d∆u + u(m(x) − k(x)u).

General system General equation Fisher-KPP
Local existence Yes (usually) Yes Yes
Global existence Can be proved Can be proved Yes

Existence of steady state Harder Many methods Yes
Maximum principle No in general Yes Yes

Upper-lower solution method No in general Yes Yes
Lyapunov function No in general Yes Yes

Uniqueness of steady state No in general No in general Yes
Globally stable steady state No in general No in general Yes

Periodic orbit Maybe No No
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