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Results Proof: local Proof: nonlocal Conclusion

Problems to consider

Question: For which systems, the global stability of a steady state is persistent despite
the delay? And for which systems, a large delay can destabilize the steady state?

Non-spatial equation with delay:
du(t)

dt
= f (λ, u(t), u(t − τ)).

Scalar delayed reaction-diffusion (no-flux boundary condition):

ut = d∆u + f (u, u(t − τ)), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

Scalar delayed reaction-diffusion (zero boundary condition):
ut = d∆u + f (u, u(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.
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Results Proof: local Proof: nonlocal Conclusion

Diffusive Hutchinson Model

no-flux boundary condition:

ut = d∆u + ru(1− u(t − τ)), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

Same as non-spatial case: When τ <
π

2r
, u = K is locally stable;

When τ >
π

2r
, u = K is unstable, and τ = π/(2r) is a Hopf bifurcation point.

(Global stability of u = K is only known when τ is sufficiently small)
[Yoshida, 1982, Hiroshima-MJ], [Memory, 1989, SIAM-JMA], [Friesecke, 1993, JDDE]

Scalar delayed reaction-diffusion (zero boundary condition):
ut = d∆u + ru(1− u(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.

assume r > dλ1 but r − dλ1 is small: there is a τ0(r) > 0 satisfying

lim
r→dλ1

(r − dλ1)τ0(r) =
π

2
such that the unique positive steady state ur is locally

stable when τ < τ0(r), and it is unstable when τ > τ0(r). Again τ = τ0(r) is a Hopf
bifurcation point.
[Green-Stech, 1981, book chap], [Busenberg-Huang, 1996, JDE],
[Su-Wei-Shi, 2009, JDE] more general case [Yan-Li, 2010, Nonlinearity]



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Results Proof: local Proof: nonlocal Conclusion

Diffusive Hutchinson Model

no-flux boundary condition:

ut = d∆u + ru(1− u(t − τ)), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

Same as non-spatial case: When τ <
π

2r
, u = K is locally stable;

When τ >
π

2r
, u = K is unstable, and τ = π/(2r) is a Hopf bifurcation point.

(Global stability of u = K is only known when τ is sufficiently small)
[Yoshida, 1982, Hiroshima-MJ], [Memory, 1989, SIAM-JMA], [Friesecke, 1993, JDDE]

Scalar delayed reaction-diffusion (zero boundary condition):
ut = d∆u + ru(1− u(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.

assume r > dλ1 but r − dλ1 is small: there is a τ0(r) > 0 satisfying

lim
r→dλ1

(r − dλ1)τ0(r) =
π

2
such that the unique positive steady state ur is locally

stable when τ < τ0(r), and it is unstable when τ > τ0(r). Again τ = τ0(r) is a Hopf
bifurcation point.
[Green-Stech, 1981, book chap], [Busenberg-Huang, 1996, JDE],
[Su-Wei-Shi, 2009, JDE] more general case [Yan-Li, 2010, Nonlinearity]



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Results Proof: local Proof: nonlocal Conclusion

Diffusive Hutchinson Model

no-flux boundary condition:

ut = d∆u + ru(1− u(t − τ)), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

Same as non-spatial case: When τ <
π

2r
, u = K is locally stable;

When τ >
π

2r
, u = K is unstable, and τ = π/(2r) is a Hopf bifurcation point.

(Global stability of u = K is only known when τ is sufficiently small)
[Yoshida, 1982, Hiroshima-MJ], [Memory, 1989, SIAM-JMA], [Friesecke, 1993, JDDE]

Scalar delayed reaction-diffusion (zero boundary condition):
ut = d∆u + ru(1− u(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.

assume r > dλ1 but r − dλ1 is small: there is a τ0(r) > 0 satisfying

lim
r→dλ1

(r − dλ1)τ0(r) =
π

2
such that the unique positive steady state ur is locally

stable when τ < τ0(r), and it is unstable when τ > τ0(r). Again τ = τ0(r) is a Hopf
bifurcation point.
[Green-Stech, 1981, book chap], [Busenberg-Huang, 1996, JDE],
[Su-Wei-Shi, 2009, JDE] more general case [Yan-Li, 2010, Nonlinearity]



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Results Proof: local Proof: nonlocal Conclusion

Diffusive Hutchinson Model

no-flux boundary condition:

ut = d∆u + ru(1− u(t − τ)), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

Same as non-spatial case: When τ <
π

2r
, u = K is locally stable;

When τ >
π

2r
, u = K is unstable, and τ = π/(2r) is a Hopf bifurcation point.

(Global stability of u = K is only known when τ is sufficiently small)
[Yoshida, 1982, Hiroshima-MJ], [Memory, 1989, SIAM-JMA], [Friesecke, 1993, JDDE]

Scalar delayed reaction-diffusion (zero boundary condition):
ut = d∆u + ru(1− u(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.

assume r > dλ1 but r − dλ1 is small: there is a τ0(r) > 0 satisfying

lim
r→dλ1

(r − dλ1)τ0(r) =
π

2
such that the unique positive steady state ur is locally

stable when τ < τ0(r), and it is unstable when τ > τ0(r). Again τ = τ0(r) is a Hopf
bifurcation point.
[Green-Stech, 1981, book chap], [Busenberg-Huang, 1996, JDE],
[Su-Wei-Shi, 2009, JDE] more general case [Yan-Li, 2010, Nonlinearity]



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Results Proof: local Proof: nonlocal Conclusion

Diffusive Hutchinson Model Simulation

Figure : Numerical simulation of Dirichlet problem with λ = 1.01 and c = 0.5.

Top: τ = 80, the solution approaches to the positive steady state. Bottom:

τ = 120, the solution still approaches to the positive steady state but with

noticeable oscillations.
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Diffusive Hutchinson Model Simulation

Figure : Numerical simulation of Dirichlet problem with λ = 1.01 and c = 0.5.

(A) Left: τ = 130, the solution converges to a time-periodic solution with

small oscillations; (B) Right: τ = 200, the solution converges to a

time-periodic solution with larger amplitude.
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Diffusive Hutchinson Model with Partial Delay

Assume that a, b ≥ 0 and a+ b = 1
no-flux boundary condition (and also non-spatial model):

ut = d∆u + ru(1− au − bu(t − τ)), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

When a ≥ b, then u = 1 is globally stable for any τ ≥ 0;

When a < b, There exists τ0(r) =
1

r
√
b2 − a2

arccos
(
−

a

b

)
such that if τ < τ0(r),

u = 1 is locally stable, and if τ > τ0(r), u = 1 is unstable. τ = τ0(r) is a Hopf
bifurcation point.
[Yamada, 1982, JMAA], [Kuang-Smith, 1993, J-Aust-MS], [Pao, 1996, JMAA]

zero boundary condition:
ut = d∆u + ru(1− au − bu(t − τ)), x ∈ Ω, u = 0, x ∈ ∂Ω.

When a ≥ b and r > dλ1, then the unique positive steady state ur is globally stable
for any τ ≥ 0;
When a < b, assume r > dλ1 but r − dλ1 is small: there is a τ0(r) > 0 satisfying

lim
r→dλ1

(r − dλ1)τ0(r) =
1

r
√
b2 − a2

arccos
(
−

a

b

)
such that the unique positive steady

state ur is locally stable when τ < τ0(r), and it is unstable when τ > τ0(r). Again
τ = τ0(r) is a Hopf bifurcation point.
[Pao, 1996, JMAA], [Huang, 1998, JDE],
[Su-Wei-Shi, 2012, JDDE] global continuation of periodic orbits
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Global Bifurcation

[Su-Wei-Shi, 2012, JDDE]
ut = duxx + ru(1− au − bu(t − τ)), x ∈ (0, π), u(0) = u(π) = 0.
assume a < b, r > d but r − d is small
There exists a unique positive steady state ur ≈ (r − d) sin x .

...1 There exists infinitely many Hopf bifurcation points τ = τn (n = 0, 1, 2, · · · )
such that τn+1 > τn so that periodic orbits bifurcate from steady state ur .

...2 The connected component Cn of the set of nontrivial periodic orbits bifurcating
from τ = τn is unbounded so that

sup

{
max
t∈R

|z(t)|+ |τ |+ ω + ω−1 : (z, τ, ω) ∈ Cn

}
= ∞,

where z(t) is the orbit and 2π/ω is the period.

...3 If (z, τ, ω) ∈ Cn, then 1/(n + 1) < ω < 1/n if n ≥ 1, and ω > 1 if n = 0.

...4 For n ̸= m, Cn
∩

Cm = ∅; the projection of Cn to τ component contains (τn,∞).

[Wu, 1996, book], [Wu, 1998, Tran-AMS]
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Results Proof: local Proof: nonlocal Conclusion

Diffusive Hutchinson Model with nonlocal effect

zero boundary condition:

ut = d∆u + λu

(
1−

∫
Ω
K(x , y)u(y , t − τ)dy

)
, x ∈ Ω, u = 0, x ∈ ∂Ω.

assume λ > dλ1 but λ− dλ1 is small: there exists a τ0(λ) > 0 such that uλ is locally
asymptotically stable when τ ∈ [0, τ0(λ)) and it is unstable when τ > τ0(λ). And
τ = τ0(λ) is a Hopf bifurcation point.

ut = d∆u + λu

(
1−

∫ π

0
u(y , t − τ)dy

)
, x ∈ (0, π), u = 0, x = 0, π.

assume λ > dλ1: there exists a τ0(λ) > 0 such that uλ is locally asymptotically stable
when τ ∈ [0, τ0(λ)) and it is unstable when τ > τ0(λ). And τ = τ0(λ) is a Hopf
bifurcation point.
[Chen-Shi, 2012, JDE]
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)
, x ∈ (0, π), u = 0, x = 0, π.

assume λ > dλ1: there exists a τ0(λ) > 0 such that uλ is locally asymptotically stable
when τ ∈ [0, τ0(λ)) and it is unstable when τ > τ0(λ). And τ = τ0(λ) is a Hopf
bifurcation point.
[Chen-Shi, 2012, JDE]
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Results Proof: local Proof: nonlocal Conclusion

Simulation (1)

ut = d∆u + λu

(
1−

∫ π

0
K(x , y)u(y , t − τ)dy

)
, x ∈ (0, π), u = 0, x = 0, π.

Figure : Spatially homogeneous kernel K (x , y) = 1. (Left): τ = 1;
(Right): τ = 1.6.
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Results Proof: local Proof: nonlocal Conclusion

Simulation (2)

ut = d∆u + λu

(
1−

∫ π

0
K(x , y)u(y , t − τ)dy

)
, x ∈ (0, π), u = 0, x = 0, π.

Figure : Spatially nonhomogeneous kernel K (x , y) =
|x − y |

π
. (Left):

τ = 1; (Right): τ = 1.6.
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Results Proof: local Proof: nonlocal Conclusion

Setting

[Su-Wei-Shi, 2009, JDE]

∂u(x , t)

∂t
= d

∂u2(x , t)

∂x2
+ λu(x , t)f (u(x , t − τ)), x ∈ (0, l), t > 0,

u(0, t) = u(l , t) = 0, t ≥ 0,

(1)

where d > 0 is the diffusion coefficient, τ > 0 is the time delay, and λ > 0 is a scaling
constant; the spatial domain is the interval (0, l), and Dirichlet boundary condition is
imposed so the exterior environment is hostile. We consider Eq. (1) with the following
initial value:

u(x , s) = η(x , s), x ∈ [0, l ], s ∈ [−τ, 0], (2)

where η ∈ C def
= C([−τ, 0],Y ) and Y = L2

(
(0, l)

)
.

The following assumptions are always satisfied:

(A1) There exists δ > 0 such that f is a C4 function on [0, δ];

(A2) f (0) = 1, and f ′(u) < 0 for u ∈ [0, δ].
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Results Proof: local Proof: nonlocal Conclusion

Steady State

d2u(x)

dx2
+ λu(x)f (u(x)) = 0, x ∈ (0, l),

u(0) = u(l) = 0.

(3)

It is well known that Y = N (dD2 + λ∗)⊕ R(dD2 + λ∗), where

D2 =
∂2

∂x2
, N (dD2 + λ∗) = Span

{
sin(

π

l
(·))

}
and

R(dD2 + λ∗) =

{
y ∈ Y : ⟨sin(

π

l
(·)), y⟩ =

∫ l

0
sin(

π

l
x)y(x)dx = 0

}
.

Theorem 1 There exist λ∗ > λ∗ and a continuously differentiable mapping
λ 7→ (ξλ, αλ) from [λ∗, λ∗] to (X ∩ R(dD2 + λ∗))× R+ such that Eq.(1) has a
positive steady state solution given by

uλ = αλ(λ− λ∗)[sin(
π

l
(·)) + (λ− λ∗)ξλ], λ ∈ [λ∗, λ

∗]. (4)

Moreover, αλ∗ =
−

∫ l
0 sin

2(π
l
x)dx

λ∗f ′(0)
∫ l
0 sin

3(π
l
x)dx

and ξλ∗ ∈ X is the unique solution of the

equation (dD2 + λ∗)ξ+ [1+ λ∗αλ∗ f
′(0) sin(

π

l
(·))] sin(

π

l
(·)) = 0, ⟨sin(

π

l
(·)), ξ⟩ = 0.
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Results Proof: local Proof: nonlocal Conclusion

Linearization

∂v(x , t)

∂t
= d

∂2v(x , t)

∂x2
+ λf (uλ)v(x , t) + λuλf

′(uλ)v(x , t − τ), t > 0,

v(0, t) = v(l , t) = 0, t ≥ 0,

v(x , t) = η(x , t), (x , t) ∈ [0, l ]× [−τ, 0],

(5)

where η ∈ C. We introduce the operator A(λ) : D(A(λ)) → YC defined by
A(λ) = dD2 + λf (uλ), with domain

D(A(λ)) = {y ∈ YC : ẏ , ÿ ∈ YC, y(0) = y(l) = 0} = XC,

and set v(t) = v(·, t), η(t) = η(·, t). Then Eq.(5) can be rewritten as

dv(t)

dt
= A(λ)v(t) + λuλf

′(uλ)v(t − τ), t > 0,

v(t) = η(t), t ∈ [−τ, 0], η ∈ C,
(6)

with A(λ) an infinitesimal generator of a compact C0-semigroup. The semigroup
induced by the solutions of Eq.(6) has the infinitesimal generator Aτ (λ) given by

Aτ (λ)ϕ = ϕ̇,

D(Aτ (λ)) = {ϕ ∈ CC ∩ C1
C : ϕ(0) ∈ XC, ϕ̇(0) = A(λ)ϕ(0) + λuλf

′(uλ)ϕ(−τ)},

where C1
C = C1([−τ, 0],YC).
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Results Proof: local Proof: nonlocal Conclusion

Spectral set

The spectral set σ(Aτ (λ)) =
{
µ ∈ C : ∆(λ, µ, τ)y = 0, for some y ∈ XC \ {0}

}
, and

∆(λ, µ, τ) = A(λ) + λuλf
′(uλ)e

−µτ − µ.

The eigenvalues of Aτ (λ) depend continuously on τ . It is clear that Aτ (λ) has an
imaginary eigenvalue µ = iν (ν ̸= 0) for some τ > 0 if and only if

[A(λ) + λuλf
′(uλ)e

−iθ − iν]y = 0, y (̸= 0) ∈ XC (7)

is solvable for some value of ν > 0, θ ∈ [0, 2π). One can see that if we find a pair of
(ν, θ) such that Eq.(7) has a solution y , then

∆(λ, iν, τn)y = 0, τn =
θ + 2nπ

ν
, n = 0, 1, 2, · · · .



.....
.
....

.
....

.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....
.
....
.
....
.
....
.
.....

.
....

.
.....

.
....

.
....

.

Results Proof: local Proof: nonlocal Conclusion

Decomposition

Suppose that (ν, θ, y) is a solution of Eq.(7) with y (̸= 0) ∈ XC. Then represented as

y = β sin(
π

l
(·)) + (λ− λ∗)z, ⟨sin(

π

l
(·)), z⟩ = 0, β ≥ 0,

∥y∥2YC
= β2∥ sin(

π

l
(·))∥2YC

+ (λ− λ∗)
2∥z∥2YC

= ∥ sin(
π

l
(·))∥2YC

.
(8)

Substituting these into Eq.(7), we obtain the equivalent system to Eq.(7):

g1(z, β, h, θ, λ)
def
=(dD2 + λ∗)z + [β sin(

π

l
(·)) + (λ− λ∗)z]

·
[
1 + λm1(ξλ, αλ, λ) + λαλf

′(uλ)e
−iθ[sin(

π

l
(·)) + (λ− λ∗)ξλ]− ih

]
= 0,

g2(z)
def
=Re⟨sin(

π

l
(·)), z⟩ = 0, g3(z)

def
= Im⟨sin(

π

l
(·)), z⟩ = 0,

g4(z, β, λ)
def
=(β2 − 1)∥ sin(

π

l
(·))∥2YC

+ (λ− λ∗)
2∥z∥2YC

= 0.

We define G : XC × R3 × R 7→ YC × R3 by G = (g1, g2, g3, g4) and note

zλ∗ = (1− i)ξλ∗ , βλ∗ = 1, hλ∗ = 1, θλ∗ =
π

2
, (9)

with ξλ∗ defined as in Theorem 1. An easy calculation shows that

G(zλ∗ , βλ∗ , hλ∗ , θλ∗ , λ∗) = 0.
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Results Proof: local Proof: nonlocal Conclusion

Solving eigenvalue problem

Theorem 2. There exists a continuously differentiable mapping λ 7→ (zλ, βλ, hλ, θλ)
from [λ∗, λ∗] to XC × R3 such that G(zλ, βλ, hλ, θλ, λ) = 0. Moreover, if
λ ∈ (λ∗, λ∗), and (zλ, βλ, hλ, θλ, λ) solves the equation G = 0 with hλ > 0, and
θλ ∈ [0, 2π), then (zλ, βλ, hλ, θλ) = (zλ, βλ, hλ, θλ).

Proof. Using Implicit function theorem.

Corollary. If 0 < λ∗ − λ∗ ≪ 1, then for each λ ∈ (λ∗, λ∗), the eigenvalue problem

∆(λ, iν, τ)y = 0, ν ≥ 0, τ > 0, y (̸= 0) ∈ XC

has a solution, or equivalently, iν ∈ σ(Aτ (λ)) if and only if

ν = νλ = (λ− λ∗)hλ, τ = τn =
θλ + 2nπ

νλ
, n = 0, 1, 2, · · · (10)

and
y = ryλ, yλ = βλ sin(

π

l
(·)) + (λ− λ∗)zλ,

where r is a nonzero constant, and zλ, βλ, hλ, θλ are defined as in Theorem 2.
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Results Proof: local Proof: nonlocal Conclusion

Stability of steady state solution

...1 If 0 < λ∗ − λ∗ ≪ 1 and τ ≥ 0, then 0 is not an eigenvalue of Aτ (λ) for
λ ∈ (λ∗, λ∗].

...2 If 0 < λ∗ − λ∗ ≪ 1 and τ = 0, then all eigenvalues of Aτ (λ) have negative real
parts for λ ∈ (λ∗, λ∗].

...3 If 0 < λ∗ − λ∗ ≪ 1, then for each fixed λ ∈ (λ∗, λ∗], µ = iνλ is a simple
eigenvalue of Aτn for n = 0, 1, 2, · · · .

...4 Since µ = iν is a simple eigenvalue of Aτn , by using the implicit function
theorem it is not difficult to show that there are a neighborhood
On × Dn × Hn ⊂ R× C× XC of (τn, iνλ, yλ) and a continuously differential
function (µ, y) : On → Dn × Hn such that for each τ ∈ On, the only eigenvalue
of Aτ (λ) in Dn is µ(τ), and

µ(τn) = iνλ, y(τn) = yλ,

∆(λ, µ(τ), τ) = [A(λ) + λuλf
′(uλ)e

−µ(τ)τ − µ(τ)]y(τ) = 0, τ ∈ On. (11)

...5 If 0 < λ∗ − λ∗ ≪ 1, then for each λ ∈ (λ∗, λ∗],

Re
dµ(τn)

dτ
> 0, n = 0, 1, 2, · · · .
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Results Proof: local Proof: nonlocal Conclusion

Hopf bifurcation

...1 If 0 < λ∗ − λ∗ ≪ 1, then for each fixed λ ∈ (λ∗, λ∗], the infinitesimal generator
Aτ (λ) has exactly 2(n + 1) eigenvalues with positive real part when
τ ∈ (τn, τλn+1

], n = 0, 1, 2, · · · .
...2 If 0 < λ∗ − λ∗ ≪ 1, then for each fixed λ ∈ (λ∗, λ∗], the positive steady state

solution uλ of Eq.(1) is asymptotically stable when τ ∈ [0, τ0) and is unstable
when τ ∈ (τ0,∞).

Theorem 3. Suppose that f (u) satisfies (A1) and (A2), and define λ∗ = d(π/l)2.
Then there is a λ∗ > λ∗ with 0 < λ∗ − λ∗ ≪ 1, and for each fixed λ ∈ (λ∗, λ∗], there
exist a sequence {τn}∞n=0 satisfying 0 < τ0 < τ1 < · · · < τn < · · · , such that Eq.(1)
undergoes a Hopf bifurcation at (τ, u) = (τn, uλ) for n = 0, 1, 2, · · · . More precisely,
there is a family of periodic solutions in form of (τn(a), un(x , t; a)) with period Tn(a)
for a ∈ (0, a1) with a1 > 0, such that

τn(a) =
θλ + 2nπ

νλ
+ a2k1

n (λ) + o(a2), Tn(a) =
2π

νλ

(
1 + a2k2

n (λ) + o(a2)
)
,

un(x , t; a) = uλ(x) +
a

2

(
yλ(x)e

iνλt + yλ(x)e
−iνλt

)
+ o(a),

(12)

where

k1
n (λ) =

dγ∗(0)

da
:= k1(n, λ)(λ− λ∗)

−3 + o((λ− λ∗)
−3),

k2
n (λ) =

dδ∗(0)

da
:= k2(n, λ)(λ− λ∗)

−2 + o((λ− λ∗)
−2),

(13)
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Results Proof: local Proof: nonlocal Conclusion

Hopf bifurcation (cont.)

k1(n, λ) =−
Re

∫ l

0
f ′(uλ)S̄nm

1
λ sin(

π

l
x)yλȳλ(e

iθλ + e−2iθλ )dx

hλ

∣∣∣∣ ∫ l

0
y2
λdx

∣∣∣∣Re

{
ie−i(θλ+ρλ)

∫ l

0

uλf
′(uλ)y

2
λ

λ− λ∗
dx

}

=−
λ2∗

[
f ′(0)

]2
[1− 3(

π

2
+ 2nπ)]

( ∫ l

0
sin3(

π

l
x)dx

)2
20

( ∫ l

0
sin2(

π

l
x)dx

)2 + o(λ− λ∗),
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Results Proof: local Proof: nonlocal Conclusion

Hopf bifurcation (cont.)

k2(n, λ) =

Re

∫ l

0
f ′(uλ)S̄nm

1
λ sin(

π

l
x)yλȳλ(e

iθλ + e−2iθλ )dx

h2λ
∣∣Sn∣∣2∣∣∣∣ ∫ l

0
y2
λdx

∣∣∣∣Re

{
ie−i(θλ+ρλ)

∫ l

0

uλf
′(uλ)y

2
λ

λ− λ∗
dx

} ·
(
λhλ

∣∣∣∣ ∫ l

0
y2
λdx

∣∣∣∣
· Im

{
ie−i(θλ+ρλ)

∫ l

0

uλf
′(uλ)y

2
λ

λ− λ∗
dx

}
+ λ2(θλ + 2nπ)

∣∣∣∣ ∫ l

0

uλf
′(uλ)y

2
λ

λ− λ∗
dx

∣∣∣∣2)
+

1

hλ
∣∣Sn∣∣2 Im

∫ l

0
λf ′(uλ)S̄nm

1
λyλȳλ(e

iθλ + e−2iθλ )dx

=

λ2∗ [f ′(0)]2 [3(
π

2
+ 2nπ)2 − 2(

π

2
+ 2nπ)− 3]

( ∫ l

0
sin3(

π

l
x)dx

)2
20[1 + (

π

2
+ 2nπ)]2

( ∫ l

0
sin2(

π

l
x)dx

)2 + o(λ− λ∗),

and (θλ, νλ, yλ) is the associated eigen-triple. In particular, k1(n, λ) > 0 and
k2(n, λ) > 0 hence the Hopf bifurcation at (τn, uλ) is forward with increasing period.
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Results Proof: local Proof: nonlocal Conclusion

Nonlocal model

Delayed Fisher equation:
∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t) (1− u(x , t − τ)) , x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0.
(14)

It has been pointed out by several authors that, in a reaction-diffusion model with
time-delay effect, the effects of diffusion and time delays are not independent of each
other, and the individuals which were at location x at previous times may not be at
the same point in space presently. Hence the localized density-dependent growth rate
per capita 1− u(x , t − τ) in (14) is not realistic. it is more reasonable to consider the
diffusive logistic population model with nonlocal delay effect as follows:
∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t)

(
1−

∫
Ω
K(x , y)u(y , t − τ)dy

)
, x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

(15)
where u(x , t) is the population density at time t and location x , d > 0 is the diffusion
coefficient, τ > 0 is the time delay representing the maturation time, and λ > 0 is a
scaling constant; Ω is a connected bounded open domain in Rn (n ≥ 1), with a
smooth boundary ∂Ω, and Dirichlet boundary condition is imposed so the exterior
environment is hostile; K(x , y) is a kernel function which describes the dispersal
behavior of the population. The nonlocal growth rate per capita in (15) incorporates
the possible dispersal of the individuals during the maturation period, hence it is a
more realistic model than (14).
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Results Proof: local Proof: nonlocal Conclusion

Hopf bifurcation

Theorem 4. For λ ∈ (λ∗, λ∗], the positive equilibrium solution uλ of Eq.(15) is locally
asymptotically stable when τ ∈ [0, τ0) and is unstable when τ ∈ (τ0,∞). Moreover at
τ = τn, (n = 0, 1, 2, · · · ), a Hopf bifurcation occurs so that a branch of spatially
nonhomogeneous periodic orbits of Eq. (15) emerges from (τn, uλ).
More precisely, there exists ε0 > 0 and continuously differentiable function
[−ε0, ε0] 7→ (τn(ε),Tn(ε), un(ε, x , t)) ∈ R× R× X satisfying τn(0) = τn,
Tn(0) = 2π/νλ, and un(ε, x , t) is a Tn(ε)-periodic solution of Eq.(15) such that
un = uλ + εvn(ε, x , t) where vn satisfies vn(0, x , t) is a 2π/νλ-periodic solution of (5).
Moreover there exists δ > 0 such that if Eq.(15) has a nonconstant periodic solution
u(x , t) of period T for some τ > 0 with

|τ − τn| < δ,

∣∣∣∣T −
2π

νλ

∣∣∣∣ < δ, max
t∈R,x∈Ω

|u(x , t)− uλ(x)| < δ,

then τ = τn(ε) and u(x , t) = un(ε, x , t + θ) for some |ε| < ε0 and some θ ∈ R.

[Wu, 1995, book]
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Results Proof: local Proof: nonlocal Conclusion

Homogenous kernel

When K(x , y) ≡ 1, n = 1 and Ω = (0, L) where L > 0, then the equation becomes


∂u(x , t)

∂t
=
∂2u(x , t)

∂x2
+ λu(x , t)

(
1−

∫ π

0
u(y , t − τ)dy

)
, x ∈ (0, π), t > 0,

u(x , t) = 0, x = 0, π, t > 0.

(16)
We can easily verify that Eq. (16) has a unique positive equilibrium solution

uλ(x) =
λ− 1

2λ
sin x for any λ > 1 (here λ∗ = 1). Linearizing Eq. (16) at uλ, we have

that
∂v(x , t)

∂t
=
∂2v(x , t)

∂x2
+ v −

λ− 1

2
sin x

∫ π

0
v(y , t − τ)dy , x ∈ (0, π), t > 0,

v(x , t) = 0, x = 0, π, t > 0.

(17)
Note that µ is an eigenvalue of Aτ (λ) if and only if µ is an eigenvalue of the following
nonlocal elliptic eigenvalue problem:∆(λ, µ, τ)ψ := ψ′′ + ψ −

λ− 1

2
e−µτ sin x

∫ π

0
ψ(y)dy − µψ = 0, x ∈ (0, π),

ψ(0) = ψ(π) = 0.

(18)
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Results Proof: local Proof: nonlocal Conclusion

Eigenvalue probelm

Lemma. Suppose that λ > 1 and τ ≥ 0. Then µ ∈ C is an eigenvalue of the problem
(18) if and only if one of the following is satisfied:

...1 µ = −n2 + 1 for n = 2, 3, 4, · · · ; or

...2 µ satisfies
(λ− 1)e−µτ + µ = 0. (19)

Proof: Substituting the Fourier series ψ =
∞∑
n=1

cn sin nx into Eq. (18), we have:

∞∑
n=2

cn
(
−n2 + 1− µ

)
sin nx −

[
(λ− 1)

∞∑
n=0

c2n+1

2n + 1
e−µτ + µc1

]
sin x = 0. (20)

Case 1: Suppose that µ ∈ C is an eigenvalue of (18), and µ ̸= −n2 + 1 for each of
n = 2, 3, 4, · · · , then (20) implies each cn = 0 for n ≥ 2, and if c1 ̸= 0, then (19) is
satisfied, and µ is an eigenvalue with an eigenfunction ϕ1(x) = sin x .
Case 2: If (19) is not satisfied and for some m = 2, 3, 4, · · · , µ = −m2 + 1, then
cn = 0 for n ≥ 2 and n ̸= m. If m is even, then c1 = 0 as well, hence µ = −m2 + 1 is
an eigenvalue with an eigenfunction ϕm(x) = sinmx ; if m is odd, then µ = −m2 +1 is
an eigenvalue with an eigenfunction in form ϕm(x) = sin x + cm sinmx , where cm
satisfies

(λ− 1)
(
1 +

cm

m

)
e(−m2+1)τ −m2 + 1 = 0.
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Distribution of eigenvalues
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Figure : Relation between Re(µ) and τ for Eq. (19). Here λ = 2.
µ = −3 is a fixed real-valued eigenvalue; on the left side of τ = τ∗ is the
curve of real-valued eigenvalues µ satisfying (λ− 1)e−µτ + µ = 0; and on
the right side of τ = τ∗ are the curves of real part αn of complex-valued
eigenvalues αn ± iβn. The curve α0(τ) connects with the curve of real
eigenvalues at τ = τ∗, and at τ = π/2, α0(τ) = 0 which gives rise of the
first Hopf bifurcation point.
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Hopf bifurcation

...1 The eigenspace of (18) may not be one-dimensional. When µ = −n2 + 1 is also
a root of (19), the eigenspace is two-dimensional. However as shown in
[Davidson-Doods, 2006, AA], usually the eigenspace of such nonlocal problem is
at most two-dimensional.

...2 The eigenvalue problem (18) with τ = 0 always has a principal eigenvalue µ0
satisfying (19) with a positive eigenfunction sin x . But µ0 may not be the
largest eigenvalue of (18). For example when τ = 0 and λ < 4, the maximum
eigenvalue of (18) is 1− λ which is also the principal eigenvalue; but when
τ = 0 and λ ≥ 4, then the maximum eigenvalue is −3 with the corresponding
eigenfunction sin 2x , and hence the maximum eigenvalue is not the principal
eigenvalue.

Theorem 5. For each λ > 1, there exist

τn(λ) =
(4n + 1)π

2(λ− 1)
, n = 0, 1, 2, · · · , (21)

such that when τ = τn(λ), n = 0, 1, 2 · · · , Aτ (λ) has a pair of simple purely imaginary
roots ±iνλ = ±i(λ− 1). Consider the nonlocal problem (16). For each λ > 1 and
n ∈ N ∪ {0}, there exists a τn(λ) defined as in (21) such that a Hopf bifurcation

occurs for Eq. (16) at the unique positive equilibrium solution uλ =
λ− 1

2λ
sin x when

τ = τn(λ). Moreover, uλ is locally asymptotically stable when 0 ≤ τ < τ0(λ), and it is
unstable when τ > τ0(λ).
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An observation


∂u(x , t)

∂t
= d∆u(x , t) + λu(x , t)

(
1−

∫
Ω
K(x , y)u(y , t − τ)dy

)
, x ∈ Ω, t > 0,

u(x , t) = 0, x ∈ ∂Ω, t > 0,

(22)
suppose that a solution u(x , t) of Eq. (22) is in a separable form

u(x , t) =
λ− 1

2λ
sin x · w(t). (23)

Here we recall that uλ(x) =
λ− 1

2λ
sin x is the unique positive equilibrium of Eq. (22)

for λ > 1. Then it is easy to verify that w(t) satisfies the well-known (non-spatial)
Hutchinson equation

dw

dt
= (λ− 1)w(t)(1− w(t − τ)). (24)

It is also well-known that the Hopf bifurcation points of Eq. (24) are also given by
(21), hence all the bifurcating periodic orbits obtained in Theorem 5 are indeed in
separable form (23). This shows that the dynamics of Eq. (24) is embedded in the
dynamics of Eq. (22) if the initial value is also in separable form (23). This is
interesting for a Dirichlet boundary value problem, while it is common for Neumann
(no-flux) boundary value problem. It would be interesting to know the stability of
periodic solution with such separable form for all λ > 1, and whether a
symmetry-breaking bifurcation can occur so that non-separable periodic orbits can
arise.
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Conclusion

(Cliff Taubes) http://w3.math.sinica.edu.tw/media/media.jsp?voln=371
“What is the most useful mathematics for you?”
“I think one is fundamental theorem of calculus, and another is maximum
principle.”
In my opinion, another two important things are: (i) Taylor expansion of a
function; (ii) implicit function theorem.
(Yuan Wang) The most important thing is: learn by yourself.
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Thank you!
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